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Exact expressions for correlation functions are known for the large-N (planar) limit of the ð1þ 1Þ-
dimensional SUðNÞ × SUðNÞ principal chiral sigma model. These were obtained with the form-factor
bootstrap, an entirely nonperturbative method. The large-N solution of this asymptotically free model is far
less trivial than that of the OðNÞ sigma model (or other isovector models). Here we study the Euclidean
two-point correlation function N−1hTrΦð0Þ†ΦðxÞi, where ΦðxÞ ∼ Z−1=2UðxÞ is the scaling field and
UðxÞ ∈ SUðNÞ is the bare field. We express the two-point function in terms of the spectrum of the operatorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−d2=du2
p

, where u ∈ ð−1; 1Þ. At short distances, this expression perfectly matches the result from the
perturbative renormalization group.
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Green’s functions of quantum chromodynamics (QCD)
cannot be calculated at large separations analytically.
Currently, only numerical lattice calculations suffice for
this purpose. On the other hand, perturbation theory can be
used to understand short-distance behavior in any asymp-
totically free theory, such as QCD. In lower dimensions,
there are field-theoretic models with asymptotic freedom,
which can be studied mathematically. A nontrivial example
is the principal chiral sigma model (PCSM) of a matrix
field UðxÞ ∈ SUðNÞ, N ≥ 2, where x0 and x1 are the time
and space coordinates, respectively. Here, the large-N limit
of the PCSM will be considered. The PCSM is a matrix
model, not an isovector model [such as the OðNÞ or
CPðN − 1Þ sigma models or the Gross-Neveu model].
The PCSM’s large-N limit has not been solved by sad-
dle-point methods. Its Feynman diagrams are truly planar,
not linear. Finally, the PCSM has nontrivial field renorm-
alization, even in the large-N limit; this means that its
correlation functions are not those of a free field theory, in
this limit. In all of these respects, the PCSM resembles
QCD substantially better than isovector field theories.
In this paper, an exact expression for a correlation

function of the large-N PCSM is studied at short distances,
where it is found to obey a power-law decay law. At large
distances, this correlation function has exponential decay.
Thus, the solution clearly illustrates both ultraviolet
freedom and an infrared mass gap. Furthermore, the
ultraviolet behavior of this nonperturbatively obtained
correlation function has precisely the behavior expected
from the perturbative renormalization group. The key to the
short-distance behavior is the spectrum of an interesting

integro-differential operator on functions of the open
interval ð−1; 1Þ.
The PCSM has the action

S ¼ N
2g20

Z
d2xημνTr∂μUðxÞ†∂νUðxÞ; ð1Þ

where μ; ν ¼ 0; 1, η00 ¼ 1, η11 ¼ −1, η01 ¼ η10 ¼ 0, where
g0 is the coupling (which is held fixed as N → ∞). This
action is invariant under the global transformation
UðxÞ → VLUðxÞVR, for two constant matrices
VL; VR ∈ SUðNÞ. The renormalized field operator ΦðxÞ
is an average of UðxÞ over a region of size b, where
Λ−1 < b ≪ m−1, where Λ is an ultraviolet cutoff and m is
the mass of the fundamental excitation.
Formatrixmodels inmore than one dimension, there is no

general approach to summing the planar diagrams. The
PCSM, however, has the virtue of being integrable.
Integrability is not sufficient to determineGreen’s functions,
although the S matrix has been known for three decades [1].
Recently, both integrability and the 1=N expansion were
combined to find the N → ∞ limit of Green’s functions
[2,3]. This was done using Smirnov’s axioms for form
factors [4]. The form-factor bootstrap method has a long
history [5]. A detailed comparison of the 1=N expansion and
form factors of the O(N) sigma model is in Ref. [6].
In this paper, we study an exact nonperturbative expres-

sion for the two-point function of the scaling field ΦðxÞ,
found in the second listing of Ref. [2]. The scaling fieldΦ is
normalized by h0jΦð0Þb0a0 jP; θ; a1; b1i ¼ N−1=2δa0a1δb0b1 ;
where the ket on the right is a one particle (r ¼ 1) state,
with rapidity θ. This field is a complex N × N matrix,
which is not directly proportional to the unitary matrix
UðxÞ. Nonetheless we write ΦðxÞ ∼ Zðg0;ΛÞ−1=2UðxÞ,
which means that (the time ordering is optional)*orland@nbi.dk
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1

N
h0jTrΦðxÞΦð0Þ†j0i ¼ Zðg0;ΛÞ−1

1

N
h0jTrUðxÞUð0Þ†j0i:

ð2Þ

It would be interesting to know the relation of the scaling
field used in lattice simulations [7] to that defined above,
which is not yet clear to the author. Particle masses
are given by the sine formula: mr ¼ m sinðπN−1rÞ=
sinðπN−1Þ; r ¼ 1;…; N − 1, but in the large-N limit, only
the r ¼ 1, r ¼ N − 1 states (the elementary particle and
antiparticle) survive. The binding energies of the other
states vanish. The residues of their poles in S-matrix
elements also vanish.
The renormalization factor Zðg0ðΛÞ;ΛÞ vanishes as

Λ → ∞ and the coupling g0ðΛÞ runs so that the mass
gap mðg0ðΛÞ;ΛÞ is independent of Λ. For mjxj ≫ 1, the
expression (2) decays exponentially, as expected. We find
that for mjxj ≪ 1, the time-ordered product of two scaling
field operators behaves as

1

N
h0jT TrΦðxÞΦð0Þ†j0i
¼ C2ðlnmjxjÞ2 þ C1 lnmjxj þ C0 þOð1= lnmjxjÞ;

ð3Þ

for some constants C2, C1, etc. The leading term is
exactly what a perturbative-renormalization-group analysis
implies. We consider this to be a striking validation of the
form-factor bootstrap.
Let us recall the argument for (3) (see for example,

Ref. [8]). For convenience, we perform the Wick rotation
x0 → ix0, to obtain the regularized Euclidean correlation
function Gðjxj;ΛÞ ¼ N−1h0jT TrΦðxÞΦð0Þ†j0i. This func-
tion and the coupling g0ðΛÞ satisfy the renormalization
group equations

∂ lnGðR;ΛÞ
∂ lnΛ ¼ γðg0Þ ¼ γ1g20 þ � � � ;
∂g20ðΛÞ
∂ lnΛ ¼ βðg20Þ ¼ −β1g40 þ � � � ; ð4Þ

respectively. The coefficients of the anomalous dimension
γðg0Þ and the beta function βðg0Þ are γ1 ¼ ðN2 − 1Þ=
ð2πN2Þ and β1 ¼ 1=ð4πÞ. For large Λ, GðR;ΛÞ becomes
a function of the product of the two variables GðRΛÞ.
Integrating (4) yields the leading behavior

GðR;ΛÞ ∼ C½lnðRΛÞ�γ1=β1 : ð5Þ

As N → ∞, the power γ1=β1 approaches 2.
The exact Wightman function (in Minkowski spacetime)

of the product of two fields (that is, with no time ordering)
is WðxÞ ¼ N−1h0jTrΦðxÞΦð0Þ†j0i. This function is [2]

WðxÞ ¼
Z

∞

−∞

dθ1
4π

eip1·x þ 1

4π

X∞

l¼1

Z
∞

−∞
dθ1 � � �

×
Z

∞

−∞
dθ2lþ1e

i
P

2lþ1

j¼1
pj·x

Y2l

j¼1

1

ðθj − θjþ1Þ2 þ π2
;

ð6Þ

where θj are rapidities and pj ¼ mðcosh θj; sinh θjÞ are the
corresponding momentum vectors, for j ¼ 1;…2lþ 1.
The right-hand side of (6) is difficult to evaluate. For
spacelike separation x0 ¼ 0, it decays exponentially with
jx1j. Our purpose here is to evaluate (6) for small timelike
separation x1 ¼ 0, x0 ≪ m−1. For this case, the Wightman
function is equal to the time-ordered expectation value on
the left-hand side of (3). Equation (6) or an approximation
to it has not yet been obtained in any program to solve the
large-N PCSM directly from the action (1). Perhaps, one
day, this will be done (a recent proposal is in Ref. [9]).
To study the two-point function at short distances, it is

convenient to Wick rotate the time variable to Euclidean
space as above. Setting x1 ¼ 0 and replacing x0 by iR,R > 0,
changes the phases in (6) by exp ipj · x → exp−
mR cosh θj. We define L ¼ ln 1

mR. As mR becomes small,
exp−mR cosh θj becomes approximately the characteristic
function of ð−L;LÞ, equal to unity for−L < θ < L and zero
everywhere else. This is mathematically similar to the
formation of walls in the Feynman-Wilson gas [10]. This
trick was used to find the scaling behavior of Ising-model
correlation functions [11] from the exact form factors [12].
The short-distance Euclidean two-point function is

GðmRÞ ¼ L
2π

þ 1

4π

X∞

l¼1

Z
L

−L
dθ1 � � �

×
Z

L

−L
dθ2lþ1

Y2l

j¼1

1

ðθj − θjþ1Þ2 þ π2
: ð7Þ

Notice that the first term of (6), which is the Wightman
function of a free massive field, corresponds to the first term
of (7) which is the Euclidean correlation function of a
massless field. The expression (7) is the partition function
of a polymer in a box of size 2L. The jth atom in the polymer
chain is located at θj. There is a long-range potential energy
ln½ðθj − θjþ1Þ2 þ π2�, between atoms connected on
the chain.
It is convenient to rescale the integration variables by

θj ¼ Luj, so that (7) becomes

GðmRÞ ¼ L
2π

þ L
4π

X∞

l¼1

Z
1

−1
du1 � � �

×
Z

1

−1
du2lþ1

Y2l

j¼1

1

L½ðuj − ujþ1Þ2 þ ðπ=LÞ2� : ð8Þ
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There is a close relation between the terms of (8) and the
fractional-power-Laplace operatorΔ1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−d2=du2

p
. The

spectrum of Δα=2, with real α ∈ ð0; 2Þ, is a subject of active
mathematical investigation [13,14]. The self-adjoint exten-
sion of the operator Δ1=2 on u ∈ ð−1; 1Þ has an infinite set
of discrete eigenvalues λn, of the eigenfunctions φnðuÞ,
n ¼ 1; 2;…, with 0 < λ1 < λ2 < …, with φnð�1Þ ¼ 0.
Another polymer statistical system in which a fractional
power of the second derivative plays a role is described
in Ref. [15].
Here is a quick introduction to the operator Δ1=2, via

the Poisson semigroup. Let us forget the restriction to
the open interval and extend the rapidity variables to the
real line ð−∞;∞Þ. Consider the transfer operators PðaÞ,
whose matrix elements are defined by hu0jPðaÞjui ¼
a½ðu0 − uÞ2 þ a2�−1π−1, where u0 and u are arbitrary real
numbers. These operators form the Poisson semigroup
[13], with the composition law PðaÞPðbÞ ¼ Pðaþ bÞ.
Specifically, PðaÞ¼exp−aΔ1=2, where Δ1=2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−d2=du2

p
.

Explicitly, the square root of the Laplacian on a function
fðuÞ, vanishing for u ∉ ð−1; 1Þ, is [13]

Δ1=2fðuÞ ¼ 1

π

Z
1

−1
du0PV

fðu0Þ − fðuÞ
ðu0 − uÞ2 ; ð9Þ

where PV denotes the principal value. This operator has an
infinite set of discrete eigenvalues λn, of the eigenfunctions
φnðuÞ, Δ1=2φn ¼ λnφn, n ¼ 1; 2;…, with 0 < λ1 <
λ2 < � � �, with φnð�1Þ ¼ 0. Now for u; u0 ∈ ð−1; 1Þ, we
define the operator HðLÞ by

1

L½ðu − u0Þ2 þ ðπ=LÞ2� ¼ hu0je−π
LHðLÞjui: ð10Þ

Then (9), (10) and a straightforward calculation show that
HðLÞ is an approximation to Δ1=2, i.e., HðLÞ ¼ Δ1=2þ
Oð1=LÞ, with spectrum

HðLÞφnðu;LÞ¼ λnðLÞφnðu;LÞ;
Z

1

−1
dujϕnðu;LÞj2¼1;

λnðLÞ¼ λnþOð1=LÞ; φnðu;LÞ¼φnðuÞþOð1=LÞ:
ð11Þ

Summing over l in Eq. (8) yields, from (11),

GðmRÞ ¼ L
4π

Z
1

−1
du0

Z
1

−1
duhu0j 1

1 − e−2πHðLÞ=L jui

¼ L
4π

X∞

n¼1

����
Z

1

−1
duφnðu; LÞ

����
2 1

1 − e−2πλn=LþOð1=L2Þ :

ð12Þ

Parenthetically, we note that
R
1
−1 duϕnðu; LÞ ¼ 0 for even

n. We split (12) into two sums:

GðmRÞ¼ L
4π

X

λn≤L=2π

����
Z

1

−1
duφnðu;LÞ

����
2 1

1−e−2πλn=LþOð1=L2Þ

þ L
4π

X

λn>L=2π

����
Z

1

−1
duφnðu;LÞ

����
2 1

1−e−2πλn=LþOð1=L2Þ :

ð13Þ

The second term in (13) cannot diverge as L → ∞, hence
gives no contribution to either C1 or C2. For

L
4π

X

λn>L=2π

����
Z

1

−1
duφnðu; LÞ

����
2 1

1 − e−2πλn=LþOð1=L2Þ

≲ L
4π

X

λn>L=2π

����
Z

1

−1
duφnðu; LÞ

����
2 1

1 − e−1
;

and the sum over n on the right-hand side is roughly

X

λn>L=2π

����
Z

1

−1
duφnðu; LÞ

����
2

∼
1

L
:

The first term in (13) may be expanded in powers of 1=L
to yield

L
4π

X

λn≤L=2π

����
Z

1

−1
duφnðu; LÞ

����
2 1

1 − e−2πλn=LþOð1=L2Þ

¼ L
4π

X

λn≤L=2π

����
Z

1

−1
duφnðuÞ

����
2 L
2πλn

þOðLÞ:

Extending the sum over n from zero to infinity gives the
leading coefficient in (3):

C2 ¼
1

8π2
X∞

n¼1

����
Z

1

−1
duφnðuÞ

����
2

λ−1n : ð14Þ

An upper bound on the leading coefficient C2 is obtained
by replacing λn in (14) by λ1, and using completeness:P

nj
R
1
−1 ϕnðuÞj2 ¼ 2. Thus C2 <

1
4π2λ1

¼ 0.0219, from the

best known value of λ1 ¼ 1.1577, found in the second and
third listings of Ref. [14]. It is interesting that without much
detailed knowledge of the properties of HðLÞ or of the
square root of the Laplacian, we have established the
ultraviolet behavior (3) of the two-point correlation func-
tion. An evaluation of C1 would require a better under-
standing of the spectrum of HðLÞ.
To conclude, we believe the correlators of SUð∞Þ ×

SUð∞Þ PCSM are now understood almost as well as those
of the Ising model [12]. The exact N → ∞ correlation
function argued for in Ref. [2] displays massive behavior at
large distances. We have found precisely the short-distance
behavior predicted with the perturbative beta function and
anomalous dimension. This strengthens our confidence in
the form factors [2,3], which led to this result.
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