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Finsler geometry is a well-known generalization of Riemannian geometry which allows us to account for a
possibly nontrivial structure of the space of configurations of relativistic particles. Here we establish a link
between Finsler geometry and the sorts of models with curved momentum space and doubly special
relativistic relativistic symmetries which have been of interest recently in the quantum-gravity literature. We
use as a case study the much-studied scenario which is inspired by the κ-Poincaré quantum group and show
that the relevant deformation of relativistic symmetries can be implemented within a Finsler geometry.
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I. INTRODUCTION

Our main objective here is to uncover an apparently deep
connection between two much-studied theoretical-physics
frameworks, the one of Finsler geometry and the one of
doubly special relativistic (DSR) relativistic symmetries.
Theories with two nontrivial relativistic invariants, also

known as “DSR relativistic theories” [1–4], have attracted
much interest in the recent quantum-gravity literature. The
presence of the second relativistic invariant has been
shown to be related to curvature in momentum space, with
the scale of curvature of momentum space (tentatively
expected to be of the order of the Planck scale) playing a
role completely analogous to the one already attributed to
the speed-of-light scale within special relativity. Examples
of DSR relativistic theories can be inspired by the study of
quantum groups, in which case, momentum space turns
out to be a group manifold. They are believed to be an
indirect manifestation of spacetime quantization, strongly
suggesting that spacetime may not be described by a
Riemannian geometry at ultrashort scales.
An even richer streamof research characterizes the study of

Finsler geometry, which could be viewed as an approach
suitable for abandoningRiemanniangeometryas thearena for
the relativistic dynamics of particles, essentially allowing for a
velocity-dependent geometry to describe spacetime structure.
There is already a well-established common point

between the DSR relativistic theories framework and

Finsler geometry, and this is the possibility of allowing
for modified dispersion relations. It was already shown in
[5] that Finsler metrics can be used to describe the
geometry on which a particle with modified dispersion
relation lives, but it was not investigated whether Finsler
geometries have room to accommodate also a description
of the (modified) relativistic symmetries.
We tackle this challenge here by focusing on the

illustrative example of the curved momentum space that
was inspired [6,7] by the so-called κ-Poincaré quantum-
group deformation of the Poincaré group [8–10]. κ
Poincaré is a widely studied candidate to describe
departures from special relativity that could arise in a
“semiclassical” regime of quantum gravity (whose scale is
set by the value of κ), where the gravitational degrees of
freedom are integrated out, leaving an effective field theory
for matter. Indeed, this was shown to be the case at least for
ð2þ 1Þ-dimensional quantum gravity [11].
An important player in our analysis is a known pre-

scription for deriving the Killing vectors associated with a
given Finsler geometry. Until now, it was not clear whether
these Killing vectors were actually associated with sym-
metries that left a given dispersion relation invariant. For
the κ-Poincaré-inspired momentum space, which we use as
an illustrative example of our thesis, the relationship
between (modified) dispersion and relativistic transforma-
tions has been already studied in detail, and this placed us
in a strong position to investigate a possible description in
terms of Finsler geometry.
Without losing any of the conceptual challenges that are

of interest here, we work in 1þ 1 dimensions and at the
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first order in the deformation parameter l (l ∼ 1=κ is a
length scale related to the scale of curvature of momentum
space) so that formulas are less bulky, and, indeed, the
conceptual issues come more to the forefront. Our greek
indices have values f0; 1g, and we set c and ℏ to 1.

II. DESCRIPTION OF PARTICLES WITH
κ-POINCARÉ SYMMETRIES

The κ-Poincaré group [8–10] is a deformation of the
Poincaré group that accommodates a second invariant scale
(an energy scale) besides the speed of light, without
violating the relativity principle. The energy scale κ
governs the departures from the standard special-relativistic
symmetries. We will indicate it as 1=l, where l is a
parameter with dimensions of a length expected to be of the
order of the Planck length.
When the so-called bi-cross-product basis [12] is chosen,

the κ-Poincaré generators associated with spacetime trans-
lations (P0; P1) and boost (N ) satisfy the following Lie
brackets1:

fP0; P1g ¼ 0;

fN ; P0g ¼ P1;

fN ; P1g ¼ P0 − lP2
0 −

l
2
P2
1: ð1Þ

The Casimir of this algebra reads

Cl ¼ P2
0 − P2

1 − lP0P2
1: ð2Þ

One can obtain a finite transformation from the set of
infinitesimal transformations described by the generators
by means of the exponential map [13]:

F⊳fðx; pÞ

¼
X∞
n¼0

1

n!
fdμpμ þ aN ; f…; fdμpμ þ aN|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n times

; fðx; pÞg…gg;

ð3Þ

where a and dμ are, respectively, the (finite) boost and
translations parameters.
Upon choosing the trivial (Darboux) symplectic struc-

ture for the phase space2

fxμ; xνg ¼ 0;

fxμ; pνg ¼ δμν ;

fpμ; pνg ¼ 0; ð4Þ
one finds that the symmetry generators have the following
representation:

P0 ¼ p0; P1 ¼ p1;

N ¼ x0p1 þ x1
�
p0 − lp2

0 −
l
2
p2
1

�
: ð5Þ

This representation ensures that the generators have van-
ishing Poisson brackets with the Casimir and is also
compatible with the following Poisson brackets between
boost and coordinates:

fN ; x0g ¼ −x1ð1 − 2lp0Þ; fN ; x1g ¼ −x0 þ lp1x1:

ð6Þ

The dispersion relation of a relativistic particle can be
then deduced from the representation of the Casimir as

m2 ¼ ClðpÞ≡ p2
0 − p2

1 − lp0p2
1: ð7Þ

The prescription for deriving a particle worldline relies
on the Hamiltonian formalism using the particle Casimir
Cl as the Hamiltonian [13,15–17]:

_pμ ¼ fpμ; Clg; ð8Þ

_xμ ¼ fxμ; Clg; ð9Þ
where the dot represents derivation with respect to the
affine parameter on the worldline. From these equations,
one deduces energy/momentum conservation along the
worldline

_pμ ¼ 0; ð10Þ

and a differential equation for the coordinates along the
worldline:

_x0 ¼ 2p0 − lp2
1; ð11Þ

_x1 ¼ −2p1ð1þ lp0Þ: ð12Þ

After solving the differential equations and exploiting
the dispersion relation, one can eliminate the affine
parameter and find

x1 − x̄1 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −m2

p
p0

�
1þ l

ð2p2
0 −m2Þ
2p0

�
ðx0 − x̄0Þ;

ð13Þ
where fx̄0; x̄1g are the starting coordinates of the worldline.

1Because of the classical nature of the physical framework that
we are going to study (there are no pure quantum effects, i.e.,
ℏ ∼ 0), we use as Lie brackets the Poisson ones.

2At the quantum level, the κ-Poincaré group is related to
the κ-Minkowski noncommutative spacetime [12,14], but for
classical phase-space constructions, one can consider standard
Minkowski spacetime coordinates related to the noncommutative
coordinates by a momentum-dependent redefinition [15].
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A few remarks are in order before we close this section.
A reader familiar with the quantum-groups theory will have
noticed that here we are completely neglecting the coal-
gebraic structure of κ Poincaré. This is because this work
focuses on a single-particle system, where the coproducts
of the symmetry generators are not relevant.
As mentioned in the Introduction, a geometrical inter-

pretation of the κ-Poincaré group was proposed recently
[6,7], based on the observation [3,18,19] that the translation
generators of κ Poincaré live on a curved momentum
manifold. Indeed, the symmetry generators of κ Poincaré
leave invariant the momentum-space line element:

ds2 ¼ ζμνðpÞdpμdpν; ð14Þ

where the momentum-space metric ζμνðpÞ reads

ζμνðpÞ ¼
�
1 0

0 −ð1þ 2lp0Þ

�
: ð15Þ

This is clearly the metric of a de Sitter manifold written in
“flat slicing coordinates” and at the first order in l. We are
not giving here the details of the momentum-space geo-
metrical structure induced by the κ-Poincaré group and of
its physical interpretation, as in this manuscript, we are
concerned with analyzing the modifications on the space-
time structure that are required in order to accommodate
modified relativistic symmetries such as the ones described
by κ Poincaré.

III. FINSLER GEOMETRY OF A PARTICLE
WITH A MODIFIED DISPERSION RELATION

In [5], a prescription for deriving the Finsler geometry of
a particle with a modified dispersion relation and living on a
flat spacetime was provided. Here we report the main steps
of the construction. For details about the construction and
about Finsler geometry in general, we refer the reader to [5]
and the references therein.
The starting point is the action of a particle with a

modified dispersion relation of the form m2 ¼ MðpÞ:

I ¼
Z

ð_xμpμ − λðMðpÞ −m2ÞÞdτ: ð16Þ

Here, λ is a Lagrange multiplier that enforces the mass-shell
condition, and the overdot stands for derivation with
respect to the affine parameter τ.
By using Hamilton’s equation

_xμ ¼ λ
∂M
∂pμ

; ð17Þ

one can find the relation between momenta pμ and
velocities _xμ and write the action as a function of velocities
and the Lagrange multiplier:

I ¼
Z

Lð_x; λÞdτ: ð18Þ

Then, by varying the action with respect to λ, one can
substitute λ → λð_xÞ and obtain the final form of the
action as3

I ¼
Z

Lð_x; λð_xÞÞdτ: ð19Þ

The Lagrangian written as a function of velocities only can
be identified now with a Finsler norm,

Lð_x; λð_xÞÞ≡mFð_xÞ; ð20Þ

since it satisfies the required properties4

�
Fð_xÞ ≠ 0 if _x ≠ 0

Fðϵ_xÞ ¼ jϵjFð_xÞ: ð21Þ

A Finsler norm can, in general, be associated with a
metric

gμνðx; _xÞ ¼
1

2

∂2F2ðx; _xÞ
∂ _xμ∂ _xν : ð22Þ

The metric will only be a function of velocities if the Finsler
norm does not depend on xμ (which is the case of interest in
this work).
Using the Euler theorem for homogeneous functions

applied to F2,

_xμ
∂F2

∂ _xμ ¼ 2F2; ð23Þ

one can show that the metric just defined satisfies

_xα
∂gμν
∂ _xα ¼ _xμ

∂gμν
∂ _xα ¼ _xν

∂gμν
∂ _xα ¼ 0 ð24Þ

and

3Wewill show in Sec. VII that the Lagrangian appearing in this
action is invariant under boosts only up to total derivatives. This is
not worrisome, since the action is invariant and gives covariant
equations of motion. Despite this, one might want to write the
action in terms of an invariant Lagrangian, and in Sec. VII we will
show that this is indeed possible, redefining the Lagrangian so
that it is invariant and still gives the same (covariant) worldlines
as this one.

4Note that, in general, a Finsler norm depends on both
coordinates and velocities. However, since in this case we are
considering deformations of a special-relativistic particle, which
lives on a flat spacetime, the Finsler norm is only velocity
dependent.
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F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _xμ _xν

q
: ð25Þ

Once the Finsler norm is given, the particle action can be
written in the form

I ¼ m
Z

Fð_xÞdτ ¼ m
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνð_xÞ_xμ _xν
q

; ð26Þ

which looks like a straightforward generalization of the
action of a special-relativistic particle.
The construction of the metric gμνð_xÞ allows us to relate

momenta to velocities in a simple way:

pμ ¼ m
∂F
∂ _xμ ¼ m

gμν _xν

F
: ð27Þ

Notice that using this definition of momenta, one recovers
the on-shell condition as

m2 ¼ gμνð_xðpÞÞpμpν; ð28Þ

where gμνð_xðpÞÞ is the inverse of the metric gμνð_xÞ.

IV. FINSLER GEOMETRY OF A PARTICLE
WITH A κ-POINCARÉ-INSPIRED

DISPERSION RELATION

A. Deriving the Finsler norm

In this section we will apply the procedure just described
to the case of a particle whose dispersion relation is
compatible with the κ-Poicaré Casimir and given in (7).
This means that we specialize the results of the previous
section to the case MðpÞ ¼ ClðpÞ≡ p2

0 − p2
1 − lp0p2

1.
The Lagrangian (16) takes the form

I ¼
Z

ð_xμpμ − λðp2
0 − p2

1 − lp0p2
1 −m2ÞÞdτ: ð29Þ

The associated equations of motion are derived as in (17):

_x0 ¼ λð2p0 − lp2
1Þ; ð30Þ

_x1 ¼ λð−2p1 − 2lp0p1Þ: ð31Þ

Note that these equations are the same (i.e., they produce
the same worldlines) as the ones we found in Sec. II if we
assume that the Lagrange multiplier λ is independent from
the phase space fxμ; pμg and that _λ ¼ 0 (in this case, we
can reabsorb it in the affine parameter).
Inverting the equations of motion (30) and (31), we find

the expression of the momenta pμ as a function of velocities
_xμ and of the Lagrange multiplier λ:

p0 ¼
_x0

2λ
þ l

2

ð_x1Þ2
4λ2

;

p1 ¼
_x1

−2λ
þ l

_x0 _x1

4λ2
ð32Þ

(we remind the reader that we are working at leading order
in l). Plugging these relations into the action (29), we get
the Lagrangian

L ¼ ð_x0Þ2 − ð_x1Þ2
4λ

þ λm2 þ l
_x0ð_x1Þ2
8λ2

; ð33Þ

which is then minimized with respect to λ to get

λð_xÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p
m

þ l
2

_x0ð_x1Þ2
ð_x0Þ2 − ð_x1Þ2 : ð34Þ

This allows us to find a closed expression for the relations
(32) between momenta and velocities.

p0 ¼
m_x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð_x0Þ2 − ð_x1Þ2
p −m2

l
2

ð_x1Þ2ðð_x0Þ2 þ ð_x1Þ2Þ
ðð_x0Þ2 − ð_x1Þ2Þ2 ; ð35Þ

p1 ¼ −
m_x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð_x0Þ2 − ð_x1Þ2
p þm2l

_x1ð_x0Þ3
ðð_x0Þ2 − ð_x1Þ2Þ2 ð36Þ

and write the Lagrangian as a function of velocities only,

L ¼ m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

q
þ l

2
m

_x0ð_x1Þ2
ð_x0Þ2 − ð_x1Þ2

�
: ð37Þ

Then, the Finsler norm associated with a particle with a
κ-Poincaré-compatible dispersion relation turns out to be,
through (20):

Fð_xÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð_x0Þ2 − ð_x1Þ2
q

þ l
2
m

_x0ð_x1Þ2
ð_x0Þ2 − ð_x1Þ2

�
: ð38Þ

It is straightforward to verify that the function Fð_xÞ just
defined is a legitimate Finsler norm, since it satisfies the
conditions (21). Notice that, as expected, since we are
considering the deformation of a special-relativistic par-
ticle, in this case the norm only depends on velocities and
not on coordinates, meaning that the spacetime geometry is
flat (see the next subsection). Note that through (35) and
(36) we automatically recover the Casimir, using only
algebraic relations. Indeed, from (35) and (36) we get
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m_x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p ¼ p0 þ
l
2

p2
1

m2
ðp2

0 þ p2
1Þ; ð39Þ

m_x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p ¼ −p1

�
1þ l

m2
p3
0

�
: ð40Þ

Then, subtracting the square of these two equations:

m2 ¼
�

m_x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p �
2

−
�

m_x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p �
2

¼ p2
0 − p2

1 − lp0p2
1: ð41Þ

B. Finsler metric

A Finsler metric gμνðx; _xÞ can be derived from the norm
(38) via the relation (22)

gμνðx; _xÞ ¼

0
B@ 1þ 3

2
lm _x0ð_x1Þ4

ðð_x0Þ2−ð_x1Þ2Þ5=2 l m
2

−4ð_x0Þ2ð_x1Þ3þð_x1Þ5
ðð_x0Þ2−ð_x1Þ2Þ5=2

l m
2

−4ð_x0Þ2ð_x1Þ3þð_x1Þ5
ðð_x0Þ2−ð_x1Þ2Þ5=2 −1þ 1

2
lmð_x0Þ3 2ð_x0Þ2þð_x1Þ2

ðð_x0Þ2−ð_x1Þ2Þ5=2

1
CA: ð42Þ

Since the Finsler norm we are considering does not
depend on coordinates xμ, the metric is coordinate inde-
pendent also. When the deformation parameter l vanishes,
the metric reduces to the one of special relativity, and in this
sense we say that the metric is flat. In the following, we will
see that this metric also has vanishing (generalized)
Christoffel symbols.
It is easy to verify that the metric gμν satisfies the

properties in (24), and as a consequence,

_xα
∂gμν
∂ _xα _xμ _xν ¼ 0: ð43Þ

We can also write the metric in terms of momenta by the
use of (39) and (40):

gμνðx; pÞ ¼

0
B@ 1þ 3

2
l p0p4

1

m4
l
2

4p2
0
p3
1
−p5

1

m4

l
2

4p2
0
p3
1
−p5

1

m4 −1þ l
2
p3
0

2p2
0
þp2

1

m4

1
CA: ð44Þ

When we use this expression of the metric in terms of
momenta, we find a simple relation with the particle
dispersion relation (note that here we use the inverse of
the metric):

gμνðx; pÞpμpν ¼ p2
0 − p2

1 − lp0p2
1

ðp2
0 − p2

1Þ2
m4

¼ p2
0 − p2

1 − lp0p2
1; ð45Þ

which is what we expected from (28).
In the above formulas, we left the indication of a possible

dependence on coordinates x, even if in the particular case
we are considering the metric only depends on momenta p.
This is to emphasize that gμν is a full-fledged Finsler metric,
which would acquire an explicit coordinates dependence in
the case of a nonflat spacetime. Indeed, the metric (42) is in
every respect a metric on spacetime, which allows us to
define an inner product structure over the tangent bundle.
The dependence on velocity/momentum and mass implies

that different particles with different mass and/or velocity
“see” different spacetimes.
Despite its dependence onvelocity/momentum, this metric

should not be confused with the nontrivial momentum-
space metric that has been quite robustly associated with
departures from special-relativistic symmetries (see the
Introduction and the end of Sec. II). In Sec. VII we will
elaborate more on the different roles of these two metrics,
gμν and ζμν. Here let us just mention the fact that also the
momentum-space metric ζμν is related to the particle
dispersion relation, but in a less immediate way [6,20]:
the dispersion relation of a particle with momentum p can
be obtained by computing the geodesic distance from the
origin of momentum space to the point p, where the
geodesic is the one defined by the metric ζμνðpÞ.

C. Worldlines

We have shown that it is indeed possible to construct a
Finsler geometry starting from a modified dispersion
relation that is compatible with the κ-Poincaré symmetry
group. Still, the issue of establishing up to which point the
Finsler geometry framework can correctly describe the
physics of a particle with κ-Poincaré symmetries is not
solved: we still need to check if it allows us to correctly
infer the particle motion (worldline) and the symmetry
transformations under which the worldline is covariant.
In this subsection we will deal with the first issue,

constructing the worldline of a particle living on the Finsler
geometry associated with the dispersion relation
m2 ¼ ClðpÞ. In the next section we will deal with the
issue of symmetry transformations.
Worldlines in Finsler geometry are derived through the

Euler-Lagrange equations, which lead to a geodesic equa-
tion of the form [5]

ẍμ þ Γμ
νρðx; _xÞ_xν _xρ ¼ 0; ð46Þ

once one assumes the affine parametrization [Fðx; _xÞ ¼ 1].
The (generalized) Christoffel symbol Γμ

νρðx; _xÞ is defined as
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a function of derivatives of the metric gμν with respect to
spacetime coordinates in the same way as in Riemannian
geometry:

Γμ
νρðx; _xÞ ¼ 1

2
gμσðx; _xÞ½−∂σgνρ þ ∂νgρσ þ ∂ρgσν�; ð47Þ

but it will, in general, depend on velocities because the
metric does.
In the case we are studying, where the metric is given by

Eq. (42), the associated Christoffel symbols vanish, and the
geodesic equation reduces to

ẍμ ¼ 0; ð48Þ
i.e., _xμ ¼ constant. One finds that the affine parametriza-
tion5 F ¼ 1 applied to the norm (38) implies the following
relation between _x1 and _x0:

ð_x0Þ2 − ð_x1Þ2 þ lm
_x0ð_x1Þ2

ð_x0Þ2 − ð_x1Þ2 ¼ 1 ⇒ ð_x1Þ2

¼ ð_x0Þ2 − 1þ lm_x0ðð_x0Þ2 − 1Þ: ð49Þ

Upon integration along the affine parameter, one gets

x1 − x̄1 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð_x0Þ2 − 1
p

ð1þ l
2
m_x0Þ

_x0

�
ðx0 − x̄0Þ; ð50Þ

where _x0 is constant along the motion because of (48).
One can easily verify that this worldline is equivalent to

the one found within the κ-Poincaré framework, Eq. (13): it
is sufficient to write _x0 as a function of momenta using (39)
and taking into account the constraint (49). Then, using the
dispersion relation, one writes the resulting function of p0

and p1 as a function of p0 and the mass only. This gives a
worldline with the same form as (13).
So, the issue of describing the particle motion is set: the

Finsler framework allows us to derive the same worldlines
as the ones that are found by applying the Hamiltonian
formalism to the κ-Poincaré phase space (see Sec. II).

V. SYMMETRIES

We have shown that the same worldlines are obtained in
the two frameworks of the κ-Poincaré group and Finsler

geometry with a κ-Poncaré-inspired dispersion relation. In
order to fully understand whether the two frameworks are
physically equivalent, we also need to compare the sym-
metry transformations derived within the Finsler frame-
work with the ones generated by the κ-Poincaré group.

A. Covariance of worldlines under κ-Poincaré
symmetry transformations

The κ-Poincaré group generators, whose Lie brackets
and representation were given in Sec. II, define the
symmetries of a free particle with a κ-Poincaré-inspired
dispersion relation in the sense that the particle worldline is
covariant under their action:

ðx1Þ0 ¼ vðp0
0Þ · ðx0Þ0⇔x1 ¼ vðp0Þ · x0; ð51Þ

where for simplicity we set the initial condition
x̄0 ¼ x̄1 ¼ 0, and vðp0Þ is the coordinate velocity found
in (13). Given a generic function of coordinates and
momenta fðx; pÞ, fðx; pÞ0 indicates the transformed form
of the function: for a boost transformation, at the first
order in the boost parameter ξ, one has fðx; pÞ0 ¼
fðx; pÞ þ ξfN ; fðx; pÞg. The above condition (51) is in
this case equivalent to asking

fN ; x1g ¼ vðp0ÞfN ; x0g þ ∂vðp0Þ
∂p0

fN ; p0gx0⇔x1

¼ vðp0Þx0; ð52Þ

which is easily verified by making use of the Lie brackets
(1) and (6) and of the dispersion relation.

B. Finsler Killing vectors

Finsler geometry provides us with a prescription for
deriving the symmetries of the metric, which relies on the
Killing equations [5,21] (see the Appendix for a detailed
derivation):

gμρ∂νξ
ρ þ gνρ∂μξ

ρ þ ∂gμν
∂ _xρ

∂ξρ
∂xσ _x

σ þ ∂gμν
∂xρ ξρ ¼ 0: ð53Þ

Notice that in the case we are studying, where the metric is
given by Eq. (42), the last term in the equation does not
contribute since the metric is independent of coordinates.
We solve this differential equation looking for a perturba-
tive solution at first order in l:

ξμ ¼ ξμð0Þ þ lξμð1Þ: ð54Þ

The zeroth order is given by the standard Minkowski
spacetime Killing vector:

ξμð0Þ ¼
�
ax1 þ d0

ax0 þ d1

�
; ð55Þ

5Notice that, in analogy to what happens in general relativity
(l ¼ 0), there is some freedom in redefining the affine parameter
in such a way that the form of the worldlines is unchanged. In the
classical case, F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p
, and one can choose the

affine parameter so to fix F to any real constant, leaving
the coordinate velocity invariate. In our case (l ≠ 0), one can
choose the affine parameter so that Fðx; _xÞ ¼ Cð1þ lfð_xÞÞ, with
C a real constant and f a generic function of velocities. This will
lead to a coordinate velocity that differs from the one appearing in
(50) only by terms proportional to lC2fð_xÞwhen written in terms
of velocities, and it will coincide with it when they are both
written in terms of momenta.
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where a, d0, and d1 are the parameters associated, respectively, to boost, time, and spatial translation. The first-order part of
the solution is

ξμð1Þ ¼
�A0 þ d0mF½1�ð_xÞ þ Cx1 þ amðF½2�ð_xÞx0 þ F½3�ð_xÞx1Þ
A1 þ d1mF½4�ð_xÞ þ Cx0 þ amðF½5�ð_xÞx0 þ F½6�ð_xÞx1Þ

�
; ð56Þ

where we have defined

F½1�ð_xÞ ¼
ð_x1Þ2ðð_x0Þ2 þ ð_x1Þ2Þ
2_x0ðð_x0Þ2 − ð_x1Þ2Þ3=2 ; ð57Þ

F½2�ð_xÞ ¼
ð_x1Þ2ð4ð_x0Þ2 _x1 þ 5ð_x1Þ3Þ

4ðð_x0Þ2 − ð_x1Þ2Þ5=2 ; ð58Þ

F½3�ð_xÞ ¼
ð_x1Þ2ð−14ð_x0Þ3 þ 5_x0ð_x1Þ2Þ

4ðð_x0Þ2 − ð_x1Þ2Þ5=2 ; ð59Þ

F½4�ð_xÞ ¼
ð_x1Þ3

ðð_x0Þ2 − ð_x1Þ2Þ3=2 ; ð60Þ

F½5�ð_xÞ ¼
4ð_x0Þ5 − 8ð_x0Þ3ð_x1Þ2 − 5_x0ð_x1Þ4

4ðð_x0Þ2 − ð_x1Þ2Þ5=2 ; ð61Þ

F½6�ð_xÞ ¼
12ð_x0Þ4 _x1 − 5ð_x0Þ2ð_x1Þ3 þ 2ð_x1Þ5

4ðð_x0Þ2 − ð_x1Þ2Þ5=2 ; ð62Þ

and the integration constants A0; A1, and C can be, in
general, functions of the velocities and the mass m, with
A0; A1 dimensionless and C having the dimension of a
mass.
The family of Killing vectors associated with the metric

gμν has, thus, more degrees of freedom than the ones
associated with the usual (Riemannian, maximally sym-
metric, 1þ 1D) three free-parameter symmetries: it con-
tains three free parameters and three free functions of the
velocities. At the end of this section, we will elaborate
about the role of these additional degrees of freedom, but
first we will show that we indeed recover the result known
from the study of the κ-Poincaré group, i.e., the Killing
vectors derived within the Finsler geometry framework do
reproduce the symmetries described by the κ-Poincaré
generators.
It will be useful to write down explicitly the conserved

charges associated with the Killing vectors,

QF ¼ ξμpμð_xÞ: ð63Þ

Writing the charge perturbatively as QF ¼ Qð0Þ
F þ lQð1Þ

F ,
one has

Qð0Þ
F ¼ m

d0 _x0 − d1 _x1 − ax0 _x1 þ ax1 _x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p ;

Qð1Þ
F ¼ m

	
A0 _x0 − A1 _x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p þ Cð_x0x1 − _x1x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p 

: ð64Þ

If one makes use of the relation between velocities and
momenta that was given in Eqs. (39) and (40), it is possible
to write the above family of conserved charges in terms of
momenta,

Qð0Þ
F ¼ d0p0 þ d1p1 þ ax0p1 þ ax1p0 ð65Þ

Qð1Þ
F ¼ A0p0 þ A1p1 þ Cðp0x1 þ p1x0Þ

þ að2p3
0p1x0 þ p2

1x
1ðp2

0 þ p2
1ÞÞ

2m2

þ d0p2
1ðp2

0 þ p2
1Þ

2m2
þ d1p3

0p1

m2
ð66Þ

(but note that C;A0; A1 remain free functions of velocities).

C. Comparison between Killing vectors
and κ-Poincaré symmetries

As we mentioned, we want to compare the symmetry
transformations derived from the Killing equation in the
Finsler framework and the symmetries generated by the κ-
Poincaré group.
Since the Killing-Finsler symmetries appear to have

more degrees of freedom than the κ-Poincaré ones (three
parameters and three functions versus three parameters
only), one could think that they describe transformations
that are more general than the ones of κ Poincaré. Indeed,
we are going to show that the Killing-Finsler symmetries
contain as a special case the ones generated by the κ-
Poincaré generators appearing in Sec. II. To this aim, we
will compare the conserved charges derived in the two
frameworks, so it is convenient to write down the κ-
Poincaré conserved charges obtained from the representa-
tion of the symmetry generators in the phase space in terms
of the velocities.
We report here for convenience the representation of the

boost generator (the one of translation generators is trivial):

N κðx; pÞ ¼ p1x0 þ p0x1 − x1
�
p2
0 þ

p2
1

2

�
l: ð67Þ
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Thanks to the relation between momenta and velocities
provided by Eqs. (35) and (36), this becomes

N κðx; _xÞ

¼ m

�
_x0x1 − _x1x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p þmð_x0Þ3 _x1x0 − _x0x1

ðð_x0Þ2 − ð_x1Þ2Þ2 l
�
:

ð68Þ

A generic κ-Poincaré transformation is a combination of
a boost, a time translation, and a space translation, and so
the generic charge is

Qκ ¼ AN κ þ BP0 þ CP1; ð69Þ
where A;B;C are the transformation parameters. Using
(68), (35), and (36), one can then write the generic
κ-Poincaré charge in terms of velocities:

Qκ ¼ Am
	�

_x0x1 − _x1x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p þmð_x0Þ3 _x1x0 − _x0x1

ðð_x0Þ2 − ð_x1Þ2Þ2 l
�


þBm
	

_x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p − lm
ð_x1Þ2ðð_x0Þ2 þ ð_x1Þ2Þ
2ðð_x0Þ2 − ð_x1Þ2Þ2




þCm
	
−

_x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p þ lm
_x1ð_x0Þ3

ðð_x0Þ2 − ð_x1Þ2Þ2


:

ð70Þ

In order to verify that the Finsler family of charges given in
Eq. (64) contains the κ-Poincaré one as special case, we ask
the two charges Qκ and QF to be equal. At zero order in l,
this implies

A ¼ a; B ¼ d0; C ¼ d1: ð71Þ
Introducing this into the first-order terms and comparing
them, one gets a set of constraints on the functions A0; A1,
and C, which read

A1 ¼ −d1m
ð_x0Þ3

ðð_x0Þ2 − ð_x1Þ2Þ3=2

þ d0m
_x1ðð_x0Þ2 þ ð_x1Þ2Þ
ðð_x0Þ2 − ð_x1Þ2Þ3=2 þ A0

_x0

_x1
ð72Þ

and

C ¼ −am
ð_x0Þ3

ðð_x0Þ2 − ð_x1Þ2Þ3=2 : ð73Þ

One can verify that these conditions are compatible with the
Killing vector ξ to be still a solution of the Killing
equation (53).
So, we can conclude that there exists one choice of the

free parameters and functions in the Killing-Finsler

symmetries that reproduces the κ-Poincaré ones. The issue
is now to understand what kinds of transformations are
described by other choices of the free functions. In the
following subsection, we show that the additional freedom
provided by the free functions mirrors the freedom that one
has to redefine the κ-Poincaré symmetry generators, in such
a way that the invariance of the Casimir is preserved under
the new transformations.

D. Generators redefinition in κ Poincaré and free
functions in Finsler Killing vectors

In κ Poincaré, one can redefine the boost by performing a
diffeomorphism, so that the Casimir is still invariant under
the action of the new generator.6 We will show that the
freedom provided by the free functions appearing in the
Finsler conserved charges is actually the freedom needed to
span the possible redefinitions of the boost generator.
To do this, we work at the level of the boost representa-

tion in coordinates and momenta. One can consider the
most generic deformation of the classical boost by adding
to the classical boost all possible corrections at he first order
in l. The allowed terms, from a dimensional point of view,
are monomial of the form lxμpνpα or lpα,

N generic ¼ p1x0 þ p0x1 þ lðXp0 þ Yp1 þ αp0p1x0

þ βp2
0x

0 þ γp0p1x1 þ δp2
0x

1 þ ζp2
1x

0

þ ηp2
1x

1Þ; ð74Þ

where X; Y; α…η are numerical coefficients.
The condition that has to be satisfied by the new boost in

order for it to be considered a legitimate redefinition of the
κ-Poincaré one, is that it has vanishing Lie brackets with the
Casimir (so that it still describes a symmetry of the system):

fN generic; Clg ¼ 0: ð75Þ

This imposes some constraints on the parameters:

α − δ ¼ 1;

η ¼ −
1

2
;

β ¼ 0;

γ ¼ ζ; ð76Þ

so that at the end we have two free parameters governing
the possible combinations of the monomials lxμpνpα that
can appear in the new boost, plus the parameters X and Y
that multiply “translationlike” terms,

6This redefinition will, of course, require us to coherently
modify the Lie brackets relations between the boost and trans-
lations generators.
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N κ−compatible ¼ p1x0 þ p0x1 þ l
�
Xp0 þ Yp1 þ αp0p1x0 þ γðp0p1x1 þ p2

1x
0Þ þ ðα − 1Þp2

0x
1 −

1

2
p2
1x

1

�
: ð77Þ

Wewant to show that the freedom of redefining the boost
generator without spoiling the invariance of the κ-Poincaré
Casimir is related to the presence of the free functions in the
Finsler charge. To this aim, we compare the Finsler charge
QF with the generic family of charges obtained from
N generic and the translations

Qgeneric ¼ AN generic þ BP0 þ CP1 ð78Þ

in an analogous way to what was done at the end of the
previous subsection [see Eqs. (69)–(73)]. Notice that this
charge Qgeneric is not, in general, a conserved charge
since we did not impose the constraints (76) on the free
parameters it contains.
Comparing QF and Qgeneric, we observe that the two

parameters X and Y that appear in N generic multiply the
same kinds of terms that are multiplied by A0 and A1 in
the chargeQF: the presence of A0 and A1 inQF is due to the
freedom of adding translationlike terms to the boost
generator. Since the issue about the A0 and A1 terms in
QF is solved thanks to the X and Y terms in Qgeneric, we
now focus only on the terms multiplying greek-letter
parameters in Qgeneric and the a and C terms in QF. So,
we ask that QgenericjB¼C¼X¼Y¼0 ¼ QFjd0¼d1¼A0¼A1¼0.
It turns out that it is possible to match the two charges

only if the greek-letter parameters satisfy the constraints
(76) exactly. Given these constraints, the matching is
achieved for

C ¼ m
γðð_x1Þ3 − ð_x0Þ2 _x1Þ þ δðð_x0Þ3 − _x0ð_x1Þ2Þ − _x0ð_x1Þ2

ðð_x0Þ2 − ð_x1Þ2Þ3=2 :

ð79Þ

So, the only admissible form of the boost sector of the
Finsler charge is the one that is compatible with the κ-
Poincaré Casimir, and that is linked to the boost in the
bi-cross-product basis by a diffeomorphism: the freedom
provided by the free functions of velocity in the Killing-
Finsler charge corresponds to the freedom that we have to
redefine the boost in such a way that it still leaves the
Casimir invariant.

VI. FINSLER GEOMETRY OF ANOTHER
κ-POINCARÉ BASIS

In the previous sections we have studied the Finsler
geometry associated with the Casimir of κ-Poincaré algebra
in the so-called bi-cross-product basis.
We have found that the Finsler formalism leads to

equivalent results as far as the worldlines are concerned.
The associated symmetries are also compatible with the

ones of κ Poincaré, and, in particular, the symmetries
derived within the Finsler formalism “know” about the
possibility of redefining the boost generator of κ Poincaré
leaving the Casimir invariant.
In this section we investigate what happens upon a

(nonlinear) redefinition of the translation generators in the
κ-Poincaré algebra. This is an allowed redefinition within
the formalism of Hopf algebras. Of course, a redefinition of
the translation generators requires that one change the
Casimir accordingly.
Since the Casimir is modified, the associated Finsler

geometry will be different, and one might wonder if also in
this case Finsler geometry allows one to reproduce the
features of κ Poincaré (the ones that are proper of this
basis). In particular, the issue is whether one recovers the
correct form of conserved charges, reproducing the repre-
sentation of κ Poincaré in this basis. We are going to show
that this is indeed the case.
We choose the basis of κ Poincaré that has the same

Casimir as the one studied in [5]:

CðnewÞl ¼ p2
0 − p2

1 − lp3
1: ð80Þ

This new Casimir has the peculiarity to be nonisotropic:
it contains a term which is odd in the spatial momentum
(lp3

1). We used this peculiar Casimir for two reasons: it
appeared before in the literature; we needed a new Casimir
to test our approach. If one wants to obtain an isotropic
Casimir, one can substitute the odd term with, for example,
(ljp1j3). We choose to use the odd one for the sake of
simplicity in the calculations.
There is a diffeomorphism in the space of the generators

of the algebra that connects the bi-cross-product basis with
this one, such that the Casimir (2) becomes (80)7

p0 → p0;

p1 → p1

�
1þ l

2
ðp1 − p0Þ

�
: ð81Þ

The resulting algebra is the following:

fN ; p0g ¼ p1

�
1þ l

2
ðp1 − p0Þ

�
;

fN ; p1g ¼ p0

�
1 −

l
2
p0 − lp1

�
: ð82Þ

The corresponding representation (choosing the ordinary
symplectic structure) of the boost is

7Notice that the diffeomorphisims that we are performing here
are transformations in the momentum space and not in spacetime.
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N ¼ p1x0 þ p0x1

− l
�
1

2
p0p1x0 þ p0p1x1 þ

1

2
p2
0x

1 −
p2
1x

0

2

�
: ð83Þ

Note that the prescription given in [5] assumes only a
Casimir as input to obtain the Finsler model. Applying
naively the momenta redefinition (81) to the action (29)
would lead to additional terms proportional to _xμ, corre-
sponding to nontrivial symplectic structure. Our aim is to
compare two different Finsler models and to study the

relation between the two, given a map between them on the
quantum-group side. Changing the symplectic structure
would correspond to a passive transformation, which would
only give trivial results.
The Finsler norm associated with the Casimir (80) was

found already in [5]:

FðnewÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

q
−
l
2
m

ð_x1Þ3
ð_x0Þ2 − ð_x1Þ2 : ð84Þ

From the norm, one gets the metric

gðnewÞμν ¼

0
B@ 1 − lmð_x1Þ3 ð_x0Þ2þ1

2
ð_x1Þ2

ðð_x0Þ2−ð_x1Þ2Þ52
3
2
lm ð_x0Þ3ð_x1Þ2

ðð_x0Þ2−ð_x1Þ2Þ52

3
2
lm ð_x0Þ3ð_x1Þ2

ðð_x0Þ2−ð_x1Þ2Þ52
−1 − lm_x1 3ð_x0Þ4−5

2
ð_x0Þ2ð_x1Þ2þð_x1Þ4

ðð_x0Þ2−ð_x1Þ2Þ52

1
CA: ð85Þ

The relation between momenta and velocities is

p0ð_xÞ ¼ m
_x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð_x0Þ2 − ð_x1Þ2
p

×

�
1þ lm

ð_x1Þ3
ðð_x0Þ2 − ð_x1Þ2Þ32

�
; ð86Þ

p1ð_xÞ ¼ −m
_x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð_x0Þ2 − ð_x1Þ2
p

×

�
1 −

1

2
lm_x1

ð_x1Þ2 − 3ð_x0Þ2
ðð_x0Þ2 − ð_x1Þ2Þ32

�
: ð87Þ

The Killing vectors of this metric are

ξμ ¼ ξμð0Þ þ lξμð1Þ: ð88Þ

With the zeroth order given as before by the Minkowski
spacetime Killing vector:

ξμð0Þ ¼
�
ax1 þ d0

ax0 þ d1

�
: ð89Þ

The first-order part of the Killing vectors is

ξμð1Þ ¼
� x1Dþ amð_x1Þ3ðx0G½1�ð_xÞ þ x1G½2�ð_xÞÞ þ B0

x0D − amð_x1Þ3x1G½3�ð_xÞ þ B1

�
;

ð90Þ

where D;B1; B0 are free functions of velocities and

G½1�ð_xÞ ¼
9

4

_x0 _x1

ðð_x0Þ2 − ð_x1Þ2Þ52 ; ð91Þ

G½2�ð_xÞ ¼
3

2

−4ð_x0Þ2 þ ð_x1Þ2
ðð_x0Þ2 − ð_x1Þ2Þ52 ; ð92Þ

G½3�ð_xÞ ¼
3

4

2ð_x0Þ2 þ ð_x1Þ2
ðð_x0Þ2 − ð_x1Þ2Þ52 : ð93Þ

The conserved charges associated with the family of
Killing vectors are found as

QðnewÞ ¼ pνð_xÞξν ¼
m

FðnewÞ g
ðnewÞ
μν _xμξν: ð94Þ

Note that the formal expression of the charge is the same as
the one used before in Sec. V, but the norm and the metric
(and, of course, the Killing vectors) are different functions
of the velocities than the ones of Sec. V.
The resulting family of charges is

QðnewÞ ¼ m
d0 _x0 − d1 _x1 − ax0 _x1 þ ax1 _x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð_x0Þ2 − ð_x1Þ2
p þ lm

	
D

_x0x1 − _x1x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p þ _x0B0 − _x1B1

ð_x0Þ2 − ð_x1Þ2

þmð_x1Þ2 d
0 _x0 _x1ðð_x0Þ2 − ð_x1Þ2Þ − 1

2
d1ð3ð_x0Þ2 − 4ð_x0Þ2ð_x1Þ2 þ ð_x1Þ4Þ

ðð_x0Þ2 − ð_x1Þ2Þ3

þ am_x1

4ðð_x0Þ2 − ð_x1Þ2Þ3 ð6ð_x
0Þ4 − 17ð_x0Þ2ð_x1Þ2 þ 2ð_x1Þ4Þð_x0x1 − _x1x0Þ



: ð95Þ
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We verify that this charge cannot reproduce the con-
served charges of κ Poincaré in the bi-cross-product basis.
Then, we will show that is does instead reproduce the
conserved charges in the appropriate basis (82).
Concerning the comparison with the bi-cross-product

basis, we proceed as in Sec. V C. The only difference is

the relation between the momenta and velocities that we
have to use in order to rewrite the representation of boosts
(67) and translations in terms of velocities. In fact, now the
relations to be used are (86) and (87) instead of (35) and (36).
Upon doing this, one gets the bi-cross-product-basis

charge represented in the new velocity space

Qκ ¼ d0
�

m_x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p þ l
m2 _x0ð_x1Þ3

ðð_x0Þ2 − ð_x1Þ2Þ2
�
þ d1

�
−

m_x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p þ lm2ð_x1Þ2 ð_x1Þ2 − 3ð_x0Þ2
2ðð_x0Þ2 − ð_x1Þ2Þ2

�

þ a

	
mð_x0x1 − _x1x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p þ lm2
x1ðð_x1Þ4 þ 2_x0ð_x1Þ3 þ ð_x0Þ2ð_x1Þ2 − 2ð_x0Þ4Þ þ x0ðð_x1Þ4 − 3ð_x0Þ2ð_x1Þ2Þ

2ðð_x0Þ2 − ð_x1Þ2Þ2


:

It is easy to check that there is no choice of the velocity-dependent functionsD;B0; B1 such that the charge (95) takes this
form (one would have to ask these functions to depend on coordinates as well in order to find a map between the two
families of charges, but this is incompatible with the Killing equations).
On the other hand, the conserved charge (95) reproduces the conserved charge of κ Poincaré in the basis of momenta that

is compatible with the Casimir we are considering. This charge is obtained by using the boost representation (83) and
mapping it (as well as the momenta themselves) to the velocity space using (86) and (87),

Q0
κ ¼ d0

�
m_x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð_x0Þ2 − ð_x1Þ2
p þ l

m2 _x0ð_x1Þ3
ðð_x0Þ2 − ð_x1Þ2Þ2

�
þ d1

�
−

m_x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p þ lm2ð_x1Þ2 ð_x1Þ2 − 3ð_x0Þ2
2ðð_x0Þ2 − ð_x1Þ2Þ2

�

þ am
_x0x1 − _x1x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p 	
1þ 1

2
lm_x0

ð_x1Þ2 − ð_x0Þ2 þ 2_x0 _x1

ðð_x0Þ2 − ð_x1Þ2Þ3=2


:

Asking that this charge is reproduced by the Finsler one, Eq. (95), amounts to fixing the free functions D;B0; B1 in the
following way:

D ¼ −am
2ð_x0Þ5 þ 2ð_x0Þ4 _x1 − 4ð_x0Þ3ð_x1Þ2 − 13ð_x0Þ2ð_x1Þ3 þ 2_x0ð_x1Þ4 þ 2ð_x1Þ5

4ðð_x0Þ2 − ð_x1Þ2Þ5=2 ;

B0 ¼ B1
_x1

_x0
: ð96Þ

As seen already in Sec. V C, in the case of the bi-
cross-product basis, it turns out that also in this case the
freedom provided by the free functions of velocity in (95)
corresponds to the freedom that we have to redefine the
boost in such a way that it still leaves the Casimir (80)
invariant.
Similar to what we did in Sec. V C, we write the most

generic form of the boost generator, which is again the one
in (74) and has a number of free parameters fα;…; ζg. The
requirement that the boost is compatible with the Casimir
(80) translates into the following conditions on the free
parameters:

β ¼ 0; ð97Þ

α − δ ¼ 0; ð98Þ

γ − ζ ¼ 3

2
; ð99Þ

η ¼ 0: ð100Þ

We then ask under which conditions (on the fα;…; ζg
parameters) is it possible to reproduce the boostlike charge
with the Finsler charge (95) for some choice of the free
functions of velocitiesD;B0; B1. And again, as it happened
in the case studied before, one has that it is indeed
possible to find the correspondence whenever the
conditions (97)–(100) are satisfied.

VII. ON THE INVARIANCE OF THE
LAGRANGIAN

Let us now discuss a potential problem formerly stressed
in [22] about the invariance of the Lagrangian linked to the
Finsler norm. The formalism we have described in this
paper permits us to develop a framework which is con-
sistent with deformed relativistic symmetries: in particular,
it allows us to derive equations of motion which are
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covariant with respect to these symmetries. One may then
be tempted to define the line element of the (Finslerian)
spacetime here constructed as dσ ¼ Ldτ, with L given by
(37), but this quantity is not invariant under the deformed
boost:

δNL ¼ fN ;Lg ¼ m
∂F
∂ _xμ fN ; _xμg

¼ m
gμν _xν

F
fN ; _xμg ¼ pμδN _xμ: ð101Þ

The last quantity in the above equation is generally non-
zero, as it can be shown using Eqs. (6), (30), and (31):

pμδN _xμ ¼ pμ
d
dτ

fN ; xμg ¼ l
2
_x1ðp2

1 þ 2p2
0Þ: ð102Þ

The fact that the Lagrangian of our theory is not invariant
under deformed boost is not, however, a problem, since
under these deformed transformations the Lagrangian only
changes by a total derivative:

pμδN _xμ ¼ d
dτ

ðpμδN xμÞ ¼ d
dτ

�∂L
∂ _xμ δN xμ

�
ð103Þ

(notice that we used the fact that _pμ ¼ 0, which follows
from the independence of the Lagrangian from coordinates
xα). This is why, despite the noninvariance of the
Lagrangian, the action is still invariant, and we are still
able to derive from it (using standard Euler-Lagrange
formalism) covariant equations of motion and worldlines.
So, from a physical point of view, the theory we are
studying is relativistic with respect to the deformed
symmetries we have considered.
The only issue that could be raised by the fact that the

Lagrangian is not invariant is the one mentioned at the
beginning of this section, concerning the definition of a
line element: we cannot define an invariant line element as
ds ¼ Ldτ in analogy with special relativity. However, we
will show that it is possible to redefine the Lagrangian in
such a way that it allows for the construction of an
invariant line element in the standard way. Indeed, it is
sufficient to add to the Lagrangian L terms whose
variation under a deformed boost transformation is the
same total derivative as the one generated by the
Lagrangian. First of all, let us notice that

�
N ;

l
2

m2 _x0

ð_x0Þ2 − ð_x1Þ2 ð_x
1Þ2

�
¼ −

l
2
_x1ðp2

1 þ 2p2
0Þ: ð104Þ

Consequently, if we recall the definitions of λð_xÞ param-
eter (34) and Finsler norm Fð_xÞ, we can realize that our
boundary terms are generated by

mfN ; 2mλð_xÞ − Fð_xÞg ¼
�
N ;

l
2

m2 _x0

ð_x0Þ2 − ð_x1Þ2 ð_x
1Þ2

�
¼ −pμδN _xμ: ð105Þ

Before we move on, let us notice that (105) tells us that the
λð_xÞ parameter is invariant under boost transformations
fN ; λð_xÞg ¼ 0, and we should remember this feature later
when we will discuss the line-element redefinition.
Another possibly interesting result is that, given

Eqs. (30) and (31), now that we know that the λ parameter
is invariant, we can find the relations

fN ; _x0g ¼ λð_xÞfN ; 2p0 − lp2
1g ¼ −_x1; ð106Þ

fN ; _x1g ¼ λð_xÞfN ;−2p1 − 2lp0p1g ¼ −_x0; ð107Þ

and then that Finsler’s _x coordinate closes a simple Lie
algebra (while momenta obey more complicated relations).
On the base of the just-derived results, we propose to

identify the invariant of our Lagrangian theory by sub-
tracting the aforementioned boundary terms to (37).
Indeed, using (102) and (105) one gets

δNL − pμδN _xμ ¼ δNL −
l
2
_x1ðp2

1 þ 2p2
0Þ

¼ δN ðLþmð2mλð_xÞ − Fð_xÞÞÞ
¼ δN ð2m2λð_xÞÞ: ð108Þ

Now, if we recall the λð_xÞ parameter definition (34)

λð_xÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p
m

þ l
2

_x0ð_x1Þ2
ð_x0Þ2 − ð_x1Þ2

≃ 1

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 −

�
1 − 2l

m_x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_x0Þ2 − ð_x1Þ2

p �
ð_x1Þ2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζμνð_xÞ_xμ _xν

p
2m

; ð109Þ

we can finally identify the expression of our invariant
Lagrangian (108) as

Linv ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζμνð_xÞ_xμ _xν

q
: ð110Þ

Here, ζμνð_xÞ is the inverse metric of de Sitter momentum
space defined in (15), written in terms of velocities by use
of Eqs. (35) and (36).
Notice that this Lagrangian cannot be directly related to a

proper Finsler norm, since the associated metric ζμνð_xÞ
does not satisfy the property in Eq. (24). Nevertheless, we
can use this Lagrangian to derive the equations of motion
for a particle. One gets again the geodesic equation (46),
where now the Christoffel symbols are computed using
ζμνð_xÞ. However, the difference between the equations of
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motion obtained using the two metrics gμν and ζμν can be
reabsorbed by changing the normalization of the affine
parameter τ, which indeed was fixed by gμν _xμ _xν ¼ 1 in one
case and ζμν _xμ _xν ¼ 1 in the other case. This can be shown
also by computing the worldlines: they are the same in the
two cases once one writes the coordinate velocity in terms
of momenta p instead of velocities _x. When the coordinate
velocity is written in terms of _x, the two worldlines have a
different form, since the definition of _x≡ dx

dτ also depends
on the normalization of the affine parameter.
Let us conclude this section with a brief summary about

the different roles of the two metrics g and ζ. It is known
[3,18–20] that the sorts of scenarios for DSR deformed
relativistic symmetries considered here imply nontrivial
properties of momentum space. In particular, the sym-
metries encoded in the κ-Poincaré group have been
described in terms of a curved momentum space with a
de Sitter metric, the metric we denoted here by ζμνðpÞ (see
the end of Sec. II). As mentioned at the end of Sec. IV B,
this metric allows us to derive the dispersion relation of a
particle whose symmetries are the ones of κ Poincaré by
computing the geodesic distance from the origin of
momentum space to the point p, where p is the momentum
of the particle. It was shown in [6,7] that one actually
obtains a dispersion relation which is a function of the one
we report in Eq. (7). The momentum-space metric allows us
to define an invariant momentum-space line element as

ds2p ¼ ζμνðpÞdpμdpν; ð111Þ

and its inverse allows us to define an invariant spacetime
line element, which is invariant under the κ-Poincaré
symmetries as shown earlier in this section8:

ds2 ¼ ζμνðpÞdxμdxν: ð112Þ

The definition of this momentum-space metric is made
easy by the fact that we are studying a case where spacetime
is flat.9 When going to the more general case where
curvature is present in both spacetime and momentum
space (indicating that the local symmetry group of the
geometry is a deformation of the Poincaré group), it is not
possible to separately describe spacetime and momentum
space, and one has to rely on a geometrical structure that
encodes at once the properties of the full phase space. In
light of what we have found in this work, we conjecture that

this structure should be provided by a Finsler metric.
Indeed, in this work we have shown that it is possible to
construct a Finsler metric compatible with the deformed
relativistic symmetries of κ Poincaré. While the metric ζ is
a metric on momentum space, the Finsler metric g is the
proper generalization of the spacetime metric we are used
to in the context of general relativity. The velocity depend-
ence of g encodes the nontrivial properties of spacetime
induced by the deformed symmetry group and allows us to
construct a geometry on the full phase space (it also
naturally allows for the introduction of spacetime curva-
ture). The metric gμν allows us to express the Casimir of the
deformed symmetries in very simple manner by use of its
inverse10:

CðpÞ ¼ gμνðx; pÞpμpν: ð113Þ

It also allows us to compute particles worldlines by the use
of the geodesic equation, despite the fact that the line
element one could naively build with this metric is not
invariant.

VIII. CONSERVATION LAWS IN INTERACTIONS

Until now, we have considered the Finsler geometry of a
noninteracting single particle. The introduction of inter-
actions goes beyond the scope of this work, but we can still
discuss what kinds of composition laws for momenta are
allowed within a given Finsler geometry. The issue is
nontrivial, as the composition law of momenta has to be
covariant under the deformed symmetries given by the
Killing vectors. This is already known in the framework of
κ Poincaré, where one has to introduce a deformed addition
rule, p ⊕ q, that has been shown to be related to the
coproduct of translation generators.
Here we will investigate which deformations of the

composition law are allowed within a given Finsler
geometry associated with a deformed dispersion relation.
In particular, we will concentrate on the case studied here in
Sec. IV, with the modified dispersion relation inspired by κ
Poincaré in the bi-cross-product basis. We have seen that
there exists a family of deformed boost that is compatible
with the modified dispersion relation, and this family can
be parametrized as in Eq. (77), which we rewrite here for
convenience:

N κ−compatible ¼ p1x0 þ p0x1 þ l
�
αp0p1x0 þ γðp0p1x1 þ p2

1x
0Þ þ ðα − 1Þp2

0x
1 −

1

2
p2
1x

1

�
: ð114Þ

Note that we have set A ¼ B ¼ 0 in the boost representation, as the terms they multiply have no role in boosting a
momentum.

10Again, we write here explicitly the possible x dependence of the metric to stress that it is defined on the full phase space.

9Also, the procedure described in this section to build an invariant line element relies on the flatness of spacetime.

8See, also, [23] for a more in-depth discussion of this line element.
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We parametrize the most generic first-order deformation
of the composition law as follows:

ðp ⊕ qÞ0 ¼ p0 þ q0 þ lðAp0q0 þ Bp1q1Þ; ð115Þ

ðp ⊕ qÞ1 ¼ p1 þ q1 þ lðCp1q0 þDp0q1Þ; ð116Þ

where the only conditions we asked for are that p ⊕ 0 ¼
0 ⊕ p ¼ p and that the vector indices are coherent.
We look for the constraints on A;B; C;D such that the

composition law is covariant under the action of the boost.
In order to ensure relativistic compatibility between

the boost and the composition law, we ask that if
ðp ⊕ qÞμ ¼ kμ, then

ðp ⊕ qÞ0μ
�¼ k0μ ≡ kμ þ ξfN κ−compatible; kμg
¼ ðp0 ⊕ q0Þμ ¼ ½ðpþ ξfN κ−compatible; pgÞ ⊕ ðqþ ξfN κ−compatible; qgÞ�μ

; ð117Þ

where ξ is the rapidity parameter.
The conditions we obtain are

γ ¼ 0; ð118Þ

A ¼ 0; ð119Þ

B ¼ 2α − 1; ð120Þ

C ¼ α − 1; ð121Þ

D ¼ α − 1; ð122Þ

which means that we have a one-to-one correspon-
dence between boosts and composition rules, and the

freedom in fixing the couple boost/composition rule,
given a dispersion relation, is encoded in only one free
parameter.
In the bi-cross-product basis of κ Poincaré, the compo-

sition rule reads

ðp ⊕ qÞ0 ¼ p0 þ q0; ð123Þ

ðp ⊕ qÞ1 ¼ p1 þ ð1 − lp0Þq1: ð124Þ

It has been shown [6,24] that this composition law is
covariant under the action of the κ-Poincaré group in a
peculiar way: given ðp ⊕ qÞμ ¼ kμ, then under an infini-
tesimal boost,

ðp ⊕ qÞ0μ
�¼ k0μ ≡ kμ þ ξfN κ; kμg
¼ ðp0 ⊕ q0Þμ ¼ ½ðpþ ξfN κ; pgÞ ⊕ ðqþ ξð1 − lp0ÞfN κ; qgÞ�μ

: ð125Þ

The nontrivial feature is the deformation of the rapidity associated with the second momentum in the sum
(ξ → ξð1 − lp0Þ), with the deformation depending on the first momentum. It has been discussed in previous works
[24,25] how this deformation does not spoil the relativistic properties of the composition law.
The possibility of having this peculiar transformation law for particles entering into a vertex, such that the rapidity with

which each particle is boosted depends on the momenta of the other particles in the vertex, allows for a widening of the
possible composition rules/deformed boosts that are compatible with a given deformed dispersion relation.
To show this, we generalize the covariance condition (117) to

ðp ⊕ qÞ0μ
�¼ k0μ ≡ kμ þ ξfN κ−compatible; kμg
¼ ðp0 ⊕ q0Þμ ¼ ½ðpþ ξ1fN κ−compatible; pgÞ ⊕ ðqþ ξ2fN κ−compatible; qgÞ�μ

; ð126Þ

where ξ1 ¼ ξð1þ lðf11q0 þ f12q1ÞÞ and ξ2 ¼ ξð1þ
lðf21p0 þ f22p1ÞÞ, with fij numerical coefficients.
The compatibility conditions we obtain are

f12 ¼ f22 ¼ γ; ð127Þ

A ¼ 0; ð128Þ

B ¼ 2α − 1 − f11 − f21; ð129Þ

C ¼ α − 1 − f21; ð130Þ

D ¼ α − 1 − f11: ð131Þ

So, we have a total of four free parameters. This means
that if we fix completely the form of the boost (three
parameters), we still have one free parameter left, which
represents a freedom in the choice of the composition rule.
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Note that it is still impossible to have a standard compo-
sition rule p ⊕ q ¼ pþ q.

IX. CONCLUSIONS AND OUTLOOK

In summary, we have shown that there is a well-defined
relationship between modified relativistic symmetries and
Finsler geometries. Starting from a dispersion relation which
is inspired by the Casimir of κ Poincaré in a given basis, we
calculated the correspondent Finsler geometry and showed
that the latter provides the same worldlines as in κ Poincaré.
Then, we considered the conserved charges associated with
isometries in the Finsler geometry and showed that there
exists one choice of the free parameters and functions in the
Killing-Finsler symmetries that reproduces the κ-Poincaré
conserved charges. Furthermore, we showed that the addi-
tional freedom provided by the free functions appearing in
the Finsler conserved charges mirrors the freedom that one
has to redefine the κ-Poincaré symmetry generators without
spoiling the invariance of the Casimir. While these results
were initially proven in a special basis of κ Poincaré (the so-
called bi-cross-product basis), we have seen that upon a
(nonlinear) redefinition of the translation generators in the
κ-Poincaré algebra, and, hence, upon the correspondent
change in the Casimir, the new Finsler geometry still allows
us to reproduce the features of κ Poincaré in this new basis
by recovering, in particular, the correct form of associated
conserved charges. We have also discussed how to redefine,
by a boundary term that leaves the physical quantities
unchanged, the Lagrangian so to have it conserved under
boosts. The geodesics can, in this case, be seen as those of an
auxiliary metric ζð_xÞ and are the same curves as those
derived from the Finsler geometry gð_xÞ upon a suitable
change of the normalization of the affine parameter. Finally,
we have elaborated on the possible generalization of the
framework to particles’ interactions.
We think that the above-mentioned results are clearly

suggestive of a deep link between deformed relativistic
groups and Finsler geometries, i.e., geometrical character-
izations of the phase-space structure. Onemight wonder how
this could be the case. While the present investigation falls
short of enlightening the physical reasons for this link, it is
perhaps possible to speculate how this might arise. A
special-relativistic structure is rooted in very basic assump-
tions about the structure of space and time (see, e.g., [26] for
a review of the axiomatic derivation of special relativity):
precausality (invariance of time ordering of colocal events in
any reference frame), the relativity principle (equivalence of
inertial reference frames), isotropy of space, and homo-
geneity of spacetime. Searching for possible UV departures
from this scheme without violation of the relativity principle
leaves substantially only the option to relax isotropy or
homogeneity. Isotropy-breaking relativity groups have been
already considered in the literature [27–29] and proven to be
described by Finslerian line elements (which are invariant
under symmetry groups with fewer generators than in special

relativity, at least in more than 1þ 1 dimensions).
Homogeneity departures are far less explored. However,
as noticed in [30], it is easy to see that relaxing homogeneity
of spacetime is tantamount to renouncing an operative
meaning of coordinates (in the sense that differences of
spatial and time coordinates are no more interpretable,
respectively, as lengths and durations) typical of a special-
relativistic framework. We conjecture that this breakdown of
the operative meaning of coordinates is at the root of the
necessity to describe physical phenomena in a full phase
space given that in this case velocities cannot be trivially
derived as a limiting procedure of the ratio of Δx=Δt. If this
conjecture is proven correct, the implications would be
striking as they would suggest that between our IR reality
and the UV full quantum-gravity regime (where a continu-
ous spacetime geometry can be completely absent), there
would generically lie a mesoscopic regime where a full-
fledged phase-space-based description of physical phenom-
ena is needed.
In this sense, the work performed here is susceptible to

interesting developments as it would naturally allow for
generalizations to curved spacetimes of previous DSR
scenarios investigations (in an alternative or together with
curved momentum-space structures), which might be
applied to long-standing problems in theoretical physics
(as, e.g., black hole physics). Also, it would be interesting to
study how in quantum-gravity approaches the spacetime
metric can acquire a dependence on the typical velocities or
momenta at short scales so to lead to the Finslerian structures
discussed here. We limit ourselves in noticing here that
renormalization group approaches applied to gravity [31]
seem to naturally lean towards these scenarios. We hope to
come back to this and other issues in future investigations.
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APPENDIX: DERIVATION OF KILLING
EQUATION IN FINSLER GEOMETRY

It is useful, in order to better understand the discussion
on symmetries, to derive explicitly the Killing equation in
Finsler geometry.
In Finsler spacetime, we can express the variation of the

coordinates xα along a vector field ξα as

ðx0Þα ¼ xα þ ξαδλ; ðA1Þ
where λ is the infinitesimal variation parameter. This
variation of xα reflects on _xα in the following way:

ð_xαÞ0 ¼ _xα þ ∂ξα
∂xβ

dxβ

dτ
δλ ¼ _xα þ ∂ξα

∂xβ _x
βδλ: ðA2Þ

The general variation of a vector field Xαðx; _xÞ will then be
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δXα ¼ ∂Xα

∂xβ ξ
βδλþ ∂Xα

∂ _xγ
∂ξγ
∂xβ _x

βδλ: ðA3Þ

As in general relativity, in Finsler geometry we can obtain
the Killing equation by imposing the line-element invari-
ance with respect to the variation along a vector field ξα:

δðds2Þ ¼ δðgμνdxμdxνÞ
¼ δðgμνÞdxμdxν þ gμνðδðdxμÞdxν þ dxμδðdxνÞÞ ¼ 0:

ðA4Þ

From (A3) we know that

δðgμνÞ ¼ ∂αgμνξαδλþ
∂gμν
∂ _xβ ∂αξ

β _xαδλ; ðA5Þ

while from (A1) we can obtain

δðdxαÞ ¼ dðδxαÞ ¼ dðξαδλÞ ¼ ∂βξ
αdxβδλ: ðA6Þ

Therefore, Eq. (A4) can be expressed as

δðds2Þ ¼
�
∂αgμνξα þ

∂gμν
∂ _xβ ∂αξ

β _xα
�
dxμdxν

þ gμνð∂βξ
μdxβdxν þ dxμ∂βξ

νdxβÞ ¼ 0: ðA7Þ

In the end, we find the generalized Killing equation we
used in (53):

∂αgμνξα þ gαν∂μξ
α þ gμα∂νξ

α þ ∂gμν
∂ _xβ ∂αξ

β _xα ¼ 0: ðA8Þ
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