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We present two new one-parameter families of scheme transformations and apply these to study the
scheme dependence of the infrared zero in the beta function of an asymptotically free non-Abelian gauge
theory up to four-loop order. Our results provide a further quantitative measure of this scheme dependence,
showing that for moderate values of the gauge coupling and the parameter specifying the scheme
transformation, this dependence is relatively mild. We also remark on a generalized multi-parameter family
of rational scheme transformations.
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I. INTRODUCTION

The dependence of the interaction coupling of a quantum
field theory on the Euclidean momentum scale, μ, where it
is measured, is of fundamental importance. This depend-
ence is described by the renormalization-group beta func-
tion of the theory [1]. In particular, it is of interest to study
the evolution of the running gauge coupling g≡ gðμÞ of an
asymptotically free gauge theory from the deep ultraviolet
(UV) region at large μ, where it is small, to the infrared (IR)
region at small μ. Let us consider such a theory (in d ¼ 4
spacetime dimensions) with a non-Abelian gauge group G
and Nf massless fermions in a given representation R of G.
If the beta function of this theory has a zero at a value αIR,
where α ¼ g2=ð4πÞ, then, as the scale μ decreases from
large values, the coupling evolves toward αIR, which is thus
an exact or approximate infrared fixed point (IRFP) of the
renormalization group.
The perturbative calculation of the value of αIR at l-loop

order is complicated by the property that the terms in the
beta function with l ≥ 3 depend on the scheme used for
the regularization and renormalization of the theory. The
presence of scheme dependence in higher-loop calculations
is, of course, a general property of quantum field theory;
here we focus on its effects on αIR. It is important to
determine how sensitively αIR depends on the scheme used
for its calculation. To do this, one can compute the beta
function in one scheme, then carry out a transformation to a
different scheme, and compare the respective values of the
IR zero of the beta functions in these schemes. A useful
general framework is provided by dimensional regulariza-
tion of the Feynman integrals involved in loop calculations
[2]. An early scheme used dimensional regularization
combined with minimal subtraction of the poles at d ¼ 4
in the Euler Γ functions resulting from the Feynman
integrals [3], and this was extended to the widely used
modified minimal subtraction (MS) scheme with the
subtraction of certain associated constants in the Taylor-
Laurent expansion of these Γ functions [4]. There has long

been interest in studying various scheme transformations to
reduce higher-order corrections in perturbative calculations
in quantum chromodyamics (QCD) (e.g., [5–7]). In QCD,
one studies the effect of applying these scheme trans-
formations in the vicinity of the UV zero of the beta
function at α ¼ 0, the UV fixed point (UVFP) of QCD.
The situation is significantly different when one studies

an IR zero of the beta function away from the origin, α ¼ 0.
References [8,9] pointed out that there is much less
freedom in constructing and applying acceptable scheme
transformations at an IR zero than there is at the UVFP at
α ¼ 0 and gave examples of several scheme transforma-
tions that are perfectly acceptable in the vicinity of the
UVFP at α ¼ 0 in an asymptotically free theory but exhibit
unphysical, pathological properties, when applied at a
generic IRFP away from the origin. Further studies of
scheme transformations and their application to an IRFP
and IR properties of an asymptotically free gauge theory
have been carried out in [10–14]. In addition to a variety
of transformations to different schemes starting from the
MS scheme [4] studied in [8–11], these have included
comparisons of results for the IRFP and IR properties in the
MS scheme with results obtained with the modified
regularization-invariant, RI0 scheme, and the minimal
momentum (MOM) subtraction scheme [12–14].
In this paper we will construct and study two new one-

parameter families of scheme transformations, which we
denote as SLr

and SQr
, where the subscript r is the

respective parameter on which each transformation
depends. We show that these scheme transformations
satisfy the rather restrictive set of conditions set forth in
[8,9] to be physically acceptable at an IR zero of the beta
function at moderate coupling. Having done this, we then
apply them to study further the sensitivity of the IR zero of
the l-loop beta function of asymptotically free vectorial
non-Abelian gauge theories. Our results provide a further
quantitative measure of the scheme dependence of the value
of an IRFP and show that for moderate values of αIR, as
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calculated at the l-loop level with l up to four loops, this
dependence is relatively mild.
This paper is organized as follows. In Sec. II we discuss

some relevant background and the basic properties of
scheme transformations. In Sec. III we present a new
one-parameter family of scheme transformations denoted
SLr

and apply it to analyze the scheme dependence of the IR
zero of the beta function in an asymptotically free non-
Abelian gauge theory up to four-loop order. In Sec. IV we
introduce a general class of multi-parameter rational
scheme transformations, denoted S½p;q�, and in Sec. V we
analyze a one-parameter family that is a member of this
class, namely S½0;1� ≡ SQr

, and again apply this to study the
scheme dependence of an IR zero of an asymptotically free
gauge theory. Section VI contains a comparison of some
general features of these scheme transformations with the
Sshr scheme transformations previously studied in [8–11]
involving a sinh transformation function. Some remarks on
other S½p;q� families of scheme transformations are given in
Sec. VII. Section VIII contains some remarks on IR-free
theories. Our conclusions are given in Sec. IX. Certain
auxiliary results are listed in an Appendix.

II. BACKGROUND AND METHODS

A. Beta function

In this section we discuss some relevant background. We
define aðμÞ ¼ a as

a≡ g2

16π2
¼ α

4π
; ð2:1Þ

where here and below, the argument μ will often be
suppressed in the notation. The beta function is βg ¼
dg=dt or equivalently,

βα ≡ dα
dt

¼ g
2π

βg; ð2:2Þ

where dt ¼ d ln μ. The function βα has the series expansion

βα ¼ −2α
X∞
l¼1

blal ¼ −2α
X∞
l¼1

b̄lαl; ð2:3Þ

where b̄l ¼ bl=ð4πÞl. The n-loop (nl) beta function,
denoted βα;nl, is obtained from Eq. (2.3) by replacing
the upper limit on the l loop summation by n instead of∞.
The bl for l ¼ 1; 2 are independent of the scheme used for
regularization and renormalization, while bl with l ≥ 3 are
scheme dependent [15,16]. For a non-Abelian gauge
theory, the coefficients b1 and b2 were calculated in [17]
and [18], while b3 and b4 were calculated in theMS scheme
in [19] and [20]. We denote the IR zero of the n-loop beta
function βα;nl as αIR;nl ¼ 4πaIR;nl.

B. Scheme transformations

A scheme transformation can be expressed as a mapping
between α and α0 or equivalently, between a and a0, namely

a ¼ a0fða0Þ: ð2:4Þ

In the limit where a and a0 vanish, the theory becomes free,
so a scheme transformation has no effect. This implies the
condition fð0Þ ¼ 1. The functions fða0Þ that we consider
have Taylor series expansions about a ¼ a0 ¼ 0 of the form

fða0Þ ¼ 1þ
Xsmax

s¼1

ksða0Þs; ð2:5Þ

where the ks are constants, and smax may be finite or
infinite. Given the form (2.5), it follows that the Jacobian

J ¼ da
da0

¼ dα
dα0

ð2:6Þ

has the series expansion

J ¼ 1þ
Xsmax

s¼1

ðsþ 1Þksða0Þs ð2:7Þ

and thus satisfies

J ¼ 1 at a ¼ a0 ¼ 0: ð2:8Þ

The beta function in the transformed scheme is

βα0 ≡ dα0

dt
¼ dα0

dα
dα
dt

¼ J−1βα; ð2:9Þ

with the series expansion

βα0 ¼ −2α0
X∞
l¼1

b0lða0Þl ¼ −2α0
X∞
l¼1

b̄0lðα0Þl; ð2:10Þ

where b̄0l ¼ b0l=ð4πÞl. Since Eqs. (2.9) and (2.10) define
the same function, one can solve for the b0l in terms of the
bl and ks. This yields the results b01 ¼ b1 and b02 ¼ b2. In
[8,9], explicit expressions were calculated for higher-loop
b0l with l ≥ 3 in terms of the bl and ks. In general, it was
shown that the coefficient b0l with l ≥ 3 in the transformed
scheme is a linear combination of bn with 1 ≤ n ≤ l with
coefficients that are algebraic functions of the various ks.
Some relevant results are given in the Appendix.
Given that the bl for l ≥ 3 are scheme-dependent, one

may ask whether it is possible to transform to a scheme in
which the b0l are all zero for l ≥ 3, i.e., a scheme in which
the two-loop β function is exact. Near the UV fixed point at
α ¼ 0, this is possible, as emphasized by ’t Hooft [21].
The resultant scheme, in which the beta function truncates
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at two-loop order is commonly called the ’t Hooft
scheme [22].
Reference [9] presented an explicit scheme transforma-

tion which, starting from an arbitrary scheme, transforms to
the ’t Hooft scheme. This necessarily has smax ¼ ∞.
However, Refs. [9,10] also noted that although this scheme
transformation is acceptable in the vicinity of a zero of the
beta function at α ¼ 0 (UV zero for an asymptotically free
theory or IR zero for an infrared-free theory), it cannot, in
general, be applied to a generic zero of the beta function (IR
zero of an asymptotically free theory or UV zero of an
infrared-free theory) away from α ¼ 0. Reference [11]
constructed and studied a one-parameter class of scheme
transformations, denoted SR;m;k1 having smax ¼ m ≥ 2,
with the property that an SR;m;k1 scheme transformation
eliminates the l-loop terms in the beta function of a gauge
theory from loop order l ¼ 3 to order l ¼ mþ 1, inclusive
and can be applied not only at a zero of the beta function at
α ¼ 0 but also for a zero of the beta function away
from α ¼ 0.
In order to be physically acceptable, a scheme trans-

formation must satisfy several conditions, as was discussed
in [9]. We state these for an asymptotically free gauge
theory: (i) condition C1: the scheme transformation must
map a real positive α to a real positive α0; (ii) C2: the
scheme transformation should not map a moderate value of
α, for which perturbation theory may be reliable, to a value
of α0 that is so large that perturbation theory is unreliable, or
vice versa; (iii) C3: the Jacobian J should not vanish (or
diverge) or else the transformation would be singular; and
(iv) C4: since the existence of an IR zero of β is a scheme-
independent property of a theory, a scheme transformation
must satisfy the condition that βα has an IR zero if and only
if βα0 has an IR zero. Since J ¼ 1 for a ¼ a0 ¼ 0, a
corollary of condition C3 is that J must be positive.
Since one can define a transformation from α to α0 and
the inverse from α0 to α, these conditions apply going in
both directions. In passing, we note that with obvious
changes (IR zero → possible UV zero in condition C4),
these conditions also apply to an infrared-free gauge theory
such as U(1) and a non-Abelian gauge theory with
sufficiently many fermions, as discussed in [23], and to
an (infrared-free) scalar theory, such as an OðNÞ λj~ϕj4
theory, as analyzed in [24].
These four conditions C1-C4 can always be satisfied by

scheme transformations used to study the UV fixed point in
an asymptotically free theory. However, as was pointed out
in [8] and shown with a number of examples in [8–11], they
are not automatically satisfied, and indeed, are quite
restrictive conditions when one applies the scheme trans-
formation at a zero of the beta function away from the
origin, α ¼ 0, i.e., at an IR zero of the beta function for an
asymptotically free theory or a possible UV zero of the beta
function for an infrared-free theory. For example, recall the
scheme transformation denoted Sthr [8,9], defined by

a ¼ ð1=rÞ tanhðra0Þ, depending on a parameter r. Since
this transformation is an even function of r, one may take
r ≥ 0 without loss of generality. The Sthr transformation
is well-behaved near the UVFP at a ¼ a0 ¼ 0 in an
asymptotically free theory, but is not acceptable at a
generic IR zero of the beta function. The reason is evident
from its inverse, a0 ¼ ð2rÞ−1 ln½ð1þ raÞ=ð1 − raÞ�. As ra
approaches 1 from below, a0 → ∞, and for ra > 1, a0 is
complex. Hence, this transformation violates conditions
C1, C2, and C4. For example, for r ¼ 4π, this scheme
transformation is α ¼ tanhα0 and the inverse is α0 ¼
ð1=2Þ ln½ð1þ αÞ=ð1 − αÞ�, with the pathologies occurring
as α approaches 1 from below. For r ¼ 8π, the pathologies
occur as α approaches the value 0.5 from below. As this
example and the others analyzed in [8–11] show, the
construction and application of a physically acceptable
scheme transformation at a zero of the beta function away
from the origin is considerably more difficult than at a zero
of the beta function at the origin, as in scheme trans-
formations used in QCD [7].
In the following, to avoid overly complicated notation,

we will use the generic notation α0 for the result of the
application of each scheme transformation to an initial α,
with it being understood that this refers to the specific
transformation under consideration. Where it is necessary
for clarity, we will use a subscript to identify the specific
scheme S being discussed.

C. UV to IR evolution of non-Abelian gauge theories

Since we will apply our new scheme transformations to
study the scheme dependence of an IR zero of the beta
function for a vectorial, asymptotically free (non-Abelian)
gauge theory, it is appropriate to review briefly some of the
properties of this theory. Let us consider such a theory with
gauge group G and Nf massless fermions transforming
according to a representation R of G. Our assumption of
massless fermions does not entail any significant loss of
generality, since if a given fermion had a mass m, then in
the UV to IR evolution of the theory, as the reference
Euclidean momentum scale μ decreased past m, one would
integrate out this fermion to construct the low-energy
effective field theory applicable at scales μ < m, so the
further evolution into the IR would be essentially equiv-
alent to a theory without this massive fermion present. With
the minus sign extracted in Eq. (2.3), the asymptotic
freedom of the theory means that the one-loop coefficient
b1 in Eq. (2.3) is positive. As Nf increases, b1 decreases
and eventually would vanish at Nf;b1z ¼ 11CA=ð4TfÞ
[25,26]. Thus, the asymptotic freedom yields an upper
bound on Nf, namely, Nf < Nf;b1z.
For small Nf, the two-loop coefficient b2 has the same

positive sign as b1, so the (perturbatively calculated) two-
loop beta function, βα;2l, has no IR zero. The coefficient b2
decreases as Nf increases and passes through zero to
negative values as Nf ascends through the value
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Nf;b2z ¼
17C2

A

2Tfð5CA þ 3CfÞ
: ð2:11Þ

Since Nf;b2z < Nf;b1z, there is an interval of values of Nf,
denoted I, given by

I∶ Nf;b2z < Nf < Nf;b1z; ð2:12Þ

in which the two-loop beta function has an IR zero. This
occurs at aIR;2l ¼ −b1=b2, i.e.

αIR;2l ¼ −
4πb1
b2

; ð2:13Þ

which is physical for b2 < 0 [18,27]. The scheme inde-
pendence of b1 and b2 implies that αIR;2l is also scheme-
independent. Since an IR zero of βα;nl for n ≥ 3 depends on
the scheme S used for the computation, we denote it here
as αIR;nl;S.
Let us assumeNf ∈ I, so that βα;2l has an IR zero, αIR;2l.

IfNf is close toNf;b1z, then, as noted, αIR;2l is small. In this
case, one expects that the UV to IR evolution of the theory
leads to a deconfined non-Abelian Coulomb phase without
any spontaneous chiral symmetry breaking [27]. In this
case, the IR zero is an exact IRFP. As Nf decreases, αIR;2l
increases. If αIR;2l is sufficiently large, the UV to IR
evolution generically leads to the formation of bilinear
fermion condensates in the most attractive channel, with
attendant spontaneous chiral symmetry breaking and
dynamical generation of effective masses for the fermions
involved. In the ladder approximation to the Schwinger-
Dyson equation for the fermion propagator, this occurs as α
increases through a value αcr given by [28] αcr ¼ π=ð3CfÞ.
Taking account of the intrinsic uncertainties involved in the
strongly coupled physics of fermion condensate formation,
one may infer more generally that the actual critical value
of α is expected to satisfy αcrCf ∼Oð1Þ. The fermions
involved in the condensate gain dynamical masses of order
the chiral-symmetry-breaking scale and are integrated out
of the low-energy effective field theory below this scale.
Thus, the beta function changes to one with the effective
Nf ¼ 0, which does not have an IR zero, and hence the
gauge coupling increases, eventually exceeding the range
where perturbative calculations are applicable. In this case,
the IR zero is only an approximate IRFP of the renorm-
alization group. One defines a critical value, Nf;cr, that
separates the two types of UV to IR evolution; for
Nf > Nf;cr, this evolution is to a massless non-Abelian
Coulomb phase, while for Nf < Nf;cr, it involves the
above-mentioned chiral symmetry breaking.
As Nf decreases toward Nf;cr, the resultant IR zero

occurs at moderately strong coupling, and consequently it
is necessary to go beyond the two-loop level and calculate
αIR;nl at higher loop order [29]. This was done up to four-
loop order for αIR;nl and for the anomalous dimension, γm,

of the fermion bilinear for a general gauge group and
fermion representation in [30,31]. For fermions in the
fundamental representation, it was found that, in the MS
scheme, relative to the (scheme-independent) two-loop
value, αIR;2l,

αIR;3l;MS < αIR;4l;MS < αIR;2l: ð2:14Þ

The shifts in the value of the IR zero with ascending loop
order were found to become smaller as Nf approaches
Nf;b1z. Comparisons were made with the extensive lattice
studies of this physics for various gauge groups and
fermion representations [32]. Further higher-loop results
on structural properties of β and application to the IRFP
were calculated in [33,34]. Because the coefficients bl for
l ≥ 3 are scheme-dependent, these higher-loop calcula-
tions naturally led to the study of scheme-dependence in
[8–14]. In the region of Nf slightly less than Nf;cr, where
the theory confines but behaves in a quasi-scale-invariant
manner over an extended interval in μ, some insight has
been gained from continuum studies of the changes in the
spectrum of gauge-singlet hadrons as compared with the
spectrum in a QCD-like theory [28,35]. Intensive research
on this region exhibiting quasi-scale-invariant behavior has
also considerably deepened one’s knowledge of this phys-
ics [32].
Let us consider a well-behaved (family of) scheme

transformation(s) Sfrg where in this paragraph, frg sym-
bolizes a set of one or more parameters, such that Sf0g is the
identity. It follows that if one applies the transformation
Sfrg to the MS scheme, then, for a given loop order n,

lim
frg→f0g

α0IR;nl;Sfrg ¼ αIR;nl;MS: ð2:15Þ

Furthermore, since the IR zero in βα;nl approaches zero as
Nf approaches Nf;b1z from below, one has the formal result
that, with Nf extended from a nonnegative integer variable
to a nonnegative real variable,

lim
Nf↗Nf;b1z

αIR;nl;Sfrg ¼ lim
Nf↗Nf;b1z

αIR;nl;MS ¼ 0: ð2:16Þ

Moreover, if the set of parameters frg specifying the
scheme transformation is such that this transformation is
sufficiently close to the identity, then it preserves the
relative order of the values of the IR zeros of the n-loop
beta function. We recall that for fermions in the funda-
mental representation, in the MS scheme, the three-loop
and four-loop values of the IR zero are in the order given by
Eq. (2.14) above.

III. THE SLr
SCHEME TRANSFORMATION

Here we introduce and study a scheme transformation,
denoted SLr

, where L stands for logarithm and r for the
parameter on which a transformation in this family
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depends. This is thus actually a one-parameter family of
scheme transformations. We show that the SLr

scheme
transformation satisfies the necessary conditions to be
acceptable at a zero of the beta function away from the
origin, for a reasonable range of jrj, and we then apply it to
the calculation, at higher-loop order, of an IR zero of the
beta function for an asymptotically free non-Abelian gauge
theory. This calculation provides a measure of the scheme
dependence of the value of this IR zero.
The SLr

scheme transformation is defined as

SLr
∶ a ¼ lnð1þ ra0Þ

r
; ð3:1Þ

where r is a (real) parameter. Writing Eq. (3.1) in the form
of Eq. (2.4), the transformation function is

SLr
∶ fða0Þ ¼ lnð1þ ra0Þ

ra0
: ð3:2Þ

This transformation function satisfies

lim
a0→0

fða0Þ ¼ 1; ð3:3Þ

in accordance with the requirement that fð0Þ ¼ 1. Note
also that

lim
r→0

fða0Þ ¼ 1; ð3:4Þ

where the limit may be taken through either positive or
negative values of r. The scheme transformation (3.1) has
the inverse

a0 ¼ era − 1

r
: ð3:5Þ

The Jacobian J ¼ da=da0 is

J ¼ 1

1þ ra0
¼ e−ra: ð3:6Þ

The transformation function fða0Þ has the Taylor series
expansion

fða0Þ ¼ 1þ
X∞
s¼1

ð−ra0Þs
sþ 1

; ð3:7Þ

so, in the notation of Eq. (2.5), the expansion coefficients
are

ks ¼
ð−rÞs
sþ 1

: ð3:8Þ

Thus, for small jrja0,

a ¼ a0
�
1 −

ra0

2
þOððra0Þ2Þ

�
: ð3:9Þ

It follows that with the application of the SLr
scheme

transformation,

SLr
∶ a0 > a if r > 0

a0 < a if r < 0: ð3:10Þ

The requirement that the right-hand side of Eq. (3.1) be
real implies that the argument of the log must be positive,
which, in turn, yields the formal lower bound on this
parameter

r > −
1

a0
: ð3:11Þ

This is also required by the condition C3, that the Jacobian
must be (finite) and positive. If r > 0, this inequality is
obviously satisfied, since a and a0 are positive. Let us
then consider negative r. Substituting Eq. (3.5), the
inequality (3.11) becomes r > r=ð1 − eraÞ. Since we
have restricted to negative r, this can be rewritten as
−jrj > −jrj=ð1 − e−jrjaÞ, i.e., 1 < 1=ð1 − e−jrjaÞ, which is
always satisfied. Thus, r may be positive or negative, and
the actual range of r is determined by the conditions C1 and
C2, that given a value of α ¼ 4πa for which perturbative
calculations are reasonably reliable, the same should be true
of α0 ¼ 4πa0. This will be discussed further below.
Substituting the result (3.8) for ks into the general

expressions for the b0l from [9], we obtain

b03 ¼ b3 −
r
2
b2 −

r2

12
b1; ð3:12Þ

b04 ¼ b4 − rb3 þ
r2

4
b2 þ

r3

12
b1; ð3:13Þ

b05 ¼ b5 −
3r
4
b4 þ

5r2

6
b3 −

r3

8
b2 −

13r4

180
b1; ð3:14Þ

b06 ¼ b6 − 2rb5 þ
5r2

3
b4 −

2r3

3
b3 þ

7r4

120
b2 þ

11r5

180
b1;

ð3:15Þ

and so forth for the b0l with l ≥ 7.
We next apply this SLr

scheme transformation to the beta
function, in the MS scheme, of an asymptotically free
gauge theory. We take the gauge group to be G ¼ SUðNÞ.
Since the bl have only been calculated up to l ¼ 4 loops in
the MS scheme, we will only need the results above for b03
and b04. For Nf ∈ I, so the two-loop β function has an IR
zero, we then calculate the resultant IR zero in βα0 at the
three- and four-loop order. We have carried out these
calculations with a range of values of N and r. For Nf ∈
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I and various values of r, we list the results for N ¼ 3, i.e.,
G ¼ SUð3Þ, in Table I for the zero of the three-loop beta
function and in Table II for the zero of the four-loop
beta function. We denote the IR zero of the n-loop beta
function in the transformed scheme, βα0;nl, as α0IR;nl≡
α0IR;nl;SLr , and, to save space in the tables we further
shorten this to α0IR;nl;r. Here and below, for this SU(3)
theory, the lower end of the interval I, namely N ¼ Nf;b2z,
is at N ¼ 8.05 [26], so, for physical, integral values of Nf,
it is Nf ¼ 9. The lowest value we show in Table I and the
later tables is Nf ¼ 10, because for Nf ¼ 9, αIR;2l is too
large for the perturbative methods that we use to be
reliable. Our results for N ¼ 2, 4, and other values are
similar, so the N ¼ 3, i.e., SU(3) results displayed in
Tables I and II will be sufficient for our discussion here.
The range of r for which we list results in these tables is
−3 ≤ r ≤ 3. This range evidently satisfies the conditions
C1-C4. For this range, the SLr

scheme transformation
provides a useful quantitative measure of the scheme
dependence of the IR zero in the beta function for this
theory. Of course, if one were to increase the magnitude of
jrj to excessively large values, with either sign of r, this
scheme transformation would not be useful, because it
would violate conditions C1 and C2. For example, in the
SU(3) theory with the illustrative value Nf ¼ 12, as one
increases r beyond the upper end of the range that we

show, for the values r ¼ 4, 5, 6, 7, one gets the four-loop
result αIR;4l;SLr equal to 0.529, 0.550, 0.578, 0.618. But for
r ¼ 8, the transformation yields a complex, unphysical
result for αIR;4l;SLr . Similarly, for this Nf ¼ 12 case, as one
decreases r below the lowest negative value, r ¼ −3, the
solution for αIR;4l;SLr decreases smoothly to 0.390 at
r ¼ −10, but becomes complex for r ¼ −11. The resultant
restriction on the range of the parameter r is generic.
Thus, as was discussed before in [8–11], in applying
scheme transformations, one must necessarily restrict
the form of the transformation so as to satisfy the
conditions C1-C4.
We also observe the following additional general proper-

ties in our calculations of α0IR;nl;SLr . First, it follows from
(2.15) together with the fact that Eq. (3.1) is a continuous
transformation, that for small jrj, the relative order of the
values of the n-loop IR zeros of βα0 in the transformed
scheme are the same as those in the original MS scheme, as
given in (2.14). This is evident from the illustrative N ¼ 3
results given in Tables I and II. In accord with (2.16), the
shifts of the value of the IR zero as a function of loop order
are larger for smaller Nf and get smaller as Nf
approaches Nf;b1z.
Second, for a given N, Nf ∈ I, loop order n ¼ 3 or

n ¼ 4, and r values for which the SLr
transformation

satisfies the conditions C1-C4,

TABLE I. Values of the IR zero, α0IR;3l;SLr , of the three-loop beta function βα0;3l obtained by applying the SLr
scheme transformation to

the three-loop beta function in the MS scheme, for an SU(3) gauge theory with Nf fermions in the fundamental representation. For
compact notation, we set α0IR;3l;SLr ≡ α0IR;3l;r in the table. For each Nf, we list these values as a function of r for r from r ¼ −3 to r ¼ 3

in steps of 1. For r ¼ 0, α0IR;3l;SLr ¼ αIR;3l;MS. We also list the (scheme-independent) two-loop IR zero of the beta function, αIR;2l.

Nf αIR;2l α0IR;3l;r¼−3 α0IR;3l;r¼−2 α0IR;3l;r¼−1 αIR;3l;MS α0IR;3l;r¼1 α0IR;3l;r¼2 α0IR;3l;r¼3

10 2.21 0.749 0.754 0.759 0.764 0.769 0.774 0.778
11 1.23 0.566 0.570 0.574 0.578 0.583 0.587 0.591
12 0.754 0.426 0.429 0.432 0.435 0.438 0.441 0.444
13 0.468 0.311 0.313 0.315 0.317 0.319 0.321 0.323
14 0.278 0.211 0.212 0.213 0.2145 0.216 0.217 0.218
15 0.143 0.122 0.122 0.123 0.123 0.124 0.124 0.125
16 0.0416 0.0396 0.0396 0.0397 0.0397 0.0398 0.0398 0.0399

TABLE II. Values of the IR zero, α0IR;4l;SLr , of the four-loop beta function βα0;4l obtained by applying the SLr
scheme transformation to

the four-loop beta function in the MS scheme, for an SU(3) gauge theory with Nf fermions in the fundamental representation. For
compact notation, we set α0IR;4l;SLr ≡ α0IR;4l;r in the table. For each Nf, we list these values as a function of r for r from r ¼ −3 to r ¼ 3

in steps of 1. For r ¼ 0, α0IR;4l;SLr ¼ αIR;4l;MS. We also list αIR;2l and αIR;3l;MS.

Nf αIR;2l αIR;3l;MS α0IR;4l;r¼−3 α0IR;4l;r¼−2 α0IR;4l;r¼−1 αIR;4l;M̄S α0IR;4l;r¼1 α0IR;4l;r¼2 α0IR;4l;r¼3

10 2.21 0.764 0.734 0.760 0.785 0.815 0.851 0.895 0.956
11 1.23 0.578 0.576 0.591 0.607 0.626 0.648 0.673 0.705
12 0.754 0.435 0.441 0.450 0.460 0.470 0.482 0.496 0.511
13 0.468 0.317 0.322 0.327 0.332 0.337 0.343 0.349 0.356
14 0.278 0.2145 0.217 0.219 0.221 0.224 0.226 0.228 0.231
15 0.143 0.123 0.124 0.124 0.125 0.126 0.126 0.127 0.128
16 0.0416 0.0397 0.0396 0.0397 0.0398 0.0398 0.0399 0.0400 0.0400
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α0IR;nl;SLr is an increasing function of r: ð3:16Þ

This second property, in conjunction with the general
property (2.15), implies that, for a given N, Nf ∈ I, and r,

α0IR;nl;SLr > αIR;nl;M̄S if r > 0 and

α0IR;nl;SLr < αIR;nl;M̄S if r < 0: ð3:17Þ

This holds for arbitrary loop order n and, in particular, for
the loop orders n ¼ 3 and n ¼ 4 for which we have done
calculations using the knownMS beta function coefficients.
The result (3.17) is evident in the illustrative N ¼ 3 results
given in Tables I and II. In accord with (2.16), the shifts of
the value of the IR zero as a function of jrj become quite
small as Nf approaches Nf;b1z from below. In this region,
these shifts in the position of the IR zero of the l-loop beta
function in the transformed scheme can be sufficiently
small that the entries may coincide to the given number of
significant figures displayed in the tables.

IV. THE RATIONAL SCHEME
TRANSFORMATION S½p;q�

In [8–11] a number of scheme transformations were
studied for which the transformation function fða0Þ has the
form (2.5) with finite smax, i.e., is a (finite) polynomial in a0.
One way that it is possible to generalize these is to make
fða0Þ a rational function of a0, i.e.,

a ¼ a0fða0Þ½p;q� ð4:1Þ

with

S½p;q�∶ fða0Þ½p;q� ¼
N ða0Þ
Dða0Þ ; ð4:2Þ

where the numerator and denominator functionsN ða0Þ and
Dða0Þ are polynomials of respective finite degrees p and q
in a0:

N ða0Þ ¼
Xp
i¼0

uiða0Þi with u0 ¼ 1 ð4:3Þ

and

Dða0Þ ¼
Xq
j¼0

vjða0Þj with v0 ¼ 1: ð4:4Þ

The restrictions that u0 ¼ v0 ¼ 1 are imposed so that fða0Þ
satisfies the necessary condition that fð0Þ ¼ 1. Thus, a
general S½p;q� scheme transformation depends on the pþ q
parameters ui, i ¼ 1;…; p and vj, j ¼ 1;…; q. As indi-
cated, we label this class of scheme transformations as
S½p;q�, with the dependence on the coefficients ui and vj

kept implicit. If q ¼ 0, then this gives a Taylor series
expansion (2.5) of fða0Þ½p;q� with smax ¼ p, while if q ≥ 1,
then smax ¼ ∞.
We note that, as one may recall from the theory of Padé

approximants, for a given series expansion (2.5) calculated
to a given finite order sh, it is possible to construct a set of
rational functions fða0Þ of the form (4.2) whose Taylor
series expansion coefficients match the given set ks,
s ¼ 1;…; sh. Viewed the other way, if one starts with a
set of rational functions of the form (4.2), one knows that
certain subsets of these can be chosen to yield the same
Taylor series expansion to a given order sh.
The scheme transformation function S½p;q� introduces p

zeros and q poles, so a necessary requirement is that one
must choose the coefficients ui with i ¼ 1;…; p and vj
with j ¼ 1;…; q such that the zeros and poles occur away
from the relevant physical region in a. Obviously, scheme
transformations with polynomial transformation functions
fða0Þ are special cases of S½p;q� with q ¼ 0. Thus, the
scheme transformation S1 studied in [8,9] and [11] is a
special case of S½p;q� with ½p; q� ¼ ½1; 0�; the S2 and S3
transformations in [8–10] are special cases of S½p;q� with
½p; q� ¼ ½2; 0� and ½p; q� ¼ ½3; 0�, respectively; and the SR;m
and SR;m;k1 transformations studied in [10,11] are special
cases of S½p;q� with ½p; q� ¼ ½m; 0�. We proceed in the next
section to study the simplest member of the class of S½p;q�
scheme transformations with q ≠ 0, namely the one
with ½p; q� ¼ ½0; 1�.

V. THE SQr
SCHEME TRANSFORMATION

In this section we introduce and apply a scheme
transformation that we call SQr

, defined as S½p;q� with
½p; q� ¼ ½0; 1�,

SQr
≡ S½0;1� with v1 ¼ −r: ð5:1Þ

Thus, explicitly,

SQr
∶ a ¼ a0

1 − ra0
; ð5:2Þ

where r is a (real) parameter, whose allowed range will be
determined below. As before, we show this satisfies the
necessary conditions to be acceptable at a zero of the beta
function away from the origin for a reasonable range of jrj,
and we then apply it to assess the scheme dependence of the
IR zero in the beta function of an asymptotically free non-
Abelian gauge theory at higher loop order. The trans-
formation function corresponding to (5.2) is

SQr
∶ fða0Þ ¼ 1

1 − ra0
: ð5:3Þ

Clearly, fða0Þ ¼ 1 for a0 ¼ 0 and separately for r ¼ 0. The
inverse of Eq. (5.2) is
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a0 ¼ a
1þ ra

: ð5:4Þ

The Jacobian J ¼ da=da0 is

J ¼ 1

ð1 − ra0Þ2 ¼ ð1þ raÞ2: ð5:5Þ

The transformation function has the Taylor series
expansion

fða0Þ ¼ 1þ
X∞
s¼1

ðra0Þs; ð5:6Þ

so, in the notation of Eq. (2.5), the expansion coefficients
are

ks ¼ rs: ð5:7Þ

Thus, for small jrja0,

a ¼ a0½1þ ra0 þOððra0Þ2Þ�: ð5:8Þ

It follows that after application of the SQr
scheme trans-

formation,

SQr
∶ a0 < a if r > 0

a0 > a if r < 0: ð5:9Þ

The condition C1 requires that the denominator of the
right-hand side of Eqs. (5.4) be finite and positive, which
implies that the (real) parameter r is bounded below
according to

r > −
1

a
: ð5:10Þ

Clearly, in order for conditions C1 and C2 to be satisfied, r
cannot be too close to saturating this lower bound.
Applying these conditions to the original transformation
(5.2) yields the formal inequality r < 1=a0. However,

substituting (5.4), this becomes r < a−1 þ r, which is
always valid, since a > 0. Thus, the actual upper bound
on r is determined by the conditions C1 and C2, that, given
a value of α for which perturbative calculations are
reasonably reliable, the same should be true of α0.
Inserting the result (5.7) for ks into the general expres-

sions for the b0l from [9], we obtain

b03 ¼ b3 þ rb2; ð5:11Þ

b04 ¼ b4 þ 2rb3 þ r2b2; ð5:12Þ

b05 ¼ b5 þ 3rb4 þ 3r2b3 þ r4b2; ð5:13Þ

b06 ¼ b6 þ 4rb5 þ 6r2b4 þ 4r3b3 þ r4b2; ð5:14Þ

and so forth for the b0l with l ≥ 7. An important general
property of these beta function coefficients resulting from
the application of the SQr

scheme transformation to an
arbitrary initial scheme is that

SQr
∶ b0l is independent of b1 for l ≥ 3: ð5:15Þ

The reason for this can be seen as follows. The coefficient
b0l with l ≥ 3 resulting from the application of a scheme
transformation is a linear combination of the bn with
1 ≤ n ≤ l. The structure of the coefficients multiplying
these bn with 1 ≤ n ≤ l was discussed in [8,9]. In
particular, the respective coefficients of b1 in the expres-
sions for b0l with l ≥ 3 have the property that they vanish
if ks ¼ ðk1Þs. This property is satisfied by the present
SQr

scheme transformation, as is evident from Eq. (5.7).
For example, in the expression (A1) for b03 given in
the Appendix, the coefficient of b1 is k21 − k2, and in
Eq. (A2) for b04, the coefficient of b1 is −2k31þ
4k1k2 − 2k3; both of these coefficients of b1 in b03 and
b04 vanish if ks ¼ ðk1Þs. Similar results hold for the b0l with
higher values of l that were calculated in [8–10].
We next apply this SQr

scheme transformation to the beta
function in the MS scheme. We present results in Table III

TABLE III. Values of the IR zero, α0IR;3l;SQr
, of the three-loop beta function βα0;3l obtained by applying the SQr

scheme transformation
to the three-loop beta function in the MS scheme, for an SU(3) gauge theory with Nf fermions in the fundamental representation. For
compact notation, we set α0IR;3l;SQr

≡ α0IR;3l;r in the table. For each Nf , we list these values as a function of r for r from r ¼ −3 to r ¼ 3

in steps of 1. For r ¼ 0, α0IR;3l;SQr
¼ αIR;3l;MS. We also list the (scheme-independent) two-loop value of the IR zero, αIR;2l.

Nf αIR;2l α0IR;3l;r¼−3 α0IR;3l;r¼−2 α0IR;3l;r¼−1 αIR;3l;M̄S α0IR;3l;r¼1 α0IR;3l;r¼2 α0IR;3l;r¼3

10 2.21 0.795 0.785 0.774 0.764 0.755 0.746 0.737
11 1.23 0.605 0.596 0.587 0.5785 0.571 0.563 0.556
12 0.754 0.455 0.448 0.441 0.435 0.429 0.423 0.418
13 0.468 0.330 0.325 0.321 0.317 0.313 0.309 0.305
14 0.278 0.222 0.219 0.217 0.215 0.212 0.210 0.208
15 0.143 0.126 0.125 0.124 0.123 0.122 0.122 0.121
16 0.0416 0.0401 0.0400 0.0398 0.0397 0.0396 0.0395 0.0394
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for the three-loop calculation and in Table IV for the four-
loop calculation. The range of r that we use is −3 ≤ r ≤ 3.
For the lowest two values of Nf, namely Nf ¼ 10 and
Nf ¼ 11, and the lowest values of r, namely r ¼ −3,
although the SQ;r scheme transformations yields acceptable
values of the three-loop zero, α0IR;3l;SQr

, it yields complex
values of the four-loop zero, α0IR;4l;SQr

. To avoid these, one
may restrict the lower range of r to, e.g., r ¼ −2 for these
values of Nf. The SQr

transformation obeys the conditions
C1 and C2 for positive values of r somewhat beyond the
upper end of the range that we show, but eventually, if one
were to use excessively large values of r, it would again fail
to satisfy these. We thus restrict the range of r over which
we apply this SQr

scheme transformation accordingly.
We remark on some general features of the SQr

scheme
transformation. As with the SLr

transformation, it follows
from (2.15) together with the fact that Eq. (5.2) is a
continuous transformation, that for small jrj, the relative
order of the values of the n-loop IR zeros of βα0 in the
transformed scheme are the same as those in the originalMS
scheme, as given in (2.14). This is evident in Table III and
from Table IV. Second, for a givenN,Nf ∈ I, and r, we find

α0IR;nl;SQr
< αIR;nl;MS if r > 0 and

α0IR;nl;SQr
> αIR;nl;MS if r < 0 for n ¼ 3; 4: ð5:16Þ

Third, for a given N, Nf ∈ I, and loop order n ¼ 3 or
n ¼ 4,

α0IR;nl;SQr
is a decreasing function of r: ð5:17Þ

VI. COMPARATIVE DISCUSSION OF SCHEME
TRANSFORMATIONS

A. Sshr scheme transformation

It is of interest to compare the SLr
and SQr

scheme
transformations with the the Sshr scheme transformation
studied in [8,9],

Sshr∶ a ¼ sinhðra0Þ
r

: ð6:1Þ

Since sinhðra0Þ=r is an even function of r, one may take
r ≥ 0 without loss of generality. Equation (6.1) has the
inverse

a0 ¼ 1

r
ln
h
raþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðraÞ2

q i
: ð6:2Þ

The corresponding transformation function is

fða0Þ ¼ sinhðra0Þ
ra0

; ð6:3Þ

with expansion coefficients ks ¼ 0 for odd s and

k2 ¼
r2

6
; k4 ¼

r4

120
; k6 ¼

r6

5040
; ð6:4Þ

etc. for s ≥ 8. Thus, for small ra0,

a ¼ a0
�
1þ ðra0Þ2

6
þOððra0Þ4Þ

�
: ð6:5Þ

The Jacobian is

J ¼ da
da0

¼ coshðra0Þ: ð6:6Þ

This Jacobian always satisfies condition C3. From (6.4) or
(6.6), it follows that a0 < a for nonzero r with this Sshr
scheme transformation.

B. Comparative discussion of results with different
scheme transformations

From the studies of a variety of scheme transformations
in [8–11] and the present work, a number of general
conclusions follow. These include the basic properties
noted in Eqs. (2.15), (2.16), and the fact that for small

TABLE IV. Values of the IR zero, α0IR;4l;SQr
, of the four-loop beta function βα0;4l obtained by applying the SQr

scheme transformation
to the four-loop beta function in the MS scheme, for an SU(3) gauge theory with Nf fermions in the fundamental representation. For
compact notation, we set α0IR;4l;SQr

≡ α0IR;4l;r in the table. For each Nf , we list these values as a function of r for r from r ¼ −3 to r ¼ 3

in steps of 1. For r ¼ 0, α0IR;4l;SQr
¼ αIR;4l;MS. We also list αIR;2l and αIR;3l;MS. The dash notation (—) means that the transformation

yields an unphysical (here, complex) value for α0IR;4l;SQr
.

Nf αIR;2l αIR;3l;MS α0IR;4l;r¼−3 α0IR;4l;r¼−2 α0IR;4l;r¼−1 αIR;4l;M̄S α0IR;4l;r¼1 α0IR;4l;r¼2 α0IR;4l;r¼3

10 2.21 0.764 — 1.062 0.896 0.815 0.760 0.719 0.685
11 1.23 0.578 — 0.750 0.674 0.626 0.591 0.563 0.540
12 0.754 0.435 0.581 0.530 0.496 0.470 0.450 0.433 0.418
13 0.468 0.317 0.380 0.363 0.349 0.337 0.327 0.318 0.309
14 0.278 0.2145 0.239 0.233 0.228 0.224 0.219 0.215 0.211
15 0.143 0.123 0.130 0.128 0.127 0.126 0.124 0.123 0.122
16 0.0416 0.0397 0.0402 0.0401 0.0400 0.0398 0.0397 0.0396 0.0395
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jrj, the order of the values of the three-loop and four-loop
IR zeros of the beta function are the same as in the MS
scheme, (2.14).
One basic property is that for values of the parameter(s)

determining fða0Þ (here, the parameter r for the SLr
, SQr

,
and Sshr transformations) such that fða0Þ does not differ too
much from the identity, the sign of the leading ks coefficient
in the expansion (2.5) determines whether a0 is greater or
smaller than a. For the SLr

scheme transformation, this
leading term for small positive r is negative [cf. Eq. (3.1)],
so a0 > a, while for the SQr

and Sshr scheme transforma-
tions, this leading term for small positive r is positive
[cf. Eqs. (5.2) and (6.5)], so a0 < a. Recall that with the Sshr
transformation, the leading term in the expansion (2.5) is
the k2ða0Þ2 term, while for the SLr

and SQr
transformations,

the leading term is k1ða0Þ.
In a similar manner, for a general scheme transformation

Sr, the sign of the leading correction term in (2.5) also
determines whether α0IR;nl;Sr is an increasing or decreasing
function of r for small jrj. Thus, the leading correction
terms in SLr

scheme transformation is negative, and
α0IR;nl;Lr

is an increasing function of r, while for the SQr

and Sshr scheme transformations, the leading correction
term in (2.5) is positive, and α0IR;nl;SQr

and α0IR;nl;Sshr are
decreasing functions of r and jrj, respectively [36].
Concerning the range of r over which a scheme trans-

formation obeys the conditions C1-C4, we note that for the
Sshr transformation studied in [9], this range extended up to
at least jrj ¼ 4π, as was evident from the results displayed
in Table III of [9]. Here, for the SLr

and also SQr
scheme

transformations, the respective allowed ranges of (positive
and negative values of) r are somewhat smaller. This is
easily understood if one examines the Taylor series
expansions of the respective transformation functions
fða0Þ. The values of the coefficients ks with even s (the
odd-s ones being zero) for the Sshr transformation in
Eq. (6.4) are much smaller than those for the ks for both
the SLr

and SQr
transformations, listed, respectively, in

Eqs. (3.8) and (5.7). Therefore, a given value of r leads to a
transformation function fða0Þ that is considerably closer to
the identity for the Sshr scheme transformation than for the
SLr

or SQr
transformation. In general, if one constructs and

applies a particular scheme transformation, one can see
how large a deviation from the identity a moderate value of
r will produce for the transformation function fða0Þ by
examining the Taylor series expansion (2.5).

VII. SOME OTHER S½p;q� SCHEME
TRANSFORMATIONS

A. S½1;1� scheme transformation

In this section we remark on some other S½p;q� scheme
transformations with q ≠ 0. We begin with S½1;1�, This is
defined by the special case of (4.1) with ½p; q� ¼ ½1; 1�,
namely

S½1;1�∶ fða0Þ ¼ 1þ u1a0

1þ v1a0
; ð7:1Þ

where u1 and v1 are (real) parameters. The inverse of
Eq. (7.1) formally involves two solutions to a quadratic
equation, but only one is physical, because it is the only one
for which a0 → a as ðu1; v1Þ → ð0; 0Þ. This inverse trans-
formation is

a0 ¼ −1þ v1aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v1aÞ2 þ 4u1a

p
2u1

: ð7:2Þ

The Jacobian is

J ¼ 1þ 2u1a0 þ u1v1ða0Þ2
ð1þ v1a0Þ2

: ð7:3Þ

The transformation function has a Taylor series expansion
of the form (2.5) with

ks ¼ ðu1 − v1Þð−v1Þs−1: ð7:4Þ

B. S½1;2� scheme transformation

The S½1;2� scheme transformation is the special case of
(4.1) with ½p; q� ¼ ½1; 2�, namely

S½1;2�∶ fða0Þ ¼ 1þ u1a0

1þ v1a0 þ v2ða0Þ2
; ð7:5Þ

depending on the three (real) parameters u1, v1, and v2. As
with S½1;1�, the inverse of (7.5) formally involves two
solutions to a quadratic equation, but only one is physical
because it is the only one for which a0 → a as
ðu1; v1; v2Þ → ð0; 0; 0Þ. This inverse transformation is

a0 ¼ −1þ v1aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v1aÞ2 þ 4aðu1 − v2aÞ

p
2ðu1 − v2aÞ

: ð7:6Þ

The Jacobian is

J ¼ 1þ 2u1a0 þ ðu1v1 − v2Þða0Þ2
ð1þ v1a0 þ v2ða0Þ2Þ2

: ð7:7Þ

The transformation function has a Taylor series expansion
of the form (2.5), but with coefficients ks that are more
complicated than those for S½0;1� or S½1;1�. The first few of
these coefficients ks are

k1 ¼ ðu1 − v1Þ; ð7:8Þ
k2 ¼ −ðu1 − v1Þv1 − v2; ð7:9Þ

k3 ¼ ðu1 − v1Þv21 þ ð2v1 − u1Þv2; ð7:10Þ

k4 ¼ −ðu1 − v1Þv31 þ ðv2 − 3v21 þ 2u1v1Þv2; ð7:11Þ
and so forth for higher s.
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For sufficiently small ju1j and jv1j, the S½1;1� scheme
transformation obeys the conditions to be applicable at a
(perturbatively calculated) IR zero of the beta function of
an asymptotically free gauge theory. Similarly, for suffi-
ciently small ju1j, jv1j, and jv2j, the S½1;2� scheme also obeys
these conditions. Because these scheme transformations
involve two and three parameters, respectively, the analysis
of the allowed ranges of these parameters is more com-
plicated than the corresponding analyses given in [8,10,11]
and for the one-parameter scheme transformations SLr

and
SQr

here.
One could also consider S½p;q� scheme transformations

with higher (finite) values of p and/or q, but the inverses
generically involve equations of cubic and higher degree,
rendering the analytic calculations more cumbersome. We
will thus not pursue these here.

VIII. INFRARED-FREE THEORIES

We have focused in this paper on the application of our
scheme transformations SLr

and SQr
to the study of the

scheme dependence of the IR zero of the beta function in
asymptotically free gauge theories. The question of scheme
dependence also arises in studying the beta function to
three loops and higher in an infrared-free theory, such as (in
d ¼ 4 spacetime dimensions) (i) a U(1) gauge theory, (ii) a
non-Abelian gauge theory with Nf > Nf;b1z fermions in a

given representation; and (iii) an OðNÞ λj~ϕj4 scalar field
theory. These IR-free theories have an IRFP at zero
coupling, and one may search for a possible UV zero of
the respective beta function. Again, it is straightforward to
construct acceptable scheme transformations to apply in the
vicinity of the IR fixed point of these theories at zero gauge
or quartic scalar coupling, respectively, but considerably
more difficult to do this when searching for a possible UV
zero of the beta function (UVFP) away from the origin.
Recently this search has been performed up to five-loop
order in [23] for theories of type (i) and (ii) (see also [37])
and in [24] for theories of type (iii), with the finding of
evidence against the existence of such a UVFP in these
theories. Among other methods, these analyses made use of
scheme transformations. Since these findings were quite
robust, we have not deemed it necessary to apply the
scheme transformations constructed here to these IR-free
theories. An example of an IR-free theory that does exhibit
such a UV zero (UVFP) was demonstrated from an exact
solution of the OðNÞ nonlinear σ model in d ¼ 2þ ϵ
dimensions in the N → ∞ limit [38].

IX. CONCLUSIONS

In this paper we have presented two new scheme
transformations, SLr

and SQr
, and have used these to study

the scheme-dependence of an infrared fixed point in an
asymptotically free non-Abelian gauge theory, making
comparison with the previous three-loop and four-loop

calculations of the location of this point in the MS scheme
in [30,31]. Each of these scheme transformations depends
on a parameter r, and we have shown that for a considerable
range of values of r in the two respective cases, for values
of the scheme-independent two-loop IR zero of the beta
function αIR;2l that are sufficiently small that perturbative
calculations are reasonably reliable, these scheme trans-
formations introduce only relatively small shifts in the
higher-loop values αIR;nl;SLr and αIR;nl;SQr

, as compared
with the respective αIR;nl;MS for n ¼ 3 and n ¼ 4 loops.
This agrees with and extends the results obtained with the
Sshr scheme transformation in [9] and also with the results
of studies of different scheme transformations and specific
schemes in [8–14]. Our results thus provide a further
quantitative measure of the size of the scheme-dependence
in the calculation of this fixed point at the three-loop and
four-loop order, both at small and moderate couplings. We
have also remarked on a generalized family of multi-
parameter scheme transformations, S½p;q�.
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APPENDIX: SOME RELEVANT FORMULAS

In this appendix we include some relevant formulas used
in the text. We first list the beta function coefficients b0l
calculated in [8,9] that follow from a scheme transforma-
tion (2.4), as functions of bn in the original scheme. For our
present analysis, we will use the three-loop and four-loop
results [8,9]

b03 ¼ b3 þ k1b2 þ ðk21 − k2Þb1; ðA1Þ

and

b04 ¼ b4 þ 2k1b3 þ k21b2 þ ð−2k31 þ 4k1k2 − 2k3Þb1:
ðA2Þ

For our analysis of an interesting property of the SQr

scheme transformation, we also display b05:

b05 ¼ b5 þ 3k1b4 þ ð2k21 þ k2Þb3 þ ð−k31 þ 3k1k2 − k3Þb2
þ ð4k41 − 11k21k2 þ 6k1k3 þ 4k22 − 3k4Þb1: ðA3Þ

For a vectorial gauge theory withNf (massless) fermions
transforming according to the representation R of the gauge
group G, the two scheme-independent coefficients in the
beta function are [17]

b1 ¼
1

3
ð11CA − 4TfNfÞ ðA4Þ
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and [18]

b2 ¼
1

3
½34C2

A − 4ð5CA þ 3CfÞTfNf�: ðA5Þ

The calculations of [30], which are used as input for the present work, used b3 and b4 as calculated in the MS scheme
in [19,20].
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