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We look for minimal chiral sets of fermions beyond the standard model that are anomaly free and,
simultaneously, vectorlike particles with respect to color SUð3Þ and electromagnetic Uð1Þ. We then study
whether the addition of such particles to the standard model particle content allows for the unification of
gauge couplings at a high energy scale, above 5.0 × 1015 GeV so as to be safely consistent with proton
decay bounds. The possibility to have unification at the string scale is also considered. Inspired in grand
unified theories, we also search for minimal chiral fermion sets that belong to SUð5Þ multiplets, restricted
to representations up to dimension 50. It is shown that, in various cases, it is possible to achieve gauge
unification provided that some of the extra fermions decouple at relatively high intermediate scales.
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I. INTRODUCTION

The standard model (SM) of particle physics is a very
successful theory that describes the fundamental known
particles and their interactions based on the gauge sym-
metry SUð3Þ × SUð2Þ × Uð1Þ. So far, the discovered
elementary fermions are chiral Weyl particles and thus
cannot have any gauge-invariant mass term. Once the
SM gauge symmetry is spontaneously broken at the
electroweak scale, fermions acquire masses and the remain-
ing symmetry gives rise to interactions whose nature is
vectorlike with respect to color SUð3Þ and electromag-
netic Uð1Þ.
In the SM, the strong αs, weak isospin αw, and hyper-

charge αy gauge couplings are not related among themselves
by any symmetry principle. It is well known that the gauge
couplings α1;2;3 ≡ κ1;2;3αy;w;s, where κi are normalization
constants, evolve with the energy scale according to the
renormalization group equations (RGEs). At one-loop level,
one verifies that α1 and α2 unify around 1013 GeV, while α2
and α3 unify at 1017 GeV for the canonical normalization
κ1 ¼ 5=3 and κ2 ¼ κ3 ¼ 1, like in SUð5Þ or SOð10Þ group.
This fact already suggests a possible unification of the three
couplings, either by changing the normalization factor κ1
associated to the hypercharge, or by adding new particle
content that properly modifies the running of the couplings.
In the former case, complete unification is achieved for
κ1 ≈ 13=10, assuming that the SM is an effective theory
valid up to the unification scale around 1017 GeV. It is
interesting that this scale is close to the scale predicted

in string theories [1]. In the second case, it has been
noted that extending the SM with a fourth generation of
quarks and leptons gives freedom for the convergence of
gauge couplings to a common value at a scale around
3 × 1015 GeV [2].
Adding new chiral fermions to the SM particle content

unavoidably raises the question of gauge anomaly cancel-
lation. In general, this is not a trivial issue, since the
anomaly-free conditions depend on the transformation
properties of the new fermions under the SM gauge group.
Furthermore, it is also necessary to guarantee that after
electroweak symmetry breaking the theory remains vector-
like with respect to color SUð3Þ and electromagnetic Uð1Þ,
in order to conserve parity. Remarkably, these properties
are verified between quarks and leptons within each
generation of the SM [3–5]. On the other hand, adding
only vectorlike fermions to the theory does not bring any
anomaly constraint, since their contribution to the gauge
anomalies adds to zero. Another motivation for introducing
vectorlike particles is that it is possible to construct gauge-
invariant mass terms for them, and the masses are not
necessarily below the electroweak scale, implying that
these particles can decouple from the low-energy spectrum
of the theory. These are among the reasons for following
this path for gauge coupling unification in several exten-
sions of the SM (see, e.g., Refs. [6–11]).
Concerning the possibility of extending the SM with

anomaly-free chiral fermion sets, one can find numerical
analyses [12] and theoretical studies [13–17] in the liter-
ature. In particular, patterns for adding anomaly-free
charge-vectorial chiral sets of fermions that acquire mass
through their coupling to the SM Higgs doublet have
been investigated in Refs. [13,14]. Furthermore, a general
structure of exotic generations and the corresponding
analysis of possible quantum numbers were presented in
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Ref. [15], assuming the gauge and Higgs structure of the
SM. Finally, a complete description of chiral anomaly-free
sets for gauge theories with additional Uð1Þ groups can be
found in Ref. [17]; however, the authors restricted their
analysis to chiral sets that only include vectorlike fermions
with respect to non-Abelian groups. We also remark that in
the above works the problem of gauge coupling unification
has not been addressed.
The aim of our work is to extend previous studies in

order to find minimal chiral sets of fermions beyond the
SM that are not only anomaly free but also lead to gauge
coupling unification at high energies, inspired by grand
unified theories (GUTs) or string theories. The paper is
organized as follows. In Sec. II, we study the problem of
finding the minimal sets of chiral fermions beyond the SM
that lead to anomaly-free solutions. We then proceed in
Sec. II A to explore the sets that lead to the unification of
the gauge couplings at one-loop level. In our analysis, we
restrict to cases in which the unification scale is above
5.0 × 1015 GeV, so as to be safely consistent with proton
decay bounds [18]. Furthermore, we allow for the decou-
pling of the beyond-the-SM fermions at some intermediate
energy scale between the electroweak and the unification
scales. We also look for solutions in which gauge and
gravitational couplings match at a unique (string) scale.
We then proceed in Sec. III, inspired by GUTs, to study the
possibility of having anomaly-free solutions with chiral
fermion multiplets belonging to SUð5Þ representations up
to dimension 50. For the anomaly-free sets obtained, we
analyze whether the gauge couplings unify at GUT and/or
string energy scales. Finally, our conclusions are presented
in Sec. IV.

II. MINIMAL ANOMALY-FREE CHIRAL
FERMION SETS

In this work, we search for new chiral sets of particles
beyond the SM that are anomaly free and at the same time
QED and QCD vectorlike at low energies (i.e., electric and
color currents are vectorlike), so that parity symmetry is not
spoiled. Without loss of generality, we assume that all
chiral fields are left handed. To be free of anomalies, the
new chiral fermions must verify the following anomaly
conditions with respect to the SM gauge group:

½SUð3Þ-SUð3Þ-SUð3Þ�∶
X
R

A3ðRÞd2ðRÞ ¼ 0; ð1aÞ

½SUð3Þ-SUð3Þ-Uð1Þ�∶
X
R

yRt3ðRÞd2ðRÞ ¼ 0; ð1bÞ

½SUð2Þ-SUð2Þ-Uð1Þ�∶
X
R

yRt2ðRÞd3ðRÞ ¼ 0; ð1cÞ

½Uð1Þ-Uð1Þ-Uð1Þ�∶
X
R

y3Rd2ðRÞd3ðRÞ ¼ 0; ð1dÞ

½gravity-gravity-Uð1Þ�∶
X
R

yRd2ðRÞd3ðRÞ ¼ 0; ð1eÞ

where diðRÞ, AiðRÞ, and tiðRÞ are respectively the dimen-
sion, cubic anomaly index, and Dynkin index of the
representation R with respect to the subgroup Gi. For a
given representation R of a groupG, the integer cubic index
AðRÞ is defined through the relation [19]

TrðfTa
R; T

b
RgTc

RÞ ¼ AðRÞTrðfTa; TbgTcÞ; ð2Þ

where Ta
R are the generators of G for the representation R,

and Ta for the fundamental representation. Clearly, for the
conjugate representation R̄ one has AðR̄Þ ¼ −AðRÞ, which
in turn implies AðRÞ ¼ 0 for any real representation. The
Dynkin index of a representation R can be determined
through the Dynkin labels [20,21] as

tmðRÞ ¼
dmðRÞ

2mðm2 − 1Þ
�Xm−1

j¼1

jðm − jÞðl2
j þmljÞ

þ2
Xm−1

j¼2

X
k<j

ðm − jÞklmlk

�
; ð3Þ

where the Dynkin label lj is the number of columns with j
boxes in a Young diagram. Obviously, tmðR̄Þ ¼ tmðRÞ.
The Dynkin index in Eq. (3) is properly normalized such
that it is equal to 1=2 for the fundamental representation in
SUðNÞ groups. In particular [22],

t1ðRÞ ¼ y2R; t2ðRÞ ¼
d2ðRÞ½d22ðRÞ − 1�

12
; ð4Þ

for the subgroups Uð1ÞY and SUð2Þ, respectively; yR is the
hypercharge for the representation R. The corresponding
Dynkin index t3ðRÞ and cubic anomaly index A3ðRÞ for
SUð3Þ are presented in Table I. An important constraint
on the Dynkin index t2ðRÞ comes from Witten’s anomaly
condition, i.e.,

P
Rt2ðRÞ must be an integer number, in

order to avoid the global SUð2Þ gauge anomaly [23].
Restricting ourselves, for simplicity, to SUð2Þ representa-
tions up to dimension five (d2ðRÞ ≤ 5), this condition
implies that the number of Weyl fermion doublets is even.
Notice that the set of equations given in Eqs. (1) is

invariant under an overall rescaling of the hypercharge yR
of all multiplets; therefore, one has to choose properly the
overall normalization of the hypercharge in order to fulfil

TABLE I. The Dynkin and cubic anomaly indices, t3 and A3,
for the smallest irreducible representations of SUð3Þ.
SUð3Þ-irrep 3 6 8 10 15 150

t3 1
2

5
2

3 15
2

10 35
2

A3 1 7 0 27 14 77
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the requirement of having vectorlike particles after the
electroweak symmetry breaking. Obviously, having only
one extra chiral fermion would imply that it must belong
to an adjoint representation with vanishing hypercharge.
Furthermore, it is straightforward to demonstrate that, in
the presence of only two extra multiplets, the conditions
given in Eqs. (1) and the requirement of having vectorlike
particles after the electroweak symmetry breaking imply
that the multiplets must necessarily form a vectorlike
set; otherwise, they must be chiral fermions belonging to
adjoint representations, both with zero hypercharge.
Indeed, let us rewrite Eqs. (1) for the case of two arbitrary
multiplets,

A3ðR1Þd2ðR1Þ þ A3ðR2Þd2ðR2Þ ¼ 0; ð5aÞ

yR1
t3ðR1Þd2ðR1Þ þ yR2

t3ðR2Þd2ðR2Þ ¼ 0; ð5bÞ

yR1
t2ðR1Þd3ðR1Þ þ yR2

t2ðR2Þd3ðR2Þ ¼ 0; ð5cÞ

y3R1
d2ðR1Þd3ðR1Þ þ y3R2

d2ðR2Þd3ðR2Þ ¼ 0; ð5dÞ

yR1
d2ðR1Þd3ðR1Þ þ yR2

d2ðR2Þd3ðR2Þ ¼ 0: ð5eÞ

From Eqs. (5d)–(5e), we immediately conclude that
y2R1

¼ y2R2
. Therefore, there are just two possibilities. If

yR1
¼ yR2

¼ yR then Eq. (5e) becomes

yRðd2ðR1Þd3ðR1Þ þ d2ðR2Þd3ðR2ÞÞ ¼ 0: ð6Þ

Since diðRÞ > 0, the unique solution is yR ¼ 0. This
condition leads to two types of solutions, depending on
how the remaining Eq. (5a) is satisfied. One possibility is
that anomaly cancellation occurs between both multiplets,
for instance, as in the multiplet combination ð6; 1Þ0 ⊕
ð3̄; 7Þ0.1 The other case is when Eq. (5a) is verified
independently for each multiplet [i.e., A3ðR1Þ ¼
A3ðR2Þ ¼ 0], which is similar to the case of adding just
one chiral fermion.
Instead, if yR1

¼ −yR2
≠ 0 then Eq. (5e) becomes

d2ðR1Þd3ðR1Þ ¼ d2ðR2Þd3ðR2Þ; ð7Þ

which when substituted in Eq. (5c) implies

t2ðR1Þd2ðR2Þ ¼ t2ðR2Þd2ðR1Þ: ð8Þ

Using Eq. (4), we then conclude that d2ðR1Þ ¼ d2ðR2Þ. In
other words, the two multiplets must have the same SUð2Þ
representation. One can now rewrite the remaining anomaly
relations simply as

d3ðR1Þ
d3ðR2Þ

¼ t3ðR1Þ
t3ðR2Þ

¼ −
A3ðR1Þ
A3ðR2Þ

¼ 1: ð9Þ

If we now require that particles are vectorlike with respect
to color then, by definition, theSUð3Þ representations of R1

and R2 must be conjugates of each other, unless they are
adjoint. Combining these results, we obtain the vectorlike
set of two multiplets,

ðd;d0Þy ⊕ ðd̄;d0Þ−y: ð10Þ

The question naturally arises whether it is possible to
find anomaly-free sets with only three chiral multiplets.
Considering SUð3Þ representations with dimensions d≡
d3ðRÞ ≤ 10 and SUð2Þ representations with d2ðRÞ ≤ 5,
and restricting our search to hypercharges given by rational
numbers, we obtain four different sets of solutions, which
are presented in Table II. The parameter z in Table II
reflects the fact that the hypercharge for each chiral particle
can be rescaled by an overall amount. Note that all
multiplets in each minimal set have the same SUð3Þ
dimension d. This is so because we restrict our analysis
to d3ðRÞ ≤ 10. If one relaxes this constraint, solutions
with different SUð3Þ dimensions are found; for instance,
the set ð15; 1Þz=6 ⊕ ð6̄; 2Þ−z=3 ⊕ ð1; 3Þz=2 is anomaly free.
Furthermore, for the sets P1 and P4, Witten’s anomaly
condition forces d to be an even number.
If one requires that the three chiral multiplets in each set

give rise to vectorlike particles (with respect to the electric
charge) after the gauge symmetry breaking, the following
condition must also be verified:

X3
p¼1

X
jp

½jp þ ypðzÞ�m ¼ 0; ð11Þ

for any odd positive integer m. In the above equation,
jp ¼ −sp;−sp þ 1;…; sp − 1; sp with 2sp þ 1 ¼ d2ðRpÞ.
This condition would then fix the value of z. For m ¼ 1 or
3, Eq. (11) is automatically satisfied for any value of z by
virtue of the anomaly cancellation conditions given in
Eqs. (1). The value of z is therefore determined by taking
m ¼ 5. This leads to jzj ¼ 0; 1, or 3, regardless of the

TABLE II. Minimal anomaly-free chiral sets for an arbitrary
SUð3Þ dimension d ≤ 10 and SUð2Þ dimension d2ðRÞ ≤ 5. For
the sets P1 and P4, Witten’s anomaly condition forces d to be an
even number.

Set Particle content

P1 ðd; 1Þ5z=6 ⊕ ðd; 2Þ−2z=3 ⊕ ðd̄; 3Þz=6
P2 ðd; 1Þ7z=6 ⊕ ðd; 3Þ−5z=6 ⊕ ðd̄; 4Þz=3
P3 ðd; 1Þ3z=2 ⊕ ðd; 4Þ−z ⊕ ðd̄; 5Þz=2
P4 ðd; 2Þ4z=3 ⊕ ðd; 3Þ−7z=6 ⊕ ðd̄; 5Þz=6

1Hereafter, chiral multiplets are represented as ðd3ðRÞ; d2ðRÞÞyR ,
following the standard notation.
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chosen set. However, we must also ensure that the solutions
are simultaneously vectorlike with respect to SUð3Þ.
Obviously, when d ¼ 1 or 8, this is already guaranteed.
On the other hand, for d ¼ 3; 6, or 10, one can easily show
that this requirement imposes jzj ¼ 1.

A. Gauge coupling unification

Let us now study the possibility of achieving gauge
coupling unification with the anomaly-free sets previously
found. We shall work in the framework of the SM, extended
by new anomaly-free chiral sets of fermions. In our
approach, we do not modify the Higgs and gauge sectors
of the SM. More precisely, we assume that if an additional
Higgs or gauge particle content beyond the SM is present, it
does not affect the evolution of the running gauge cou-
plings. Clearly, the new fermions would have to acquire
masses by some mechanism that relies on an extended
theory. A simple possibility is to extend the scalar sector
and construct renormalizable Yukawa terms for the new
chiral fields. Let us consider, for instance, the set P1 of
Table II, with ψ1 ∼ ð8; 1Þ5=2, ψ2 ∼ ð8; 2Þ−2, ψ3 ∼ ð8; 3Þ1=2.
We then introduce the scalar fields H ∼ ð1; 2Þ−1=2,
Φ ∼ ð1; 4Þ3=2, Δ ∼ ð1; 3Þ−1 and write the Yukawa interac-
tion terms ϵabψ1ψ

a
2H

b, ϵadϵbeϵcfψ
a
2ψ

bc
3 Φdef, and

ϵacϵbeϵdfψ
ab
3 ψcd

3 Δef. The new fermions become massive
once the neutral components of the scalar fields acquire
vacuum expectation values, i.e., hH1i ≠ 0, hΦ222i ≠ 0, and
hΔ11i ≠ 0. The limitation of this mechanism is that the
masses of the new physical fermions are tightly constrained
by electroweak precision data. Indeed, since the new scalar
fields should carry nontrivial charges under the SM group,
they also contribute to the electroweak gauge boson
masses. As it turns out, the inclusion of such scalars leads
to gauge coupling unification only if some of their masses
are much higher than the electroweak scale. Moreover,
for the cases where unification is achieved, the masses of
the new fermions cannot be all lowered to the electroweak
scale. Thus, this mass mechanism is disfavored in our
minimal framework.
If we insist on the unification of the gauge couplings at

a high energy scale, we are led to consider an alternative
mechanism that allows for a successful unification, without
imposing tight constraints on the masses of the new
fermionic degrees of freedom. In such a case, these extra
particles could decouple from the theory at intermediate
energy scales. An attractive possibility is to enlarge the
fermionic sector by considering mirror fermions [24], as in
chiral gauge theories based on noncommutative geometry
[25]. The advantage of this approach is that it can provide a
dynamical mechanism in which fermions belonging to the
physical subspace acquire masses at intermediate scales
while their mirror partner states get masses higher than the
unification scale [26,27]. Obviously, a detailed analysis
would be required to fully implement this paradigm in our
framework. In what follows, we shall assume that whatever

mechanism is chosen, it allows for the decoupling of some
chiral fermions at intermediate mass scales, much higher
than the electroweak scale.
The evolution of gauge couplings αiði ¼ 1; 2; 3Þ is

governed by the RGEs. Assuming the presence of N chiral
fermions with intermediate mass scales MI; I ¼ 1;…; N,
andMZ ≤ MI ≤ Λ, the one-loop solution at the unification
scale Λ can be written as

α−1i ðMZÞ ¼ α−1U þ 1

2π
Bi ln

�
Λ
MZ

�
; ð12Þ

with

αU ≡ κ1αyðΛÞ ¼ κ2αwðΛÞ ¼ κ3αsðΛÞ; ð13Þ

and αU ≲ 1 to ensure that the perturbative regime holds
[28]. In Eq. (12),

Bi ¼
1

κi

�
bi þ

XN
I¼1

bIi rI

�
; ð14Þ

where the “running weight” rI is defined for each inter-
mediate energy scale MI as

rI ¼
ln ðΛ=MIÞ
ln ðΛ=MZÞ

; ð15Þ

and takes values in the interval 0 ≤ rI ≤ 1. The one-loop
beta coefficients bi account for the SM contribution, while
bIi are the contributions of the intermediate particles above
the thresholdMI . For a given particle in a representation R,
the one-loop beta coefficients bRi are computed using the
formula

bRi ¼ sðRÞtiðRÞ
Y
j≠i

djðRÞ; ð16Þ

where sðRÞ ¼ 1=6 for a real scalar, 1=3 for a complex
scalar, −11=3 for a gauge boson, 2=3 for a chiral fermion,
and 4=3 for a vectorlike fermion. When applied to the
SM particle content, this gives b1 ¼ 41=6, b2 ¼ −19=6,
and b3 ¼ −7.
In order to verify whether the minimal anomaly-free sets

in Table II lead to the unification of the gauge couplings, we
need to solve Eqs. (13). Each set of solutions in Table II is
composed of N ¼ 3 chiral multiplets. Thus, there are two
equations to determine four unknowns: the intermediate
mass scales of the three extra particles, given by the running
weights r1;2;3, and the unification scale Λ.
We choose to vary the running weights r2 and r3 in the

allowed range [0, 1], and then determine the scale of the
first particle in the set,
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r1 ¼
BB0

12 − B0
23

Δ1
23 − BΔ1

12

; ð17Þ

where

B0
ij ¼ B0

i − B0
j; B0

i ¼
1

κi

�
bi þ

XN
I¼2

bIi rI

�
; ð18Þ

and

ΔI
ij ¼

bIi
κi

−
bIj
κj

: ð19Þ

The unification scale Λ is obtained through the relation

ln
�

Λ
MZ

�
¼

~B
B1 − B2

: ð20Þ

The constants B and ~B, defined in terms of parameters at
MZ scale, are given by [29,30]

B≡ sin2θw − κ2α
κ3αs

κ2
κ1
− ð1þ κ2

κ1
Þsin2θw

;

~B≡ 2π

α

�
1

κ1
−
�
1

κ1
þ 1

κ2

�
sin2θw

�
: ð21Þ

Using the experimental data at the electroweak scale,
chosen here at MZ ¼ 91.1876 GeV [31],

α−1 ¼ 127.944� 0.014;

αs ¼ 0.1185� 0.0006;

sin2θw ¼ 0.23126� 0.00005; ð22Þ

and considering κ1 ¼ κ2 ¼ κ3 ¼ 1 we obtain

B ¼ 0.308� 0.001; ~B ¼ 431.4� 0.1: ð23Þ
If one uses instead the SUð5Þ normalization, then

B ¼ 0.718� 0.003; ~B ¼ 185.0� 0.2: ð24Þ

In Figs. 1–4, we present the allowed ranges of the
intermediate scales MI and the unification scale Λ as
functions of the SUð3Þ dimension d for the 16 solutions
found within the chiral sets of Table II. In all cases, we
require Λ ≥ 5 × 1015 GeV, so that we are safely consistent
with proton decay bounds. First, we note that no solution
with z ¼ 0, i.e., with vanishing hypercharge, and d ¼ 1 or
8, leads to successful unification. For set P1, gauge
coupling unification is attained only for the hypercharge
normalization z ¼ 3 and for d ¼ 8. The required inter-
mediate scales turn out to be above 1013 GeV. In the case
of set P2, when z ¼ 1, solutions were found only with

d ¼ 3; 6, or 8. In this case, the mass of the SUð2Þ singlet,
M1, can take values at the TeV scale or even lower, while
the other two masses are above 109 GeV. When z ¼ 3,
solutions were found for the allowed values of d ¼ 1 or 8.

1 3 6 8 10
1012

1014

1016

1018

d

M
I

G
eV

FIG. 1 (color online). The allowed range of the intermediate
scales MI and the unification scale Λ as functions of the SUð3Þ
dimension d for the solution P1 of Table II with z ¼ 3. For each
value of d, the colored bars correspond (from left to right) to the
energy scales M1 ððd; 1Þ5z=6Þ, M2 ððd; 2Þ−2z=3Þ, M3 ððd̄; 3Þz=6Þ,
and Λ, respectively.
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1010

1012

1014

1016

1018

d

M
I

G
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1 3 6 8 10
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1010

1012

1014

1016

1018

d

M
I

G
eV

FIG. 2 (color online). The allowed range of the intermediate
scales MI and the unification scale Λ as functions of the SUð3Þ
dimension d for the solution P2 of Table II with z ¼ 1 (upper
panel) and z ¼ 3 (lower panel). For each value of d, the colored
bars correspond (from left to right) to the energy scales M1

ððd; 1Þ7z=6Þ,M2 ððd; 3Þ−5z=6Þ,M3 ððd̄; 4Þz=3Þ, and Λ, respectively.
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We note that for d ¼ 8 unification is achieved for quite high
intermediate scales, between 1014 GeV and the unification
scale. The mass and unification behavior in the set P3 is
quite similar to the set P2. In this case, when z ¼ 1,
solutions were found also for d ¼ 10. Finally, the set P4
unifies for z ¼ 1with any SUð3Þ even dimension, while for
z ¼ 3 solutions were found with d ¼ 8. The intermediate
scales in this set have values above 1010 and 1015 GeV, for
z ¼ 1 and z ¼ 3, respectively.
Let us now analyze whether the above solutions also lead

to the unification of gauge and gravitational couplings at
the string scale. In this case, in addition to Eqs. (12), the
unification scale Λ must also satisfy the constraint

αU ¼ αstring ¼
1

4π

�
Λ
ΛS

�
2

; ð25Þ

where ΛS ¼ 5.27 × 1017 GeV is the string scale that takes
into account one-loop string effects in the weak coupling
limit [32].
Since we have now three equations for unification,

namely Eqs. (13) and (25), we choose to determine the
running weights of the first two particles of each set, r1 and

r2, and the unification scale Λ, while r3 is free to take
values within the allowed range [0, 1]. We find

r1 ¼ β2 −
~β2

ln ðΛ=MZÞ
; r2 ¼ −β1 þ

~β1
ln ðΛ=MZÞ

:

ð26Þ

The coefficients βi and ~βi are given by

βi ¼
B00
12Δi

23 − B00
23Δi

12

Δ2
12Δ1

23 − Δ2
23Δ1

12

;

~βi ¼ ~B
Δi

23 − BΔi
12

Δ2
12Δ1

23 − Δ2
23Δ1

12

; ð27Þ

where

B00
ij ¼ B00

i − B00
j ; B00

i ¼
1

κi

�
bi þ

XN
I¼3

bIirI

�
: ð28Þ

The unification scale Λ is then given by
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FIG. 3 (color online). The allowed range of the intermediate
scales MI and the unification scale Λ as functions of the SUð3Þ
dimension d for the solution P3 of Table II with z ¼ 1 (upper
panel) and z ¼ 3 (lower panel). For each value of d, the colored
bars correspond (from left to right) to the energy scales M1

ððd; 1Þ3z=2Þ, M2 ððd; 4Þ−zÞ, M3 ððd̄; 5Þz=2Þ, and Λ, respectively.
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FIG. 4 (color online). The allowed range of the intermediate
scales MI and the unification scale Λ as functions of the SUð3Þ
dimension d for the solution P4 of Table II with z ¼ 1 (upper
panel) and z ¼ 3 (lower panel). For each value of d, the colored
bars correspond (from left to right) to the energy scales M1

ððd; 2Þ4z=3Þ,M2 ððd; 3Þ−7z=6Þ,M3 ððd̄; 5Þz=6Þ, and Λ, respectively.
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where
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þ B00
i

�
; ð30Þ

for any choice i ¼ 1; 2; 3. The function WkðxÞ is the
Lambert W function, with k ¼ 0 for c < 0 and k ¼ −1
for c > 0. One can verify that the contribution of the
running weight r3 cancels out in the constants a and c.
Thus, the unification scale is uniquely determined for any
given set of chiral multiplets.
Out of the 16 solutions, only 11 are consistent with

string-scale unification. The results are summarized in
Table III. In all cases, the unification scale Λ is in the range
½2.7; 3.2� × 1017 GeV, which implies 34 ≤ α−1string ≤ 48. The
intermediate mass M3 is very close to the unification scale

for all solutions, and no solutions were found with inter-
mediate scales below the TeV scale. Moreover, solutions
with the hypercharge normalization z ¼ 3 were obtained
only for set P1 with d ¼ 8.
We conclude this section by noticing that the minimal

anomaly-free sets given in Table II, although leading to
unification with only three chiral fermion multiplets, do not
exhibit the usual quantum numbers under the SM group,
such as those present in SM GUT embeddings into SUð5Þ
or SOð10Þ groups.

III. SUð5Þ-INSPIRED ANOMALY-FREE
CHIRAL FERMION SETS

In view of our previous results, and inspired by sim-
plicity in SUð5Þ as a gauge group, we may ask what the
minimal chiral sets are, besides the SM combination
5̄ ⊕ 10, that fulfil our three requirements, namely, be
anomaly free, vectorlike with respect to the color and
electric charges, and, finally, lead to gauge unification.
We shall only consider SUð5Þ representations with

dimensions less than or equal to 50. For the SUð5Þ

TABLE III. Minimal chiral sets of solutions for which there is string-scale unification. The particle content of each
set is defined in Table II. The mass ordering M1, M2, and M3 corresponds to the ordering of the multiplets adopted
for each set in Table II.

Set z d Λ [1017 GeV] M1 [GeV] M2 [GeV] M3 [GeV]

P1 3 8 2.7 ½2.7; 7.3� × 1016 ½1.2; 2.7� × 1017 ½2.2; 2.7� × 1017

P2 1 3 2.7 ½2.1; 26� × 104 ½4.4; 26� × 1016 ½1.3; 2.7� × 1017

1 6 3.0 ½3.7; 45� × 1010 ½6.7; 40� × 1014 ½1.4; 3.0� × 1017

1 8 2.9 ½9.4; 110� × 1011 ½8.7; 52� × 1015 ½1.4; 2.9� × 1017

P3 1 3 2.7 ½8.6; 12� × 109 ½2.2; 2.7� × 1017 ½2.5; 2.7� × 1017

1 6 2.8 ½1.3; 4.4� × 1013 ½1.2; 2.8� × 1017 ½1.9; 2.8� × 1017

1 8 2.8 ½1.9; 4.1� × 1014 ½1.7; 2.8� × 1017 ½2.2; 2.8� × 1017

1 10 3.0 ½1.1; 9.2� × 1014 ½4.7; 20� × 1016 ½1.5; 3.0� × 1017

P4 1 6 2.8 ½3.5; 13� × 1014 ½9.1; 28� × 1016 ½2.4; 2.8� × 1017

1 8 2.8 ½2.2; 3.6� × 1015 ½1.8; 2.8� × 1017 ½2.6; 2.8� × 1017

1 10 3.2 ½3.1; 320� × 1015 ½8.3; 490� × 1014 ½1.6; 2.8� × 1017

TABLE IV. Particle multiplets and one-loop beta coefficients for the SUð5Þ representations with dimensions less
than or equal to 50.

Label Multiplet SUð5Þ-rep ðb1; b2; b3Þ Label Multiplet SUð5Þ-rep ðb1; b2; b3Þ
1 ð1; 2Þ1=2 5; 45 ð1=3; 1=3; 0Þ 12 ð1; 2Þ−3=2 40 ð3; 1=3; 0Þ
2 ð3; 1Þ−1=3 5;45;50 ð2=9; 0; 1=3Þ 13 ð8; 1Þ1 40 ð16=3; 0; 2Þ
3 ð1; 1Þ1 10 ð2=3; 0; 0Þ 14 ð3; 3Þ−1=3 45 ð2=3; 4; 1Þ
4 ð3̄; 1Þ−2=3 10;40 ð8=9; 0; 1=3Þ 15 ð3̄; 1Þ4=3 45 ð32=9; 0; 1=3Þ
5 ð3; 2Þ1=6 10; 15;40 ð1=9; 1; 2=3Þ 16 ð3̄; 2Þ−7=6 45; 50 ð49=9; 1; 2=3Þ
6 ð1; 3Þ1 15 ð2; 4=3; 0Þ 17 ð6̄; 1Þ−1=3 45 ð4=9; 0; 5=3Þ
7 ð6; 1Þ−2=3 15 ð16=9; 0; 5=3Þ 18 ð8; 2Þ1=2 45; 50 ð8=3; 8=3; 4Þ
8 ð1; 4Þ−3=2 35 ð6; 10=3; 0Þ 19 ð1; 1Þ−2 50 ð8=3; 0; 0Þ
9 ð3̄; 3Þ−2=3 35;40 ð8=3; 4; 1Þ 20 ð6̄; 3Þ−1=3 50 ð4=3; 8; 5Þ
10 ð6̄; 2Þ1=6 35;40 ð2=9; 2; 10=3Þ 21 ð6; 1Þ4=3 50 ð64=9; 0; 5=3Þ
11 ð10; 1Þ1 35 ð20=3; 0; 5Þ

MINIMAL ANOMALY-FREE CHIRAL FERMION SETS AND … PHYSICAL REVIEW D 90, 125037 (2014)

125037-7



multiplets contained in these representations [21], we give
in Table IV the corresponding one-loop beta coefficients bi.
The representations are labeled from 1 to 21 according to
their quantum numbers.

Applying the anomaly constraints in Eqs. (1) to the 21
particle species of Table IV, we obtain the following system
of linear equations for the number of multiplets,
nI; I ¼ 1;…; 21, of each particle type:

n2 − n4 þ 2n5 þ 7n7 − 3n9 − 14n10 − 27n11 þ 3n14 − n15 − 2n16 − 7n17 − 21n20 þ 7n21 ¼ 0;

n2 þ 2n4 − n5 þ 10n7 þ 6n9 − 5n10 − 45n11 − 18n13 þ 3n14 − 4n15 þ 7n16 þ 5n17 − 18n18 þ 15n20 − 20n21 ¼ 0;

n1 þ n5 þ 8n6 − 30n8 − 16n9 þ 2n10 − 3n12 − 8n14 − 7n16 þ 8n18 − 16n20 ¼ 0;

9n1 − 4n2 þ 36n3 − 32n4 þ n5 þ 108n6 − 64n7 − 486n8 − 96n9 þ 2n10 þ 360n11 − 243n12

þ 288n13 − 12n14 þ 256n15 − 343n16 − 8n17 þ 72n18 − 288n19 − 24n20 þ 512n21 ¼ 0;

n1 − n2 þ n3 − 2n4 þ n5 þ 3n6 − 4n7 − 6n8 − 6n9 þ 2n10 þ 10n11 − 3n12 þ 8n13 − 3n14

þ 4n15 − 7n16 − 2n17 þ 8n18 − 2n19 − 6n20 þ 8n21 ¼ 0: ð31Þ

Besides the anomaly constraints, we must also require
that the new low-energy fermion states form vectorlike sets
with respect to the color SUð3Þ and electromagnetic Uð1Þ.
This requirement leads to the additional constraints

11∶ n1 þ n3 þ n6 − n8 − n12 ¼ 0;

3−1=3∶ n2 þ n5 − n9 þ n14 ¼ 0;

3̄−2=3∶ n4 − n5 þ n9 − n14 þ n16 ¼ 0;

12∶ n6 − n8 − n12 − n19 ¼ 0;

6−2=3∶ n7 − n10 − n20 ¼ 0;

1−3∶ n8 ¼ 0;

3̄−5=3∶ n9 þ n16 ¼ 0;

6̄−1=3∶ n10 þ n17 þ n20 ¼ 0;

101∶ n11 ¼ 0;

81∶ n13 þ n18 ¼ 0;

3−4=3∶ n14 − n15 ¼ 0;

6̄−4=3∶ n20 − n21 ¼ 0; ð32Þ
where dQ denotes states with SUð3Þ dimension d and
electric charge Q. Substituting Eqs. (32) into Eqs. (31), we
verify that the first, second, and last equations in (31) are
automatically satisfied, while the remaining two equations
can be rewritten as

2n1 þ 9n2 þ 3n3 þ 17n4 − 9n5 − 5n6 þ 16n7

− 18n10 þ 8n13 ¼ 0;

54n1 þ 243n2 þ 81n3 þ 459n4 − 243n5 − 135n6

þ 432n7 − 486n10 þ 216n13 ¼ 0: ð33Þ

In Table V, we present the minimal sets of chiral
multiplets, with a maximum of ns ¼ 6 number of species

and up to ten multiplets per set, that are anomaly free and,
at the same time, lead to vectorlike states at low energies. It
is worth noticing that the sets S2 and S7 correspond to one
and two additional SM generations, respectively. We shall
search among the sets in Table V for solutions that lead to a
successful gauge coupling unification at GUT and string
scales.
Any self-contained unification scenario must include

scalars in order to obtain the proper symmetry breaking. In
our minimal SUð5Þ-inspired setup, we shall assume that the
breaking of SUð5Þ into the SM group occurs at the GUT
(string) scale and it is achieved through the usual 24 adjoint
scalar representation. The breaking of the SM gauge group
is then realized via the usual vacuum expectation value of
the Higgs field in the 5 representation. Thus, the scalar
content is Σ3 ∼ ð1; 3Þ0, Σ8 ∼ ð8; 1Þ0, ðX; YÞ⊺ ∼ ð3; 2Þ−5=6,
Hc ∼ ð3; 1Þ−1=3, and the Higgs doubletH ∼ ð1; 2Þ1=2. Since
the scalars X, Y, and Hc can dangerously mediate proton
decay, in what follows we assume that their masses are of
the order of the unification scale. Therefore, from the RGE
viewpoint, the only relevant scalars are Σ3, Σ8, and H.
While the mass of the Higgs doublet is required to be at the
electroweak scale, the mass scales of Σ3 and Σ8 are allowed
to vary from MZ up to the unification scale. Without any
further assumption, the latter are expected to be close to
each other, i.e., MΣ3

≈MΣ8
.

We proceed as in the previous section and make use of
Eqs. (17)–(20). We randomly vary the running weights r2
to r21 in their allowed range [0, 1], together with the
running weights of the scalars Σ3 and Σ8. We then
determine r1 using Eq. (17) and calculate the unification
scale Λ through Eq. (20).
In Table VI, we list the nine sets of solutions that lead to

unification of the gauge couplings for Λ ≥ 5 × 1015 GeV.
As mentioned before, this lower bound is invoked so that
we are safely consistent with proton decay bounds. In fact,
we have also found unification of the gauge couplings for
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the sets S9, S19, and S20, but the unification scale Λ turns
out to be very constrained for those sets (Λ≲ 1016 GeV).
The values of α−1U , the maximum value of the unification
scaleΛmax, as well as the minimum and maximum values of
the intermediate mass scales obtained for each set are also
given in Table VI. In all cases, the mass scale MΣ3

≃MΣ8

can take any value from MZ up to the unification scale.
As can be seen from Table VI, it is possible to achieve

unification with some of the intermediate scales taking
values as low as the electroweak scale. As an illustration,
we present in Fig. 5 the running of the gauge couplings at
one-loop level for the set S7, which corresponds to the
addition of two complete SM generations. In this example,
the unification of the gauge couplings occurs at the scale
Λ ¼ 1.3 × 1016 GeV with α−1U ≃ 35. The intermediate
mass scales are M2 ¼ M5 ¼ 560 GeV, M1 ¼ 6.9×
1010 GeV, and M3 ¼ M4 ¼ 1.0 × 1016 GeV. Note that
the mass labeling Mi, with i ¼ 1;…; 21, follows the
multiplet notation given in Table IV. We assume
MΣ3

¼ MΣ8
¼ Λ.

Let us now consider the string scenario. In order to
determine if the gauge and gravitational couplings unify in
this case, we compute, for each set of solutions, the running
weights of the first two particles, r1 and r2, using Eq. (26),

allowing the running weights of the remaining particles to
randomly vary in the range [0, 1]. The unification scale Λ is
determined using Eq. (29). We have found only six sets
compatible with string-scale unification, which are pre-
sented in Table VII. One can see that, in order to have
unification, the presence of sextets and/or octets of SUð3Þ
is required in all cases.
We conclude this section by commenting on the pos-

sibility of constructing anomaly-free solutions with com-
plete SUð5Þ representations. Looking at Table V, one can
easily verify that none of the sets corresponds to a complete
representation of this gauge group. In order to obtain
anomaly cancellation within SUð5Þ, we must consider
the SUð5Þ anomaly condition

½SUð5Þ-SUð5Þ-SUð5Þ�∶
X
R

A5ðRÞ ¼ 0; ð34Þ

where the anomaly cubic index A5ðRÞ is given in
Table VIII. For our choice of SUð5Þ representations, with
dimensions less than or equal to 50, the above equation
implies the following relation among the number of SUð5Þ
multiplets:

TABLE V. Anomaly-free chiral sets obtained from SUð5Þ representations up to dimension 50. The multiplet notation follows the
convention ðSUð3Þ;SUð2ÞÞY , and ns corresponds to the number of different species required in each set. For each solution it is also
indicated whether it leads to GUT (G) and/or string (S) scale unification. The sets S9, S19, and S20, marked with *, unify at a scale
Λ≲ 1016 GeV.

Set ns Particle content G S

S1 4 3ð1; 2Þ1=2 ⊕ 2ð1; 1Þ−1 ⊕ ð1; 2Þ−3=2 ⊕ ð1; 1Þ2 – –
S2 5 ð1; 2Þ1=2 ⊕ ð3; 1Þ−1=3 ⊕ ð1; 1Þ−1 ⊕ ð3; 1Þ2=3 ⊕ ð3̄; 2Þ−1=6 – –
S3 5 ð1; 1Þ−1 ⊕ ð1; 3Þ1 ⊕ ð8; 1Þ1 ⊕ ð8; 2Þ−1=2 ⊕ ð1; 1Þ−2 – –
S4 5 2ð1; 2Þ1=2 ⊕ 2ð1; 1Þ−1 ⊕ ð6̄; 1Þ2=3 ⊕ ð6; 2Þ−1=6 ⊕ ð6̄; 1Þ−1=3 – –
S5 5 ð1; 2Þ1=2 ⊕ ð1; 1Þ1 ⊕ ð1; 3Þ1 ⊕ 3ð1; 2Þ−3=2 ⊕ 2ð1; 1Þ2 – –
S6 5 2ð1; 2Þ1=2 ⊕ 3ð1; 1Þ−1 ⊕ ð1; 3Þ−1 ⊕ 2ð1; 2Þ3=2 ⊕ ð1; 1Þ−2 – –
S7 5 2ð1; 2Þ1=2 ⊕ 2ð3; 1Þ−1=3 ⊕ 2ð1; 1Þ−1 ⊕ 2ð3; 1Þ2=3 ⊕ 2ð3̄; 2Þ−1=6 ✓ –
S8 5 2ð1; 1Þ−1 ⊕ 2ð1; 3Þ1 ⊕ 2ð8; 1Þ1 ⊕ 2ð8; 2Þ−1=2 ⊕ 2ð1; 1Þ−2 ✓ –
S9 6 ð3̄; 1Þ1=3 ⊕ ð3̄; 2Þ−1=6 ⊕ ð3; 3Þ2=3 ⊕ ð3; 3Þ−1=3 ⊕ ð3̄; 1Þ4=3 ⊕ ð3̄; 2Þ−7=6 * –
S10 6 ð3̄; 1Þ1=3 ⊕ ð3̄; 1Þ−2=3 ⊕ ð8; 1Þ−1 ⊕ ð3; 3Þ−1=3 ⊕ ð3̄; 1Þ4=3 ⊕ ð8; 2Þ1=2 ✓ ✓

S11 6 ð3; 1Þ2=3 ⊕ ð3̄; 2Þ−1=6 ⊕ ð3; 3Þ2=3 ⊕ ð8; 1Þ1 ⊕ ð3̄; 2Þ−7=6 ⊕ ð8; 2Þ−1=2 ✓ ✓

S12 6 ð1; 2Þ1=2 ⊕ ð6; 1Þ−2=3 ⊕ ð6̄; 2Þ1=6 ⊕ ð1; 2Þ−3=2 ⊕ ð6; 1Þ1=3 ⊕ ð1; 1Þ2 – –
S13 6 ð6̄; 1Þ2=3 ⊕ 2ð8; 1Þ1 ⊕ ð6̄; 1Þ−1=3 ⊕ 2ð8; 2Þ−1=2 ⊕ ð6; 3Þ1=3 ⊕ ð6̄; 1Þ−4=3 ✓ ✓

S14 6 2ð3̄; 1Þ1=3 ⊕ 2ð3; 3Þ2=3 ⊕ ð6; 2Þ−1=6 ⊕ 2ð3̄; 2Þ−7=6 ⊕ ð6̄; 3Þ−1=3 ⊕ ð6; 1Þ4=3 ✓ ✓

S15 6 2ð3̄; 1Þ1=3 ⊕ 2ð3̄; 1Þ−2=3 ⊕ 2ð3; 2Þ1=6 ⊕ ð6̄; 1Þ2=3 ⊕ ð6; 2Þ−1=6 ⊕ ð6̄; 1Þ−1=3 ✓ ✓

S16 6 2ð3̄; 2Þ−1=6 ⊕ ð6̄; 2Þ1=6 ⊕ 2ð3; 3Þ−1=3 ⊕ 2ð3̄; 1Þ4=3 ⊕ ð6; 3Þ1=3 ⊕ ð6̄; 1Þ−4=3 ✓ ✓

S17 6 ð1; 2Þ1=2 ⊕ 2ð3̄; 1Þ1=3 ⊕ 2ð3̄; 1Þ−2=3 ⊕ 2ð3; 2Þ1=6 ⊕ ð1; 2Þ−3=2 ⊕ ð1; 1Þ2 ✓ –
S18 6 ð1; 2Þ1=2 ⊕ 2ð1; 3Þ1 ⊕ 3ð1; 2Þ−3=2 ⊕ ð8; 1Þ1 ⊕ ð8̄; 2Þ−1=2 ⊕ ð1; 1Þ2 – –
S19 6 3ð1; 2Þ1=2 ⊕ 3ð1; 1Þ−1 ⊕ ð1; 3Þ1 ⊕ ð1; 2Þ−3=2 ⊕ ð8; 1Þ1 ⊕ ð8̄; 2Þ−1=2 * –
S20 6 2ð1; 2Þ1=2 ⊕ 2ð1; 1Þ−1 ⊕ 2ð1; 3Þ−1 ⊕ 2ð1; 2Þ3=2 ⊕ ð8̄; 1Þ−1 ⊕ ð8; 2Þ1=2 * –
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n5 þ n10 þ 9n15 − 44n35 − 16n40 − 6n45 − 15n50 ¼ 0:

ð35Þ

Moreover, imposing the low-energy vectorlike conditions
for the particle content of the above multiplets, we obtain
the relations

n5 þ n10 − n40 ¼ 0;

n15 − n40 − n50 ¼ 0;

n15 þ n45 ¼ 0;

n35 ¼ 0: ð36Þ

One can easily verify that once Eqs. (36) are imposed,
Eq. (34) is automatically satisfied.
Besides the well-known SM solution, formed by the

combination 5̄ ⊕ 10, we have found the following minimal
anomaly-free sets of complete representations of SUð5Þ,

TABLE VI. Chiral sets for which gauge coupling unification is achieved among the SUð5Þ-inspired anomaly-free solutions given in
Table V. The minimal scale for unification is set at 5.0 × 1015 GeV. The values of α−1U , maximum value of the unification scale Λmax, as
well as the minimum and maximum values of the intermediate mass scales are also given.

Intermediate mass scales [GeV]

Set α−1U Λmax[GeV] Representation Minimum Maximum Representation Minimum Maximum

S7 [30.5, 37.6] 1.0 × 1017 ð1; 2Þ1=2 MZ 7.6 × 1016 ð3; 1Þ−1=3 MZ 1.3 × 1016

ð1; 1Þ−1 8.0 × 103 7.8 × 1016 ð3; 1Þ2=3 2.6 × 104 9.4 × 1016

ð3̄; 2Þ−1=6 MZ 5.8 × 107

S8 [1.4, 18.8] 5.0 × 1017 ð1; 1Þ−1 2.2 × 103 2.8 × 1017 ð1; 3Þ1 MZ 4.0 × 105

ð8; 1Þ1 8.9 × 1014 4.7 × 1017 ð8; 2Þ−1=2 MZ 6.2 × 107

ð1; 1Þ−2 9.4 × 1012 3.4 × 1017

S10 [8.0, 35.0] 5.3 × 1017 ð3̄; 1Þ1=3 MZ 4.2 × 1017 ð3̄; 1Þ−2=3 MZ 4.9 × 1017

ð8; 1Þ−1 6.7 × 103 5.0 × 1017 ð3; 3Þ−1=3 MZ 1.1 × 1012

ð3̄; 1Þ4=3 MZ 5.0 × 1017 ð8; 2Þ1=2 MZ 4.7 × 1013

S11 [4.0, 34.5] 5.3 × 1017 ð3; 1Þ2=3 MZ 4.9 × 1017 ð3̄; 2Þ−1=6 MZ 2.7 × 1017

ð3; 3Þ2=3 MZ 9.7 × 1014 ð8; 1Þ1 8.4 × 103 4.6 × 1017

ð3̄; 2Þ−7=6 4.0 × 105 5.1 × 1017 ð8; 2Þ−1=2 MZ 4.3 × 1013

S13 [1.0, 35.5] 5.3 × 1017 ð6̄; 1Þ2=3 7.4 × 104 5.1 × 1017 ð8; 1Þ1 1.9 × 107 5.0 × 1017

ð6̄; 1Þ−1=3 5.5 × 107 5.0 × 1017 ð8; 2Þ−1=2 1.4 × 1013 5.2 × 1017

ð6; 3Þ1=3 MZ 7.1 × 1013 ð6̄; 1Þ−4=3 MZ 5.0 × 1017

S14 [1.0, 35.9] 5.3 × 1017 ð3̄; 1Þ1=3 MZ 4.7 × 1017 ð3; 3Þ2=3 6.4 × 107 4.9 × 1017

ð6; 2Þ−1=6 MZ 2.8 × 1016 ð3̄; 2Þ−7=6 2.9 × 103 5.0 × 1017

ð6̄; 3Þ−1=3 2.5 × 103 4.4 × 1017 ð6; 1Þ4=3 MZ 4.9 × 1017

S15 [32.3, 37.3] 5.3 × 1017 ð3̄; 1Þ1=3 9.0 × 106 4.3 × 1017 ð3̄; 1Þ−2=3 1.5 × 1011 4.3 × 1017

ð3; 2Þ1=6 MZ 9.8 × 105 ð6̄; 1Þ2=3 2.1 × 1013 5.0 × 1017

ð6; 2Þ−1=6 8.1 × 1010 8.5 × 1016 ð6̄; 1Þ−1=3 5.4 × 1012 4.8 × 1017

S16 [1.0, 37.1] 5.3 × 1017 ð3̄; 2Þ−1=6 MZ 5.1 × 1017 ð6̄; 2Þ1=6 MZ 6.0 × 1015

ð3; 3Þ−1=3 9.5 × 107 5.3 × 1017 ð3̄; 1Þ4=3 MZ 5.0 × 1017

ð6; 3Þ1=3 880 4.9 × 1017 ð6̄; 1Þ−4=3 MZ 5.0 × 1017

S17 [31.9, 37.1] 6.0 × 1016 ð1; 2Þ1=2 MZ 2.0 × 1016 ð3̄; 1Þ1=3 MZ 8.3 × 1015

ð3̄; 1Þ−2=3 2.9 × 106 3.3 × 1016 ð3; 2Þ1=6 MZ 2.0 × 107

ð1; 2Þ−3=2 6.5 × 1010 5.0 × 1016 ð1; 1Þ2 6.7 × 1010 5.9 × 1016
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FIG. 5 (color online). Running of the gauge couplings at one-
loop level for the set S7 given in Table VI, which corresponds to
the addition of two complete SM generations. A successful
unification of the couplings is achieved at the scale
Λ ¼ 1.3 × 1016 GeV. We assume MΣ3

¼ MΣ8
¼ Λ.
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5̄ ⊕ 40 ⊕ 50;

10 ⊕ 40 ⊕ 50;

15 ⊕ 45 ⊕ 50;

5̄ ⊕ 15 ⊕ 40 ⊕ 45;

10 ⊕ 15 ⊕ 40 ⊕ 45; ð37Þ

which contain at most three or four complete SUð5Þ
representations. It is interesting to note that the last
anomaly-free chiral set contains, in a nontrivial way, one
generation of the SM fermions (labeled 1–5 in Table IV).
Concerning gauge coupling unification, it is clear that,

unless one allows for mass splittings inside each SUð5Þ
multiplet, none of the solutions in Eq. (37) would lead to
unification. Indeed, the contribution of the new particles
[belonging to a complete SUð5Þ multiplet] to the beta
coefficients at one loop in Eqs. (12)–(15) is the same for
each SM subgroup. Therefore, they do not affect the
unification condition of Eq. (13). On the other hand, if

one allows for different intermediate scales inside each
SUð5Þ multiplet, one can then obtain sets of solutions that
can account for unification but they are not as minimal as
those given in Table VI.

IV. CONCLUSIONS

In this work we have searched for minimal chiral sets
of fermions beyond the SM that are anomaly free and,
simultaneously, vectorlike particles with respect to color
SUð3Þ and electromagnetic Uð1Þ. We have studied whether
the addition of such particles allows for the unification of
gauge couplings at a high energy scale. The possibility to
have unification at the string scale has also been consid-
ered. We have looked for minimal solutions with chiral
fermion sets of arbitrary quantum numbers, which do no fit
in standard GUT groups, as well as for those that belong to
SUð5Þ representations with dimensions less than or equal
to 50. In both cases, we have verified that some of the
anomaly-free sets can unify at a unification scale above
5 × 1015 GeV and could also lead to the unification of
gauge and gravitational couplings at the string scale around
3 × 1017 GeV. Our results are summarized in Figs. 1–4,
and Tables III, VI, and VII.
In our framework, we have only considered one-loop

corrections to the running of the gauge couplings, allowing
the extra fermions to decouple from the theory at arbitrary
intermediate scales. A more comprehensive analysis would

TABLE VII. As in Table VI, for the sets of solutions that lead to gauge and gravitational coupling unification at the string scale.

Intermediate mass scales [GeV]

Set Λ½1017 GeV� Representation Minimum Maximum Representation Minimum Maximum

S10 [3.5, 5.3] ð3̄; 1Þ1=3 MZ 5.0 × 1017 ð3̄; 1Þ−2=3 MZ 4.6 × 1017

ð8; 1Þ−1 2.9 × 107 4.5 × 1017 ð3; 3Þ−1=3 3.5 × 103 2.4 × 1012

ð3̄; 1Þ4=3 9.8 × 107 5.2 × 1017 ð8; 2Þ1=2 MZ 1.1 × 108

S11 [3.6, 5.3] ð3; 1Þ2=3 MZ 4.3 × 1017 ð3̄; 2Þ−1=6 MZ 8.8 × 1016

ð3; 3Þ2=3 9.6 × 107 3.0 × 1014 ð8; 1Þ1 1.3 × 1011 4.4 × 1017

ð3̄; 2Þ−7=6 5.7 × 1012 5.0 × 1017 ð8; 2Þ−1=2 MZ 1.1 × 108

S13 [3.3, 5.3] ð6̄; 1Þ2=3 7.9 × 103 5.2 × 1017 ð8; 1Þ1 7.7 × 109 5.2 × 1017

ð6̄; 1Þ−1=3 3.1 × 106 5.2 × 1017 ð8; 2Þ−1=2 8.3 × 1012 5.2 × 1017

ð6; 3Þ1=3 4.8 × 105 1.3 × 1014 ð6̄; 1Þ−4=3 3.3 × 106 5.0 × 1017

S14 [3.2, 5.3] ð3̄; 1Þ1=3 MZ 5.0 × 1017 ð3; 3Þ2=3 7.6 × 1010 5.2 × 1017

ð6; 2Þ−1=6 MZ 3.3 × 1015 ð3̄; 2Þ−7=6 5.2 × 109 5.1 × 1017

ð6̄; 3Þ−1=3 2.3 × 107 4.3 × 1017 ð6; 1Þ4=3 5.8 × 105 5.2 × 1017

S15 [3.2, 3.3] ð3̄; 1Þ1=3 1.3 × 107 3.3 × 1017 ð3̄; 1Þ−2=3 1.7 × 1011 3.2 × 1017

ð3; 2Þ1=6 MZ 8.4 × 105 ð6̄; 1Þ2=3 1.0 × 1014 3.2 × 1017

ð6; 2Þ−1=6 1.8 × 1011 5.2 × 1016 ð6̄; 1Þ−1=3 7.8 × 1012 3.2 × 1017

S16 [3.2, 5.3] ð3̄; 2Þ−1=6 MZ 5.2 × 1017 ð6̄; 2Þ1=6 MZ 3.6 × 1012

ð3; 3Þ−1=3 1.7 × 1011 5.3 × 1017 ð3̄; 1Þ4=3 8.5 × 104 5.2 × 1017

ð6; 3Þ1=3 1.8 × 108 5.2 × 1017 ð6̄; 1Þ−4=3 1.1 × 105 5.2 × 1017

TABLE VIII. The cubic index A5 for irreducible representa-
tions of SUð5Þ with d5ðRÞ ≤ 50.

SUð5Þ-irrep 5 10 15 24 35 40 45 50

A5 1 1 9 0 −44 −16 −6 −15
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require us to include higher loop RGE corrections. Our
results show that adding only a minimal chiral content to
SM and requiring gauge unification enforces that some of
the new particles should decouple from the theory at
intermediate scales much larger than the electroweak scale.
Since electroweak precision data severely constrain addi-
tional scalars charged under the SM group, giving large
masses to the new fermions through such scalars seems
unrealistic in the present context. Therefore, the problem of
generating the required intermediate fermion masses
through an alternative mechanism deserves further study.
An interesting possibility is to implement a dynamical
mechanism by extending the theory with mirror fermions,
analogous to that developed in Ref. [27].
Finally, it is worth emphasizing that our search for gauge

coupling unification has been focused on nonsupersym-
metric scenarios. Supersymmetry commonly arises in the
context of string theories; yet it may happen that it is broken
at a very high energy scale. In fact, different paths to string-
scale unification can be envisaged [1]. Supersymmetry may
also be required to maintain the stability of the relevant
mass scales, namely, the string and/or gauge unification
scale, the intermediate scales for the masses of the new
fermions, and the electroweak scale. For instance, invoking

low-energy supersymmetry helps in solving the hierarchy
problem associated to the presence of quadratic divergen-
ces in the Higgs mass. So far, supersymmetry has not been
observed at the energy scales that are accessible to present
collider experiments. In view of this, nonsupersymmetric
extensions of the SM remain plausible alternatives that are
worth being investigated.
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