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We investigate how isospin affects the geometrical shape and energy of classical soliton solutions of
topological charges B ¼ 1–4; 8 in the Skyrme model. The novel approach in our work is that we study
classically isospinning Skyrmions beyond the rigid-body approximation; that is, we explicitly allow the
soliton solutions to deform and to break the symmetries of the static configurations. Our fully three-
dimensional relaxation calculations reveal that the symmetries of isospinning Skyrme solitons can differ
significantly from the ones of the static configurations. In particular, isospinning Skyrmion solutions can
break up into lower-charge Skyrmions, can deform into new solution types that do not exist at vanishing
angular frequency ω or energy degeneracy can be removed. These types of deformations have been largely
ignored in previous work on modeling nuclei by quantized Skyrmion solutions.
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I. INTRODUCTION

In the SUð2Þ Skyrme model [1,2], atomic nuclei of
nucleon (or baryon) number B can be identified with
soliton solutions of conserved topological charge B which
are known as Skyrmions. By numerically relaxing initial
Skyrme configurations created with the rational map
ansatz [3] and its multilayer versions [4], minimal-energy
Skyrmion solutions have been constructed with various
baryon numbers up to B ¼ 108 [4,5]. In order to make
contact with nuclear physics experiments it is necessary
to semiclassically quantize these Skyrmion solutions.
Traditionally this is done by treating Skyrmions as rigid
bodies that can rotate in both space and isospace. This
means that one quantizes just the rotational and isorota-
tional zero modes of each Skyrmion solution of a given B
and then determines the spin and isospin quantum numbers
[6–9] which are compatible with the symmetries of the
static, classical soliton. This approach neglects any defor-
mations and symmetry changes due to centrifugal effects.
This rigid-body-type approximation resulted in qualitative
and encouraging quantitative agreement with experimental
nuclear physics data: for even B the allowed quantum
states for each Skyrmion often match the experimentally
observed states of nuclei, and the energy spectra of a
number of light nuclei have been reproduced to a quite
good degree of accuracy [10,11]. However, nuclei of odd
mass number are not well described by this approach.
Many spin and isospin states do not appear in the right
order or are not even predicted by the rigid-body quantiza-
tion of the Skyrmion. One promising way to improve the

agreement with experimental data is to allow Skyrmion
solutions to deform when they spin and isospin. This can
change the symmetries of the solutions and might result in
different allowed quantum states [12].
Classically isospinning soliton solutions have been stud-

ied recently in the Faddeev-Skyrme [13,14] and the baby
Skyrme model [15,16] beyond the rigid-body approxima-
tion. In the case of the fully ð3þ 1Þ-dimensional Skyrme
model a systematic, full numerical investigation of isospin-
ning soliton solutions beyond the rigid-body approximation
has not been performed yet. To our knowledge, numerical
calculations of spinning Skyrmion configurations that take
into account deformations originating from the kinematical
terms have been carried out exclusively for baryon numbers
B ¼ 1 [17–20] and B ¼ 2 [20]. It is worth mentioning that
Refs. [17,18] consider classically spinning Skyrmions,
whereas Refs. [19,20] first calculate the quantum
Hamiltonian as a functional of the Skyrme fields and then
minimize the Hamiltonian with respect to Skyrme fields for a
given quantum state, see also Ref. [21] for a related
approach. It has been found that allowing for axial defor-
mations drastically reduces the rotational energies and that in
order to fit the energies of spinning Skyrmions to the nucleon
and delta masses, the pion mass parametermπ of the Skyrme
model has to be chosen much larger than its experimental
value [18–20]. However, all these studies impose spherical
or axial symmetry on the spinning Skyrme solitons to
simplify the numerical computations.
In this article, we perform numerical full field simu-

lations of isospinning Skyrmion solutions with baryon
numbers B ¼ 1–4 and B ¼ 8, without imposing any spatial
symmetries. The main result of the present paper is that the
symmetries and energies of Skyrmion solutions at a given
angular frequency ω and for a given mass value μ can
significantly differ from the ones of the static soliton
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solutions. Classically isospinning Skyrmion solutions can
break the symmetries of the static solutions and even split
apart into lower-charge solutions as the angular frequency
increases further. A detailed study of the extent to which
the inclusion of these classical deformations can result
in an improved solitonic description of nuclei is beyond
the scope of the present article and will form part of a
forthcoming publication.
This paper is organized as follows. Section II recalls

briefly the SUð2Þ Skyrme model and describes how we can
construct isospinning Skyrmion solutions by solving
energy minimization problems numerically. In Sec. III,
we review how suitable initial conditions for Skyrme
configurations of a given nontrivial topological charge B
and of a specific symmetry G can be created for our
numerical relaxation simulations. By relaxing the initial
Skyrme fields generated with the methods described in
Sec. III we find Skyrme soliton solutions with topological
charges B ¼ 1–4; 8 for different values of the pion mass in
Sec. IV. Then, in Sec. V we investigate how the solitons’
geometric shapes, energies, mean charge radii and critical
frequencies are affected by the addition of classical isospin.
Furthermore, we show in Sec. VI how the addition of
classical isospin induces classical spin, consistent with the
Finkelstein-Rubinstein constraints. This gives a better
understanding why some of the isospinning Skyrmion
solutions constructed here tend to stay together, while
others prefer to break up into lower-charge solutions.
A brief summary and conclusion of our results is given
in Sec. VII. For completeness, we explicitly list in the
Appendix all diagonal and off-diagonal elements of the
inertia tensors for the static B ¼ 1–4; 8 Skyrmion solutions
investigated in this article.

II. SPINNING AND ISOSPINNING SKYRMIONS

The Lagrangian density of the ð3þ 1Þ-dimensional,
massive Skyrme model [1,2] is defined in SUð2Þ notation
by

L ¼ −
1

2
TrðRαRαÞ þ 1

16
Trð½Rα; Rβ�½Rα; Rβ�Þ

þ μ2TrðU − 12Þ; ð1Þ

where the Skyrme field Uðt; xÞ is an SUð2Þ-valued scalar,
Rα ¼ ð∂αUÞU† its associated right-handed chiral current
and μ is a rescaled pion mass parameter. In Lagrangian (1)
the energy and length units have been scaled away and are
given by Fπ=4e and 2=eFπ , respectively. Here e is a
dimensionless parameter and Fπ is the pion decay constant.
The dimensionless pion mass μ is proportional to the tree-
level pion mass mπ , explicitly μ ¼ 2mπ=eFπ. Traditionally,
the Skyrme parameters e and Fπ are calibrated so that
the physical masses of the nucleon and delta resonance are
reproduced when modeling them with a rigidly quantized
Skyrmion solution, assuming the experimental value

mπ ¼ 138 MeV for the pion mass [22,23]. This approach
yields the standard values Fπ ¼ 108 MeV, e ¼ 4.84 and
μ ¼ 0.526. Expressed in terms of standard “Skyrme units”
[22,23], the energy and length units in Lagrangian (1)
are given by 5.58 MeV and 0.755 fm, respectively.
Throughout this article we consider pion values μ between
0.5 and 2. These parameter choices are motivated by
Refs. [10,11,18,24] where it has been argued that a larger
rescaled pion mass parameter μ (in particular, μ > 0.526)
yields improved results when applying the Skyrme model
to nuclear physics, while there are also studies which
lead to lower values of μ, see e.g. Ref. [25]. In fact, the
same reference [25] also considers the effect of a sixth
order Skyrme term, which now has become important in
so-called Bogomolny-Prasad-Sommerfield Skyrme mod-
els [26,27].
Skyrmions arise as static solutions of minimal potential

energy in the Skyrme model (1). They can be characterized
by their conserved, integer-valued topological charge B
which is given by the degree of the mapping U∶ R3 →
SUð2Þ. To ensure fields have finite potential energy and a
well-defined integer degree B the Skyrme field Uðt; xÞ has
to approach the vacuum configuration UðxÞ ¼ 12 at spatial
infinity for all t. Therefore, the domain can be formally
compactified to a 3-sphere S3space and the Skyrme field U is
then given by a mapping S3space → SUð2Þ ∼ S3iso labeled by
the topological invariant B ¼ π3ðS3Þ ∈ Z. The topological
degree B of a static Skyrme soliton solution is explicitly
given by

B ¼
Z

BðxÞd3x; ð2Þ

where the topological charge density is defined by

BðxÞ ¼ −
1

24π2
ϵijkTrðRiRjRkÞ: ð3Þ

When modeling atomic nuclei by spinning and isospin-
ning Skyrmion solutions, the topological charge (2) can be
interpreted as the mass number or baryon number of the
configuration. Throughout this article, the energies MB of
minimal-energy solutions in the Skyrme model will be given
in units of 12π2, so that the Skyrme-Faddeev-Bogomolny
lower energy bound [2,28,29] for a charge B Skyrmion takes
the form MB ≥ jBj. Recently a stronger lower topological
energy bound has been derived in Refs. [30,31].
Note that the SUð2Þ field U can be associated to the

scalar meson field σ and the pion isotriplet π ¼ ðπ1; π2; π3Þ
of the Oð4Þ σ-model representation ϕ ¼ ðσ; πÞ via

UðxÞ ¼ σðxÞ12 þ iπðxÞ · τ; ð4Þ

where τ denotes the triplet of standard Pauli matrices, and
the unit vector constraint ϕ · ϕ ¼ 1 has to be satisfied.
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The Skyrme Lagrangian (1) is manifestly invariant under
translations in R3 and rotations in space and isospace.
Classically spinning and isospinning Skyrmion solutions
are obtained within the collective coordinate approach
[22,23]: the 6-dimensional space of zero modes—the space
of energy-degenerate Skyrmion solutions which only differ
in their orientations in space and isospace—is parametrized
by collective coordinates which are then taken to be
time dependent. Here, we are mostly interested in static
Skyrmion properties so that we can ignore translational
degrees of freedom. Hence, the dynamical ansatz is
given by

Ûðt; xÞ ¼ AðtÞU0ðDðA0ðtÞÞxÞA†ðtÞ; ð5Þ

where the matrices A; A0 ∈ SUð2Þ are the collective coor-
dinates describing isorotations and rotations around a static
minimal-energy solution U0ðxÞ. Substituting (5) in (1)
yields the effective Lagrangian

L ¼ 1

2
ωiUijωj þ

1

2
ΩiVijΩj − ωiWijΩj −MB; ð6Þ

where MB is the classical Skyrmion mass given by

MB ¼
Z �

ð∂iϕ · ∂iϕÞ þ
1

2
½ð∂iϕ · ∂iϕÞ2

− ð∂iϕ · ∂jϕÞ2� þ 2μ2ð1 − σÞ
�
d3x; ð7Þ

and Ωk ¼ −iTrðτk _A0A0†Þ and ωk ¼ −iTrðτkA† _AÞ are the
rotational and isorotational angular velocities, respectively.
The inertia tensors Uij; Vij;Wij are given explicitly by the
integrals [9,32]

Uij ¼ 2

Z
fðπdπdδij − πiπjÞð1þ ∂kϕ · ∂kϕÞ

− ϵideϵjfgðπd∂kπ
eÞðπf∂kπ

gÞgd3x; ð8aÞ

Vij¼2

Z
ϵilmϵjnpxlxnð∂mϕ ·∂pϕ−ð∂kϕ ·∂mϕÞð∂kϕ ·∂pϕÞ

þð∂kϕ ·∂kϕÞð∂mϕ ·∂pϕÞÞd3x; ð8bÞ

Wij ¼ 2

Z
ϵjlmxlðϵideπd∂mπ

eð1þ ∂kϕ · ∂kϕÞ

− ð∂kϕ · ∂mϕÞðϵifgπf∂kπ
gÞÞd3x: ð8cÞ

Recall that the moments of inertia (8) are given in units of
1=e3Fπ , that is the mass scale multiplied by the square of
the length scale. The conjugate body-fixed spin and isospin
angular momenta L and K are given by [10,33]

Li ¼ −WT
ijωj þ VijΩj; ð9Þ

Ki ¼ Uijωj −WijΩj: ð10Þ

In this article, we focus on the construction of isospin-
ning Skyrmion solutions and consequently (6) simplifies to

L ¼ 1

2
ωiUijωj −MB: ð11Þ

Uniformly isospinning soliton solutions in Skyrme models
are obtained by solving one of the following equivalent
variational problems [14] for ϕ:
(1) Extremize the pseudoenergy functional FωðϕÞ¼−L

for fixed ω,
(2) Extremize the Hamiltonian H ¼ MB þ 1

2
KiU−1

ij Kj
for fixed isospin Ki ¼ Uijωj.

In this paper, we will use a hybrid of approach (1) and
(2). We are considering isospinning Skyrmions, in the
sense that we seek stationary Skyrme configurations of the
form (5) with A0ðtÞ constant, i.e. Ω ¼ 0. We fix the isospin
K to be constant. Then we consider the energy

E ¼ MB þ 1

2
ωiUijωj; ð12Þ

which implies

Ki ¼ Uijωj: ð13Þ

Setting Ω ¼ 0 in (9) imposes a constraint on L, namely

Li ¼ −WT
ijωj ¼ −WijU−1

jk Kk: ð14Þ

Hence, in our approach, if Wij is nonzero, then the
configuration will obtain classical spin. We will discuss
this further in Sec. VI.
We could now express the energy (12) as a function ofK

and then minimize the energy E. However, it is more
convenient to calculate ω using (13) and then minimize the
pseudoenergy

Fω ¼ MB −
1

2
ωiUijωj: ð15Þ

The minus sign in Eq. (15) is a consequence of the identity

δA−1 ¼ −A−1δAA−1;

where δ is a derivative and A an invertible matrix. Since
we only fix K but not L, the value of ω is not conserved
during the minimization. Hence for each step, we recalcu-
late ω using (13).
As a numerical minimization we use the approach

described in Ref. [5] namely second order dynamics with
a friction term. We rewrite the variational equations derived
from (15) in terms of the following modified Newtonian
flow equations:
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Mϕ̈ − αð _ϕ; ∂iϕ; ∂i
_ϕ; ∂i∂jϕÞ − λϕþ ϵ _ϕ ¼ 0; ð16Þ

where M is a symmetric matrix, and we included the time
dependence of the Skyrme Lagrangian (1) to evolve the
equations of motion. The dissipation ϵ in (16) is added to
speed up the relaxation process and the Lagrange multiplier
λ imposes the unit vector constraint ϕ · ϕ ¼ 1. We do not
present the full field equations here since they are cum-
bersome and not particularly enlightening. As initial field
configurations, we take the static solutions at ω ¼ 0 (see
next section) and increase the angular momentum jKj
stepwise. Relaxed solutions at lower jKj serve as initial
conditions for higher jKj. In order to avoid precession
effects in our numerical simulations the Skyrmion solutions
have to be oriented in isospace so that their principal
axes are aligned with the chosen isorotation axes. The
initial configuration is then evolved according to the flow
equations (16). Kinetic energy is removed periodically by
setting _ϕ ¼ 0 at all grid points every 50th timestep.
Most of our simulations are performed on regular, cubic

grids of ð200Þ3 grid points with a lattice spacing Δx ¼ 0.1
and time step size Δt ¼ 0.01. Only for our relaxation
calculations of charge-8 Skyrmion solutions do we choose
cubic grids of ð201Þ3 grid points with the same lattice
spacing Δx ¼ 0.1. The finite difference scheme used is
fourth order accurate in the spatial derivatives. The dis-
sipation is set to ϵ ¼ 0.5. Most of our numerical simu-
lations are performed for a range of mass values μ.

III. INITIAL CONDITIONS

We use the rational map ansatz [3] to create approximate
Skyrme fields of nontrivial topological charge B and
of given symmetry type G. Relaxing these initial field
configurations with a fully three-dimensional numerical
relaxation algorithm [5] we obtain static, minimum energy
solutions of the Skyrme model with pion mass μ and
baryon number B.
The main idea of the rational map ansatz is to approxi-

mate charge B Skyrme configurations ϕ which can be seen
as maps from a 3-sphere in space to a 3-sphere in the target
SUð2Þ by rational maps R∶ S2↦S2 of degree B. Within the
rational map ansatz the angular dependence of the Skyrme
field ϕ is described by a rational function

RðzÞ ¼ pðzÞ
qðzÞ ; ð17Þ

where p and q are polynomials in the complex Riemann
sphere coordinate z. The z-coordinate can be expressed
via standard stereographic projection, z ¼ tan ðθ=2Þeiϕ, in
terms of the conventional spherical polar coordinates θ and
ϕ. The radial dependence is encoded in the radial profile
function fðrÞ which has to satisfy fð0Þ ¼ π and fð∞Þ ¼ 0
to ensure a well-defined behavior at the origin and finite
energy.

The rational function RðzÞ takes values on the target S2,
and its value is associated via stereographic projection with
the Cartesian unit vector

n̂R ¼ 1

1þ jRj2 ðRþ R̄; iðR̄ − RÞ; 1 − jRj2Þ: ð18Þ

The rational map approximation for the Skyrme field is
given in terms of the isoscalar σ and the pion isotriplet π of
the nonlinear sigma model notation by

σ ¼ cos fðrÞ; π ¼ sin fðrÞn̂RðzÞ: ð19Þ

Substituting (19) in the Skyrme energy functional (7)
results in an angular integral I which depends on the
rational map RðzÞ and a radial part only dependent on the
monotonic function fðrÞ. To find low energy Skyrmion
solutions of a given topological charge B and pion mass μ
one minimizes I over all maps of algebraic degree B and
then solves the Euler-Lagrange equation for fðrÞ with μ, B
and the minimized I occurring as parameters. As starting
point for our numerical relaxations we choose initial
Skyrme fields generated with the rational maps RðzÞ given
in Refs. [3,5,10,34]. Note that the rational maps given in
these references are the optimal maps for Skyrmions with
massless pions. However, since the angular integral I is
independent of the mass parameter μ, the same rational
maps are also the minimizing maps for nonzero μ and the
main effect of the pion mass is to change the shape
function fðrÞ.

IV. STATIC SKYRMION SOLUTIONS WITH
BARYON NUMBERS B ¼ 1–4;8

In this section, we compute low energy static Skyrmion
solutions with baryon numbers B ¼ 1–4; 8 and with the
rescaled pion mass set to μ ¼ 1 by solving the full Skyrme
field equations with a numerical three-dimensional relax-
ation algorithm [5]. Suitable initial Skyrme field configu-
rations of given topological charge B were created using
the methods described in the previous section. For more
detailed information on our relaxation procedure we refer
the interested reader to the literature [5,13] and to Sec. II.
We list in Table I the energies and the diagonal elements of
the inertia tensors Uij; Vij;Wij for Skyrmions with baryon
numbers B ¼ 1–4; 8 of symmetry group G. All the corre-
sponding off-diagonal elements and inertia tensor elements
for different mass values are given in tabular form in the
Appendix. The baryon density isosurfaces we obtained can
be found in Fig. 1. We can make a rough estimate of the
numerical errors by computing the off-diagonal elements of
the moment of inertia tensors [11], which should be exactly
zero for all the Skyrmion solutions investigated here. We
find that in each case the off-diagonal entries are small
and are of the order of 10−2 times the diagonal entries or
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less. In the following, all inertia tensor elements will be
rounded to one decimal place.

A. B ¼ 1

The minimal-energy B ¼ 1 Skyrmion solution is spheri-
cally symmetric and substituting the rational map RðzÞ ¼ z
in (19) reproduces the standard hedgehog form

σ ¼ cos fðrÞ; π ¼ sin fðrÞr̂; ð20Þ

where r ¼ jxj, r̂ ¼ x=r and the radial profile function fðrÞ
satisfies the boundary conditions fð0Þ ¼ π and fð∞Þ ¼ 0.
Solving the Skyrme field equation for a B ¼ 1 hedgehog

Skyrmion (20) gives an energy

M1 ¼
1

3π

Z
∞

0

�
r2f02 þ 2sin2fð1þ f02Þ þ sin4f

r2

þ 2μ2ð1 − cos fÞr2
�
dr ¼ 1.416: ð21Þ

Here, we used the collocation method [35,36] to determine
the profile function fðrÞ which minimizes M1 (21).
The rational map approximations for the higher charge
Skyrmion solutions will be generated with the profile
function fðrÞ calculated in the charge-1 sector. Note that
for an Oð3Þ-symmetric Skyrme configuration (20) the
inertia tensors (8) take the simple form Uij ¼ Vij ¼ Wij ¼
Λδij with

Λ ¼ 16π

3

Z
r2sin2f

�
1þ f02 þ sin2f

r2

�
dr ¼ 47.625; ð22Þ

in agreement with the moment of inertia Λ ¼ 47.623
calculated within the hedgehog approximation in Ref. [9].
For comparison, the energy valueM1 ¼ 1.415 calculated

in our full 3D simulation differs by 0.07% compared to the
greater accuracy hedgehog ansatz (20). Within our numeri-
cal accuracy the inertia tensors (8) computed with our
3D-relaxation code are all found to be proportional to the
unit matrix with Λ ¼ 47.5. This is in reasonable agreement
with the value calculated within the hedgehog ansatz (22)
and with the moments of inertia Uij ¼ Vij ¼ Wij ¼ Λδij
with Λ ¼ 47.5 computed in Ref. [9] using a three-dimen-
sional nonlinear conjugate gradient method.
Note that we cannot confirm the energy value M1 ¼

1.465 calculated in the recent article [4] for a B ¼ 1
Skyrmion of mass μ ¼ 1. We double checked our results
using two very different numerical approaches (a colloca-
tion method [35,36] and a one-dimensional gradient flow
method) to solve numerically the Skyrme field equation
for the hedgehog ansatz (20). In both cases we obtain an
energy value M1 ¼ 1.416 [37].

B. B ¼ 2

The B ¼ 2 Skyrmion has toroidal symmetry D∞h, and
it can be approximated by choosing the rational map
RðzÞ ¼ z2 in (19). Relaxing this rational map generates
an initial Skyrme field configuration. We verify that all
inertia tensors are diagonal, with U11 ¼ U22 ¼ 97.0,
V11 ¼ V22 ¼ 153.8 and W11 ¼ W22 ¼ 0. Our numerically
calculated charge-2 configuration satisfies the relation
U33 ¼ 1

2
W33 ¼ 1

4
V33 [19,33]—a manifestation of the axial

symmetry. The soliton’s energy is M2 ¼ 2.720, which is
reasonably close to the energy value M2 ¼ 2.77 given in

TABLE I. Skyrmions of baryon number B ¼ 1 − 4; 8. We list the energiesMB, the energy per baryonMB=B, the diagonal elements of
the inertia tensors Uij; Vij;Wij and the symmetry group G of the Skyrme solitons. Note that energiesMB are given in units of 12π2 and
that the mass parameter is chosen to be μ ¼ 1. The calculated configurations correspond to global energy minima for given baryon
number B. For B ¼ 8 we are unable to decide within the limits of our numerical accuracy which configuration is of lower energy.

B G MB MB=B U11 U22 U33 V11 V22 V33 W11 W22 W33

1 Oð3Þ 1.415 1.415 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5
2 D∞h 2.720 1.360 97.0 97.0 68.9 153.8 153.8 275.4 0.0 0.0 137.7
3 Td 3.969 1.323 124.1 124.1 124.1 402.8 402.8 402.8 85.2 85.2 85.2
4 Oh 5.177 1.294 148.2 148.2 177.4 667.6 667.6 667.6 0.0 0.0 0.3
8 D6d 10.235 1.279 296.3 296.3 285.2 2261.4 2261.4 3036.3 0.1 0.1 137.9

D4h 10.235 1.279 298.4 292.1 326.9 4093.9 4094.8 1381.3 0.1 0.0 0.1

FIG. 1 (color online). Surfaces of constant baryon density (not to scale) of Skyrmion solutions with baryon number B ¼ 1 − 4; 8 and
with pion mass parameter μ set to 1. Each configuration is labeled by its baryon number and symmetry group.
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Ref. [4]. Note that the moments of inertia U33 ¼ 68.9;
V33 ¼ 275.4 and W33 ¼ 137.7 are found to be in close
agreement with the corresponding values U33 ¼ 68.67;
V33 ¼ 274.59 and W33 ¼ 137.31 stated in Ref. [9].
Finally, we can check the results of our fully three-

dimensional numerical relaxation with those obtained by
minimizing the two-dimensional, total energy functional
of an axially symmetric Skyrme configuration. An axially
symmetric ansatz [38] is given by

σ¼ψ3; π1¼ψ1cosnθ; π2¼ψ1 sinnθ; π3¼ψ2;

ð23Þ

where ψðρ; zÞ ¼ ðψ1;ψ2;ψ3Þ is a unit vector that is
dependent on the cylindrical coordinates ρ and z. Here,
the nonzero winding number n ∈ Z counts the windings of
the Skyrme fields in the ðx1; x2Þ-plane. Substituting (23)
in (7) results in the classical soliton mass [18,20,33,39]

MB ¼ 2π

Z
∞

0

dρ
Z þ∞

−∞
dzρ

�
ð∂ρψ · ∂ρψ þ ∂zψ · ∂zψÞ

�
1þ n2

ρ2
ψ2
1

�
þj∂ρψ × ∂zψj2 þ

n2

ρ2
ψ2
1 þ 2μ2ð1 − ψ3Þ

�
; ð24Þ

and the baryon number B of an axially symmetric con-
figuration ψ is given by substituting (23) in (2) to obtain

B ¼ n
π

Z
∞

0

dρ
Z þ∞

−∞
dzfψ1ψj∂ρψ × ∂zψjg: ð25Þ

To ensure a configuration of finite energy MB the unit
vector ψ has to satisfy the boundary condition ψ →
ð0; 0; 1Þ as ρ2 þ z2 → ∞ together with ψ1 ¼ 0 and ∂ρψ2 ¼∂ρψ3 ¼ 0 at ρ ¼ 0. A suitable start configuration with
baryon number B ¼ n is given in Ref. [38] by

ψ1¼
ρ

r
sinfðrÞ; ψ2¼

z
r
sinfðrÞ; ψ3¼ cosfðrÞ; ð26Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
and fðrÞ denotes, as usual, a mono-

tonically decreasing profile function satisfying the boun-
dary conditions fð0Þ ¼ π and fð∞Þ ¼ 0. For B ¼ 2 we
minimize the static energy functional (24) with a simple
gradient flow algorithm on a rectangular grid in the
ðρ; zÞ-plane. The grid contains ð401Þ2 points with a lattice
spacing Δx ¼ 0.05, so that the range covered is
ðρ; zÞ ∈ ½0; 20� × ½−10; 10�. Our two-dimensional relaxa-
tion calculation results in M2 ¼ 2.720 which agrees with
our 3D results. The nonvanishing components of the
isospin inertia tensor Uij (8a) are given for the axially
symmetric ansatz (23) by Refs. [20,33,40]

U33 ¼ 4π

Z
∞

0

dρ
Z þ∞

−∞
dzρfψ2

1ð∂ρψ · ∂ρψ þ ∂zψ · ∂zψ þ 1Þg; ð27aÞ

U11 ¼ U22 ¼ 2π

Z
∞

0

dρ
Z þ∞

−∞
dzρ

�
ψ2
1 þ 2ψ2

2 þ ð∂ρψ3Þ2 þ ð∂zψ3Þ2þ
�
∂ρψ · ∂ρψ þ ∂zψ · ∂zψ þ n2

ψ2
1

ρ2

�
ψ2
2 þ n2

ψ4
1

ρ2

�
:

ð27bÞ

Our 2D gradient flow simulation gives U11 ¼ U22 ¼
103.1 and U33 ¼ 71.5 for an axially symmetric charge-2
Skyrmion solution of mass μ ¼ 1. Note that classically
bound toroidal states have been found in Ref. [39] also for
the case of Skyrme solitons stabilized by a term proportional
to the baryon density squared, i.e. by the sixth order term.

C. B ¼ 3

The minimal-energy B ¼ 3 Skyrmion has Td symmetry
and can be created with the rational map [10]

RðzÞ ¼
ffiffiffi
3

p
iz2 − 1

z3 −
ffiffiffi
3

p
iz
: ð28Þ

Relaxing the tetrahedrally symmetric B ¼ 3 Skyrme con-
figuration (28), we verify that the inertia tensors (8) are
all diagonal: Uij ¼ uδij, Vij ¼ vδij and Wij ¼ wδij with
u ¼ 124.1, v ¼ 402.8 and w ¼ 85.2. We find for the total
energy M3 ¼ 3.969 which is slightly lower than the
numerical value M3 ¼ 4.02 given in Ref. [4].

D. B ¼ 4

The minimal-energy Skyrmion solution with B ¼ 4 has
octahedral symmetry Oh and can be approximated by the
rational map [10]

RðzÞ ¼ z4 þ 2
ffiffiffi
3

p
iz2 þ 1

z4 − 2
ffiffiffi
3

p
iz2 þ 1

: ð29Þ
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The inertia tensors Uij, Vij and Wij for the cubically
symmetric, numerically relaxed charge-4 configuration
(29) are determined to be diagonal, satisfyingU11 ¼ U22 ¼
148.2 and Vij ¼ vδij with v ¼ 667.6 and with the cross
term Wij vanishing within the limits of our numerical
accuracy. We obtain for the total energyM4 ¼ 5.177 which
agrees with the value M4 ¼ 5.18 stated in Ref. [4].

E. B ¼ 8

For baryon numberB ¼ 8, we calculate twovery different
Skyrmion solutions—one with D4h and the other with D6d
symmetry.We confirm the results in Ref. [34]. For μ ¼ 1 the
energies of both solutions are indeed identical up to four
significant digits with M8 ¼ 10.2356. Within the limits of
our numerical accuracy we are unable to conclude which of
the two soliton solutions has the lower energy value.
To generate suitable initial conditions for our numerical

relaxation simulations we approximate an initial field
configuration with D6d symmetry by the rational map [10]

RðzÞ ¼ z6 − ia
z2ðiaz6 − 1Þ ; ð30Þ

where the free parameter is set to a ¼ 0.14. The relaxed
Skyrme field resembles a hollow polyhedron, namely a
ring of twelve pentagons with a hexagon at the top and at
the bottom (see baryon density isosurface plot in Fig. 1).
The inertia tensors of the relaxed D6d-symmetric Skyrme
configuration satisfyU11 ¼ U22 ¼ 296.3,U33 ¼ 285.2 and
V11 ¼ V22 ¼ 2261.4, V33 ¼ 3036.3.
Recall that in the massive pion model there exists not

only a D6d-symmetric, polyhedral Skyrmion solution but
also a bound configuration of two B ¼ 4 cubes [34]. This
double cube Skyrmion solution is obtained by relaxing a
perturbed, D4h-symmetric starting configuration approxi-
mated with the rational map [10]

RðzÞ ¼ z8 þ bz6 − az4 þ bz2 þ 1

z8 − bz6 − az4 − bz2 þ 1
; ð31Þ

where we choose a ¼ 5 and b ¼ 2. The numerically
relaxed Skyrme configuration can be thought of being
constructed from two touching cubic B ¼ 4 Skyrmions
with one of the cubes twisted by 90° relative to the other
around the axis joining them. We confirm that our com-
puted isospin inertia tensors with U11 ¼ 298.4, U22 ¼
292.1 and U33 ¼ 326.9 approximately satisfy the double

cube approach (UðB¼8Þ
11 ¼ UðB¼8Þ

22 ¼ 2UðB¼4Þ
11 , UðB¼8Þ

33 ¼
2UðB¼4Þ

33 ) which was used in Ref. [10] to determine the
allowed spin, isospin and parity states for the B ¼ 8
Skyrmion within the rigid-body approach. Furthermore,
our computed inertia tensors (U11 ¼ 298.4, U22 ¼ 292.1,
U33¼326.9, V11¼V22¼4093.9, V33¼1381.3, Wij¼0)
are in reasonable agreement with the values U11 ¼ 299,

U22 ¼ 291; U33 ¼ 326, V11 ¼ V22 ¼ 4052; V33 ¼ 1390
given in Ref. [11]. Note that our energy value for the
dihedral B ¼ 8 solution (31) is 0.9% lower than the one
stated in Ref. [4].

V. NUMERICAL RESULTS ON ISOSPINNING
SKYRME SOLITONS

In this section, we investigate how the inclusion of
isospin affects the geometrical shape and the total energy
of the classical Skyrmion solutions with baryon numbers
B ¼ 1–4; 8 computed in the previous section. Recall that in
our numerical simulations we do not impose any spatial
symmetries on the isospinning Skyrme soliton solutions
and we do not assume that the solitons’ shape is indepen-
dent of the angular frequency ω. Analogous calculations of
isospinning solitons in the Skyrme-Faddeev model [28,41]
that go beyond the rigid-body-type approximation have
been performed in Refs. [13,14].
We construct stationary isospinning soliton solutions by

numerically solving the energy minimization problem
formulated in Sec. II. Note that spinning Skyrmions with
zero pion mass radiate away their energy, see Ref. [42] for a
detailed discussion. For pion mass μ > 0 stationary sol-
utions exist up to an angular frequency ωcrit ¼ μ. At ωcrit
the values of the energy and angular momentum are finite,
and therefore, the corresponding angular momenta Kcrit
(and Lcrit) is also finite, see Ref. [18]. The situation is
different for baby Skyrmions where energy and moment of
inertia diverge at ωcrit [15,16,43] for μ < 1. From the point
of view of numerics, this behavior is challenging. For
ω < ωcrit the problem is well posed, whereas for ω > ωcrit
the solutions become oscillatory which is difficult to detect
in a finite box. Physically, this corresponds to pion
radiation, and the fact that stationary solutions do not
exist. Numerically, we can find energy minimizers for
ω > ωcrit but this is an artifact of the finite box approxi-
mation. By convention, throughout this paper, when dis-
playing inertia tensors and energies as a function of isospin,
we will cut our graphs at the critical isospin value Kcrit.
Recall that the different orientations of Skyrme solitons

in isospace can be visualized using Manton and Sutcliffe’s
field coloring scheme described in detail in Ref. [44]. We
illustrate the coloring for a B ¼ 1 Skyrmion solution in
Fig. 2: The points where the normalized pion isotriplet π̂
takes the values π̂1 ¼ π̂2 ¼ 0 and π̂3 ¼ þ1 are shown in
white and those where π̂1 ¼ π̂2 ¼ 0 and π̂3 ¼ −1 are
colored black. The red, blue and green regions indicate
where π̂1 þ iπ̂2 takes the values 1, e2πi=3, e4πi=3, respec-
tively and the associated complementary colors in the RGB
color scheme (cyan, yellow and magenta) show the seg-
ments where π̂1 þ iπ̂2 ¼ −1; e5πi=3; eπi=3.
Note that all our calculations are carried out in dimen-

sionless Skyrme units which are related to natural units
(ℏ ¼ c ¼ 1) by rescaling the units of energy by Fπ=4e and
those of length by 2=eFπ, where the parameters Fπ and e
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are the pion decay constant and the dimensionless Skyrme
constant. The moment of inertia is given in units of 1=e3Fπ

and consequently the isorotational (quantum) energy con-
tributions are expressed in units of e3Fπ . Here, we are
purely interested in classically isospinning Skyrmion sol-
utions, hence we will use the classical energy scale
Fπ=4e to calculate the isorotational energy contributions
in Sec. VII. To estimate the value of ℏ [45] for different
Skyrme parameter sets we used ℏ ¼ 197.3 MeV fm. Thus,
for the standard choice of Skyrme parameters we can relate
Skyrme units to conventional units via Fπ=4e ¼ 5.58 MeV
and 2=eFπ ¼ 0.755 fm. It follows that

(a) (b)

(c) (d)

FIG. 3 (color online). Isospinning B ¼ 1 Skyrmion ðμ ¼ 1Þ. A suitable start configuration of topological charge 1 is numerically
minimized using 3D modified Newtonian flow on a ð200Þ3 grid with a lattice spacing of Δx ¼ 0.1 and a time step size Δt ¼ 0.01. We
choose the z axis as our isorotation axis. Our results are compared with those obtained assuming an axially symmetric deforming B ¼ 1
Skyrme configuration (23). Furthermore, we include the energy curve for a rigidly isorotating Skyrme configuration. (a) Total energy vs
angular frequency. (b) Mass-Spin relationship. (c) Inertia vs angular frequency. (d) Inertia-Spin relationship.

FIG. 2 (color online). Three different views of the baryon
isodensity of a B ¼ 1 Skyrmion. The orientation in isospace is
visualized using the field coloring scheme given in
Refs. [4,34,44].
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ℏ ¼ 46.8

�
Fπ

4e

��
2

eFπ

�
:

Hence in standardSkyrme unitswehaveFπ=4e ¼ 2=eFπ ¼
1 and ℏ ¼ 46.8. Different parameter sets like the ones
suggested by Ref. [18] (e ¼ 4.90, Fπ ¼ 90.5 MeV) and
by [10] (e ¼ 3.26, Fπ ¼ 75.2 MeV) yield ℏ ¼ 48.1 and
ℏ ¼ 21.3, respectively.

A. Lower charge skyrmions: 1 ≤ B ≤ 4

In this section, we present our numerical results on
isospinning soliton solutions of topological charges
B ¼ 1–4. Our numerical simulations are performed for a
range of mass values μ.

1. B ¼ 1

For the Oð3Þ symmetric charge-1 Skyrmion solution we
choose the z axis as the axis of isorotation. This particular
choice is motivated by Ref. [44], where it was argued that
spin-polarized protons and neutrons are best modeled by
hedgehog B ¼ 1 Skyrmions classically spinning relative to
the z axis. Note that in our numerical simulations the B ¼ 1
Skyrmion is chosen to be in its standard position and
orientation, that is the white-black axis (see Fig. 2) coin-
cides with the isorotation axis, with white up and black
down. The results of our fully three-dimensional numerical
relaxation calculations of isospinning B ¼ 1 Skyrmion
solutions with mass parameter μ ¼ 1 are shown in
Fig. 3. The relaxation calculations have been performed
on a ð200Þ3 grid with lattice spacing Δx ¼ 0.1 and a time
step size Δt ¼ 0.01.
We verify that for μ ¼ 1 the EtotðωÞ graph (calculated

with our modified 3D Newtonian flow) shows the same
behavior as predicted by an axially symmetric spinning,
charge-1 Skyrme configuration (23). As discussed in
Sec. II, in our 3D simulations the soliton’s energy is given
by EtotðωÞ ¼ M1 þ ω2U33=2 and the energy curve termi-
nates at ωcrit ¼ μ ¼ 1. Stable, internally spinning solutions
cease to exist beyond this critical value, but energy and
moments of inertia remain finite at ωcrit ¼ 1.
For comparison, axially symmetric deforming, isospin-

ning configurations are constructed by minimizing the total
energy Etot ¼ M1 þ K2=ð2U33Þ for fixed isospin K with a
2D gradient flow algorithm, where the classical soliton
massM1 is given by (24) and the relevant moment of inertia
U33 can be found in (27a). Both energy curves agree within
the limits of our numerical accuracy [see Fig. 3(a)]. In
Fig. 3(b), we display the mass-isospin relationship EtotðKÞ
for an isospinning B ¼ 1 Skyrmion solution calculated
without imposing any symmetry constraints on the con-
figuration. Imposing axial symmetry, we reproduce the
same mass-isospin relation. As shown in Fig. 3(b), the
rigid-body formula proves to be a good approximation for
small isospins (K ≤ 3 × 4π), whereas for higher isospin

values EtotðKÞ deviates from the quadratic behavior. At the
critical angular frequency ωcrit ¼ 1 (Kcrit ¼ 6.5 × 4π) the
rigid-body approximation gives an approximate 7% larger
energy value for the isospinning soliton solution. The
associated isospin inertia tensor Uij (8a) is diagonal and
its diagonal elements as a function of isospin K are shown
in Fig. 3(d). For small isospin values the Skyrme configu-
ration possesses, within our numerical accuracy, Oð3Þ
symmetry (Uij ¼ Vij ¼ Wij ¼ Λδij where the moment
of inertia Λ is calculated to be 47.5) and as K increases
the soliton solution deforms by breaking the spherical
symmetry to an axial symmetry [the tensors of inertia (8)
are all diagonal and satisfy U11 ¼ U22 ¼ u, V11 ¼ V22 ¼
v, W11 ¼ W22 ¼ w and U33 ¼ V33 ¼ W33]. At the critical
angular frequency ωcrit ¼ 1 (Kcrit ¼ 6.5 × 4π) we find
numerically u ¼ 66.7, v ¼ 67.9, w ¼ 58.5 and
U33 ¼ 80.9.
In Fig. 4 we compare the frequency-isospin relation

ωðKÞ for isospinning B ¼ 1 Skyrmions (with μ ¼ 1)
obtained when we do not impose any constraints on the
spatial symmetries of the isospinning soliton solution with
those calculated when only considering deformations
within a spherically symmetric (20) and an axially sym-
metric ansatz (23), respectively. For a spherically symmet-
ric charge-1 Skyrme configuration (μ ¼ 1) we solve the
variational equation for the radial profile function fðrÞ [17]
derived from the minimization of the pseudoenergy
FωðfÞ ¼ M1ðfÞ − 1

2
ΛðfÞω2, where the classical soliton

mass M1 is given by (21) and the associated moment of
inertia Λ can be found in (22). The underlying two point
boundary value problem—fð0Þ ¼ π and fð∞Þ ¼ 0—is
solved with the collocation method [35] for fixed angular

FIG. 4 (color online). Angular frequencies ω as function of
isospin K for B ¼ 1 Skyrmions (μ ¼ 1). We compare our results
on arbitrarily deforming charge-1 Skyrme configurations with
those obtained when allowing for spherically symmetric and
axially symmetric deformations, respectively.

CLASSICALLY ISOSPINNING SKYRMION SOLUTIONS PHYSICAL REVIEW D 90, 125035 (2014)

125035-9



frequency ω. Taking the asymptotic limit (r → ∞, f → 0)
of the nonlinear equation for fðrÞ reveals that a stable,
isospinning soliton solution can only exist if the isorotation
frequency satisfies ω ≤

ffiffiffiffiffiffiffiffi
3=2

p
μ. The classically isospin-

ning Skyrmion will lower its isorotational energy by a
spherical symmetric pion emission [17,18] when spinning
faster than the critical angular frequency ωcrit ¼

ffiffiffiffiffiffiffiffi
3=2

p
μ.

Stationary solutions cease to exist at ωcrit, but energy and
moments of inertia remain finite at the critical frequency.
Similarly, the linearization of the partial differential equa-
tions for an axially symmetrical deforming Skyrme soliton
(23) yields a critical frequency ωcrit ¼ μ [18], beyond
which the isospinning soliton solutions becomes unstable
against pion emission. Clearly, the frequency-isospin rela-
tion ωðKÞ of the isospinning B ¼ 1 solution calculated
without imposing any symmetry constraints agrees with the
one of the axially symmetric deforming solution.
The energy density contour plots of B ¼ 1 Skyrmion

solutions as a function of isospin K and for two different
choices of the mass parameter (μ ¼ 1; 2) are presented in
Fig. 5. The diagonal isospin inertia tensor elements for pion
masses μ ¼ 1.5 and μ ¼ 2 are displayed in Fig. 6 as
functions of isospin K. As a measure of how much the
Skyrme configuration deforms we calculate the deviation
of the energy from the rigid-body approximation, namely
ΔEtot=Etot ¼ ðERigid − EtotÞ. This is displayed in Fig. 7(a)

for various pion masses. Note that for a spherically
symmetric, hedgehog Skyrme configuration a rotation in
physical space is equivalent to a rotation in isospace. Thus,
we expect the same energy curves for a B ¼ 1 Skyrmion
classically rotating about the z axis.

2. B ¼ 2

For the toroidal B ¼ 2 Skyrmion solution we choose two
different isospin axes [44]. One is the axis of symmetry—the
z axis—with the torus spinning in the xy plane and the other
is an axis orthogonal [33,45,46] to it—the y axis—so that the
symmetry axis rotates in the xz plane. It was argued in
Ref. [44] that these two spatial orientations are the relevant
ones for describing the rotational states of the deuteron.
With the z axis chosen as our isorotation axis and

the mass parameter μ set to 1, we obtain the energy and
moment of inertia curves presented in Fig. 8. The corre-
sponding energy density isosurface plots are displayed
in Fig. 9. We verify in Figs. 8(a) and 8(b) that the total
energy Etot as a function of ω and K follows in good
approximation the behavior expected from an axially
symmetric charge-2 Skyrme soliton for angular frequencies
ω≲ ωcrit (K ≲ Kcrit) with a small deviation near ω ¼ ωcrit.
An isospinning, axially symmetric Skyrme configuration
can be computed by minimizing the two-dimensional
energy functional Etot ¼ M2 þ K2=ð2U33Þ for fixed

FIG. 5 (color online). Energy density contour plots of isospinning B ¼ 1 Skyrmion solutions as function of isospin K with mass value
chosen to be 1 (top row) and 2 (lower row). To visualize the axially symmetric deformation, we show a slice through the center of the
energy density distribution in the xz plane. The isorotation axis is chosen to be the z axis. Note that the angular momentum K is given in
units of 4π, i.e. we define k ¼ K=4π. The numerical calculations were performed with a full 3D-relaxation algorithm.
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isospin K, where the classical soliton mass M2 is given by
(24) with winding number n ¼ 2 and the relevant moment
of inertia U33 can be found using (27a). Again, we observe
that stable isospinning soliton solutions cease to exist at
ωcrit ¼ μ, but energy and moments of inertia remain finite
at ωcrit. The rigid-body approximation is shown in Fig. 8(b)
to be a valid simplification for small isospin values K ≤
4 × 4π (ω ≤ 0.6). For higher angular frequencies the
energy values for spinning soliton solutions predicted by
the rigid-body formula are larger for a given angular
momentumK. For example, at the critical frequencyωcrit ¼
1.0 (Kcrit ¼ 7 × 4π) we observe that the energy of the

isospinning charge-2 solution is about 1.6% smaller than
the one calculated with the rigid-body formula. Finally
we show in Fig. 8(d) the diagonal elements Uii of the
isospin inertia tensor as function of isospin K. We verify
numerically that the inertia tensors are all diagonal and
satisfy for K ≲ Kcrit the relations U11 ¼ U22 ≠ U33,
V11 ¼ V22 ≠ V33, W11 ¼ W22 ≠ W33 and U33 ¼ 1

2
W33 ¼

1
4
V33 which are consequences of the axial symmetry

[19,33]. As seen in the inset in Fig. 8(d) U11 ≠ U22 close
to Kcrit which is consistent with the energy density contour
plots in Fig. 9 where a slight symmetry breaking occurs
for K ¼ 7 × 4π.

(a) (b)

FIG. 7 (color online). ThedeviationΔEtot=Etot ¼ ðERigid − EtotÞ from the rigid-body approximation for charge-1 (left) and charge-2 (right)
Skyrmions as a function of isospinK for various rescaled mass values μ. The isorotation axis is chosen to be the z axis. (a)B ¼ 1. (b)B ¼ 2.

(a) (b)

FIG. 6 (color online). Diagonal elements of the isospin inertia tensor Uij as a function of isospin K for B ¼ 1 Skyrme configurations
with mass value μ ¼ 1.5; 2 and isospinning about the z axis. (a) μ ¼ 1.5. (b) μ ¼ 2.
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When repeating our relaxation calculations for higher
masses μ, we find (analogous to observations in the
conventional baby Skyrme model [15,16]) that the iso-
spinning charge-2 Skyrmion solution breaks axial sym-
metry at some critical value ωSB and starts to split into its
charge-1 constituents that move apart from each other and
are orientated in the attractive channel. In Fig. 9 we display
baryon density isosurface and contour plots for a range
of masses μ. Note that the breakup of isospinning B ¼ 2
Skyrmion solutions into their charge-1 constituents is not as
pronounced as the one observed for isospinning solutions
in the conventional baby Skyrme model. For pion mass
values μ ¼ 1.5 and μ ¼ 2 we find that the breaking of axial
symmetry occurs at KSB ¼ 5.7 × 4π (ωSB ¼ 1.1) and

KSB ¼ 5.5 × 4π (ωSB ¼ 1.2), respectively (see the isospin
diagonal elements shown as a function of K in Fig. 10).
In Fig. 7 the deviations from the rigid-body approxima-

tion are plotted as a function of the angular momentum K
for various mass values μ for charge-1 and charge-2
solutions isospinning around their z axis. As the mass μ
(or the topological charge B) increases, the rigid-body
approximation provides more accurate results for the
isospinning solutions of the model.
As a further check of our numerics, we calculate numeri-

cally the total energy Etot ¼ M2 þ K2=ð2U33Þ within the
product ansatz approximation [1]. In analogy toRefs. [47,48],
we generate a B ¼ 2 Skyrme configuration by superposing
two B ¼ 1 solitons centered around x1 and x2:

(a) (b)

(c) (d)

FIG. 8 (color online). Isospinning B ¼ 2 Skyrmion ðμ ¼ 1Þ. A start configuration of topological charge 2 is numerically minimized
using 3D modified Newtonian flow on a ð200Þ3 grid with a lattice spacing of Δx ¼ 0.1 and a time step size Δt ¼ 0.01. We choose
K̂ ¼ ð0; 0; 1Þ as our isorotation axis. Our full 3-dimensional relaxation calculations are compared with the energy values for an axially
symmetric deforming charge-2 Skyrme configuration (23). Additionally, we include the energy values obtained when assuming a rigid
rotor. (a) Total energy vs angular frequency. (b) Mass-Spin relationship. (c) Inertia vs angular frequency. (d) Inertia-Spin relationship.
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FIG. 9 (color online). Baryon density isosurfaces and energy density contour plots of isospinning B ¼ 2 Skyrmion solutions for a
range of mass parameters μ. The axis of isorotation is chosen to be the K̂ ¼ ð0; 0; 1Þ axis. The energy minimization calculations have
been performed on grids with ð200Þ3 grid points and a spacing Δx ¼ 0.1.

CLASSICALLY ISOSPINNING SKYRMION SOLUTIONS PHYSICAL REVIEW D 90, 125035 (2014)

125035-13



UB¼2ðx; x1; x2Þ ¼ UHðx − x1ÞAðαÞUHðx − x2ÞA†ðαÞ;
ð32Þ

where UHðxÞ is the hedgehog solution (20) and AðαÞ ¼
exp ðiτ · α=2Þ with α parametrizing the relative isospin
orientation. The two individual Skyrmions are initially
arranged so that the attraction is maximal. The Skyrmion-
Skyrmion interaction [47] is maximal when one Skyrmion
is rotated in isospace relative to the other through angle π
about an axis perpendicular to the line of separation of the
two Skyrmions. For a given isospin value K we compute

numerically the total energy Etot ¼ M2 þ K2=ð2U33Þ for
two maximally attractive B ¼ 1 Skyrmions as a function of
their separation r ¼ jx1 − x2j and determine for which
separation r the total energy takes its minimal value.
The resulting energy values (dashed line) plotted as a
function of K are compared in Fig. 11 with the ones (solid
line) obtained in our full 3D numerical minimizations. We
observe that as K increases the energy values of the non-
rigidly isospinning B ¼ 2 Skyrmion tend to the values
calculated within the product ansatz. That is, for these
isospin values the separations r are sufficiently large so that
deformations of the Skyrmion fields can be neglected.

(a) (b)

FIG. 10 (color online). Diagonal elements of the isospin inertia tensor Uij as a function of isospin K for B ¼ 2 Skyrme configurations
with pion mass value μ ¼ 1.5; 2 and isospinning about K̂ ¼ ð0; 0; 1Þ. (a) μ ¼ 1.5. (b) μ ¼ 2.

(a) (b)

FIG. 11 (color online). We compare the energy values calculated within the product ansatz approximation with those obtained when
performing full three-dimensional numerical relaxations. Here we choose the isorotation axis K̂ ¼ ð0; 0; 1Þ and the pion mass takes the
values μ ¼ 1.5; 2. (a) μ ¼ 1.5. (b) μ ¼ 2.
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Furthermore, the product ansatz approximation is found to
provide more accurate results as the pion mass parameter μ
increases.
In the following we choose the y axis as our isorotation

axes and set μ ¼ 1. In Figs. 12(a) and 12(c) we display the
total energy and the moment of inertiaU22 as a function of ω
up to ωcrit ¼ 1. The rigid-body approximation proves to be a
valid simplification for isospin values K ≤ 8 × 4π
(ω ¼ 0.8). However, at the critical frequency ωcrit ¼ 1
(Kcrit ¼ 11.5 × 4π) the energy values turn out to be ≈4%
lower than that predicted by the rigid-body approximation.
The baryon density isosurfaces of isospinning charge-2

Skyrmions for a range of mass values are displayed in
Fig. 13. Note that we do not observe a breakup into

charge-1 constituents for this mass range, instead a
“square-like” configuration is formed. The associated
moments of inertia as a function of isospin K are displayed
in Fig. 14. For μ ¼ 1.5 and μ ¼ 2 we observe that the axial
symmetry is broken at KSB ¼ 4.5 × 4π (ωSB ¼ 0.65) and
KSB ¼ 4.0 × 4π (ωSB ¼ 0.7), respectively.
Note that for fixed isospin K, the D4-symmetric B ¼ 2

configurations obtained by isospinning the B ¼ 2 torus
about its (0,1,0) axis are generally of lower energy than the
solutions calculated when isospinning about (0,0,1) [see
energy curves shown in Fig. 15(a)]. Indeed, we verified that
when perturbed slightly, charge-2 Skyrmion solutions
isospinning about (0,0,1) can evolve into the lower energy
D4-symmetric solutions with isospin axis K̂ ¼ ð0; 1; 0Þ.

(a) (b)

(c) (d)

FIG. 12 (color online). B ¼ 2 Skyrmion solution with pion mass μ ¼ 1 and isospinning about K̂ ¼ ð0; 1; 0Þ. We display the total
energy Etot and moments of inertia Uii as function of isospin K and angular frequency ω. We compare in (b) our full three-dimensional
relaxation calculations with the rigid-body approximation. (a) Total energy vs angular frequency. (b) Mass-Spin relationship. (c) Inertia
vs angular frequency. (d) Inertia-Spin relationship.
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FIG. 13 (color online). Baryon density isosurfaces of isospinning B ¼ 2 Skyrmion solutions for a range of masses μ as function of
isospin K. Here, the axis of isorotation is taken to be K̂ ¼ ð0; 1; 0Þ.

(a) (b)

FIG. 14 (color online). Diagonal elements of the isospin inertia tensor Uij as a function of isospin K for B ¼ 2 Skyrme configurations
with pion mass value μ ¼ 1.5; 2 and isospinning about K̂ ¼ ð0; 1; 0Þ. (a) μ ¼ 1.5. (b) μ ¼ 2.
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3. B ¼ 3

For B ¼ 3, we isorotate the minimal-energy tetrahedron
about its K̂ ¼ ð0; 0; 1Þ axis. Performing a damped field
evolution for the mass value μ ¼ 1 we obtain the energy
and inertia dependencies on ω and K displayed in Fig. 16.
The corresponding baryon density isosurfaces for a range
of mass values μ can be found in Fig. 17.
As μ increases, the soliton’s deformations due to

centrifugal effects become more apparent. For μ ¼ 2 the
isospinning charge-3 Skyrmion solution breaks into a
toroidal B ¼ 2 Skyrmion solution and a B ¼ 1 Skyrmion
before reaching its upper frequency limit ωcrit ¼ μ. Note
that with increasing angular velocity ω the isospinning
B ¼ 3 Skyrmion seems to pass through a distorted

“pretzel” configuration—a state that has previously been
found to be metastable [49,50] for vanishing isospin K. For
mass value μ ¼ 1.5 the tetrahedral charge-3 Skyrmion does
not break into lower-charge Skyrmions when increasing the
angular frequency ω. As ω increases, the charge-3 tetra-
hedron slowly deforms into the pretzel-like configuration
which appears to be of lower energy than an isospinning
solution with tetrahedral symmetry. Even for μ ¼ 1 the
tetrahedral symmetry is broken as ω increases [see inertia-
spin relationship shown in Fig. 16(d) and baryon density
isosurfaces in Fig. 17]. In fact, the isospinning B ¼ 3

Skyrme soliton (with μ ¼ 1) starts to violate tetrahedral
symmetry for angular frequencies ω > ωSB ¼ 0.06
(KSB ¼ 1.1 × 4π). The breaking of tetrahedral symmetry

(a) (b)

(c) (d)

FIG. 15 (color online). Energy curves EtotðKÞ for Skyrmions of baryon number B ¼ 2; 4; 8 and for different isorotation axes. Results
are shown for the pion mass parameter μ ¼ 1. For B ¼ 2 the square-like Skyrme configuration isospinning about K̂ ¼ ð0; 1; 0Þ is of
lowest energy, for B ¼ 4 the cube isospinning about K̂ ¼ ð0; 0; 1Þ and for charge 8 the two cube soliton solution with K̂ ¼ ð0; 0; 1Þ has
the lowest total energy. (a) B ¼ 2. (b) B ¼ 4. (c) B ¼ 8 (D6d symmetry). (d) B ¼ 8 (D4h symmetry).
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occurs atKSB ¼ 0.8 × 4π (ωSB ¼ 0.1) andKSB ¼ 0.5 × 4π
(ωSB ¼ 0.12) for B ¼ 3 Skyrmions with mass μ ¼ 1.5 and
μ ¼ 2, respectively. Furthermore, note that the U11 and
U22 curves shown in Fig. 16(d) and Fig. 18 lie on top of
each other.
Figure 19 shows the deviation of the deformed isospin-

ning Skyrmion solution from its rigid rotor approximation
as a function of K for various mass values. Again, we note
that the soliton’s energy EtotðKÞ can be significantly lower
than that of the rigidly isospinning Skyrmion solution. For
example for μ ¼ 1.5 the rigid-body approach predicts an
approximately 10% larger energy value close to the cutoff
frequency ωcrit ¼ μ ¼ 1.5 (Kcrit ¼ 20 × 4π). As already
observed for B ¼ 1 and B ¼ 2 Skyrmion solutions, the

accuracy of the rigid-body approximation improves for a
given isospin value K as μ increases (see Fig. 19).

4. B=4

We do not observe any breaking of the octahedral
symmetry for the minimal-energy B ¼ 4 Skyrmion solu-
tion when isospinning the configuration around the
K̂ ¼ ð0; 0; 1Þ axis (see the baryon density isosurfaces
shown in Fig. 20 as function of K for various mass values
μ). Plotting the elements of the isospin, spin and mixed
inertia tensor as a function of K confirms that the isospin-
ning charge-4 Skyrmion preserves Oh symmetry up to the
maximal angular frequency ω ¼ μ. In particular, the isospin

(a) (b)

(c) (d)

FIG. 16 (color online). Isospinning B ¼ 3 Skyrmion for μ ¼ 1. A start configuration is numerically minimized using 3D modified
Newtonian flow on a ð200Þ3 grid with a lattice spacing of Δx ¼ 0.1 and a time step size Δt ¼ 0.01. We choose K̂ ¼ ð0; 0; 1Þ as our
isorotation axis. (a) Total energy vs angular frequency. (b) Mass-Spin relationship. (c) Inertia vs angular frequency. (d) Inertia-Spin
relationship.
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inertia tensor Uij is diagonal and satisfies U11 ¼ U22 ≠
U33 for all allowed values of K [compare Fig. 21(d) for
mass value μ ¼ 1]. Although, the Skyrmion’s shape turns
out to be largely independent of the angular frequency ω,
the Skyrmion’s size increases monotonically with ω. In

Fig. 19 we compare our numerical energy values for
arbitrarily deforming Skyrmion solutions with those
obtained when assuming a rigidly rotating, cubically
symmetric B ¼ 4 Skyrmion solution. Evidently, the accu-
racy of the rigid-body approximation improves with

FIG. 17 (color online). Baryon density isosurfaces of isospinning charge-3 Skyrmion solutions for a range of mass values μ. Each
baryon density isosurface corresponds to the value B ¼ 0.1. The isorotation axis is chosen to be K̂ ¼ ð0; 0; 1Þ.

(a) (b)

FIG. 18 (color online). Diagonal elements of the isospin inertia tensor Uij as a function of isospin K for B ¼ 3 Skyrme configurations
with pion mass value μ ¼ 1.5; 2 and isospinning about the K̂ ¼ ð0; 0; 1Þ axis. (a) μ ¼ 1.5. (b) μ ¼ 2.
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(a) (b)

FIG. 19 (color online). The deviation ΔEtot=Etot ¼ ðERigid − EtotÞ from the rigid-body approximation for charge-3 and charge-4
Skyrmions as a function of isospin K for various rescaled mass values μ. In each case the isorotation axis is chosen to be K̂ ¼ ð0; 0; 1Þ.
(a) B ¼ 3. (b) B ¼ 4.

FIG. 20 (color online). We display the baryon density isosurfaces (not to scale) of isospinning, octahedrally symmetric charge-4
Skyrmion solutions for a range of mass values. The isorotation axis is chosen to be K̂ ¼ ð0; 0; 1Þ.
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increasing soliton mass and baryon number B. For exam-
ple, for μ ¼ 2 and B ¼ 4 the energy values predicted
by the rigid-body formula are at the critical frequency
(ωcrit ¼ μ) roughly 5% larger. For comparison, for charge-1
Skyrmions (with mass value μ ¼ 2 and ω ¼ ωcrit) the rigid-
body approximation gives energy values which are 15%
larger than those for the deforming soliton solutions.
When choosing K̂ ¼ ð1; 0; 0Þ or K̂ ¼ ð0; 1; 0Þ as our

isorotation axis, we observe that with increasing angular
frequency ω the octahedrally symmetric charge-4 Skyrmion
solution becomes unstable to break up into a pair of toroidal
B ¼ 2 Skyrmions. In Fig. 22 we display the baryon density
isosurfaces for isospinning B ¼ 4 Skyrmion solutions with
rescaled pion masses μ ¼ 1; 1.5 and 2. The breaking of the

cubic symmetry is found to occur at KSB ¼ 3.58 × 4π
(ωSB ¼ 0.18) for μ ¼ 1, KSB ¼ 3.32 × 4π (ωSB ¼ 0.28)
for μ ¼ 1.5 and KSB ¼ 2.46 × 4π (ωSB ¼ 0.31) for μ ¼ 2
(see the nonzero elements of the isospin inertia tensor
plotted in Fig. 23 as a function of K). As shown in
Fig. 24, for pion mass values up to 2 the energy values
predicted by the rigid-body formula can be up to 15% higher
than those obtained without imposing any spatial symmetries
on the isospinning Skyrme configurations.
Similar to the B ¼ 2 case, we find that the Skyrmion

configuration of lowest energy for given isospin K is the
solution for which the constituents stay closer together,
that is the B ¼ 4 cube isospinning about K̂ ¼ ð0; 0; 1Þ. The
charge-4 solutions which split into two D4-symmetric

(a) (b)

(c) (d)

FIG. 21 (color online). Isospinning B ¼ 4 Skyrmion. ðμ ¼ 1Þ. A start configuration is numerically minimized using 3D modified
Newtonian flow on a ð200Þ3 grid with a lattice spacing of Δx ¼ 0.1 and a time step size Δt ¼ 0.01. We choose K̂ ¼ ð0; 0; 1Þ as our
isorotation axis. (a) Total energy vs angular frequency. (b) Mass-Spin relationship. (c) Inertia vs angular frequency. (d) Inertia-Spin
relationship.
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charge-2 tori are of higher energy for all classically allowed
isospin values K [see energy curves in 15(b)].

B. Higher charge Skyrmions: B ¼ 8

For baryon number B ¼ 8 we investigate the effect of
isospin on D4h- and D6d-symmetric Skyrme configura-
tions (with rescaled pion mass value μ set to 1). For B ¼ 8
Skyrme solitons with approximate D4h symmetry we find
that when isospinning about their (0,1,0) axis there exists
a breakup frequency at which the isospinning solution
splits into four B ¼ 2 tori (illustrated by the baryon
density isosurfaces presented in Fig. 25). Similarly, we
observe that the D6d configuration when isospinning
about its (0,1,0) axis breaks apart into four B ¼ 2 tori,
but aligned in a different way (see baryon density
isosurfaces presented in Fig. 26). When choosing K̂ ¼
ð0; 0; 1Þ as isorotation axis, D4h- and D6d-symmetric
Skyrmion solutions are found to break up into two
well-separated B ¼ 4 clusters (see Fig. 25 and Fig. 26,
respectively). Finally, for B ¼ 8 Skyrmions with approxi-
mate D4h symmetry another possible isorotation axis
choice is given by K̂ ¼ ð1; 0; 0Þ. Again, as the isospin
K increases, we observe a breakup into two B ¼ 4 cubic
Skyrme solutions (see Fig. 25). The associated diagonal

elements of the isospin inertia tensor Uij can be found as a
function of K in Fig. 27 and Fig. 28, respectively. In
Fig. 29 we compare the energy curves for D4h- and D6d-
symmetric Skyrmions isospinning about K̂ ¼ ð0; 1; 0Þ and
K̂ ¼ ð0; 0; 1Þ, respectively. For K̂ ¼ ð0; 1; 0Þ D4h- and
D6d-symmetric solutions remain energy degenerate within
the limits of our numerical accuracy as the angular
velocity increases. However, when choosing the isorota-
tion axis K̂ ¼ ð0; 0; 1Þ the D4h solution appears to be of
lower energy for fixed, nonzero isospin value K.
For D6d-symmetric B ¼ 8 solutions, we cannot decide

within the limits of our numerical accuracy which isospin
axis results in the lowest energy configuration for fixed
isospin [compare energy curves in Fig. 15(c)]. For D4h-
symmetric B ¼ 8 solutions, the two cube soliton solution
with K̂ ¼ ð0; 0; 1Þ has the lowest total energy [see
Fig. 15(d)]. If slightly perturbed, the solution composed
of four aligned B ¼ 2 tori with K̂ ¼ ð0; 1; 0Þ can evolve
into two cubes isospinning about K̂ ¼ ð0; 0; 1Þ.

C. Critical angular frequencies

It has been observed [13–16] that isospinning soliton
solutions in models of the Skyrme family suffer from

FIG. 22 (color online). We display the baryon density isosurfaces (not to scale) of isospinning, octahedrally symmetric charge-4
Skyrmion solutions for a range of mass values μ. Each baryon density isosurface corresponds to the value B ¼ 0.2. The isorotation axis
is chosen to be K̂ ¼ ð0; 1; 0Þ.
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two different types of instabilities: One is related to the
deformed metric in the pseudoenergy functional FωðϕÞ
becoming singular at ω1 ¼ 1 [14] and the other to the
Hamiltonian no longer being bounded from below at ω2.
The first critical frequency ω1 is independent of the
concrete potential choice, whereas the second critical
frequency ω2 crucially depends on the particular choice
of the potential term.
Note that we do not observe the same pattern of critical

frequencies in the full Skyrme model (1). In Fig. 30 we plot
energy Etot and isospin K of the B ¼ 1 Skyrmion with the
standard potential term V ¼ 2μ2ð1 − σÞ as functions of the
angular frequency ω for a range of values of the mass
parameter μ. In addition, the energy is shown as a function
of angular momentum K. Contrary to observations in the
baby Skyrme model [15] and in the Skyrme-Faddeev model
[13] energy minimizer can be found up to ω ¼ ωcrit when

the minimization problem becomes ill defined. In particu-
lar, there does not exist a critical behavior at ω ¼ ω1.
When choosing the double vacuum potential V ¼

2μ2ð1 − σ2Þ in (7), we obtain for the isospinning B ¼ 1
Skyrmion solution the energy and isospin curves shown
in Fig. 31. Again, we observe that Skyrmions cannot spin
with angular frequencies ω >

ffiffiffi
2

p
μ—the meson mass of

the model—since they become unstable to the emission of
radiation.

D. Mean charge radii

In Fig. 32 we present as a function of isospin K the mean
charge radii of B ¼ 1–3 soliton solutions in the Skyrme
model (1) with the rescaled mass μ ¼ 1. In addition, we
show for B ¼ 1 the mean charge radii for a range of mass
values. We define the mean charge radius of a Skyrmion
solution as the square root of the second moment of the
topological charge density BðxÞ in (3)

hr2i ¼
R
r2BðxÞd3xR
BðxÞd3x : ð33Þ

Similar to our observations of isospinning soliton sol-
utions in the standard baby Skyrme model [15], we note
that the changes in the Skyrmion’s shape are reflected by
the changes in slopes of the mean charge radius curves in
Fig. 32. For example for B ¼ 1 and mass value μ ¼ 1 we
find that the radius hr2i1=2 grows with the isospin and that
there exists an inflection point. For B ¼ 2 and B ¼ 3 we
observe that the inflection point occurs at higher isospin
values. These inflection points are in reasonable agreement
with the maximal isospin values stated in Sec. VA up to
which the rigid-body approximation is a good simplifica-
tion. Furthermore, as μ increases the inflection point of the
mean charge radius hr2i1=2 occurs at increasingly higher
isospin values. This confirms that the rigid-body approxi-
mation becomes more accurate as B or μ increases.

(a) (b) (c)

FIG. 23 (color online). Diagonal elements of the isospin inertia tensor Uij as a function of isospin K for B ¼ 4 Skyrme configurations
with pion mass value μ ¼ 1; 1.5; 2 and isospinning about the K̂ ¼ ð0; 1; 0Þ axis. (a) μ ¼ 1. (b) μ ¼ 1.5. (c) μ ¼ 2.

FIG. 24 (color online). The deviation ΔEtot=Etot ¼
ðERigid − EtotÞ from the rigid-body approximation for charge-4
Skyrmions as a function of isospin K for various rescaled mass
values μ. The isorotation axis is chosen to be K̂ ¼ ð0; 1; 0Þ.
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VI. SPIN INDUCED FROM ISOSPIN

IfWij is nonzero, then Skyrme configurations will obtain
classical spin when isospin is added. For B ¼ 1 we display
in Fig. 33(a) the acquired spin L as a function of isospin K

for a range of pion masses μ when isospinning about
K̂ ¼ ð0; 0; 1Þ. Since the isospinning charge-1 Skyrmion
preserves axial symmetry, L is found to grow linearly
with K. Numerically, the slope is found to be −0.99 and

FIG. 25 (color online). Baryon density isosurfaces of isospinning D4h-symmetric charge-8 Skyrmion solutions for mass parameter
μ ¼ 1 as a function of isospin K and angular frequency ω. The isorotation axis is chosen to be K̂ ¼ ð1; 0; 0Þ (first row), K̂ ¼ ð0; 1; 0Þ
(second row) and K̂ ¼ ð0; 0; 1Þ (third row). Each baryon density isosurface corresponds to the value B ¼ 0.15.

FIG. 26 (color online). Baryon density isosurfaces of isospinningD6d-symmetric B ¼ 8 Skyrmion solutions for μ ¼ 1 as a function of
isospin K and angular frequency ω. The isorotation axis is chosen to be K̂ ¼ ð0; 1; 0Þ (first row) and K̂ ¼ ð0; 0; 1Þ (second row). Each
baryon density isosurface corresponds to the value B ¼ 0.15.
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agrees well with the expected one L=K ¼ −W33=U33 ¼
−1 for an axially symmetric charge-1 configuration with
W33 ¼ U33. Stationary, isospinning Skyrme configurations
can only be constructed up to the critical isospin Kcrit ¼
U33ωcrit with ωcrit ¼ μ. Consequently, the functions LðKÞ
terminate at the points Lcrit ¼ −Kcrit. Spin L and isospin
K have the same magnitude and are of opposite sign.
This agrees with the Finkelstein-Rubinstein constraints
that are commonly imposed when quantizing B ¼ 1
Skyrmions [7].
For B ¼ 2, we investigated isospinning Skyrmion sol-

utions with isospin axes K̂ ¼ ð0; 1; 0Þ and K̂ ¼ ð0; 0; 1Þ.
Isospinning around K̂ ¼ ð0; 1; 0Þ leads to a novel configu-
ration with D4 symmetry (see Fig. 13). For fixed isospin,
this configuration has lower energy than isorotation
around K̂ ¼ ð0; 0; 1Þ, see Fig. 15. For this D4-symmetric

configuration, we verify numerically that the spin L ¼
−W22ω vanishes for all classically allowed isospin values
K. Therefore, this configuration may become important for
calculating excited states of the Deuteron with nonzero
isospin [44].
However, if we choose K̂ ¼ ð0; 0; 1Þ as isospin axis,

the B ¼ 2 Skyrmion gains spin L ¼ −W33K as K
increases, see Fig. 33(b). For μ ¼ 1 the axial symmetry
remains unbroken and hence L depends linearly on K.
We confirm that the numerically calculated slope −1.97
agrees well with the expected one L=K ¼ −W33=U33 ¼
−2 as W33 ¼ 2U33 for an axially symmetric charge-2
configuration. For larger mass values μ isospinning
around the K̂ ¼ ð0; 0; 1Þ leads to the breakup into two
B ¼ 1 Skyrmions orientated in the attractive channel.
The axial symmetry is broken at KSB, and the B ¼ 2

(a) (b) (c)

FIG. 27 (color online). Diagonal elements of the isospin inertia tensorUij as a function of isospin K forD4h-symmetric B ¼ 8 Skyrme
configurations with pion mass value μ ¼ 1. The isorotation axes are chosen to be: (a) K̂ ¼ ð1; 0; 0Þ. (b) K̂ ¼ ð0; 1; 0Þ. (c) K̂ ¼ ð0; 0; 1Þ.

(a) (b)

FIG. 28 (color online). Diagonal elements of the isospin inertia tensorUij as a function of isospin K forD6d-symmetric B ¼ 8 Skyrme
configurations with pion mass value μ ¼ 1. The isorotation axes are chosen to be: (a) K̂ ¼ ð0; 1; 0Þ. (b) K̂ ¼ ð0; 0; 1Þ.
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(a) (b)

FIG. 29 (color online). Total energy Etot as a function of isospin K for D4h- and D6d- symmetric B ¼ 8 Skyrme configurations with
pion mass value μ ¼ 1. The isorotation axes are chosen to be: (a) K̂ ¼ ð0; 1; 0Þ. (b) K̂ ¼ ð0; 0; 1Þ.

FIG. 30 (color online). Isospinning B ¼ 1 Skyrme solitons in the Skyrme model with the potential term V ¼ 2μ2ð1 − σÞ for a range of
mass values μ. We plot the total energy Etot and isospin K as function of angular frequency ω and the total energy as a function of isospin
K at μ ¼ 0.5; 1; 1.5; 2. The z axis is chosen to be the axis of isorotation. Our 3D-relaxation calculations are performed on a ð100Þ3 grid
with grid spacing Δx ¼ 0.2.

FIG. 31 (color online). Isospinning charge-1 soliton solutions in the Skyrme model with the potential term V ¼ 2μ2ð1 − σ2Þ for a
range of mass values μ. We display the total energy Etot and isospin K as function of angular frequency ω and isospin K at
μ ¼ 0.5; 1; 1.5; 2. The isorotation axis is chosen to be K̂ ¼ ð0; 0; 1Þ. We perform the 3D-relaxation calculations on a ð100Þ3 grid with
grid spacing Δx ¼ 0.2.
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Skyrmion solution starts to split into two B ¼ 1
Skyrmions. As the isospin K increases further L is
approximately −K. In this regime the isospinning
configuration is well described by two separated,
axially symmetric deformed B ¼ 1 Skyrmions. This
is consistent with head-on scattering of two spinning
B ¼ 1 Skyrmions in the attractive channel [51] where
the configuration of closest approach is not the torus
but a configuration of two separated Skyrmions. The
attractive channel has also been discussed in Ref. [45]
when quantizing the Deuteron. This degree of freedom
was essential for comparing the spatial probability
distribution of the deuteron with experimental values
[33,44,46].
In summary, for B ¼ 2 we observe that Skyrme con-

figurations with nonzeroW and hence nonzero spin L show
centrifugal effects and separate out whereas states with
W ¼ 0 tend to stay more compact. Isospinning the charge-2
Skyrmion about its (0,0,1) axis results in the breakup into
two well-separated charge-1 Skyrmions, whereas isospin-
ning about (0,1,0) yields compact D4-symmetric B ¼ 2
configurations of lower energy.
For B ¼ 3 we display in Fig. 33(c) the LðKÞ graphs

for pion masses μ ¼ 1; 1.5; 2. We observe that as long as
the tetrahedral symmetry remains unbroken the spin L
increases linearly with K. Breaking of the tetrahedral
symmetry results in a lower W and hence a lower increase
in L for higher K values.
For B ¼ 4 there are two different isospin axes: K̂ ¼

ð0; 0; 1Þ and K̂ ¼ ð0; 1; 0Þ. For K̂ ¼ ð0; 0; 1Þ we find that
the octahedral symmetry remains unbroken (see baryon
density isosurfaces shown in Fig. 22). The mixed inertia
tensor W and hence L vanish for all classically allowed

isospin values K. When isospinning the cubic B ¼ 4
Skyrmion solution about K̂ ¼ ð0; 1; 0Þ we observe
breakup into two D4-symmetric charge-2 Skyrmions
(see Fig. 22). Again, the mixed inertia tensor W and
hence spin L is found to vanish for all classically allowed
K values.
For B ¼ 8 it is interesting to observe that all

configurations are breaking up into constituents, either
into two B ¼ 4 parts or into four B ¼ 2 parts. Note that
physically B ¼ 8 may describe beryllium 8Be which
is unstable to splitting up into two α particles, see e.g.
Ref. [52]. For D6d-symmetric Skyrmion solutions we
find that when isospinning about K̂ ¼ ð0; 0; 1Þ there
exist a critical isospin value at which the soliton
solution splits up into two B ¼ 4 cubes. This breakup
process is reflected in the LðKÞ graph shown in
Fig. 33(d). For K ≤ 17 × 4π (L ≥ −6.6 × 4π) the spin
jLj grows linearly with K and the isospinning Skyrme
configuration preserves its dihedral symmetry. For
higher isospin values K the dihedral symmetry is
broken and the isospinning solution starts to break
apart into two B ¼ 4 cubes of zero total spin L.
Figure 33(d) shows how LðKÞ decreases as K increases
beyond K ¼ 17 × 4π. Choosing K̂ ¼ ð0; 1; 0Þ as isoro-
tation axis, the D6d isospinning symmetric Skyrmion
solutions breaks up into four B ¼ 2 tori. In this case,
the total spin L is found to be zero (within the limits of
our numerical accuracy) for all classically allowed
isospin values. For B ¼ 8 Skyrme solitons with
approximate D4h symmetry we find that all the iso-
spinning solutions investigated in this article (see
baryon density isosurfaces in Fig. 25) possess zero
total spin for all values of K.

FIG. 32 (color online). Mean charge radii hr2i1=2 (33) for Skyrmion solutions of topological charge 1 ≤ B ≤ 3 as a function of isospin
K. These calculations have been performed with the conventional potential term V ¼ 2μ2ð1 − σÞ for isospinning B ¼ 1 Skyrmions with
mass value μ ¼ 0.5; 1; 1.5; 2 (left) and for isospinning B ¼ 1; 2; 3 Skyrmion solutions with μ ¼ 1 (right).
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VII. CONCLUSION

In this article we have performed fully three-dimensional
numerical relaxations of isospinning soliton solutions with
topological charges B ¼ 1–4; 8 in the Skyrme model with
the conventional mass term included and without imposing
any assumptions about the soliton’s spatial symmetries.
Our calculations show that the qualitative shape of iso-
spinning Skyrmion solutions can differ drastically from the
ones of the static (ω ¼ 0) solitons. The deformations
become increasingly pronounced as the mass value μ
increases. Briefly summarized, we distinguish the follow-
ing types of behavior:

(i) Breakup into lower-charge Skyrmions: Isospinning
Skyrmion solutions can split into lower-charge

Skyrmions at some critical breakup frequency value.
Examples are the breakup (for μ sufficiently large) of
the B ¼ 2 solution into two B ¼ 1 Skyrmions when
isospinning about K̂ ¼ ð0; 0; 1Þ; the breakup of the
charge-3 Skyrmion into a B ¼ 1 hedgehog and a
B ¼ 2 torus; the breakup of the D4h- and D6d-
symmetric B ¼ 8 Skyrme configurations into four
B ¼ 2 tori when isospinning about K̂ ¼ ð0; 1; 0Þ and
the breakup of isospinning D4h and D6d Skyrmions
into charge-4 subunits. These breakup processes do
not occur as pronounced as observed for isospinning
soliton solutions in the ð2þ 1Þ-dimensional version
of the Skyrme model [15,16].

(ii) Formation of new solution types: Isospinning Sky-
rmion solutions can deform into configurations that

(a) (b)

(c) (d)

FIG. 33 (color online). Spin L as a function of isospinK for Skyrmion solutions of topological chargeB ¼ 1 − 3; 8 and with pion mass
μ. The isospin axes are chosen as indicated below. Here, we only display isospinning Skyrme configurations with nonzero L. (a) B ¼ 1,
K̂ ¼ ð0; 0; 1Þ. (b) B ¼ 2, K̂ ¼ ð0; 0; 1Þ. (c) B ¼ 3, K̂ ¼ ð0; 0; 1Þ. (d) B ¼ 8 (D6d symmetry), K̂ ¼ ð0; 0; 1Þ.
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do not exist at vanishing ω or are only metastable
at ω ¼ 0. An example is the tetrahedral B ¼ 3
Skyrmion (with μ ¼ 1.5) which evolves with in-
creasing ω into a pretzel-like configuration—a state
that is only metastable at ω ¼ 0 [49,50].

(iii) Lifting of energy degeneracies: Adding isospin can
remove energy degeneracies. For example isospin-
ningD6d- andD4h-symmetric Skyrme solitons about
their K̂ ¼ ð0; 0; 1Þ axes results for the configuration
with approximate D4h symmetry in a lower energy
value than found for isospinning D6d solitons,
thereby removing the degeneracy.

(iv) Spin generated from isospin: If Wij is nonzero, then
Skyrme configurations will obtain classical spin
when isospin is added. For example for B ¼ 1 this
gives states with spin and isospin opposite, as
required by the Finkelstein-Rubinstein constraints
[7]. For B ¼ 2 we observe that Skyrme configura-
tions with nonzero mixed inertia tensor Wij show
centrifugal effects and separate out whereas states
with Wij ¼ 0 tend to stay more compact. Isospin-
ning around K̂ ¼ ð0; 0; 1Þ leads to the breakup into
two B ¼ 1 Skyrmions orientated in the attractive
channel and with Lcrit given by approximately
−Kcrit. Isospinning around K̂ ¼ ð0; 1; 0Þ leads to a

novel configuration with D4 symmetry of vanishing
total spin for all classically allowed isospin valuesK.

Finally, we also investigated numerically the critical
behavior of isospinning Skyrmion solutions. Contrary to
previous numerical studies on isospinning soliton configu-
rations in the baby Skyrme [15,16] and Skyrme-Faddeev
model [13,14] we found numerically only one type of
instability being present. Skyrmion solutions can isospin up
to a critical angular frequency ωcrit that is given by the
meson mass of the model. For ω > ωcrit Skyrmion sol-
utions become unstable to pion radiation. Recall that at ωcrit
the values of the energy and angular momenta are finite,
and therefore, the corresponding angular momenta Kcrit
(and Lcrit) are also finite, see Ref. [18]. The situation is
different for baby Skyrmions where energy and moment of
inertia diverge at ωcrit [43].
In Table II we give a classical bound on how fast Skyrme

configurations of baryon number B ¼ 1–4; 8 for given
pion mass μ and isorotation axis K̂ are allowed to isospin.
For simplicity, we took the following approach: We fixed
the Skyrme parameters e and Fπ as in Refs. [22,23] and
calculated the induced pion mass via mπ ¼ 2μ=eFπ .
The critical isospin values Kcrit up to which stationary
solutions exist are given in ℏ units, where ℏ ¼ 46.8 for the
standard parameter set Fπ ¼ 108 MeV and e ¼ 4.84. The

TABLE II. We list the critical isospin values Kcrit up to which stable isospinning Skyrmion solutions exist. Here, we calibrate the
Skyrme model using the standard parameter set Fπ ¼ 108 MeV and e ¼ 4.84 [22,23]. Recall that in these units ℏ takes the value 46.8.
For Kcrit, we list the energy per baryon MB=B, the isorotational energy per baryon EIso=B and the total energy per baryon Etot=B.

B G μ mπ [MeV] K̂ Kcrit½ℏ� MB=B [MeV] EIso=B [MeV] Etot=B [MeV]

1 Oð3Þ 0.5 130.7 (0,0,1) 0.9 868.7 59.7 928.4
1 261.4 (0,0,1) 1.6 1008.8 230.0 1238.8
1.5 392.0 (0,0,1) 2.3 1180.6 452.9 1633.5
2 522.7 (0,0,1) 2.7 1349.0 698.4 2047.4

2 D∞h 1 261.4 (0,1,0) 3.2 955.2 211.7 1166.9
1.5 392.0 (0,1,0) 4.0 1091.5 393.2 1484.7
2 522.7 (0,1,0) 4.7 1235.7 616.4 1852.1
0.5 130.7 (0,0,1) 1.1 824.9 34.8 859.7
1 261.4 (0,0,1) 1.9 914.7 123.7 1038.4
1.5 392.0 (0,0,1) 3.5 1074.2 340.5 1414.7
2 522.7 (0,0,1) 4.8 1280.7 631.0 1911.7

3 Td 1 261.4 (0,0,1) 4.0 912.8 178.0 1090.8
1.5 392.0 (0,0,1) 5.6 1060.9 368.2 1429.1
2 522.7 (0,0,1) 6.6 1207.7 583.4 1791.1

4 Oh 1 261.4 (0,1,0) 4.7 878.0 156.6 1034.6
1.5 392.0 (0,1,0) 7.5 1063.8 365.7 1429.5
2 522.7 (0,1,0) 9.1 1219.1 597.9 1817.0
1 261.4 (0,0,1) 4.7 878.0 156.6 1034.6
1.5 392.0 (0,0,1) 6.3 990.4 309.1 1299.5
2 522.7 (0,0,1) 7.3 1106.7 482.1 1588.8

8 D6d 1 261.4 (0,1,0) 9.4 880.4 150.3 1030.7
1 261.4 (0,0,1) 9.2 870.7 151.7 1022.4

D4h 1 261.4 (1,0,0) 9.1 868.2 150.0 1018.2
1 261.4 (0,1,0) 9.2 872.4 151.6 1024.0
1 261.4 (0,0,1) 9.1 866.5 148.5 1015.0
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associated energy values are obtained by multiplying
our numerical energy values by the energy scale
Fπ=4e ¼ 5.58 MeV. Note that our findings are in quali-
tative agreement with earlier literature [18]. In particular,
we find that the nucleon (EN

tot ¼ 939 MeV) and delta
(EΔ

tot ¼ 1232 MeV) cannot be reproduced if the pion mass
value is set to its experimental value mπ ¼ 138 MeV
(μ ¼ 0.526) and the standard values for the Skyrme
parameters e and Fπ are used. However, if the pion mass
is taken to be larger than its experimental value, then we
can reproduce nucleon and delta masses. Note that the
calibration of the Skyrme model is still an open prob-
lem [18,53].
The types of deformations observed in this article have

been largely ignored in previous work [10,11] on modeling
nuclei by quantized Skyrmion solutions and are exactly the
ones we would like to take into account when quantizing
the Skyrme model. Spin and isospin quantum numbers of
ground states and excited states have so far almost
exclusively been calculated within the rigid-body approach
[6–9], that is by neglecting any deformations and symmetry
changes due to centrifugal effects. Our numerical full field
simulations clearly demonstrate the limitations of this
simplification. The symmetries of isospinning soliton
solutions can change drastically and the solitons are found
to be of substantially lower energies than predicted by the
rigid-body approach. This work offers interesting new

insights into the classical behavior of Skyrmions and gives
an indication of which effects have to be taken into account
when quantizing Skyrmions.
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APPENDIX: SKYRMION INERTIA TENSOR

For completeness, we explicitly list in Tables III–VII
static energies MB, mean charge radii hr2i1=2 and all
diagonal elements of the spin and mixed inertia tensors
together with the off-diagonal inertia tensor elements for
static Skyrmion solutions with 1 ≤ B ≤ 4; 8 and rescaled
mass parameter μ ¼ 1; 1.5 and 2. Note that the static
energies and isospin inertia tensor diagonal elements for
μ ¼ 1 have already been given in Table I.

1. μ ¼ 1

2. μ ¼ 1.5

TABLE III. We list the off-diagonal elements of the isospin ðUijÞ, spin ðVijÞ and mixed ðWijÞ inertia tensors, the mean charge radii
hr2i1=2 and the symmetries G of the Skyrme solitons. The mass parameter μ is chosen to be 1.

B G U12 U13 U23 V12 V13 V23 W12 W13 W23 hr2i1=2
1 Oð3Þ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.777
2 D∞h 0.0 0.0 0.0 0.6 0.2 0.2 0.0 0.0 0.0 1.055
3 Td 0.0 0.0 0.0 0.2 0.2 0.2 0.0 0.0 0.0 1.225
4 Oh 0.0 0.0 0.0 0.4 0.4 0.4 0.0 0.0 0.0 1.360
8 D6d 0.0 0.1 0.0 3.8 9.6 9.5 0.1 0.1 0.0 1.812

D4h 0.0 0.2 0.3 0.3 1.3 1.1 0.1 0.0 0.3 2.026

TABLE IV. Skyrmions of baryon number B ¼ 1–4 with pion mass value μ ¼ 1.5. We list the energies MB, the energy per baryon
MB=B, the diagonal elements of the inertia tensor Uij; Vij;Wij and the symmetries G of the Skyrme solitons. Note that energiesMB are
given in units of 12π2.

B G MB MB=B U11 U22 U33 V11 V22 V33 W11 W22 W33

1 Oð3Þ 1.530 1.530 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3
2 D∞h 2.950 1.476 79.7 79.7 57.1 127.4 127.4 228.4 0.0 0.0 114.2
3 Td 4.316 1.438 101.7 101.7 101.7 331.6 331.6 331.6 70.3 70.3 70.3
4 Oh 5.638 1.410 121.3 121.3 145.0 547.4 547.4 547.4 0.0 0.0 0.2
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