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The intersection of the ten-dimensional fuzzy conifold Y1) with S} x S} is the compact eight-
dimensional fuzzy space X%. We show that X% is (the analogue of) a principal U(1) x U(1) bundle over
fuzzy SU(3)/(U(1) x U(1))(=M$). We construct M using the Gell-Mann matrices by adapting
Schwinger’s construction. The space M is of relevance in higher dimensional quantum Hall effect and
matrix models of D-branes. Further we show that the sections of the monopole bundle can be expressed in
the basis of SU(3) eigenvectors. We construct the Dirac operator on M&. from the Ginsparg-Wilson algebra
on this space. Finally, we show that the index of the Dirac operator correctly reproduces the known results

in the continuum.
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I. INTRODUCTION

Fuzzy spaces emerge naturally in the discussion of
various theories like quantum Hall effect (QHE) and matrix
models of D-branes in the presence of certain background
fields. In the context of QHE in two dimensions, the Hilbert
space of the lowest Landau level corresponds to symmetric
representations of SU(2). The observables for the lowest
Landau level then correspond to observables of S% (for
example, see [1-3]).

Higher dimensional (d > 2) generalizations of QHE are
interesting for various reasons. For example, they extend
the notion of incompressibility to higher dimensions. In
QHE in d > 2, the Landau problem is replaced by a particle
moving on a compact coset space in the presence of
background gauge fields (say, monopoles). One such coset
space is SU(3)/(U(1) x U(1)). The intersection of the
ten-dimensional conifold Y'%(={z,, wy: z,w, = 0.0, =
1,2,3}) with 83 x $3 is a U(1) x U(1) monopole bundle
on this coset space. For a particle moving on this
coset space in the presence of background U(1) monop-
oles, the Hilbert space of the lowest Landau level has an
exact correspondence with the representations of SU(3)
(for instance, see [4]). Consequently, the observables
for the lowest Landau level are observables of fuzzy
SU3)/(U(1) x U(1))(=MS$). Thus in the presence of
background fields, the natural description of the space
becomes fuzzy and the emergent compact fuzzy space
like M¢ and the monopoles on it are relevant in the
understanding of such QHE.

M is described by matrix algebras on the carrier space
of the representations of SU(3). This space appears in the
study of matrix models describing branes. The low energy
effective action of a N (coincident) D-brane system is that
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of a U(N) Yang-Mills theory. It is well known that the
corresponding transverse geometry is inherently noncom-
mutative [5-9]. Owing to the non-Abelian nature of such
theories, the N Dp-brane system couples to Ramond-
Ramond (RR) field strengths of degree > p + 4 [10,11].
In particular, when the RR background is chosen to be
proportional to the SU(3) structure constants, an eight-
matrix model has the action

1. 1 )
§=TyTr E‘piz+Z[¢i’¢j]2_%Kfijkqﬁi[ﬁbj’d’k] ()

Here,i = 1,2, ..., 8, kis acoupling constant, ¢p;’sare N x N
matrices and f,;’s are the SU(3) structure constants. This
describes N coincident D p-branes (with p < 1). One of the
ground state configurations of the above action is M [12].

SU(3)/(U(1) x U(1)) is of particular relevance in string
theory. For instance, a seven-dimensional space with G,
holonomy can have a conical singularity on this space [13].
Understanding how this holonomy appears in the fuzzy
case is an interesting question by itself. We leave it for a
separate investigation in the future. Here we focus primarily
on the construction of M¢.

To discuss higher dimensional QHE, we should intro-
duce fermions (electrons) on Mg. To this end, we construct
the Dirac operator on MS. The Dirac operator is also
necessary to discuss supersymmetry on this fuzzy space,
which is of interest to many. In a separate context, since this
is a finite dimensional model, it is important to study the
fermion-doubling problem with the Dirac operator. The
construction of the Dirac operator on a fuzzy coset space
like M. is nontrivial and intrinsically interesting. A beau-
tiful (expected) relation exists between the index of the
Dirac operator and the topological objects on M$., which
we make explicit.

Our construction of M$ derives from a Schwinger-like
construction using the Gell-Mann matrices and six
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independent oscillators. With these six oscillators, the
ten-dimensional fuzzy conifold Y can be constructed
asin [14,15]. X3 = Y19 N (83 x S3.) describes a subspace of
this six-dimensional oscillator’s Hilbert space, which is the
carrier space of all the representations of SU(3). In Sec. II,
we show that there exists a Hopf-like map X% — M6,

X% is a U(1) x U(1) principal bundle over M&. The
monopoles can be characterized by linear maps from one
representation space of SU(3) to another [14-18]. Such
sections are rectangular matrices that map a M$ of a given
size to another of a different size. In Sec. III, we construct
these matrices in the basis of the SU(3) D-matrices.

In Sec. IV, we show that a Ginsparg-Wilson (GW) algebra
is associated with M¢. The Dirac operator can be con-
structed using the elements of this GW algebra, which are
functions of the generators of SU(3). We compute the index
of the Dirac operator using the representations of SU(3)
and their quadratic Casimir values as in [19]. The index is
equal to Tr(F A F A F).

II. CONSTRUCTION OF FUZZY
SU3)/(U1) = U(1))

C¢ is described by six independent oscillators g, by
(a=1.2,3),

[&(1’ a[)’} =Y, [&m a};’} = 5(1/}»
[Bm l;ﬁ} = 07 [Bm A/—H = 5(1[35
(@ bg) = 0. [ag. by} =0. (2

These oscillators act on the Hilbert space F spanned by
the eigenstates of the number operators N ,(=a%a,) and
N b (Eb lb a) >

F=span{|nk,n2,nd;nint n3): n%n¢=0,1,2,...}. (3)

A fuzzy conifold is described by a subalgebra in C&.
[14,15]. We define the operator

3
O=> by, (4)
a=1
which has as its kernel
ker(O) = span{|-) € F: O]) =0} c F.  (5)

(We use the symbol |) to denote the state

Ink,n2,nd;nin?, n3).) The algebra of (@, B,,)’s restricted
to ker(®) describes a ten-dimensional fuzzy conifold Y10
For convenience of normalization, we will also work

with the set of operators

1
VN,

1

éa @a ’
VN

Ha=q (6)
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which satisfy
)?jxﬂ?a: L, ;:%Zz;:%a: 1. (7)

The j,’s (or &,’s) are well defined if we exclude the states
for which N, = 0 (or N, = 0). Then the algebra generated
by 7.’s and &,’s describes S5 x S3.

The operator &' =, also vanishes in ker(O).
Therefore the algebra of the y,’s and Qf,,’s restricted to
ker(©) describes an eight-dimensional fuzzy space X8.
Informally, we can think of X% as Y1° N (S x S%).

A. X% > M = tuzzy SU(3)/(U(1) x U(1))
Using the matrices T; = %/1,- (4; = Gell-Mann matrices,

i=1,2,...,8) satisfying

1

[Tiv T]] - ifijkav {Ti7 T]} - 3 5,']' + dijka’ (8)

we can define a Schwinger-like construction (similar to [20]),

3i = aa(T:)Pag — b,(T;) b, 9)

8 = 2e(T1) 3y — EL(T)PE), (10)
The §;’s obey

=% ¥l =ifinde (11)

and the Casimirs are C, = §;9; and C3 = d; 39,99

Cy =3 [No + N3 + Ny + 3(N, + )] - 00, (12)
~ 1 . N N N o N
Cszﬁ( a=Np)2N,+ Nj +3)(Ny + 2N, +3)
N,—=N, ». »
+"TI’O*O. (13)

The Hilbert space F can be split into the subspaces
~¢.na,nhv

Fon=spund 195 3005 = n, S = m b (19

F = ®F,, n, where the direct sum @ is over n, and n,.
InF gy = Fngn, ) ker(@), the Casimirs take fixed values,

62 j:"a’”b = Czl], C3|j:naﬂb = C3|], (15)
with
1
Cy = g [ni + ng + nyn, + 3(na + nh)] = ﬁxed’
1
AT (ng = ny)(2n, + np + 3)(n, + 2n, + 3) = fixed.

(16)

125034-2



MONOPOLES, DIRAC OPERATOR, AND INDEX THEORY ...

Also in F, , .

:S\'l@l' = fixed, dkS",S"

8:88 = fixed. (17)

J
Therefore, the algebra of ;s restricted to F n,.n, describes a
six-dimensional fuzzy space M.

Each ¥, ,, is a carrier space of a finite dimensional irrep
of SU(3). This representation is characterized by a pair of
positive integers (p.q) = (n,.n,)" and is of dimension

(ny +n, +2)(n, + 1)(n, +1).  (18)

[NSR

dimSU(3) =

The ¥,’s (and §;’s) are square matrices in j:na-nb' Thus M$
is the fuzzy version of SU(3)/(U(1) x U(1)) and (9) is a
noncommutative U(1) x U(1) fibration.

Note that in the above construction neither n, nor n;, can
be chosen to be zero. In case the construction is done with
only one set of oscillators (either a,’s or faa’s), one would
get fuzzy CP?, as in [11,21]. Nevertheless, for n, > n,
(or ny, > n,), M looks like fuzzy CP? in some sense [11].

III. NONCOMMUTATIVE LINE BUNDLE

Let H,, n,—1,., be the space of linear operators ®, which

map F, , toF; ;.

o ]:na.nb - Fl,,,lp ¢ e Hna,nb—ﬂa,lb' (19)
In general, these ®’s are rectangular matrices.
H,, n,—n,n, 18 @ noncommutative algebra which maps

Foony = Fu,n, and any ® €H, , ., , 1S a square
matrix. In this algebra, the rotations are generated by the

(reons) (5 rams)

adjoint action of j is the restriction of J; in

]:na,nh )$

~

AdBI" N = L,0 = [ @). (20)

l

~

L;’s generate a SU(3),
[Z:hz"j] = ifijkzk~ (21)

When n, # 1,,n;, # l,,, the spaces H,,_,, _; ; are non-
commutative bimodules and any ® € H, ,,_; ; 1is a
rectangular matrix. For the bimodules, the generators of
the SU(3) in (21) act by a left and a right multiplication,

"The Casimirs of a (p, ) representation of SU(3) are

.1
G, :g[p2+q2+pq+3(p+q)]ﬂ7

.1
Cs =§(p—q)(2p+61+3)(p+2q+3)ﬂ-
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L® =5l — glrens) (22)

This SU(3) action is reducible, and we will give its explicit
decomposition shortly. Any element ® € H, , _; ; can
be expanded in the basis of the eigenvectors of 213, ﬁg, 2,@
and dijkﬁ,-ﬁjﬁk.

To construct the basis vectors, let us start as follows. The
operator

A

7= (@)l (@y)(Bh)" (bs) (23)

is an element of H,, , _; ; if (I4, 7.1, 7)) are positive
integers satisfying

U.f= (L +iLy)f =0,

Vi f=(Ls—ils)f =0,

W+f5(ﬁ6—zﬁ7)f:0,

a1 o~

Lyf = 3 (g +1p)f,

A A 1 ~ ~ A

Lof = ——— (21, + 20, + 7, +1,)]. (25
sf 2\@( iy + g + 1) f (25)

So f is the highest weight vector of the SU(3) representa-
tion characterized by (p, g), with

q:za—i—ﬁb, p>qg>0. (26)

The quadratic and the cubic Casimirs for this representation
take values

C, == (p*+ ¢* — pq +3p), (27)

Q| =

G = (p=20)2p — g+ g+ p+3). (8)

while the dimension is

d=3(p-a+Dp+2a+D).  (29)

The lower weight vectors belonging to the same irrep
(p, q) are generated by the action of the lowering operators
U—(Ezl —izz), ‘,\/_(524 + 124) and W_(Ez6 + 127) On}‘.

A generic vector belonging to the (p, g) irrep is labeled
by ms; and mg—the 233 and ﬁg values, respectively,
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TABLE 1. Allowed values of (p, g) for k,,x;, > 0. TABLE IV. Allowed values of (p, g) for k,,x, < 0.

n, iu 1y, ib p q 7a 1, 7b ny 14 q

0 Kq 0 Kp Ko+ Kp Ka 0 —K, 0 —K}, —(k, + Kp) —Kp

1 Ky + 1 0 Kp Ky +Kp+2 K, + 1 1 —K, + 1 0 —Kp —(kg+Kp)+2  —kp+1
0 K, 1 K, + 1 Kq +K;,+2 K, + 1 0 —K, 1 K, + 1 —(k, +K,,)+2 —K,,—l—l
n, la ny, lb J +Jb l +I’lb la n, lb ny J +Jb l —i—nb

£3 m; ms m3‘11m3 nlg’

Lg q]"’l’; My S\I}nu mg’
[,.ﬁ.\p”%ms C2 m3 ms’
le‘C [1 Ek\Ij”h e — Cg m; mx. (30)

In the following, we specify the allowed values of (p, q)
(i.e. which irreps occur). In (24), k, and k; can be both
positive and negative. The ranges of the pairs (/,,7,) and
(1, ny,) are different for each choice of the sign of «, and
kp,. Consequently, the irreps appearing in such maps also
differ. We find the irreps for each case.

Case 1: 1, > n, and 1, > n,,

In this case, both «,, k;, > 0. The ranges of 7, and n,, are

OSﬁQSna, OSflel’lb. (31)

Therefore the allowed values of p and ¢ are shown in
Table I, where J, =1, + n, and J, = [, + ny.

Case 2: 1, <n, and 1, > n,

Here, x, <0 and x, > 0 and

S la S la’ 0 S 771;, S ny. (32)

Hence p and g take the values shown in Table II.
Case 3: 1, > n, and 1, < ny

TABLE II.  Allowed values of (p, g) for x, <0,x;, > 0.

Za ;la ﬁb ib p q

0 —K, 0 Kp —K, + Kp 0

1 —Kk, + 1 0 Kp —K,+ Kk, +2 1

0 —K, 1 Kp + 1 —K, +kp+2 1

la ng np lb Ja+‘,b la+nb
TABLE III.  Allowed values of (p, q) for x, > 0,x;, <O0.

ﬁa Za ib ;lb P q

0 K, 0 —K) K, — Kp K, —Kp

1 Ko+ 1 0 —K)p Kg—Kp+2 Kk,—kp+1
0 K, 1 —Kp + 1 K—Kb+2 Ky, —Kkp + 1
ng la lb np J + Jb la + np

When k, > 0 and k;, <0, the ranges of 7, and Zb are

0<i, <ng  0<1, <l (33)

Then the allowed values of p and ¢ are as shown in
Table III.

Case 4: 1, <n, and I, < n,

In this case, x, <0 and x;, <0 and

0<1,<1, 0<1, <1, (34)

Thus the irreps have (p, ¢) values as shown in Table IV.
Any arbitrary element ® € H,, , _; ; can be expressed
in terms of the SU(3) harmonics as

o= ) U™, gy™ec.  (35)

m3,mg,p.q

These ®’s are identified as the noncommutative analogue of
the sections of the associated line bundle.

A. Topological charge

The sections of the associated line bundle carry two
topological charges, corresponding to each U(1) fiber. In
H,, n,—1,.1,» We can define two topological charge operators,

A N A 1.4

KaEE[Na’L KbEE[Nb’]' (36)
Itis easy to see that @ in (35) has topological charges (k,, )
given by

K,® =" "“<I> 50,

A Ky Kp € Z. (37)
ko =1d =20,
Therefore ® is a section of a complex line bundle with
topological charges (k,, k).

IV. THE DIRAC OPERATOR

SU(3)/(U(1) x U(1)) is a six-dimensional space embe-
dded in R®. This space is curved and nonsymmetric. Also,
as U(1) x U(1) C Spin(6) = SU(4), this space admits a
spin structure. In the commutative case, the Dirac operator
contains three terms: the kinetic term, the spin-connection
term and the background monopole term (if any) [19].

There are many possible ways to obtain the Dirac
operator on this space (for example, [22]). In the fuzzy

125034-4
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case, we do so by constructing a Ginsparg-Wilson algebra
on M¢.

We look at the zero charge sector first. On 'H,, ,,. _n. 5,
¥; has left and right actions

9,Lf =3f, )A’fef =y (38)
These satisfy (11)—(13),

37, 95 = ifiudi

R, 98] = —ifiudis

[pF. 95 =0,
99 =990 =959 = cal,
dipdE959r = dipdFIfIg = el (39)

The y matrices on R® are 16 x 16 matrices which
generate the Clifford algebra

{rivit =265 rl=r. i=12..8 (40)

Using y;’s we can construct

1 .
t; = Efijkyjyk’ [tivil = ifijires (41)
which generate a SU(3),
[titj] = ifijte (42)

We can define

1 L1 8 1 1
=y (3t +=1t,), T=——p(3%—2¢), (43
ay,<y, +3 l> a%<y, 3 ,> (43)

where the normalization a is given by

a’l =39 + 3 tit;, t;t; =3I, Pidi =l (44)
[and T generate a Ginsparg-Wilson algebra,
Agw={[.T: 2 =1=T2T"=0T"=T}. (45

From this algebra, one can construct a Dirac operator D

~ A 2
D=a(l+T)=y.L; + 57t

; Li=5+5f,  (46)

and a chirality operator I'y,
T = a(T =) = ri(5} +35). (47)
It is easy to check that

{D.I'ey} =0, (48)

PHYSICAL REVIEW D 90, 125034 (2014)

v =indexp = Tr([',,) (index theorem).  (49)
It is interesting to note that in (46), the second term (~y;t;)
is the spin-connection term in [19].

The Dirac operator is of the form

D= (:1 /3). (50)

When the action of D is restricted to the algebra
(M, ny—n, n, X Matyg), it is the Dirac operator on M6,
In this case, there is no monopole background, and hence
the gauge field contribution to the Dirac operator is zero.

On the bimodule X, , ;i With n, # 1, n, #1, or
either, there is a background monopole. On this bimodule, £;
is the covariant derivative which includes the monopole
contribution. Hence, if we restrict D to the bimodule
(Hy, ny—1,1, X Matyg), we automatically incorporate the
background monopole information. There is no need to
add the monopole term in the Dirac operator. Rather,
restricting the algebra of D to the proper subspace accounts
for monopoles.

A. Zero modes of the Dirac operator
SU(3)/(U(1) x U(1)) is a nonsymmetric space with
positive curvature. On this space, there is an additional
connection due to the torsion, which appears in the square
of the Dirac operator [19],

D? = —V? + curvature + torsion

+ possible gauge field contribution.  (51)

The Dirac Laplacian V? on this coset space is a positive
operator. For the Dirac operator to have zero modes, we
would need the cancellation of the lowest eigenvalue of
the Laplacian with the lowest eigenvalue of the sum of the
curvature, torsion and gauge field contributions. These
considerations require that the number of zero modes of the
Dirac operator on SU(3)/(U(1) x U(1)) is given by the
dimension of the SU(3) irrep with the minimum value of
the quadratic Casimir C, [19]. We adopt the same require-
ment to compute the number of zero modes in the
fuzzy case.

Case I1: k, >0 and x;, >0

In this case C, takes the minimum value in the repre-
sentation with (p, q) = (k, + K5, Ka),

]
Cmin — —
2 3

The dimension of this representation is the index of D,

(G + 15+ Kakp) + kg 5. (52)

. 1
v=dmn :E(K‘a—FKb—Fz)(Ka—Fl)(Kb-l—l). (53)

The discussion for the other cases is similar:
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Case 2: k, <0 and k;, >0

(P q) = (=x, + K5, 0),

. 1
C3™ = 3 (=K +5)* = Kq + K,

' 1
u:dm‘“:5(—Ka+1<b+2)(—1<a+1<b+1). (54)

Case 3: k, >0 and k, <0

. 1
IJ:dmm:E(KH—K;,-FZ)(K“—K/,-F]). (55)

Case 4: k, £ 0 and k, £0

(P.q) = (=k4 = Kp, —Kp),
' 1
o = E(K% + K7 4 KyKp) —Kg —Kps
. 1
v =dmn zz(—rca —kp+2)(=k,+1)(—kp, +1). (56)

When there is no monopole, x, =0 =k, and the
index is

v=1, (57)

which is consistent with [19,21]. Also, as in the commu-
tative case, the index v gives Tr(F A F A F) for the
monopole fields.

PHYSICAL REVIEW D 90, 125034 (2014)
V. CONCLUSIONS

Our realization of M$ can be used to study large N
limits of matrix models of D-branes. Among other things,
M% as the vacua of the matrix model (1) can be in an
irreducible or reducible representation. It is easy to general-
ize the Schwinger construction of M¢$ by using Brandt-
Greenberg oscillators and obtain reducible algebras of M.,
as in [18]. We can obtain the quantum states for those
reducible M$’s using the prescription of Gelfand-
Naimark-Segal. Those quantum states will be inherently
mixed and will carry entropy, which is typically large. This
information will play a vital role in the understanding of the
vacua and tachyon condensations in the matrix model.

Using the Dirac operator and the index theory, one may
try to construct the spinor bundle on M$ and thus find the
supersymmetric analogue of X% — M. The super coni-
fold in the continuum has various interesting features [23]
which should be manifest in the fuzzy version as well. We
leave this for a future investigation.

The fermion-doubling problem on this finite dimensional
space can also be studied. It has been shown that there is no
fermion-doubling on the fuzzy sphere [24,25]. There might
be such dramatic consequences on M¢. as well.
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