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A strong magnetic field enhances the chiral condensate at low temperatures. This so-called magnetic
catalysis thus seeks to increase the vacuum mass of nucleons. We employ two relativistic field-theoretical
models for nuclear matter, the Walecka model and an extended linear sigma model, to discuss the resulting
effect on the transition between vacuum and nuclear matter at zero temperature. In both models we find that
the creation of nuclear matter in a sufficiently strong magnetic field becomes energetically more costly due
to the heaviness of magnetized nucleons, even though it is also found that nuclear matter is more strongly
bound in a magnetic field. Our results are potentially important for dense nuclear matter in compact stars,
especially since previous studies in the astrophysical context have always ignored the contribution of the
magnetized Dirac sea and thus the effect of magnetic catalysis.
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I. INTRODUCTION

The chiral condensate of quantum chromodynamics
(QCD) is, at sufficiently low temperatures, enhanced by
a background magnetic field [1–4] due to magnetic
catalysis [5–14]. At weak coupling, magnetic catalysis is
analogous to Cooper pairing à la Bardeen-Cooper-
Schrieffer (BCS): in both cases, an effective dimensional
reduction leads to the creation of a condensate. In BCS
theory, it is the Fermi surface that renders the gap equation
effectively 1þ 1 dimensional and induces a fermion-
fermion condensate for an arbitrarily weak attractive
interaction. In the case of magnetic catalysis, a sufficiently
strong magnetic field plays a similar role by suppressing
the dynamics in the directions perpendicular to the mag-
netic field. As a consequence, a fermion-antifermion
condensate is induced, also for arbitrarily weak attractive
interactions. In the QCD vacuum, the coupling is strong, of
course, and a chiral condensate is present even without a
magnetic field. Nevertheless, a magnetic field further
increases this condensate at low temperatures.1

In this paper, we discuss the effect of an external
magnetic field B on nuclear matter, in particular on the
transition between the vacuum and nuclear matter at zero
temperature. In the absence of a magnetic field, we know
that this onset is a first-order phase transition and that it

occurs at a baryon chemical potential μ≃ 923 MeV, which
is smaller than the vacuum mass of the nucleon. The reason
is that the energy per baryon is reduced by the binding
energy of nuclear matter. A strong magnetic field of the
order of or larger than the QCD scale, Λ2

QCD ∼ 1018 G, can
be expected to affect both the vacuum mass and the binding
energy. Therefore, even if the vacuum mass is enhanced by
magnetic catalysis, it is not a priori clear whether the
critical chemical potential for the onset is enhanced too. In
fact, we shall see that the critical chemical potential is a
nonmonotonic function of the magnetic field.
We perform two separate calculations within two models

for nuclear matter. First, we use the Walecka model [17,18],
including scalar self-interactions [19], where the interaction
between nucleons is modeled by the exchange of σ and ω
mesons. Second, we employ an extended linear sigma
model, including nucleons and their chiral partners
[20–26]. Both models contain various parameters which
are fitted to reproduce vacuum masses of mesons and
nucleons as well as properties of nuclear matter at the
saturation density in the absence of a magnetic field. One
important difference between the two models is the origin
of the vacuum mass of the nucleons: while in the Walecka
model it is a given parameter, in the extended linear
sigma model used here it is generated dynamically by
spontaneous breaking of chiral symmetry.
Nuclear matter is subject to large magnetic fields in the

extreme environment of compact stars. Surface magnetic
fields of compact stars (then called magnetars) can be as
large as 1015 G [27] (for a review, see Ref. [28]). It is
conceivable—although speculative—that in the interior of
magnetars the magnetic field might be several orders of
magnitude larger and thus affect dense matter on the scale
of QCD [29]. Besides the static properties of magnetars,
magnetic fields may also play a prominent role in compact
star mergers. The gravitational waves emitted in the late
stage of such a merger process can potentially be observed
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1One might thus expect the critical temperature for chiral

symmetry breaking in QCD to increase with the magnetic field.
However, at larger temperatures, the situation is more compli-
cated, and the critical temperature appears to decrease [3]. Such
an “inverse magnetic catalysis” has also been discussed in
holographic and field-theoretical models at large baryon chemical
potential and low temperatures (where it is of completely
different physical origin) [15,16].
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directly and are sensitive to the equation of state of nuclear
matter [30]. The magnetic field in a merger process might
become extremely large through a magneto-rotational
instability [31], such that corrections to the equation of
state due to a magnetic field may become important.
Dense nuclear matter in a background magnetic field

has been studied before, using a relativistic mean-field
approach with interactions through σ, ω, and ρ mesons
[32–40]. In all these works, the (divergent) vacuum con-
tribution was omitted.2 In the absence of a magnetic field, it
has been shown that this “no-sea approximation” only leads
to a very small difference in the equation of state compared
to the result where this contribution is kept and the theory
properly renormalized [41,42]. However, magnetic cataly-
sis occurs in the vacuum. Therefore, throwing out the
vacuum contribution amounts to throwing out important
physics, and at least the B-dependent part should be taken
into account carefully (we shall show that the B-indepen-
dent part remains negligible in our results). This has been
done in the original works about magnetic catalysis as well
as in many following studies, for instance in the Nambu–
Jona-Lasinio (NJL) model [16,43–47], a quark-meson
model [47–50], and the MIT bag model [51].
The present paper is, to our knowledge, the first to

include the effect of magnetic catalysis in a relativistic
mean-field description of nuclear matter. We shall concen-
trate on the onset of nuclear matter, where the effects of the
magnetic field can be explained in a very transparent way.
We do not attempt to make any quantitative predictions for
the role of magnetic catalysis for matter in the interior of
compact stars, which can be several times denser than the
matter we discuss here. Moreover, we work with a very
simple version of nuclear matter. We consider isospin-
symmetric matter (the only isospin-breaking effect coming
from the different electric charges of neutrons and protons),
neglect the anomalous magnetic moments, and do not
require our matter to be electrically neutral or in chemical
equilibrium. Also, we will not take into account super-
fluidity of the nucleons. Our study is therefore a starting
point for more realistic calculations—or, in other words, it
should be used for improving existing studies of dense
nuclear matter in a magnetic field.
The paper is organized as follows: In Sec. II we introduce

the free energy in a form that is valid for both models we
consider. The renormalization of this free energy is dis-
cussed in Sec. III, and in Sec. IV we introduce the two
models in detail. The results of our calculations are
presented in Secs. V and VI: in Sec. V we compute the

vacuum masses of the nucleons as a function of the
magnetic field, and in Sec. VI we present the zero-
temperature onset of nuclear matter in the presence of a
magnetic field. We give our conclusions in Sec. VII.

II. FREE ENERGY

In both models we consider, the unrenormalized free
energy density can be written as

Ω ¼ B2

2
þ U þ ΩN; ð1Þ

where B2=2 is the field energy of the magnetic field, which,
without loss of generality, points in the z-direction,
B ¼ ð0; 0; BÞ, and U is the tree-level potential that is
independent of the nucleons. It will be specified for the
two models separately in Sec. IV; its explicit form does not
play any role now and for the renormalization discussed in
Sec. III. The nucleonic part ΩN depends on the mass M of
the nucleons (several baryon massesMi in general) and the
externally given thermodynamic parameters B, baryon
chemical potential μ, and temperature T. Since M will
be determined dynamically by minimizing Ω, it depends
on B, μ, and T implicitly. Therefore, we can write
ΩN ¼ ΩN ½MðB; μ; TÞ; B; μ; T�, and decompose

ΩN ¼ ΩN;sea þΩN;mat; ð2Þ

whereΩN;sea ≡ΩN ½MðB; μ; TÞ; B; 0; 0� is the free energy of
the magnetized vacuum. Because of the medium depend-
ence of the nucleon mass, ΩN;sea is not a vacuum con-
tribution in the strict sense. We shall thus mostly refer to it
as the contribution of the Dirac sea or, briefly, the “sea
contribution.” It depends on the ultraviolet cutoff, and we
discuss its renormalization in the next section, while the
matter contribution ΩN;mat is finite. (Had we separated
the “pure” magnetized vacuum ΩN ½MðB; 0; 0Þ; B; 0; 0�, the
remaining matter part would not have been finite.)
In the mean-field approximation, ΩN assumes the form

of free fermions, with all interaction effects absorbed in the
medium-dependent nucleon mass and an effective baryon
chemical potential μ�. In the vacuum, i.e., for T ¼ 0 and
μ� < M, we have μ ¼ μ�. For a spin-12 fermion with (bare)
electric charge q and mass M, the sea contribution is

ΩN;sea ¼ −
jqBj
2π

X∞
ν¼0

αν

Z
∞

−∞

dkz
2π

ϵk;ν; ð3Þ

where

ϵk;ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ 2νjqBj þM2

q
ð4Þ

are the single-fermion energies, and where the sum over ν
refers to the Landau levels. The factor αν ≡ 2 − δν0

2Including the work coauthored by two of the present authors
[37], whose main calculation made use of the holographic
Sakai-Sugimoto model. A field-theoretical mean-field study
was used for comparison and found to be in disagreement with
the holographic result. The results of the present paper show
that the disagreement was partly due to the missing vacuum
contribution.
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accounts for the spin degeneracy of each Landau level (only
fermions with a single spin polarization occupy the lowest
Landau level ν ¼ 0). The matter part is given by

ΩN;mat ¼ −
jqBjT
2π

X
e¼�

X∞
ν¼0

αν

Z
∞

−∞

dkz
2π

ln

�
1þ e−

ϵk;ν−eμ�
T

�

⟶
T¼0

−
jqBj
4π2

Θðμ� −MÞ
Xνmax

ν¼0

αν

×

�
μ�kF;ν − ðM2 þ 2νjqBjÞ ln μ� þ kF;νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ 2νjqBj
p �

;

ð5Þ

where e ¼ −1 corresponds to the antiparticle contribution
which disappears at T ¼ 0 because of μ� > 0. In the zero-
temperature expression, we have defined the Fermi
momentum in the z-direction for each Landau level,

kF;ν ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2� − ðM2 þ 2νjqBjÞ

q
; ð6Þ

and the upper limit for the sum over Landau levels,

νmax ≡
�
μ2� −M2

2jqBj
�
: ð7Þ

For neutral fermions, q ¼ 0, we have

ΩN;seaðqB ¼ 0Þ ¼ −2
Z

d3k
ð2πÞ3 ϵk; ð8Þ

and

ΩN;matðqB ¼ 0Þ ¼ −2T
X
e¼�

Z
d3k
ð2πÞ3 ln ð1þ e−

ϵk−eμ�
T Þ

⟶
T¼0 −

Θðμ� −MÞ
8π2

��
2

3
k3F −M2kF

�
μ�

þM4 ln
kF þ μ�

M

�
; ð9Þ

with the excitation energy

ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
ð10Þ

and the Fermi momentum

kF ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2� −M2

q
: ð11Þ

We shall use this free energy to describe neutrons, while the
above expressions for charged fermions shall be used for
the protons. We neglect the anomalous magnetic moment
for the sake of simplicity, which in particular means that the

neutrons are not affected by the magnetic field at all. In
previous studies, the anomalous magnetic moment has
mostly been included within an effective approach [32–40].
This approach is valid for not-too-large magnetic fields. We
leave a more realistic study, including the anomalous
magnetic moments, for the future. Because of the impor-
tance of the renormalization of the sea terms, it remains to
be seen whether the widely used effective approach is
appropriate or whether a more microscopic approach, for
instance along the lines of Ref. [52], should be considered
for generalizing the renormalization that we discuss now.

III. RENORMALIZATION

There are many works in the literature that have discussed
the renormalization of the free energy of charged fermions in
a magnetic field. Even though this renormalization has, to
our knowledge, never been applied to a relativistic mean-
field model for nuclear matter, we can proceed exactly as, for
instance, in the NJL model. Therefore, our main point is not
the derivation of the renormalized free energy, but its
application to nuclear matter. Nevertheless, we shall go
through the renormalization procedure in some detail. The
reason is that there exist different results for the free energy
after renormalization in the literature, and we will point out
that these results correspond to different choices of the
renormalization scale.
We consider the free energy for charged fermions. Thus,

we need to regularize the divergent integral in Eq. (3),
which we do with the help of the proper time method [53]
that has been widely used in the related literature, see for
instance Refs. [7–9,16,44] (dimensional regularization
leads to the same result [45,48,51,54]). By rewriting the
integrand ϵk;ν with the help of

1

xa
¼ 1

ΓðaÞ
Z

∞

0

dττa−1e−τx; ð12Þ

performing the momentum integral and the sum over all
Landau levels, we find

ΩN;sea ¼
jqBj
8π2

Z
∞

0

dτ
τ2

e−τM
2

cothðjqBjτÞ: ð13Þ

This integral is still divergent, and we replace the lower
boundary by 1=Λ2, such that the result depends on the
ultraviolet cutoff Λ. In the limit of large Λ we obtain

ΩN;sea ¼ ΩN;seaðqB ¼ 0Þ − jqBj2
24π2

�
γ þ ln

M2

Λ2

�

−
jqBj2
2π2

�
x2

4
ð3 − 2 ln xÞ þ x

2

�
ln

x
2π

− 1

�

þ ψ ð−2ÞðxÞ − lnA12x
12

�
; ð14Þ
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where γ ≃ 0.577 is the Euler-Mascheroni constant, ψ ðnÞ
the nth polygamma function (analytically continued
to negative n), and A≃ 1.282 the Glaisher constant
[lnA ¼ 1

12
− ζ0ð−1Þ, with the Riemann zeta function ζ].

We have abbreviated

x≡ M2

2jqBj ; ð15Þ

and we have separated the contribution of the unmagne-
tized Dirac sea (8), which, applying the same proper time
regularization, reads

ΩN;seaðqB ¼ 0Þ

¼ 1

16π2

�
Λ2ðΛ2 −M2Þe−M2=Λ2 þM4Γ

�
0;
M2

Λ2

��
; ð16Þ

where Γða; xÞ is the incomplete gamma function.
In the absence of a magnetic field, usually the “no-sea

approximation” is employed in the context of mean-field
models for nuclear matter; i.e., ΩN;sea is ignored. Since
ΩN;sea depends implicitly on the medium, and it thus
contributes to the minimization of the free energy in a
nontrivial way, there is a priori no reason for this approxi-
mation to be valid. It has been justified by an explicit check
of the smallness of its correction to the final result for the
equation of state [41,42]. Here we distinguish between
ΩN;seaðqB ¼ 0Þ and the contribution of the magnetized
Dirac sea. In Appendix B we show, for the case of the
Walecka model, that ΩN;seaðqB ¼ 0Þ has a very small effect
on our results, and we will thus proceed solely with the B-
dependent sea contribution. To illustrate the qualitative

difference between the two contributions, a comparison
with the NJL model—whose degrees of freedom are quarks,
not nucleons—is instructive: in the NJL model, the B-
independent sea contribution is responsible for chiral sym-
metry breaking in the vacuum for coupling strengths larger
than a critical coupling, and it clearly must not be discarded,
even though it introduces a cutoff dependence in the non-
renormalizable NJL model. The B-dependent sea contribu-
tion is responsible for magnetic catalysis in the vacuum,
inducing a chiral condensate for arbitrarily small coupling
strength. Now, in our present study of nuclear matter, chiral
symmetry breaking in the vacuum is, in the Walecka model,
put in by hand through a given vacuum mass of the nucleons
and, in the extended linear sigma model, generated dynami-
cally by chiral symmetry breaking. Therefore, dropping the
B-independent sea contribution does not throw out important
physics, and we only have to check whether its quantitative
effect is small in our results; see Appendix B. In contrast,
dropping the B-dependent sea contribution, as done in
Refs. [32–40], does throw out important physics, namely
magnetic catalysis. Hence we keep it.
The expression on the right-hand side of Eq. (14)

contains a logarithmic cutoff dependence. This dependence
can be absorbed into a renormalized magnetic field and a
renormalized electric charge. To this end, we introduce the
renormalized charge by q2 ¼ Z−1

q q2r and the renormalized
magnetic field by B2 ¼ ZqB2

r such that qB ¼ qrBr, where

Zq ¼ 1þ q2r
12π2

�
γ þ ln

l2

Λ2

�
; ð17Þ

with a renormalization scale l. We can thus write

B2

2
þ ΩN;sea ¼

B2
r

2
−
jqrBrj2
24π2

ln
M2

l2
−
jqrBrj2
2π2

�
x2

4
ð3 − 2 ln xÞ þ x

2

�
ln

x
2π

− 1

�
þ ψ ð−2ÞðxÞ − lnA12x

12

�

¼ B2
r

2
−
jqrBrj2
24π2

ln
2jqrBrj
l2A12

−
jqrBrj2
2π2

�
x2

4
ð3 − 2 ln xÞ þ x

2

�
ln

x
2π

− 1

�
þ ψ ð−2ÞðxÞ

�
; ð18Þ

where only renormalized quantities appear. We have
written the result in two different ways to make the
discussion about the choice of the renormalization scale
l more transparent. There seem to be two natural choices
for l. If we choose the nucleon mass, l ¼ M, we read
off the nonvanishing terms in the first line, while if we
choose the magnetic field as a scale, l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jqrBrj
p

=A6≃
0.318

ffiffiffiffiffiffiffiffiffiffiffiffijqrBrj
p

, the second line shows that this choice

corresponds to keeping only terms that depend on M (plus
the free field term).3

The choice forlmatters for evaluating observables such as
themagnetizationor thepressure itself. It has beenpointed out
in Ref. [54] (see also Ref. [55]) that only for l ¼ M is the
vacuumpressure for smallmagnetic fieldsx ≫ 1proportional
to B2

r , receiving its sole contribution from the free field term
because all other contributions are of order B4

r and higher,

3Also, for n, instead of 1, charged nucleonic states, the logarithms vanish for particular choices of the renormalization scale: if we

choose the mass scale, l ¼ ðMp2
1

1 M
p2
2

2 …Mp2
n

n Þ1=ðp2
1
þp2

2
þ…þp2

nÞ, and if we choose the magnetic field as a scale, l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jerBrj

p
=A6×

ðjp1jp2
1
=2jp2jp2

2
=2…jpnjp2

n=2Þ1=ðp2
1
þp2

2
þ…þp2

nÞ. Here, Mi is the mass of the ith nucleon, and pi ¼ qi=e is its charge in units of the
elementary charge e.
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x ≫ 1∶
x2

4
ð3 − 2 ln xÞ þ x

2

�
ln

x
2π

− 1

�
þ ψ ð−2ÞðxÞ

−
lnA12x
12

¼ 1

720x2
−

1

5040x4
þ…: ð19Þ

In the regime of strong magnetic fields, where the dynamical
mass becomes very small compared to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqrBrj

p
, i.e. x ≪ 1,

the momentum typically exchanged in scattering processes
and hence the renormalization scale will be dominated by the
scale set by magnetic field, not by the mass. Presumably, the
physically most appropriate choice for the renormalization
scale is thus a combination of themass and themagnetic field.
For our purpose, however, it is only important to notice

that l is a scale at which we evaluate the final physical
result after minimizing the free energy: when we take the
derivative of the free energy with respect to the dynamical
mass M, we do so at fixed l; and, when we determine the
onset of nuclear matter we compare the free energy of the
vacuum with the free energy of nuclear matter at the same
value of l. Therefore, we do not have to specify the
renormalization scale, and the terms independent ofM, i.e.,
the first two terms in the second line of Eq. (18), play no
role. (When we discuss the B-independent contribution of
the Dirac sea in Appendix B, we choose the vacuum
nucleon mass as a renormalization scale, following the
B ¼ 0 literature.)

IV. MODELS

In this section, we introduce the two different models and
write down the equations for minimizing the free energy,
whose solution we discuss in Secs. V and VI. The models
differ mainly in how they treat chiral symmetry breaking: in
the Walecka model, the nucleons have a given vacuum
mass (in the absence of a magnetic field) which is a
parameter of the model. Chiral symmetry is broken by
construction; the model cannot describe chiral symmetry
restoration. In the extended linear sigma model, there is no
mass term for the nucleons in the Lagrangian. The mass is
generated dynamically by the formation of a chiral con-
densate. Therefore, the effect of magnetic catalysis can be
seen very directly, by the B-dependence of the chiral
condensate, whereas in the Walecka model it can only
be seen in an indirect way, by the B-dependence of the
nucleon mass.
The Lagrangian of both models has the form

L ¼ LN þ Lmes þ LI þ Lfield; ð20Þ

where LN describes free nucleons and their coupling to the
magnetic field, Lmes the mesons and their (self-)inter-
actions, LI the (Yukawa) interaction between the nucleons
and mesons, and Lfield ¼ − 1

4
FμνFμν is the free field part,

giving rise to the B2 term in the free energy (1). The
nucleonic part LN includes the covariant derivative

Dμ ¼ ∂μ þ iQAμ, where Aμ ¼ ð0; yB; 0; 0Þ accounts for
a homogeneous background magnetic field in the z-
direction, and Q ¼ diagðq1; q2Þ is the electric charge
matrix in isospin space. For ordinary nuclear matter,
q1 ¼ 0 (neutrons) and q2 ¼ e (protons).

A. Walecka model

In the Walecka model, the nucleonic part of the
Lagrangian is

LN ¼ ψ̄ðiγμDμ −mN þ γ0μÞψ ; ð21Þ

where ψ is the nucleon spinor in isospin space, mN ¼
939 MeV is the vacuum mass of the nucleons, and μ is the
baryon chemical potential. The mesonic part contains the
sigma and omega mesons, including scalar self-inter-
actions,

Lmes ¼
1

2
ð∂μσ∂μσ −m2

σσ
2Þ − b

3
mNðgσσÞ3 −

c
4
ðgσσÞ4

−
1

4
ωμνω

μν þ 1

2
m2

ωωμω
μ; ð22Þ

where ωμν ≡ ∂μων − ∂νωμ. The omega mass is mω ¼
782 MeV, and for the sigma mass we use mσ ¼
550 MeV. The meson-nucleon interactions are given by

LI ¼ gσψ̄σψ − gωψ̄γμωμψ : ð23Þ

We employ the mean-field approximation; i.e., we neglect
the fluctuations around the mesonic background fields σ̄
and ω̄0, which we assume to be uniform in space and time.
One may ask whether a vector condensate ω̄i develops in
the presence of a magnetic field. Minimizing the free
energy with respect to this condensate shows that it must
be proportional to a baryon current. Since there is no
baryon current in an externally applied magnetic field
(only with a chiral imbalance can there be a current due
to the chiral magnetic effect), the vector condensate
vanishes.
The dynamical nucleon mass and the effective chemical

potential are

MN ¼ mN − gσσ̄; μ� ¼ μ − gωω̄0: ð24Þ

In our approach with isospin symmetric bare masses and
interactions, there is only one MN , for both neutrons and
protons. The isospin-breaking difference in electric charges
leads to different excitation energies in a magnetic field, but
not to different mass parameters MN .
The coupling constants of the model are fitted to

reproduce the properties of nuclear matter at saturation
in the absence of a magnetic field, namely the saturation
density n0, the binding energy Ebind, the compression
modulus K, and the dynamical mass at saturation:
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n0 ¼ 0.153 fm−3; Ebind ¼ −16.3 MeV;

K ¼ 250 MeV; MN ¼ 0.8mN; ð25Þ

which leads to a chemical potential μ0 ¼ 922.7 MeV at
saturation. The resulting values for the coupling constants
are given in Table I in Appendix A, where we also
explain the fitting procedure for both models. There is
some uncertainty, especially in the compression modulus
and the effective mass, and thus some arbitrariness in our
choice of their values; the compression modulus is
known to be in the range of 200–300 MeV [56,57],
while the effective mass is in the range of 0.7–0.8mN
[42,58–60], possibly smaller [61,62]. We have chosen a
value on the upper end of that range because in the
extended linear sigma model, lower values tend to be in

conflict with vacuum properties; see remarks at the end
of Appendix A.
The tree-level potential U is

U ¼ 1

2
m2

σσ̄
2 þ b

3
mNðgσσ̄Þ3 þ

c
4
ðgσσ̄Þ4 −

1

2
m2

ωω̄
2
0; ð26Þ

and the equations we have to solve in order to minimize the
free energy are

∂Ω
∂σ̄ ¼ ∂Ω

∂ω̄0

¼ 0: ð27Þ

Using the expressions from Sec. II for the Dirac sea
contribution and the matter contribution to the free energy,
these equations can be written as

ns ¼
mN −MN

g2σ=m2
σ

þ bmNðgσσÞ2 þ cðgσσÞ3 þ
jqBjMN

2π2

�
xð1 − ln xÞ þ 1

2
ln

x
2π

þ lnΓðxÞ
�
; ð28aÞ

n ¼ μ − μ�
g2ω=m2

ω
: ð28bÞ

The derivative of the sea contribution (18) was taken at fixed renormalization scale l, as argued below Eq. (18), and we have
introduced the scalar and baryon densities,

ns ¼
∂ΩN;mat

∂MN
¼ jqBj

2π

X
e¼�

X∞
ν¼0

αν

Z
∞

−∞

dkz
2π

MN

ϵk;ν
fðϵk;ν − eμ�Þ þ 2

X
e¼�

Z
d3k
ð2πÞ3

MN

ϵk
fðϵk − eμ�Þ

⟶
T¼0

Θðμ� −MNÞ
�jqBjMN

2π2
Xνmax

ν¼0

αν ln
μ� þ kF;νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ 2νjqBj
p þMN

2π2

�
kFμ� −M2

N ln
kF þ μ�
MN

��
; ð29aÞ

n ¼ −
∂ΩN;mat

∂μ ¼ jqBj
2π

X
e¼�

e
X∞
ν¼0

αν

Z
∞

−∞

dkz
2π

fðϵk;ν − eμ�Þ þ 2
X
e¼�

e
Z

d3k
ð2πÞ3 fðϵk − eμ�Þ

⟶
T¼0

Θðμ� −MNÞ
�jqBj
2π2

Xνmax

ν¼0

ανkF;ν þ
k3F
3π2

�
; ð29bÞ

where

fðxÞ ¼ 1

ex=T þ 1
ð30Þ

is the Fermi distribution function. Scalar and baryon
densities each contain contributions from protons and
neutrons, while the B-dependent term in Eq. (28a) origi-
nates only from the protons. Since in all relevant terms the
renormalized magnetic field only appears in the combina-
tion qrBr ¼ qB, we can choose the more compact notation
qB, but keep in mind that the renormalization explained in
Sec. III has been carried out.

B. Extended linear sigma model

In the extended linear sigma model, the nucleonic part of
the Lagrangian is

LN ¼ Ψ̄ðiγμDμ þ γ0μÞΨ; ð31Þ

where

Ψ ¼
�
ψ1

ψ2

�
ð32Þ

is a nucleon doublet where each of the components ψ1

and ψ2 (themselves being doublets in isospin space)
transforms oppositely under chiral transformations (“mirror
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assignment”) [20–26]. The Dirac operator iγμDμ þ γ0μ is
diagonal in this “mirror space.”
The mesonic part is [26] (see also Refs. [24,63] for a

more complete version)

Lmes ¼
1

2
ð∂μσ∂μσ þ ∂μπ · ∂μπÞ þ 1

2
∂μχ∂μχ

þ 1

2
m2ðσ2 þ π2Þ − λ

4
ðσ2 þ π2Þ2 þ ϵσ −

1

2
m2

χχ
2

þ gχðσ2 þ π2Þ − 1

4
ωμνω

μν þ 1

2
m2

ωωμω
μ: ð33Þ

Here, σ has a different meaning than the σ in the Walecka
model, where it is a massive mode with mass mσ in the
chirally broken phase. The mass term for σ in the present
model has the “wrong” sign in order to model chiral
symmetry breaking, i.e., m in Eq. (33) has a completely
different meaning than mσ in Eq. (22). In the presence of a
chiral condensate, the mass eigenstates of the scalars are
linear combinations of the fields χ and σ. The lighter of
these states can be identified with the f0ð500Þ resonance
[25] and thus plays the role of the σ of the Walecka model;
the heavier one is associated with f0ð1370Þ. This mixing is
also discussed in Appendix A.
The omega meson appears in both models in the same

way; i.e., also here we have mω ¼ 782 MeV. The meson-
nucleon interactions are

LI ¼ Ψ̄

 
− ĝ1

2
σ − gωγμωμ aχγ5

−aχγ5 − ĝ2
2
σ − gωγμωμ

!
Ψ: ð34Þ

In the presence of a condensate χ̄, the off-diagonal
components give rise to a chirally invariant mass term
−aχ̄ðψ̄2γ

5ψ1 − ψ̄1γ
5ψ2Þ with dynamically generated mass

aχ̄. The remaining interactions in LI are mediated by sigma
and omega, where, for the latter, we have assumed the
coupling constants for both components ψ1 and ψ2 to be
the same, i.e., there is only a single gω.
This Lagrangian has more parameters than the Walecka

model, leading to a more realistic description of vacuum
properties of QCD [63,64]. Here we are interested in the
properties of nuclear matter, and for a sensible comparison
between the two models in the presence of a magnetic field
we need both models to reproduce the same saturation
properties of nuclear matter in the absence of a magnetic
field. Therefore, we fit the parameters of the extended linear
sigma model also to the properties (25); this is explained in
detail in Appendix A, where also the numerical values for
the parameters are given; see Table I.
With the help of the present model, it has been argued

that the chiral condensate in nuclear matter can become
anisotropic (“chiral density wave”). This anisotropic state
of nuclear matter has been discussed in Ref. [26] in the
absence of a magnetic field with the ansatz σ̄¼ϕcosð2fxÞ,
π̄3 ¼ ϕ sinð2fxÞ, with ϕ and f to be determined

dynamically. It is an interesting question whether a chiral
density wave (or a more complicated, inhomogeneous
structure) also occurs in the presence of a magnetic field.
Since the magnetic field already breaks rotational sym-
metry, one might expect the chiral density wave to be even
more favored in this case. This expectation is supported by
model calculations where quarks, not nucleons, are the
degrees of freedom [15,65,66]. Here we will ignore the
possibility of a chiral density wave for simplicity, leaving a
study with background magnetic field and chiral density
wave as a next step for the future. We thus proceed with a
uniform, rotationally symmetric ansatz for the chiral con-
densate σ̄, and set π̄i ¼ 0. As in the Walecka model, we
work in the mean-field approximation, neglecting all
fluctuations around the condensates σ̄ and ω̄0.
In the absence of a magnetic field, the determinant of the

inverse fermionic propagator in momentum space G−1 is

detG−1 ¼ fðaχ̄Þ4 − 2ðaχ̄Þ2½ðk0 þ μ�Þ2 − ðk2 þm1m2Þ�
þ ½ðk0 þ μ�Þ2 − ðk2 þm2

1Þ�
× ½ðk0 þ μ�Þ2 − ðk2 þm2

2Þ�g2; ð35Þ
where μ� ¼ μ − gωω̄0, as in the Walecka model, and we
have abbreviated m1 ≡ ĝ1σ̄=2, m2 ≡ ĝ2σ̄=2. The zeros of
the determinant are ϵk;i − μ� with the excitation energies
ϵk;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

i

p
(i ¼ N;N�), where

MN;N� ¼ � ĝ1 − ĝ2
4

σ̄ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaχ̄Þ2 þ

�
ĝ1 þ ĝ2

4

�
2

σ̄2

s
: ð36Þ

The degeneracy between the masses of the nucleonMN and
its chiral partner MN�—identified with the resonance
Nð1535Þ—is broken by the chiral condensate σ̄. Since
we shall be interested in the zero-temperature onset of
nuclear matter, which occurs at energies well below MN�,
the nucleonic states of the chiral partner will not be
occupied in any of our results. We shall see, however,
that they play a non-negligible role in the sea contribution
for large magnetic fields.
Including a magnetic field is straightforward, since it

couples to both components ψ1 and ψ2 equally. Therefore,
the excitations for the charged nucleons assume the form
(4), with M replaced by MN and MN� .
The tree-level potential is

U ¼ −
1

2
m2σ̄2 − ϵσ̄ þ λ

4
σ̄4 −

1

2
m2

ωω̄
2
0 þ

1

2
m2

χ χ̄
2 − gχ̄σ̄2;

ð37Þ
and the three condensates are determined from

∂Ω
∂σ̄ ¼ ∂Ω

∂χ̄ ¼ ∂Ω
∂ω̄0

¼ 0: ð38Þ

In the presence of a magnetic field, these equations become
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ϵþm2σ̄ − λσ̄3 þ 2gχ̄ σ̄ ¼
X

i¼N;N�

	
−
MijqBj
2π2

�
xið1 − ln xiÞ þ

1

2
ln

xi
2π

þ lnΓðxiÞ
�
þ ∂ΩN;mat

∂Mi


 ∂Mi

∂σ̄ ; ð39aÞ

gσ̄2 −m2
χ χ̄ ¼

X
i¼N;N�

	
−
MijqBj
2π2

�
xið1 − ln xiÞ þ

1

2
ln

xi
2π

þ lnΓðxiÞ
�
þ ∂ΩN;mat

∂Mi


 ∂Mi

∂χ̄ ; ð39bÞ

n ¼ μ − μ�
g2ω=m2

ω
: ð39cÞ

Here, the matter part of the free energy ΩN;mat has
contributions from both protons and neutrons, as given in
Eqs. (5) and (9), each generalized to include both nucleon
states i ¼ N;N�. The total baryon density n is then defined
as usual by the (negative of the) derivative of ΩN;mat with
respect to μ. The B-dependent sea contribution in the curly
brackets of Eqs. (39a) and (39b) originates from the proton
and its chiral partner, with xi ¼ M2

i =ð2jqBjÞ being the
obvious generalization of the abbreviation introduced in
Eq. (15). Expanding for large xi yields

xið1 − ln xiÞ þ
1

2
ln

xi
2π

þ lnΓðxiÞ

¼ 1

12xi
−

1

360x3i
þO

�
1

x5i

�
: ð40Þ

Therefore, for a given magnetic field jqBj, the contribution
of heavy states with masses M2 ≫ jqBj is suppressed, as
one might have expected.

V. RESULTS I: VACUUM MASSES

In this section we discuss the vacuum μ ¼ T ¼ 0 in both
models, starting with the Walecka model. The Walecka
model is a phenomenological model for nuclear matter;
therefore, we should not expect it to yield profound results
for the QCD vacuum. Nevertheless, we shall see that it can
account for magnetic catalysis. For μ ¼ T ¼ 0 we have
n ¼ ns ¼ 0, and thus Eq. (28b) is trivially solved by
ω̄0 ¼ 0. The remaining Eq. (28a) has to be solved for σ̄.
For vanishing magnetic field there is one unique solution
σ̄ ¼ 0 for our parameter choice of mσ , b, and c. The
uniqueness of the solution can easily get lost for slightly
different (still physically sensible) parameters. For instance,
fitting the parameters to an effective nucleon mass at
saturation MN ¼ 0.78mN instead of MN ¼ 0.8mN with
all other properties in Eq. (25) kept fixed leads to a
potential that allows for three solutions. The physical
solution σ̄ ¼ 0 is then a local minimum, and the global
minimum at some large negative value of σ̄ has to be
ignored.
For nonzero magnetic field, σ̄ assumes negative values,

leading to an increased nucleon mass. For small magnetic
fields, this increase is quadratic:

MNðμ ¼ T ¼ 0Þ
mN

≃ 1þ g2σjqBj2
12π2m2

Nm
2
σ
≃ 1þ

� jqBj
0.67 GeV2

�
2

:

ð41Þ

The numerical solution is shown in the left panel of
Fig. 1. For very large magnetic fields, the model in its
present form cannot be trusted. This is most obvious with
the slightly different parameter set just mentioned, where
MN ¼ 0.78mN : in that case, the physical solution ceases to
exist at around qB≃ 0.3 GeV2. This artifact might be
cured by B-dependent meson masses. In the mean-field
approach, neither of the two models we use predicts any
effect of the magnetic field on the meson masses. It could
be computed from loop corrections, or from a more
microscopic approach. Here, throughout the paper, we
shall neglect such an effect on the meson masses and
the coupling constants.
Also in the extended linear sigma model, we obviously

have ω̄0 ¼ 0 in the vacuum. For μ ¼ T ¼ B ¼ 0, the right-
hand sides of Eqs. (39a) and (39b) vanish. As a conse-
quence, Eq. (39b) yields χ̄ as a simple function of σ̄, and
Eq. (39a) becomes a cubic equation for σ̄ with three
solutions. The global minimum of the free energy [which
in this case is simply the tree-level potential (37)] is

σ̄ðμ ¼ T ¼ B ¼ 0Þ

¼ 2mffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − 2g2

m2
χ

q cos

"
1

3
arccos

 
3
ffiffiffi
3

p
ϵ

2m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ −

2g2

m2
χ

s !#

≃ 154.3 MeV; ð42Þ

and χ̄ ¼ gσ̄2=m2
χ ≃ 27.9 MeV. By construction, this yields

the two nucleon masses mN ≡MNðμ ¼ T ¼ B ¼ 0Þ ¼
939 MeV and mN� ≡MN� ðμ¼T¼B¼0Þ¼1535MeV.
The evaluation of Eqs. (39a) and (39b) shows that, for
μ ¼ T ¼ 0, the chiral condensate σ̄ increases quadratically
with qB. This is in agreement with chiral perturbation
theory [11] (in the chiral limit, the behavior is linear in the
magnetic field [10,67]), the quark-meson model [46], and
the holographic Sakai-Sugimoto model [68]; see Ref. [4]
for a comparison of lattice QCD results with the various
model predictions.
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We find that also χ̄ and the nucleon masses increase
quadratically with qB. One can determine the coefficients
for the quadratic terms analytically. They are very com-
plicated and not very instructive combinations of the
parameters of the model. Therefore, we simply give the
numerical result for the nucleon mass,

MNðμ ¼ T ¼ 0Þ
mN

≃ 1þ
� jqBj
0.51 GeV2

�
2

: ð43Þ

The full numerical result is shown in Fig. 1. In the right
panel, we show the numerical result for both nucleon
masses on a large scale of the magnetic field. We
observe a linear increase of the vacuum masses for very
strong magnetic fields. In the left panel, the results of
the two models are compared. Interestingly, if we ignore
the chiral partner (i.e., remove its contribution from the
sea terms by hand while keeping all parameters fixed),
the two models are in much better agreement, sug-
gesting that the main difference between the models
comes from the additional hadronic state in the Dirac
sea. We have seen in Eq. (40) that heavy states with
mass M do not contribute if M2 ≫ jqBj. It turns out,
however, that the magnetic fields considered here are
sufficiently large for the sea contribution of both the
nucleon and its chiral partner to have a sizable effect on
the vacuum masses. It can be expected that in a more
complete treatment, including other charged hadronic
states such as pions or hyperons, our results will further
be changed quantitatively.

VI. RESULTS II: NUCLEAR MATTER ONSET

We now include the medium terms and discuss the onset
of nuclear matter at zero temperature as a function of the
magnetic field in both models. We start by numerically
solving Eq. (28) for σ̄, ω̄0 (Walecka model) and Eq. (39) for
σ̄, ω̄0, χ̄ (extended linear sigma model) for a fixed
magnetic field.
In Fig. 2 we show the solutions for the nucleon mass in

the vicinity of the nuclear matter onset for the Walecka
model. This plot is helpful for an understanding of the
structure of the solutions: at T ¼ 0, there is obviously no
contribution from the medium if the effective chemical
potential μ� is smaller than the nucleon mass. Now, since
ω̄0 ¼ 0 and thus μ� ¼ μ in the vacuum, the same is true for
the chemical potential μ. Therefore, in the shaded area only
the vacuum solution exists. This solution does not depend
on μ and is thus given by a horizontal line. The vacuum
solution increases monotonically with the magnetic field;
i.e., for any nonzero magnetic field the horizontal line lies
above the qB ¼ 0 line. This is magnetic catalysis.
In the unshaded area, the medium terms contribute and

ω̄0 ≠ 0. There is a regime where three solutions and thus
three values for the nucleon mass exist. In this regime a
first-order phase transition occurs, the onset of nuclear
matter, as indicated by the vertical dashed lines. At the
onset, the free energy of nuclear matter starts to become
smaller than the free energy of the vacuum. Therefore, the
onset is determined by requiring the free energies of the
vacuum and nuclear matter to be equal.
The figure shows two qualitatively different cases: in the

left panel, the onset occurs “earlier” than for vanishing
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FIG. 1 (color online). Left panel: Dependence of the vacuum nucleon mass on the magnetic field in the Walecka model and the
extended linear sigma model (eLSM). The increase of the vacuum mass is expected from magnetic catalysis (MC); neglecting the
contribution of the Dirac sea that is responsible for magnetic catalysis leads to an incorrect constant vacuum mass (horizontal thin
dashed line). The thick dashed line is the result of the extended linear sigma model without the sea contribution of the chiral partner of
the nucleon N�, showing that the main difference between the two models originates from that contribution. Right panel: Vacuum mass
of the nucleon MN and its chiral partner MN� according to the extended linear sigma model on a larger scale for the magnetic field,
showing a linear behavior for very strong fields. The dashed lines are the quadratic approximations for small fields. (If q ¼ e≃ 0.30,
then qB ¼ 0.1 GeV2 in natural Heaviside-Lorentz units corresponds to B ¼ 1.7 × 1019 G in Gaussian units.)
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magnetic field, even though the vacuum mass is enhanced;
at the magnetic field chosen here, this “inverse” effect is
most pronounced (see also Fig. 3). In the right panel, the
onset occurs “later” than in the absence of a magnetic field.
Such a nonmonotonic behavior is possible because the
magnetic field also affects the binding energy of nuclear
matter. The binding energy per nucleon (at saturation) is
defined as the difference between the chemical potential—
the energy needed to put a single nucleon into the
magnetized medium—and the vacuum mass—the energy
needed to put the nucleon into the magnetized vacuum,

EbindðqBÞ ¼ μ0ðqBÞ −MNðμ ¼ T ¼ 0; qBÞ; ð44Þ

with EbindðqB ¼ 0Þ≃ −16.3 MeV. In Fig. 2 the binding
energy can be easily read off: by definition, it is the length
of the horizontal segment of the curve between the point
indicating the onset and the end of the shaded area.
In the linear sigma model, the situation of the left panel

does not occur for our choice of parameters. The chemical
potential for the onset of nuclear matter in a background
magnetic field is always larger than that without a magnetic
field, and the solution for the nucleon mass looks quali-
tatively the same as in the right panel. In the vicinity of the
onset, there is no population of the chiral partner because
μ� < MN� , and thus its medium contribution vanishes. In
this model, there is another first-order phase transition at a
larger value of the chemical potential where chiral sym-
metry is (approximately) restored. In this paper, we con-
centrate on the onset of nuclear matter, and leave the
discussion of the chiral phase transition in the presence of a
magnetic field for future studies.

We plot the critical chemical potential for all magnetic
fields qB < 0.2 GeV2 in the left panel of Fig. 3. The right
panel is a zoom-in to smaller magnetic fields. The corre-
sponding binding energy and baryon density along the
onset are shown in Fig. 4. We discuss the main observations
separately:
(1) For small magnetic fields, the onset curve shows an

oscillatory behavior. These oscillations are barely
visible in the left panel, since they occur on a very
small scale of the chemical potential. Their origin is
the Landau level structure; i.e., depending on the
strength of the magnetic field, saturated nuclear
matter occupies different numbers of Landau levels
—the larger the field, the fewer the occupied levels.
For all fields larger than about qB≃ 0.032 GeV2,
saturated nuclear matter only occupies the lowest
Landau level in both models.

(2) At sufficiently large magnetic fields, magnetic
catalysis dominates the onset, and nuclear matter
becomes increasingly more difficult to create be-
cause of the heavier nucleon mass. For comparison,
we have plotted the incorrect result that is obtained
without the Dirac sea contribution, i.e., with a
constant vacuum mass (as indicated by the constant
line in the left panel of Fig. 1). There is an obvious
qualitative difference between these results, with a
difference of up to about ∼10% for the onset
chemical potential, ∼90% for the binding energy,
and ∼25% for the saturation density at the largest
magnetic field considered here, qB ¼ 0.2 GeV2

(corresponding to B≃ 3.4 × 1019 G for q ¼ e).
It is instructive to compare this with the holo-

graphic Sakai-Sugimoto model, which, in a certain
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FIG. 2 (color online). Zero-temperature solutions for the nucleon mass in the Walecka model in the vicinity of the onset of nuclear
matter for two different magnetic fields, compared to the solution in the absence of a magnetic field. The vertical dashed lines indicate
the onset of nuclear matter, where the effective mass decreases discontinuously. The vacuum mass (horizontal segments of the curves) is
increased for both magnetic fields due to magnetic catalysis. With respect to the onset, the two panels show two different cases: in the left
(right) panel, the critical chemical potential for the onset is smaller (larger) than without magnetic field. The (black) dashed line is
defined by μ ¼ MN, such that the shaded area corresponds to the vacuum. In the extended linear sigma model, the results look
qualitatively always like in the right panel.
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limit, is dual to large-Nc QCD. In this model, the
attractive nucleon-nucleon force and thus the bind-
ing energy is absent [69]. As a consequence, the
onset is solely determined by the nucleon mass, and
therefore the critical chemical potential increases
monotonically [37,70]. In Ref. [37], the result of the
Walecka model, however, without taking into ac-
count the sea contribution, had been compared to the
holographic result. It is no surprise that the present
results, where the B-dependence of the vacuum mass
is taken into account, are in better agreement to the
Sakai-Sugimoto model since now both models
account for magnetic catalysis. Nevertheless, due
to the large-Nc limit of the holographic calculation
and the absence of an anomalous magnetic moment
in the present work, a complete agreement should
not be expected.

(3) There is a significant difference between the two
models, the linear sigma model having a larger onset
chemical potential for all magnetic fields. This is in
accordance with the observation made in Sec. V,
where a stronger magnetic catalysis in the linear
sigma model was pointed out and attributed to the
presence of the chiral partner of the nucleon. We
have checked that the curves for the onset chemical
potential of both models are almost exactly identical
if we remove by hand the sea contribution of the
chiral partner in the linear sigma model. (The models
also coincide if the crucial sea terms are completely
removed, as the dashed lines in the figures show.)

(4) As already seen in Fig. 2, in theWalecka model there
is a regime where the critical chemical potential is
lower than in the absence of a magnetic field. This
indicates that the binding energy is increased and
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FIG. 3 (color online). Onset for nuclear matter in the presence of a background magnetic field. The thick lines show our results for the
Walecka model and the extended linear sigma model (eLSM). For comparison, the two thin dashed lines (barely distinguishable from
each other) show the result within the same models, but without magnetic catalysis; i.e., ignoring the B-dependent sea contribution, as
done in the previous literature. The right panel is a zoom-in to small magnetic fields and shows the oscillations due to the Landau levels
(here, μ0 ≃ 922.7 MeV is the chemical potential for the onset in the absence of a magnetic field).
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FIG. 4 (color online). Binding energy (left) and baryon density (right) along the onset of nuclear matter for both models (solid lines).
Again, the thin dashed lines show the incorrect result with a B-independent vacuum mass of the nucleons. If rotated by 90° and shifted
by mN, the dashed curves for the binding energy are identical to the dashed onset curves in Fig. 3 because the entire effect of the
magnetic field is given by the binding energy.
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can dominate the effect of the increasing vacuum
mass; i.e., a magnetic field can in principle also
facilitate the creation of nuclear matter. Interestingly,
the shape of the onset curve looks very similar to the
chiral phase transition line obtained from a Nambu-
Jona-Lasinio model or the Sakai-Sugimoto model
[16], showing “inverse magnetic catalysis” [15]. In
both cases, nuclear matter onset and chiral phase
transition, the simple monotonic behavior at large
magnetic fields becomes more complicated for
smaller magnetic fields.

VII. CONCLUSIONS

We have discussed the onset of nuclear matter at zero
temperature in the presence of a background magnetic field.
Our main goal has been to investigate the influence of the
B-dependent contribution of the Dirac sea which had been
omitted in previous studies about magnetized nuclear
matter, but taken into account routinely in very similar
studies about quark matter. The physical meaning of this
contribution can be interpreted as magnetic catalysis, an
enhancement of the chiral condensate under the influence
of a magnetic field. We have employed two different
relativistic field-theoretical models in the mean-field
approximation: the Walecka model, where magnetic cataly-
sis is seen indirectly through an increased vacuum mass of
the nucleon, and an extended linear sigma model, where the
increase of the chiral condensate can be observed directly.
If one ignores the effect of magnetic catalysis, creating

nuclear matter becomes energetically less costly in a
magnetic field, indicating an increased binding energy.
But, if magnetic catalysis is properly taken into account, its
effect dominates at large magnetic field, and creating
nuclear matter becomes energetically more costly, even
though the binding energy is further increased. While this
qualitative behavior is seen in both models, they differ
quantitatively. We have shown that the main reason for the
difference between the models can be attributed to the
presence of the chiral partner of the nucleon in the extended
linear sigma model. Its presence in the Dirac sea (it is too
heavy to play a role in the medium part) leads to a stronger
magnetic catalysis.
Our calculation isolates the effect of magnetic catalysis,

but it has to be kept in mind that there are more effects that
we have omitted. In view of expectations from full QCD, our
results can be interpreted as follows: We know from the
lattice that the chiral condensate increases monotonically
with the magnetic field at zero temperature. This induces an
increase in quarkmasses. Whether this leads to an increase in
the vacuum masses of the nucleons is not obvious, because
the interactions between the quarks will be modified by a
strong magnetic field too. Our models do not know about the
inner structure of the nucleons, and they show a simple
monotonic increase of the vacuum masses. Modifications of
the quark interactions may induce competing effects, seeking

to reduce the vacuum mass of the nucleons [71]. (To our
knowledge, vacuum masses of nucleons in a magnetic field
have not yet been computed on the lattice.) In the models
used here, such effects can be included in an effective way
through the anomalous magnetic moment of the nucleons,
which indeed appears to counteract the effect of magnetic
catalysis [37]. In the present study, the resulting heavier
nucleons suggest a larger critical chemical potential for the
transition from vacuum to nuclear matter. But again, this is
not the only important effect. Now it is the interaction
between the nucleons that is also modified by the magnetic
field, and this effect is included in our models: we observe an
increased binding energy, leading to a nontrivial behavior of
the onset curve.
Our study opens up various interesting questions that

should be addressed in the future. Having just explained the
main deficiency of our approach, it is clear that in future
studies the Dirac sea contribution and the anomalous
magnetic moment should be taken into account. For the
latter, one should preferably go beyond the usually
employed effective, non-renormalizable approach in order
to allow for the renormalization of the sea contribution
emphasized here. Moreover, our observation of the effect of
the chiral partner shows that for quantitatively reliable
predictions more charged hadronic states such as pions and
rho mesons, and possibly hyperons, need to be taken into
account, even if some of these states are too heavy to be
populated. It is also the scale set by the magnetic field, not
only the chemical potential, to which their mass has to be
compared in order to estimate their importance.
For applications to compact stars, our results have to be

extended to higher densities, and the conditions of beta
equilibrium and charge neutrality have to be taken into
account. This is more or less straightforward, and basically
amounts to extending existing studies by including the B-
dependent sea contribution, possibly after generalizing our
renormalized vacuum to the case of nonvanishing anomalous
magnetic moments. It remains to be seen whether magnetic
catalysis has a sizable effect, for instance, on the equation of
state, and thus the mass and radius of a compact star.
It would also be interesting to consider larger values of

the baryon chemical potential within the extended linear
sigma model. In contrast to the Walecka model, the
extended linear sigma model incorporates nuclear matter
and the possibility of (approximate) restoration of chiral
symmetry. One can thus use it to study the chiral phase
transition in the presence of nuclear matter and a back-
ground magnetic field. This could be done, as a first step, in
the present setup or, in a more complicated scenario, after
including an anisotropic chiral condensate in the form of a
chiral density wave. One of the questions is whether there
exists nuclear matter at very large magnetic field or whether
the mesonic phase is directly superseded by the chirally
symmetric phase, as suggested by results within a holo-
graphic approach [37].
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APPENDIX A: PARAMETERS IN THE
TWO MODELS

In this appendix, we explain how we fit the parameters in
the two models.
In the Walecka model, we fix the meson masses to mσ ¼

550 MeV and mω ¼ 782 MeV, and the nucleon mass to
mN ¼ 939 MeV. The remaining parameters are fitted to
reproduce the properties of nuclear matter at saturation in the
absence of a magnetic field, see Eq. (25). This is done as
follows. First, we note that the determination of gω decouples
from the other parameters: with n ¼ 2k3F=ð3π2Þ and μ0 ¼
mN þ Ebind we know the Fermi momentum kF and the
chemical potential μ0 at saturation because n0 and Ebind are
given. This allows us to compute gωω from μ − gωω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þM2

N

p
, since MN at saturation is given. Inserting the

result into the B → 0 limit of Eq. (28b), we can determine
gω. For the determination of gσ , b, and c, we solve the
following three coupled equations: the remaining equation to
minimize the free energy, i.e., Eq. (28a), the condition that
the pressure of nuclear matter vanishes at the onset, and the
condition that the compression modulus assumes the value
given in Eq. (25). For the compression modulus at saturation
we have [60]

K ¼ 9n
∂2ϵ

∂n2 ¼
6k3F
π2

�
gω
mω

�
2

þ 3k2F
μ�

−
6k3F
π2

�
MN

μ�

�
2
� ∂2U
∂M2

N
þ 2

π2

Z
kF

0

dk
k4

ϵ3k

�−1
; ðA1Þ

where ϵ is the energy density. The resulting parameters are
given in Table I.
The extended linear sigma model has more parameters

that have to be fitted. The mesonic part of the Lagrangian
(33) contains six parameters,m, ϵ, λ,mχ , g,mω. The omega
mass is again fixed to mω ¼ 782 MeV. To fix the other
parameters, we compute the physical meson masses at
tree level: we introduce condensates and fluctuations,
σ → σ̄ þ σ, χ → χ̄ þ χ, and rescale the pion field π →
Zπ with the wave-function renormalization constant Z for
the pseudoscalar fields [63,64]. Then, from the terms
quadratic in the fluctuations we read off the pion mass
m2

π ¼ Z2ðλσ̄2 −m2 − 2gχ̄Þ, and the masses that arise from
the mixing of the σ and χ fields,

m2
� ¼ m2

χ þm2
σ

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

χ −m2
σ

2

�
2

þ ð2gσ̄Þ2
s

; ðA2Þ

with m2
σ ¼ 3λσ̄2 −m2 − 2gχ̄. Now we notice that, at tree

level, the stationarity condition for the condensates leads
to ϵ ¼ σ̄m2

π=Z2. Requiring σ̄¼Zfπ in the vacuum thus
determines the parameter ϵ ¼ fπm2

π=Z, with mπ ¼
139 MeV, fπ ¼ 92.4 MeV, and Z ¼ 1.67 [63]. We may
use the expressions for mσ and mπ to write

λ ¼ 1

2ðZfπÞ2
�
m2

σ −
m2

π

Z2

�
;

m2 ¼ 1

2

�
m2

σ − 3
m2

π

Z2

�
−
2g2ðZfπÞ2

m2
χ

: ðA3Þ

This reparametrizes the remaining constants m, λ, mχ , g as
functions of mσ , mχ , g. The model contains four more
parameters that characterize the interactions between mes-
ons and nucleons (34), ĝ1, ĝ2, gω, a. The nucleonic
properties we need to reproduce are given by the four
saturation properties (25) plus the two vacuum masses
mN ¼ 939 MeV and mN� ¼ 1535 MeV. We may now
proceed as follows: Again, we can determine gω separately

TABLE I. Parameters used for the two models. All parameter sets reproduce the density, binding energy, compression modulus and
effective mass at saturation in the absence of a magnetic field given in Eq. (25). In the case of the Walecka model, we discuss the effect of
the B-independent sea terms in Appendix B, wherefore there are three different parameter sets. In the main text we omit the B-
independent Dirac sea in both models (called “no-sea approximation” in this table).

Walecka model

mσ [MeV] mω [MeV] mN [MeV] gω gσ b c

No-sea approximation 550 782 939 8.1617 8.4264 8.7788 × 10−3 6.8358 × 10−3

Including ΔΩN 550 782 939 8.1617 8.5062 1.0784 × 10−2 −6.2205 × 10−3

Including ΔΩN þ ΔΩσ 550 782 939 8.1617 8.1487 5.2855 × 10−3 −2.3611 × 10−2

Extended linear sigma model

ϵ [MeV3] m [MeV] λ g [MeV] mχ [MeV] mω [MeV] ĝ1 ĝ2 gω a

1.0690 × 106 518.73 13.950 1422.5 1310.4 782 10.239 17.964 8.1617 29.839
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and completely analogously to the Walecka model, using
Eq. (39c). With a ¼ m0m2

χg−1ðZfπÞ−2 we can use m0 as a
parameter instead of a. The advantage of this rescaling is
that, if we also rescale the condensate χ̄ ¼ χ̄0gðZfπÞ2m−2

χ ,
the pressure only depends on the ratio g=mχ , not on g and
mχ separately. Now we can use Eq. (36) to express ĝ1 and
ĝ2 in terms of m0 and the vacuum masses mN , mN� (and Z
and fπ). The remaining parameters mσ, g=mχ and m0 are
determined by solving the following four coupled equa-
tions formσ, g=mχ ,m0, and χ̄0: the remaining two equations
to minimize the free energy, i.e., Eqs. (39a) and (39b) in the
limit B → 0, and, as in the Walecka model, the condition
that the pressures of nuclear matter at the onset and the
vacuum are identical, and the condition for the compression
modulus. The compression modulus assumes the same
form as given in Eq. (A1), but with the replacement

∂2U
∂M2

N
→

∂2U
∂M2

N
−
� ∂2U
∂MN∂MN�

�
2. ∂2U

∂M2
N�

; ðA4Þ

because both equations for the condensates (minimization
with respect to σ̄ and χ̄ or equivalently with respect to MN
and MN�) have to be taken into account in computing the
dependence of MN on n.
By demanding that themþ that arises from the mixing of

the σ and χ fields given in Eq. (A2) be in agreement with
the resonance f0ð1370Þ and keeping g=mχ as well as mσ

fixed, we obtain the values for g and mχ . This leads to a
physical mass m− ≃ 715.08 MeV for the lighter meson,
which is in (rough) accordance with the f0ð500Þ resonance.
Note, however, that, compared to the parameter sets used in
Refs. [25,26], σ and χ have reversed their roles: with our
parameter set, the f0ð500Þ is predominantly given by σ (= a
quark-antiquark state), while f0ð1370Þ is predominantly
given by χ (= a tetraquark state). We have checked that,
given the properties of nuclear matter in Eq. (25), such a
role reversal is unavoidable. The main reason is our more
realistic choice of the effective mass at saturation MN ¼
0.8mN (while the original parameter sets lead to MN≃
0.9mN). Choosing an even lower effective mass would
make it very difficult for the model in its present form to
reproduce the resonances f0ð500Þ and f0ð1370Þ at all.
The final result of the fitting procedure is summarized in

terms of the parameters of the original Lagrangian in
Table I.

APPENDIX B: NEGLIGIBILITY OF THE
B-INDEPENDENT SEA CONTRIBUTION

IN THE WALECKA MODEL

In this appendix, we discuss the B-independent sea con-
tribution, which we have separated from the B-dependent
part in Eq. (14). We shall see that its effect on our results is
small, thus proving that the utterly dominant effect of the
Dirac sea comes from the terms discussed in the main text.
Here we focus on the renormalization of theWalecka model

[18,41,42,60,72–74], assuming without proof that the
conclusions for our results are the same for the extended
linear sigma model. (However, for a study of the chiral
phase transition in the extended linear sigma model, which
we do not consider here and where the self-consistent
nucleon masses are allowed to become very small, the
validity of the “no-sea approximation” is much less clear.)
We add counterterms to the Lagrangian to all orders up to

fourth order in the scalar field σ; i.e., we read the sigma
mass mσ, and the couplings b, c as bare (cutoff-dependent)
quantities, and write them as m2

σ ¼ m2
σ;r þ δm2

σ, b ¼
br þ δb, c ¼ cr þ δc, with renormalized quantities m2

σ;r,
br, cr. Including also a counterterm linear in σ, we thus add

δL ¼ −δam3
NðgσσÞ −

δm2
σ

2
σ2 −

δb
3
mNðgσσÞ3 −

δc
4
ðgσσÞ4

ðB1Þ

to the Lagrangian. The resulting counterterms in the tree-
level potential can be written as

δU ¼
�
δaþ δm2

σ

2g2σm2
N
þ δb

3
þ δc

4

�
m4

N

−
�
δaþ δm2

σ

g2σm2
N
þ δbþ δc

�
m3

NMN

þ
�

δm2
σ

2g2σm2
N
þ δbþ 3δc

2

�
m2

NM
2
N

−
�
δb
3
þ δc

�
mNM3

N þ δc
4
M4

N: ðB2Þ

The relevant cutoff-dependent terms of the free energy can
be separated into B-independent and B-dependent contri-
butions, see Eq. (14). The B-dependent contributions are
discussed in the main text, and here we focus on the B-
independent part. Regularizing the nucleonic part with the
proper time method yields (no counterterms added yet)

ΩN ¼ −4
Z

d3k
ð2πÞ3

�
ϵk þ T

X
e¼�

ln

�
1þ e−

ϵk−eμ�
T

��

¼ Λ4

8π2
−
M2

NΛ
2

4π2
þM4

N

8π2
ln
Λ2

l2
−
M4

N

8π2

�
γ −

3

2
þ ln

M2
N

l2

�
þ ΩN;mat; ðB3Þ

where we have introduced the renormalization scale l, and
where ΩN;mat is the matter part of the nucleon contribution
[twice the expression from Eq. (9) because we have
included both isospin components of the nucleons, which
are degenerate in our approximation at qB ¼ 0]. The result
can also be obtained by expanding Eq. (16) for large Λ. In
this appendix, where there is no magnetic field, one could
have worked with a simple momentum cutoff without
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changing any physical results, only for consistency with the
main part we employ the proper time method.
The resulting free energy, including cutoff-dependent

terms, is valid for all temperatures T and chemical
potentials μ. In particular, some of the cutoff-dependent
terms depend on T and μ implicitly through the dynami-
cally determined mass MN . Since the theory must be
renormalized in the vacuum, all counterterms must be

independent of T and μ. Consequently, we must require the
coefficients in front of each power of MN to vanish
separately. The quadratic and quartic contributions from
ΩN can be canceled by an appropriate choice of δb and δc.
These, in turn, then induce cutoff-dependent terms of order
MN and M3

N , as can be seen from δU in Eq. (B2).
Therefore, also δa and δm2

σ are needed. One finds that
all cutoff dependencies are canceled with

δa ¼ 1

2π2
ln
Λ2

l2
−

Λ2

2π2m2
N
þ δ ~a;

δm2
σ

g2σm2
N
¼ −

3

2π2
ln
Λ2

l2
þ Λ2

2π2m2
N
þ δ ~m2

σ

g2σm2
N
; ðB4aÞ

δb ¼ 3

2π2
ln
Λ2

l2
þ δ ~b; δc ¼ −

1

2π2
ln
Λ2

l2
þ δ~c: ðB4bÞ

Here we have added finite (cutoff-independent) contri-
butions δ ~a, δ ~m2

σ, δ ~b, δ~c. The free energy now becomes

Ω ¼ Λ4

8π2
−
m2

NΛ
2

4π2
þ m4

N

8π2
ln
Λ2

l2
þ U þ ΔΩN þ ΩN;mat;

ðB5Þ

where the tree-level potential U from Eq. (26) now only
contains renormalized quantities m2

σ;r, br, cr, and where

ΔΩN ¼ δ ~am3
Nðgσσ̄Þ þ

δ ~m2
σ

2
σ̄2 þ δ ~b

3
mNðgσσ̄Þ3

þ δ~c
4
ðgσσ̄Þ4 −

M4
N

8π2
ln
M2

N

l02 ; ðB6Þ

with the redefined renormalization scale

l02 ≡ l2e3=2−γ: ðB7Þ

The remaining cutoff-dependent terms in Eq. (B5) are
constants and do not affect the physics. Therefore, they
can be dropped by a simple redefinition of the free
energy.
We may require ΔΩN to contribute to the free energy

only to Oðσ̄5Þ and higher [72–74]. In other words, we may
choose the finite parts of the counterterms to cancel the
contributions up to fourth order in σ̄ from the logarithm in
Eq. (B6). This yields

δ ~a¼−
1

4π2

�
1þ2 ln

m2
N

l02

�
;

δ ~m2
σ

g2σm2
N
¼ 1

4π2

�
7þ6 ln
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�
;

δ ~b¼−
1

4π2

�
13þ6ln

m2
N

l02

�
; δ~c¼ 1

12π2

�
25þ6 ln

m2
N

l02

�
:

ðB8Þ

If we require σ̄ ¼ 0 (i.e., MN ¼ mN) to be a solution to
the minimization of the free energy with respect to σ̄, we

need to choose the renormalization scale l0 ¼ mN . In this
case, the additional free energy from the renormalization
terms is

ΔΩN ¼ −
1

4π2

�
m3

Nðgσσ̄Þ −
7

2
m2

Nðgσσ̄Þ2 þ
13

3
mNðgσσ̄Þ3

−
25

12
ðgσσ̄Þ4 þM4

N ln
MN

mN

�
; ðB9Þ

and minimizing the free energy with respect to the scalar
condensate now yields

0 ¼ ∂Ω
∂σ̄ ¼ ∂U

∂σ̄ þ gσ
π2

�
m2

Nðgσσ̄Þ −
5

2
mNðgσσ̄Þ2 þ

11

6
ðgσσ̄Þ3

þM3
N ln

MN

mN

�
þ ∂ΩN;mat

∂σ̄ : ðB10Þ

This equation replaces Eq. (28a) (for B → 0), while the
minimization with respect to ω̄0 (28b) remains unaltered.
Due to the additional finite terms in the free energy,

the parameters of the model have to be readjusted in
order to reproduce the required properties of nuclear
matter. [To this end, we have to replace the tree-level
potential U with U þ ΔΩN in the compression modu-
lus (A1).] The resulting parameters are given in
Table I. The negative value of c indicates an
unbounded tree-level potential for σ. This problem is
cured if interactions via ρ meson exchange are taken
into account, see Refs. [18,41,42,60] (where also a
vacuum contribution ΔΩσ due to σ loop contributions
is included).
It is now straightforward to extend this renormalization

to the case with nonvanishing magnetic field. We can
simply treat the B-independent and B-dependent vacuum
contributions separately; i.e., we can put together the
result from the main part and the result from this
appendix,
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Ω ¼ U þ ΔΩN þ B2

2
þ ΩN;sea þ ΩN;mat; ðB11Þ

with B2

2
þΩN;sea given in Eq. (18). In the B-independent

sea contribution discussed here, a specific choice of l is
needed to proceed. In contrast, in the B-dependent sea
contribution, l only appears in a constant term, and the
specific choice of l does not matter. Therefore, any
choice (such as l0 ¼ mN) is compatible with the
renormalization discussed in the main text. As argued
there, the most general choice of the renormalization
scale is a combination of the nucleon mass and the
magnetic field, and in principle we could include a
contribution of the magnetic field into l here. However,
we do not expect the result to change much, because we
do not consider the regime jqBj ≫ m2

N .
In the left panel of Fig. 5 we show the nucleon

mass as a function of the magnetic field. We compare
the result obtained after including ΔΩN with the result
used in the main text and shown in Fig. 1. We also
show the result obtained after taking the renormaliza-
tion from the meson loop into account [18,41,42,60],
by adding

ΔΩσ ¼
m4

σ

ð8πÞ2
�
ð1þ ϕ3Þ2 lnð1þ ϕ3Þ − ϕ3 −

3

2
ϕ2
3

−
1

3
ϕ2
1ðϕ1 þ 3ϕ2Þ þ

1

12
ϕ4
1

�
ðB12Þ

to the free energy, where

ϕ1 ≡ 2bmN
g2σ
m2

σ
ðgσσ̄Þ; ϕ2 ≡ 3c

g2σ
m2

σ
ðgσσ̄Þ2;

ϕ3 ≡ ϕ1 þ ϕ2: ðB13Þ
Including this contribution, the parameters have to be
readjusted again, see Table I.
In the right panel of Fig. 5 we show the onset with and

without B-independent sea terms and see that a difference is
barely visible.Herewehaveonly taken into accountΔΩN , not
ΔΩσ , because our mean-field approximation neglects all
meson loops in the medium, and thus we also neglect them
in thevacuum.Themain result of this figure and this appendix
is that theB-independent sea contributions have noqualitative
and very little quantitative effect on our results; thus,we focus
on the B-dependent sea contributions in the main text.
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