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We investigate the relationship between orbital instability and decoherence in de Sitter (dS) spacetime.
We consider a simple quadratic toy model proposed by Brandenberger, Laflamme and Mijić of
two interacting scalar fields in a dS background. It admits a modewise separation, with each mode
consisting of a pair of nonautonomous coupled harmonic oscillators. We show that the (classical) maximal
Lyapunov exponent of every mode equals the asymptotic rate of (quantum) von Neumann entropy
production of each oscillator, assuming an initial vacuum. We find that for moderately long times
after horizon crossing, orbital instability, entropy and single-mode squeezing are larger for increasing
coupling strength. If the entropy of an oscillator increases more rapidly than squeezing, for example in the
strong-coupling regime for not too high frequencies, the noise of every quadrature of the asymptotic
state will be larger than the vacuum noise. The results suggest the possibility that simple, nonlinear
interacting physical processes with unstable or chaotic classical counterparts may provide an important
contribution to the effectiveness of the classicalization of cosmological scalar fields during a dS stage of
spacetime expansion.
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I. INTRODUCTION

The first studies of classicalization of primordial density
fluctuations used quantum optics tools in the theory of
cosmological perturbations. Such fluctuations were shown
to unitarily evolve from an initial vacuum into a highly
squeezed vacuum state in a purely de Sitter stage of
spacetime expansion. In the time-asymptotic limit, where
the squeezing is large, quantum expectation values calcu-
lated from the evolved state were found to become
indistinguishable from classical averages calculated from
a stochastic distribution [1,2]. However, the evolution of
isolated fluctuations is isoentropic. In order to evaluate the
entropy of primordial fluctuations and describe their
classicalization at quantum-state level, one needs to con-
sider environment-induced decoherence, an irreversible
process in which the system of interest loses quantum
coherences and increases its von Neumann entropy.
Because gravity has infinite range and couples to all
sources of energy, interactions with some sort of environ-
ment are unavoidable. Therefore, environmentally induced
decoherence that will certainly play a crucial role in the

classicalization of primordial density fluctuations must be
taken into account.
The entropy increase in usual models [3–5] occurs

because of dynamically generated entanglement correla-
tions between the system and the environment, which is
assumed to consist of infinite degrees of freedom. The large
environment is unaccessible in its entirety, and tracing it out
leads to entropy generation at system level. On the other
hand, it has been shown that in Minkowski spacetimes the
coupling to a small environment (consisting of one or few
degrees of freedom), in the presence of classical dynamical
instabilities, can result in much stronger decoherence
effects [6–8]. It has been found that for such interacting
systems, displaying classical Lyapunov instability, von
Neumann entropy generation rates at observed system
level either coincide or are favored by the positive maximal
Lyapunov exponents. This type of behavior is conjectured
[9] to hold up to a certain level of generality, but still not
much is known beyond specific examples.
In the present paper, we investigate such an example in

the context of the quantum-to-classical transition of a
massless scalar field state over de Sitter (dS) spacetime.
We will consider for this purpose a simple, solvable model
proposed in [10] of two interacting massless scalar fields
coupled through a bilinear derivative interaction potential.
One of the fields is taken to represent the system of interest,
which can be thought as any massless real scalar field
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producing density fluctuations during a dS stage of infla-
tionary spacetime expansion.1 The other field represents an
unobservable environment. The action for the model is
quadratic and in reciprocal space it reduces to a modewise
interaction between the system of interest and the unob-
servable field—that is, to a collection of pairs of interacting
harmonic oscillators. Thus, for each mode of the system,
the environment consists of a single degree of freedom.
When considered over Minkowski spacetime the composite
system’s classical dynamics for such an action is of course
stable, with a phase-space flow consisting of bounded
periodic orbits. However, over dS spacetime the system
becomes nonautonomous and unstable, with a positive
maximal Lyapunov exponent μ that we will calculate
to be equal to the background spacetime inflation rate
(i.e., exponential expansion rate) given by the Hubble
parameter H.
Assuming an initial vacuum state for a composite system

mode, we will evaluate the asymptotic growth rate μS of
its entanglement of formation (EoF)—that is, the von
Neumann entropy for an observed system mode. We find
that μ ¼ μS, allowing us to calculate a logarithmic diver-
gence for the EoF modulated by the inflation rate and
to demonstrate the superhorizon relationship between
the entropy generation at system level and the classical
exponential orbit separation rate, after entanglement fluc-
tuations cease.
We also examine the relationship between orbital insta-

bility and decoherence from the point of view of the
nonclassical depth. This is a measure of the system’s state
decoherence that is also sensitive to its squeezing properties
and focuses on the emergence of a phase-space represen-
tation for it interpretable as a classical probability distri-
bution, which is a very important aspect of decoherence to
take into account in cosmological contexts. We will show
how orbital instability influences the nonclassical depth,
and thus the effectiveness of the classicalization of the
system in this sense. Although the maximal Lyapunov
exponent is independent of model details and is given here
only by the spacetime inflation rate, the actual instanta-
neous exponential orbit separation rate for a given mode
increases monotonically as a function of the coupling
strength. We shall find that it is proportional to the entropy
for late times, in such a way that entropy values will get
larger when we shift from the weak to the strong coupling
extremes. On the other hand, because Gaussianity is
preserved here in the course of evolution, the nonclassical
depth of a system mode’s state after horizon crossing will
be given by the asymptotic balance between single-mode
squeezing and von Neumann entropy. This indicates that
orbital instability will influence the nonclassical depth

asymptotics. We will quantify this influence, by evaluating
the response of the nonclassical depth when we change
between the weak- and strong-coupling regimes. We will
prove that although in the weak-coupling regime every
mode will evolve into a highly quadrature squeezed state as
expected, in the strong-coupling limit all modes of the
observed field evolve into a state with noise larger than the
vacuum noise in every phase-space direction (zero non-
classical depth) except for the very high-frequency sector.
As we will discuss, these results suggest the possibility that
simple, nonlinear interacting physical processes with
unstable or chaotic classical dynamical counterparts may
provide an important contribution to the effectiveness of the
classicalization of cosmological scalar fields during a dS
stage of spacetime expansion.
This paper is organized as follows. First, in Sec. II, we

introduce the model, present its solution in the Heisenberg
representation and calculate its classical maximal Lyapunov
exponent. The Heisenberg picture solution makes it very
easy to write the time evolution of the composite system
Robertson-Schrödinger covariance matrix. We continue by
presenting some background material on how to compute
the quantities relevant to our analysis of decoherence in
terms of the covariance matrix in Sec. III. Our results will be
presented in Sec. IVand will be finally discussed in Sec. V.

II. THE BLM MODEL

Let us begin by introducing the model we will consider,
describing its exact Heisenberg picture evolution and
calculating its classical maximal Lyapunov exponent.
This model was first proposed and used in investigations
of decoherence of cosmological perturbations by
Brandenberger, Laflamme and Mijić in [10], and for this
reason we call it the BLM model. It describes a bipartite
system of two coupled massless fields, the system of
interest ϕ and the unobservable field ψ , over a curved
spacetime with metric gμν. The action of the BLM model
reads (natural units will be used throughout the text)

S ¼
Z

d4x
ffiffiffi
g

p 1

2
½∂μϕ∂μϕþ ∂μψ∂μψ þ 2λ∂μϕ∂μψ �; ð1Þ

where g ¼ − detðgμνÞ and λ is the dimensionless coupling
parameter normalized such that λ ≠ 0, jλj < 1. The cases
λ ¼ �1 are excluded because when λ ¼ �1, (1) reduces to
the action of a single isolated field ~ϕ� ¼ ϕ� ψ .
The weak- and strong-coupling limits are given by λ → 0

and jλj → 1 respectively. Over the dS background, the
metric is ds2 ¼ a2ðηÞð−dη2 þ d~x2Þ, aðηÞ ¼ −ðHηÞ−1,
where η is the conformal time ηðtÞ ¼ R t∞ ds

aðsÞ. In this case

we have g ¼ a4 and aðtÞ ¼ eHt, where the Hubble param-
eter H ≡ 1

a
da
dt is a constant.

Since the action is quadratic, the system is exactly
solvable. In order to write its exact solution in the

1For definitiveness, the reader may consider inflaton fluctua-
tions in a first-order approximation, neglecting backreaction
effects.

DE SOUZA et al. PHYSICAL REVIEW D 90, 125039 (2014)

125039-2



Heisenberg picture, we begin by expanding the fields in

terms of their Fourier components, ϕ ¼P~kϕ~kðηÞei
~k·~x and

ψ ¼P~kψ ~kðηÞei
~k·~x in a large box of fixed comoving

volume. Let Π
ϕ;~kðηÞ andΠψ ;~kðηÞ be the momenta conjugate

to the Fourier field components. The Hamiltonian of the
BLM model then reads H ¼P~kH~k, where

H~k ¼
1

2a2ð1 − λ2Þ
�
Π2

ϕ;~k
þ Π2

ψ ;~k
− 2λΠ

ϕ;~kΠψ ;~k

�

þ a2k2

2
ðϕ2

~k
þ ψ2

~k
þ 2λϕ~kψ ~kÞ: ð2Þ

For simplicity, we have assumed that our comoving length
units are such that the box volume in the Fourier expansion
reduces to unity.
Let us define new field modes which diagonalize the

Hamiltonian H~kðηÞ, using the symplectic transformation

(the subindex ~k was dropped to simplify the notation)

�
ϕ−

ϕþ

�
¼ 1ffiffiffi

2
p
�
1 −1
1 1

��
ϕ

ψ

�
;

�
π−

πþ

�
¼ 1ffiffiffi

2
p
�
1 −1
1 1

��Πϕ

Πψ

�
:

In terms of these new fields, the Hamiltonian (2) reads
H~k ¼ Hþ þH−, where

H� ¼ π2�
2a2ðηÞð1� λÞ þ

a2ðηÞk2ð1� λÞ
2

ϕ2
�: ð3Þ

We can readily solve the equations of motion for these
field modes:

dϕ̂�
dη

¼ 1

iℏ
½ϕ̂�; Ĥ�� ¼

1

a2ð1� λÞ π̂�;
dπ̂�
dη

¼ 1

iℏ
½π̂�; Ĥ�� ¼ −a2ð1� λÞk2ϕ̂�: ð4Þ

The general solution of the resulting second-order equation
for these fields,

d
dη

�
a2

du
dη

�
þ a2k2u ¼ 0; ð5Þ

is a linear combination of Hankel functions, u and u�, with

uðηÞ ¼ 1ffiffiffi
2

p Hη

k1=2
eikη
�
1þ 1

kη

�
: ð6Þ

After some algebra, it can be shown that

 
ϕ�ðηÞ
π�ðηÞ

!
¼
 

xðηÞ yðηÞ
1�λ

ð1� λÞzðηÞ wðηÞ

! 
ϕ�ðη0Þ
π�ðη0Þ

!
ð7Þ

is the solution of the equations of motion (4). The functions
xðηÞ, yðηÞ, zðηÞ, and wðηÞ are given by

xðηÞ ¼ −iðu�ηv0 − uηv�0Þ ¼
kη coskðη− η0Þ− sinkðη− η0Þ

kη0
;

yðηÞ ¼ iðu�ηu0 − uηu�0Þ ¼ −
H2

k3
ðkðη− η0Þ coskðη− η0Þ−

− ð1þ k2η0ηÞ sinkðη− η0ÞÞ;

zðηÞ ¼ −iðv�ηv0 − vηv�0Þ ¼ −
k

H2η0η
sinkðη− η0Þ;

wðηÞ ¼ iðv�ηu0 − vηu�0Þ ¼
kη0 coskðη− η0Þ þ sinkðη− η0Þ

kη
;

where vðηÞ≡ a2u0η and the prime here stands for differ-
entiation with respect to conformal time.
To obtain dynamically generated correlations between

the system and auxiliary (unobservable) field parties at a
given instant η ≥ η0, starting from a factorized initial
condition ρ̂Tðη0Þ ¼ ρϕðη0Þ ⊗ ρψ ðη0Þ, we have to express
the nondiagonal fields at time η in terms of these diagonal-
izing field coordinates at time η0. The relation, in matrix
form, is0
BBBB@

ϕη

Πη
ϕ

ψη

Πη
ψ

1
CCCCA ¼

0
BBB@

x y
1−λ2 0 λy

1−λ2

z w −λz 0

0 λy
1−λ2 x y

1−λ2

−λz 0 z w

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Mðη;η0Þ

0
BBBB@

ϕ0

Π0
ϕ

ψ0

Π0
ψ

1
CCCCA: ð8Þ

This equation can also be rewritten in a more compact
form as

XðηÞ ¼ Mðη; η0ÞXðη0Þ; ð9Þ

where we have defined the vector

XðηÞ ¼ ðϕðηÞ;ΠϕðηÞ;ψðηÞ;ΠψðηÞÞT: ð10Þ

The creation and annihilation operators for the reduced
system and unobservable field are defined as

a
1~kðηÞ ¼

1ffiffiffi
2

p
�
ϕ~kðηÞ þ iΠ

ϕ~kðηÞ
�
¼ ða†

1~k
ðηÞÞ†; ð11Þ

a
2~kðηÞ ¼

1ffiffiffi
2

p
�
ψ ~kðηÞ þ iΠ

ψ~kðηÞ
�
¼ ða†

2~k
ðηÞÞ†; ð12Þ

with the usual boson commutation relations ½aj~k; a†j0~k0 � ¼
δj;j0δ~k;~k0 , j; j

0 ¼ 1; 2, being satisfied at any time η ≥ η0.
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Notice that (8) is the description of the quantum dynamics
for a given mode in the Fock Space F ~k;η0

determined by

the reference vacua j0ϕ~k i and j0ψ~k i annihilated respectively

by a
1~kðη0Þ and a

2~kðη0Þ at time η0.
Observe that the matrix relation (8) also describes the

classical phase-space flow associated to the dynamics of a
mode under the BLM model. That is, one just has to
consider ðϕ0Π0

ϕψ
0Π0

ψÞT as an initial condition in phase-
space and ðϕηΠη

ϕψ
ηΠη

ψÞT as the time-evolved generalized
coordinates. The time evolution of the distance between two
neighboring points, dðηÞ¼∥X1ðηÞ−X2ðηÞ∥¼∥δXðηÞ∥¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δXTðηÞδXðηÞ

p
, gives the maximal Lyapunov exponent

μ ¼ lim
η→0−

lim
dðη0Þ→0

−
H

2 lnð−HηÞ ln
d2ðηÞ
d2ðη0Þ

:

Here, XðηÞ is the vector defined in Eq. (10). Taking
into account that rðηÞ evolves according to Eq. (8), we
see that the square of the distance varies as d2ðηÞ ¼
δXTðη0ÞNδXðη0Þ. The matrix N ¼ MTðη; η0ÞMðη; η0Þ is a
4 × 4 matrix of the form

N ¼
�
A B

B A

�
;

whereA andB are 2 × 2 symmetricmatrices. The character-
istic polynomial of N is the product of two quadratic
polynomials; hence, the eigenvalues of N can be explicitly
calculated. If we denote by μi, i ¼ �, the roots with the
largest real parts, the maximal Lyapunov exponent reads

μ ¼ lim
η→0−

max
i¼�

−
H

2 lnð−HηÞ lnℜðμiðη; η0ÞÞ;

whereℜðμiðη; η0ÞÞ stands for the real part of the eigenvalue
μi, i ¼ �. Making an expansion around η ¼ 0, we obtain

μ� ¼ H4η20ðkη0 cos kη0 þ sin kη0Þ2 þ k4ð1� λÞ2sin2kη0
H4k2η20η

2

¼ C
η2

; C > 0:

Finally, we find that the maximal Lyapunov exponent
coincides with the Hubble parameter H giving the back-
ground spacetime inflation rate (i.e., exponential expansion
rate),

μ ¼ lim
η→0−

−
HðlnC − 2 lnð−ηÞÞ

2 lnð−HηÞ ¼ H: ð13Þ

III. QUANTIFYING DECOHERENCE

For the sake of completeness and to establish a notation
for the sequence, we continue by briefly describing the

quantities we will use to measure the decoherence
process of the observed system. As mentioned in the
introduction, we restrict our attention in this work to
evaluate the time evolution of these quantities for an
initial vacuum. It is a modewise factorized state of the
form ρðη0Þ ¼

Q
~kρϕ~kðη0Þ ⊗ ρ

ψ~kðη0Þ, where the labels ϕ

and ψ refer to the corresponding subsystem and where
ρ
ϕ~kðη0Þ ¼ j0ϕ~k ih0

ϕ
~k
j, ρ

ψ~kðη0Þ ¼ j0ψ~k ih0
ψ
~k
j. The initial state

we refer to when we speak of a global vacuum initial
condition for a given mode is j0ϕ~k ih0

ϕ
~k
j ⊗ j0ψ~k ih0

ψ
~k
j. In the

BLM model different modes do not interact and we can

focus here on a fixed ~k. So we omit from now on
reference to mode labels whenever possible.
It is in general a very difficult task to calculate

the evolution of this type of quantity for an interacting
bipartite system. In the present case, however, our quadratic
Hamiltonian will preserve the Gaussian character of an
initial global vacuum in the course of evolution: the full
composite system quantum state will be a generic two-
mode squeezed vacuum at every instant. And for Gaussian
states, these information-theoretic quantities can be written
directly in terms of the Robertson-Schrödinger covariance
matrix (CM), whose evolution can be easily found in terms
of the Heisenberg picture solution to dynamics.
Remember that the CM is the real symmetric matrix Σ

given in terms of second-order correlation functions for the
fields and their respective momenta as

Σij ¼ tr

�
1

2
fXi; Xjgρ

�
− trðXiρÞtrðXjρÞ; ð14Þ

where ρ denotes the full (two-mode) state and the Xi

are entries of the four-dimensional vector XT ¼
ðϕ;Πϕ;ψ ;ΠψÞ ¼ ðX1; X2; X3; X4Þ.2 Its evolution can be
calculated from our Heisenberg picture solution of the
model, which gives us the dynamics of the second-order
correlation functions in (14) for our fields/momenta in a
form such that the CM at time η can be written as a linear
transformation of Σ at the earlier time η0:

σijðηÞ ¼
X
mn

fmn
ij ðη; η0Þσmnðη0Þ: ð16Þ

Expressions for the relevant fmn
ij ðη; η0Þ are given in the

appendix.
Let us explain then how we will evaluate von Neumann

entropy generation and nonclassicality in terms of the CM.
We first split the CM in blocks as

2Notice that the elements of this vector satisfy the canonical
commutation relations ½Xi; Xj� ¼ i ~Λij where

~Λ ¼ diag

��
0 1

−1 0

�
1

;

�
0 1

−1 0

�
2

�
: ð15Þ
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Σ ¼
�

A C

CT B

�
; ð17Þ

where A, B and C are 2 × 2 matrices, and notice that the
submatrix A corresponds to the CM of the Gaussian state
obtained by tracing out the second (environmental) mode—
that is, the reduced system state. This state is a single-
mode squeezed thermal state (STS), which we denote
from now on by ρϕ. It is possible to show [11,12] that
the von Neumann entropy SðρϕÞ for such a STS is given in
the present notations as the following function of the
determinant DA of A: SðρϕÞ ¼ fð ffiffiffiffiffiffiffi

DA
p Þ, where

fðxÞ ¼
�
xþ 1

2

�
ln

�
xþ 1

2

�
−
�
x −

1

2

�
ln

�
x −

1

2

�
:

Since the full system evolves unitarily and we assume an
initial global vacuum, the quantum state ρ will always be
pure in the course of dynamics. It follows that the von
Neumann entropy of the system or the auxiliary field is a
direct measure of the quantum entanglement between the
parties. More precisely, it coincides with the so-called EoF,
defined by EoFðρÞ ¼ SðtrψρÞ. It is convenient to notice that
the average number of excitations ν for ρϕ is related to
SðρϕÞ ¼ EoFðρÞ by the formula S ¼ fðνþ 1

2
Þ [13] and is

also given in terms of its CM, by

ν ¼
ffiffiffiffiffiffiffi
DA

p
þ 1

2
: ð18Þ

Concerning the nonclassicality degree of the observed
system, there are several quantifiers available besides the
entropy that focus on different aspects of the decoherence
process. We will also evaluate here a quantifier that is
sensible to the squeezing properties of the observed system
and focuses on the emergence of a phase-space represen-
tation for it interpretable as a classical probability distri-
bution, which is a very important aspect to take into
account when examining the quantum-to-classical transi-
tion in cosmological contexts. This is in agreement, for
example, with the approach taken in [5]. More precisely,
the idea is to consider that the reduced system is classical
when it admits a positive, regular Glauber-Sudarshan
P-representation3 for its state. In this case, it is known
[16] that the state’s second-order quantum coherence
function gð2Þ will be ≥ 1, which for a single-mode state
is a drastic restriction for detectable quantum effects to
show up in its excitation statistics.4 Taking this into
account, a proper quantifier of the effectiveness of the

decoherence process must measure how distant the system
state is from having a positive and regular P-function.
There is a nonclassicality measure which performs

exactly this task. It is the nonclassical depth, introduced
independently by Lee [18,19] and Lütkenhaus and Barnnett
[20]. In a nutshell, the rationale behind the nonclassical
depth of a state with P-function Pðα�; αÞ is to look at its
Cahill R-function

Rðα�; α; τÞ ¼ 1

πτ

Z
d2u exp

�
−
1

τ
jα − uj2

�
Pðu�; uÞ ð19aÞ

Rðα�; α; 0Þ ¼ Pðα�; αÞ ð19bÞ

as a convolution transformation with a Gaussian kernel
1
πτ expð− 1

τ jα − uj2Þ. This convolution mask is broader for
larger τ, in such a way that the resulting smoothing effect
on the output function is enhanced as τ increases. The
definition of the nonclassical depth goes then as follows.
First, if a given value of τ is large enough so that the
R-function corresponding to the P-function of a given
quantum state becomes acceptable as a classical phase-
space distribution—that is, it becomes a positive ordinary
function, normalizable—then we say that τ completes the
smoothing operation [relative to the convolution trans-
formation (19b)] for the considered state. Next, let Ω
denote the set of all τ that will complete the smoothing
operation of the state’s P-function. The nonclassical depth
for this state is defined as the quantity τm ≡ infτ∈Ωτ.
It is immediate that we will have τm ¼ 0 for a state only

when its P-function is already acceptable as a classical
phase-space distribution. This is the case, for instance, for
an arbitrary coherent state. Moreover, it is possible to show
that for τ ¼ 1 one always has R≡Q [19], where Q ¼
QðαÞ is the Husimi Q-function. The Q-function is accept-
able as a classical phase-space distribution function for any
quantum state. This establishes the upper bound and lower
bounds for τm: we have 0 ≤ τm ≤ 1 for any state.
For a STS, the nonclassical depth can be easily evaluated

in terms of the CM. If ϵ< denotes the smallest eigenvalue of
the CM—called the generalized squeeze variance (GSV)
for the corresponding state—then it can be shown [19] that
its nonclassical depth is

τm ¼ max

�
1 − 2ϵ<

2
; 0

�
: ð20Þ

For the present purposes, this formula reduces the
evaluation of the nonclassical depth of the observed system
state ρϕ in the course of evolution to keeping track of
the GSV.
There is a simple expression for the GSV of a STS

such as ρϕ. In the previous notations, it is given by the
dispersion [21]

3Here, regular means no more singular than a Dirac delta,
which describes the P-function for a coherent state [14,15].

4To obtain second-order correlation effects one has to consider
multimode field states, which would show up in a nontrivial
interacting theory. This type of effect was investigated in the
context of the statistics of inflaton quanta in [17].
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ϵ< ¼
�
νþ 1

2

�
e−2jZj; ð21Þ

where jZj is the single-mode squeezing strength. This
formula, albeit simple, will be important in our analysis
in the next section of the effectiveness of the decoherence
process for ρϕ. It shows that it is the relative ratio between
the quantities νþ 1

2
and e−2jZj, related respectively to

entropy/thermalization and single-mode squeezing, which
determines the nonclassical depth. We must be able then to
write it in terms of the CM. This is done by noticing that jZj
can be written after some algebra in terms of the CM by

jZj ¼ 1

2
log

 
TA

2
ffiffiffiffiffiffiffi
DA

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
A

4DA
− 1

s !
; ð22Þ

which taking Eq. (18) into account gives

ϵ< ¼ 2DA

TA þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
A − 4DA

p ¼
ffiffiffiffiffiffiffi
DA

p
VA

; ð23Þ

where TA ¼ trA, DA ¼ det A and 2
ffiffiffiffiffiffiffi
DA

p
VA ¼ TAþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2
A − 4DA

p
. The formula also shows that in our context

the limiting values of the nonclassical depth have the
following interpretation: a value of τm close to the limit 1

2

means that the STS ρϕ is a highly quadrature squeezed
state, while τm ¼ 0 means that its noise is larger than the
vacuum noise in every phase-space direction and no
squeezed generalized quadrature exists.
For further details on the aspects of Gaussian informa-

tion theory discussed in this section, we refer the reader
to [21–25].

IV. RESULTS

We are now in position to present our results. We begin
by the study of the entropy production at system level,
followed by the analysis of the nonclassical depth/GSV.

A. Von Neumann entropy generation

As we discussed in the previous section, for a global
vacuum initial condition the von Neumann entropy SðρϕÞ
of the reduced system state (or, equivalently, the EoF of the
full system state) accounts for both its degree of mixing and
the amount of bipartite entanglement. We have seen that it
is given by the determinant DA of the CM A for ρϕ. The
calculation of AðηÞ for an initial vacuum is relatively easy
because, at time η0, the only nonzero elements of the two-
mode CM are those of the diagonal, all equal to 1=2. The
determinant of the CM at time η is given by

DvacuaðηÞ ¼
1þ d2ðηÞλ2 þ d4ðηÞλ4 þ x2ðηÞz2ðηÞλ6

4ð1 − λ2Þ2 ; ð24Þ

where d2ðηÞ ¼ x2z2 − 2x2w2 þ 2xyzwþ 2y2z2 þ y2w2 and
d4ðηÞ ¼ x2w2 þ y2z2 − 2x2z2. It is worth noticing that
the entropy of entanglement increases monotonically
with DA in the interval DA ∈ ½1=4;∞Þ. By performing
an asymptotic expansion for η → 0−, we find
DA ≈ Aðη0; λ; k;HÞη−2, where Aðη0; λ; k;HÞ > 0 is a func-
tion only of η0, λ, k and H.
We define the asymptotic entropy generation rate as

μS ¼ lim
η→0−

−
H

lnð−HηÞ SðηÞ:

Taking into account the previous discussion we find
μS ¼ H. For large values of DA, SðρϕÞ the approximations

SðρϕÞ ≈ 1þ ln

� ffiffiffiffiffiffiffi
DA

p
þ 1

2

�
≈
1

2
lnDA

are good and we can write

μS ¼ lim
η→0−

−
H

2 lnð−HηÞ lnDAðηÞ:

Taking into account the asymptotic expansion forDA this
gives us μS ¼ H ¼ μ, as claimed. Thus, the maximal
Lyapunov exponent and the asymptotic entropy generation
rate at reduced system level are equal.
From this equality, we see that for late times in the

superhorizon regime the von Neumann entropy of the
reduced system state relates to the maximal Lyapunov
exponent as

Sðρϕ; ηÞ ≈ −
μ

H
lnð−HηÞ: ð25Þ

As the μ is equal to H this establishes a logarithmic
divergence for the late time entropy modulated by the
Hubble parameter, Sðρϕ; ηÞ ≈ − lnð−HηÞ. An exception
for this behavior will be found only if k ¼ 0, because
Aðη0; λ; k;HÞ vanishes in this case and we get

DAðk→ 0þÞ¼ λ2ðH4ðη3−η30Þ2−18Þþ9λ4þ9

36ðλ2−1Þ2 : ð26Þ

But of course, this limit is not physical.
We thus see that although the general dynamical behav-

ior of the EoF is modulated by the absolute value of the
wave vector for earlier times, it diverges logarithmically
for late times (η → 0−) for any k ≠ 0, in a way that is
completely frequency independent (also of any other model
detail) and is modulated only by the spacetime inflation
rate. Its early time behavior is markedly different for small
and large values of k. In the former case, the EoF remains
small and corresponds to the determinantDA given by (26);
in the latter case, entanglement oscillates with an amplitude
which grows with k. Entanglement oscillations, which are
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characteristic of the subhorizon regime kη > 1, cease in the
superhorizon regime kη ≪ 1, when the EoF diverges
asymptotically.
The result in Eq. (25) also shows that the late time

entropy relates to the actual instantaneous exponential orbit
separation rate ΓðηÞ by

Sðρϕ; ηÞ ≈
1

2
ΓðηÞ; ð27Þ

with ΓðηÞ ¼ lnℜðmaxi¼�μiðη; η0ÞÞ in the notation of
Sec. II. This, on the other hand, displays dependence on
the model details, and for a given mode it is larger for
stronger couplings. In fact, a numerical study, summarized
in Fig. 1, shows that it increases monotonically as a
function of λ ∈ ð0; 1Þ. The dependence in k only changes
its early time oscillatory behavior. As a consequence of this
relation, we see that the superhorizon regime values of the
von Neumann entropy of the system mode will then be
favored by the stronger orbital instability when we shift
from the weak- to the strong-coupling extremes. A numeri-
cal study of the EoF showed that this is indeed the case: the
EoF of course vanishes in the limit of no interaction, λ ¼ 0,
and the numerical investigation summarized in Fig. 2
demonstrated that it also increases with an increasing
coupling constant in the interval λ ∈ ð0; 1Þ.

B. Effectiveness of decoherence

Let us examine the decoherence process from the point
of view of the nonclassical depth. In the previous section,
we have seen that the GSV ϵ< determines the nonclassical
depth and is given by the ratio of

ffiffiffiffiffiffiffi
DA

p
to e2jZj, which

measures thermalization (entropy) and squeezing of the
system. As ϵ< ranges from 0 to 1

2
the nonclassical depth

varies from its maximum Gaussian state value of 1
2
to its

minimum, 0; for ϵ< larger than 1
2
the nonclassical depth is

zero. We have also seen in Eq. (27) that the values of the
entropy (and thus of

ffiffiffiffiffiffiffi
DA

p
) increase in the superhorizon

regime when the orbital instability measured by ΓðηÞ gains
in importance, as we shift from the weak- to the strong-
coupling limit. This indicates that orbital instability will
influence the nonclassical depth asymptotics. We will
quantify this influence, by evaluating the response of the
nonclassical depth when we change between the weak- and
strong-coupling regimes.
From Eq. (23), we have to analyze the late time behavior

of
ffiffiffiffiffiffiffi
DA

p
and VA. Their asymptotic expansions can be

calculated to be of the form
ffiffiffiffiffiffiffi
DA

p ðη → 0Þ ¼ − 1
ηPþOð1Þ

and VAðη → 0Þ ¼ − 1
ηQþOð1Þ, where the coefficients P

and Q are functions of λ; k; H. We see then that the
balance between these quantities is going to be determined
by P;Q.
The detailed form of these coefficients is very cumber-

some and we will omit the details. For simplicity, we will
assume henceforth that conformal time has been scaled into
units such that the Hubble parameter is H ¼ 1 and choose
initial time η0 ¼ −1, corresponding to the standard cosmic
time instant t ¼ 0. The resulting asymptotic expansion for

ϵ< ¼
ffiffiffiffiffiffiffiffiffi
DAðηÞ

p
VAðηÞ [Eq. (23)] is

ϵ<ðη → 0Þ ¼ λ2

2k6ð1 − λ2Þ2
G1 þ G2

G
; ð28Þ

where

G1 ¼ G × ðk cos k − sin kÞ2; ð29Þ

FIG. 1 (color online). Instantaneous orbit separation rate ΓðηÞ
for an initial vacuum. We scale conformal time into units such
that the Hubble parameter is H ¼ 1 and choose initial time
η0 ¼ −1. Here, k ¼ 30. The dot-dashed black line corresponds to
λ ¼ 0.1, the solid red line to λ ¼ 0.3, the dashed blue line to
λ ¼ 0.5, and the solid green line to λ ¼ 0.999.

1.0 0.8 0.6 0.4 0.2 0.0

Η

E
oF

0

1

2

3

4

5

6

FIG. 2 (color online). EoF as a function of the η for an initial
vacuum. We scale conformal time into units such that the Hubble
parameter is H ¼ 1 and choose initial time η0 ¼ −1. Entangle-
ment oscillations are seen for initial states in the subhorizon
regime (k ¼ 20, the dot-dashed purple line corresponds to λ ¼ 9

10
,

the dashed blue line to λ ¼ 1
10
), but not for initial states in the

superhorizon regime (k ¼ 1
10
, the solid black line corresponds to

λ ¼ 1
10
, the dotted red line to λ ¼ 9

10
). The entanglement of

formation diverges asymptotically in all cases.
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G2 ¼
1

2
k4sin2ðkÞ½ð1 − λ2Þ2k4sin2ðkÞ

þ ð1þ λ2Þðk cos k − sin kÞ2�; ð30Þ
and

G ¼ 1

2
½ð1þ λ2Þk4sin2ðkÞ þ ðk cos k − sin kÞ2�: ð31Þ

With this formula available, let us begin by examining
the conditions for asymptotic quadrature squeezing. From
Eq. (28), the condition ϵ<ðη → 0Þ < 1

2
reduces a constraint

on λ and k,

λ2

ð1 − λ2Þ2 < k6
G

G1 þ G2

: ð32Þ

In the weak-coupling regime λ → 0, the right-hand side
of Eq. (32) has a positive finite limit which never exceeds
9
10
. Since the left-hand side tends to zero as λ → 0, it follows

that (32) will be satisfied for every k as long as λ is small
enough. Furthermore, it is not difficult to see from the
expressions for G, G1 and G2 that the right-hand side of
(32) diverges with increasing k, so that taking initial length
scales on the particle horizon, k ¼ 1, or deeper, k > 1, will
lead to a larger asymptotic quadrature squeezing. Thus, the
typical output reduced system state in the weak-coupling
limit is a highly quadrature-squeezed state. This is con-
sistent with what is expected, for example, for isolated
massless inflaton fluctuations [2].
On the other hand, the condition for absence of quad-

rature squeezing (zero nonclassical depth) is ϵ< ≥ 1
2
, which

leads to

λ2

ð1 − λ2Þ2 ≥ k6
G

G1 þ G2

: ð33Þ

Since the left-hand side of (33) diverges as λ → 1, this
inequality can hold in the strong-coupling limit as long as
we place a restriction in k. In fact, the limit of k6G=
ðG1 þ G2Þ as λ → 1 is a positive function of k which
diverges when k is equal to one of the roots of the equation
k cosðkÞ ¼ sinðkÞ and when k → ∞. Nonetheless, experi-
menting numerically with the coupling parameter shows
that taking λ close enough to 1 guarantees (33) to hold up to
considerably large values of k. Thus, the asymptotic
reduced system state ρϕ;∞ here is qualitatively very differ-
ent from the weak-coupling case. As we already observed,
taking the jλj → 1 limit increases the instantaneous expo-
nential orbit separation rate of the model, reflecting in
larger entropy values. In fact, remember that we showed
that although the EoF presents a logarithmic divergence for
nonzero coupling, its growth increases as λ varies from
λ ≈ 0 to λ ≈ 1. The numerical analysis, summarized in
Fig. 3, shows that for jλj → 1 this orbit separation rate will
become strong enough to render the asymptotic state ρϕ;∞

quadrature-squeezing free except for very small subhorizon
length scales. In conclusion, we see that in the strong-
coupling cases when τmðρϕ;∞Þ ¼ 0, decoherence is suffi-
ciently effective to make the noise for the output state
exceed the vacuum noise in all phase-space directions. This
should be compared with the results described in [5].

FIG. 3 (color online). GSV asymptotics. The coupling is
λ ¼ 0.999999. (a) Top: the solid black line corresponds to
k ¼ 1000, with associated initial length scale being 0.1% of
the Hubble radius and ϵ<ðη → 0Þ > 10. The solid red line
corresponds to k ¼ 500, the dotted blue line to k ¼ 350, and
the dot-dashed green line to k ¼ 350. (b) Bottom: for initial
length scales of order ≈1%H, ϵ<ðη → 0Þ is huge, ≈106. The
dot-dashed green line corresponds to k ¼ 35, the dotted blue line
to k ¼ 40 and the solid red line to k ¼ 50. The solid black
line is practically the Hubble radius, k ¼ 1.5; in this case
ϵ<ðη → 0Þ ≈ 1011.
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V. CONCLUSIONS

We examined in this work the relation between
Lyapunov exponents and decoherence in de Sitter space-
time with spatially flat simultaneity hypersurfaces. We
considered a quadratic example model, the BLM model,
which reduces modewise to a model of nonautonomous
coupled harmonic oscillators. Assuming an initial vac-
uum, we demonstrated that there is a relationship
here between classical orbital instability as measured
by the maximal Lyapunov exponent μ and the von
Neumann entropy generation rate for the reduced sub-
system, μS. We found that these are equal, leading to a
relation between the entropy and the exponential orbit
separation in the late times superhorizon regime of the
form

Sðρϕ; ηÞ ≈ −
μ

H
lnð−HηÞ:

Thus, the von Neumann entropy presents in this regime a
logarithmic divergence modulated by the background
spacetime inflation rate given by the Hubble parameter
H and proportional to the maximal Lyapunov exponent. In
the present case, the above relation reduces to a logarithmic
divergence of SðρϕÞ depending only on H. But if such a
relationship between entropy and μ holds in greater gen-
erality, then other simple interacting processes for the
system presenting nonlinearities or other more complicated
unstable classical counterparts can lead to greater entropy
generation rates. We believe that the example here is then
instructive in the sense that it gives an idea of how we can
expect the linear relationship between entropy and the
maximal Lyapunov exponent of Zurek-Paz type in
Minkowski spacetime [9] to be altered in de Sitter
spacetime.
The results above consider the exponential orbit sepa-

ration rate only in the limit and are seen to be independent
of the model parameters. But when we consider the actual
instantaneous orbit separation rate, we see that it is favored
for any given mode by stronger couplings. Thus, we can
actually illustrate the effect of stronger orbital instability in
the decoherence process of the system even within the
present model. We have seen that the late times von
Neumann entropy is proportional to the late times instanta-
neous orbit separation rate. So, is the corresponding
entropy generation enough to result in classicality? In this
direction, we have also analyzed the superhorizon behavior
of the nonclassical depth, which measures the emergence of
a phase-space representation of the system oscillator
quantum state corresponding to a stochastic distribution.
In the present case, it depends upon a competition between
the effect of single-mode squeezing and thermalization, as
in Eq. (21). This indicates that an influence on the non-
classical depth asymptotics will be present when the orbital
instability measured by ΓðηÞ gains in importance, as we

shift from the weak- to the strong-coupling limit. We
verified this in quantitative terms, by evaluating the
response of the nonclassical depth when we change
between the weak- and strong-coupling regimes. We
showed that in the strong-coupling limit all modes of the
observed field evolve into a state with noise larger than the
vacuum noise in every phase-space direction (zero non-
classical depth) except for the very high-frequency sector,
corresponding to very large k.
This analysis offers then more supporting evidence that

increasing the classical orbit instability will increase the
effectiveness of classicalization. It suggests that if cosmo-
logical perturbations participate in simple but realistic
physical processes during a dS stage of expansion, the
nonlinear interactions involved could lead to a very
significant contribution to their quantum-to-classical tran-
sition. These nonlinearities can lead to very complicated
dynamics, and increase the rate in which the system
explores its phase space. From what we have learned, this
can have a sensitive impact on thermalization at observed
system level and make quantum correlation effects very
difficult to show up on the statistics of the classicalized
output state (this has been the subject of several studies in
the Minkowski case; see [7]). It is remarkable from an
information-theoretic point of view that this can already be
seen for a system of coupled harmonic oscillators over
expanding spacetimes.
This type of contribution to entanglement entropy

generation for cosmological fields has also been discussed,
in the different context of isolated self-interacting scalar
field perturbations, in [26]. The issue of the quantum-
to-classical transition of cosmological perturbations is
indeed a very subtle one. If quantum-mechanical features
in the correlation structure of fields are to survive a period
of inflationary spacetime expansion and help us under-
stand through the cosmic microwave background sky the
early history of the Universe, it is determinant that we
understand in a clear way the underlying decoherence
mechanisms.
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APPENDIX: COVARIANCE MATRIX DYNAMICS

We collect here the expressions of the functions
fmn
~kij
ðη; η0Þ in (16). They have been obtained by using

the Heisenberg picture solution for the BLM model
expressed in Eq. (8), Sec. II. The expressions are (we

drop the index ~k and the time argument)
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f1111 ¼ x2; f1211 ¼ 2
xy

1 − λ2
; f1411 ¼ 2

λxy
1 − λ2

f2211 ¼
�

y
1 − λ2

�
2

; f2411 ¼ 2
λy2

ð1 − λ2Þ2 ; f4411 ¼
�

λy
1 − λ2

�
2

f1112 ¼ xz; f2212 ¼
yw

1 − λ2
; f3412 ¼ −

λ2yz
1 − λ2

f1212 ¼ xwþ yz
1 − λ2

; f1312 ¼ −λxz; f2312 ¼ −
λyz

1 − λ2
f1412 ¼

λyz
1 − λ2

; f2412 ¼
λyw
1 − λ2

f1122 ¼ z2; f2222 ¼ w2; f3322 ¼ λ2z2 f1222 ¼ 2zw f1322 ¼ −2λz2 f2322 ¼ −2λzw

f1213 ¼
λxy

1 − λ2
; f1313 ¼ x2; f1413 ¼

xy
1 − λ2

f2213 ¼
λy2

ð1 − λ2Þ2 ; f2313 ¼
xy

1 − λ2

f2413 ¼
�

y
1 − λ2

�
2

þ
�

λy
1 − λ2

�
2

f3413 ¼
λxy

1 − λ2
; f4413 ¼

λy2

ð1 − λ2Þ2

f1114 ¼ −λxz; f1314 ¼ xz; f1414 ¼ xw −
λ2yz
1 − λ2

f1214 ¼ −
λyz

1 − λ2
; f2314 ¼

yz
1 − λ2

; f2414 ¼
yw

1 − λ2
f3414 ¼

λyz
1 − λ2

; f4414 ¼
λyw
1 − λ2

;

f1223 ¼
λyz

1 − λ2
; f1323 ¼ xz; f1423 ¼

yz
1 − λ2

f2223 ¼
yw

1 − λ2
; f2323 ¼ xw −

λ2yz
1 − λ2

; f2423 ¼
yw

1 − λ2

f3323 ¼ −λxz; f3423 ¼ −
λyz

1 − λ2
; f1124 ¼ −λz2; f1324 ¼ z2 þ λ2z2; f1424 ¼ zw

f1224 ¼ −λzw; f2324 ¼ zw; f2424 ¼ w2 f3324 ¼ −λz2; f3424 ¼ −λzw;

f2233 ¼
�

λy
1 − λ2

�
2

; f2333 ¼ 2
λxy

1 − λ2
; f2433 ¼ 2

λy2

ð1 − λ2Þ2

f3333 ¼ x2; f3433 ¼
xy

1 − λ2
; f4433 ¼

�
y

1 − λ2

�
2

f1234 ¼ −
λ2yz
1 − λ2

; f2334 ¼
λyz

1 − λ2
; f2434 ¼

λyw
1 − λ2

f1334 ¼ −λxz f3334 ¼ xz; f3434 ¼ xwþ yz
1 − λ2

f1434 ¼ −
λyz

1 − λ2
; f4434 ¼

yw
1 − λ2

f1144 ¼ λ2z2; f1344 ¼ −2λz2; f1444 ¼ −2λzw f3344 ¼ z2; f3444 ¼ 2zw; f4444 ¼ w2:

We observe that fmn
21 ¼ fmn

12 , f
mn
43 ¼ fmn

34 , f
mn
31 ¼ fmn

13 , f
mn
32 ¼ fmn

14 , f
mn
41 ¼ fmn

23 , f
mn
42 ¼ fmn

24 . Otherwise, functions f
mn
ij not

appearing above are null.
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