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We study the quantum dynamics of a suddenly released beam of particles using a background
independent (polymer) quantization scheme. We show that, in the first order of approximation, the low-
energy polymer distribution converges to the standard quantum-mechanical result in a clear fashion, but
also arises an additional small polymer correction term. We find that the high-energy polymer behavior
becomes predominant at short distances and short times, as we should expect. Numerical results are also
presented. We find that particles whose wave functions satisfy the polymer wave equation do not exhibit the
diffraction in time phenomena. The implementation of a modified time-energy uncertainty relation in the
polymer framework is briefly discussed.
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I. INTRODUCTION

One of the main challenges in physics today is the search
for a quantum theory of gravity (QTG). A major difficulty
in the development of such theories is the lack of
experimentally accessible phenomena that could shed light
on the possible route to QTG. Such quantum gravitational
effects are expected to become relevant near the Planck
scale, where spacetime itself is assumed to be quantized.
Compared to the typical energy scales we are able to reach
in our experiments, the Planck energy is extremely high,
too high to hope to be able to test it directly, which makes it
so difficult to test such effects.
Because the predictions of quantum mechanics have

been verified experimentally to an extremely high degree of
accuracy, a possible route to test quantum gravitational
effects is through high-sensitivity measurements of well
known quantum-mechanical phenomena, as any deviation
from the standard theory is, at least in principle, exper-
imentally testable. In this framework, with the best position
measurements (being of the order Δx ∼ 10−18 m), at
present sensitivities are still insufficient and quantum
gravitational corrections remain unexplored. Despite this
limitation, experimental verification of a common modifi-
cation of the Heisenberg uncertainty relation that appears in
a vast range of approaches to QTG has been reported in [1].
A background independent quantization scheme that

arose in loop quantum gravity (LQG), the so-called
polymer quantization (PQ), has been used to explore
mathematical and physical implications of theories such
as quantum gravity [2,3]. PQ may be viewed as a separate
development in its own right and is applicable to any
classical theory whether it contains or does not contain
gravity. Its central feature is that the momentum operator p
is not realized directly as in Schrödinger quantum

mechanics because of a built-in notion of discreteness
but arises indirectly through the translation operator
Uλ ≡ ei

pλ
ℏ . Various approaches to QTG (such as LQG,

string theory, and noncommutative geometries) suggest
the existence of a minimum measurable length or a
maximum observable momentum [4–6]. In PQ a length
scale is required for its construction, while for the gravi-
tational case this is identified with Planck length, and in the
mechanical case it is just a free parameter.
In this paper we analyze the physical consequences of

the PQ scheme in the dynamics of a well-known quantum
transient phenomena: diffraction in time (DIT). DIT was
discussed first by Moshinsky [7]. It is a phenomenon
associated with the quantum dynamics of suddenly released
quantum particles initially confined in a region of space.1

The hallmark of DIT consists of temporal and spatial
oscillations of the quantum density profile [8]. The basic
results of Moshinsky’s shutter are reviewed in Appendix A.
In Sec. II we consider the shutter problem in the framework
of polymer quantum mechanics. In Sec. III we show that
the polymer result converges to the Moshinsky result in the
appropriate limit. In Sec. IV we demonstrate that no DIT
effect arises when the wave function satisfies the polymer
wave equation. Finally in Sec. V we briefly discuss the
implementation of a modified time-energy uncertainty
relation in the polymer framework.

II. THE SHUTTER PROBLEM IN POLYMER
QUANTUM MECHANICS

The problem we shall discuss is the following: a
monochromatic beam of polymer particles of mass m
and momentum p > 0 impinges on a totally absorber
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1The original setting consisted of a sudden opening of a shutter
to release a semi-infinite beam and provided a quantum, temporal
analogue of spatial Fresnel diffraction theory by a sharp edge.
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shutter located at the origin. If at t ¼ 0 the shutter is
opened, what will be the transient polymer density profile
at a distance xμ from the shutter?
To tackle this problem, we first restrict the dynamics to

an equispaced lattice γðλÞ ¼ fλnjn ∈ Zg. The spectrum of
the position operator fxμ ¼ λμg consists of a countable
selection of points from the real line, which is analogous
to the graphs covering 3-manifolds in LQG. The polymer
Hilbert space Hpoly

2 consists of position wave functions
that are nonzero only on the lattice, restricting the momen-
tum wave functions to be periodic functions of period 2πℏ

λ
[9,10]. Here λ is regarded as a fundamental length scale of
the polymer theory.
[For a simpler analysis of the problem, hereafter we use

the following dimensionless quantities for position,
momentum, energy, and time:

μ≡ xμ
λ
; ρ≡ pλ

ℏ
; ε≡mλ2E

ℏ2
; τ≡ ℏt

mλ2
; ð1Þ

respectively. Also we use the notation ψμðτÞ≡ ψðxμ; τÞ for
the wave function in coordinate representation.]
For (nonrelativistic) polymer particles, the wave function

ψμðτÞ that represents the state of the beam of polymer
particles for τ > 0 satisfies the time-dependent polymer
Schrödinger equation [11,12]

2i
∂
∂τ ψμðτÞ ¼ 2ψμðτÞ − ψμþ1ðτÞ − ψμ−1ðτÞ ð2Þ

and the initial wave function

ψμðτ ¼ 0Þ ¼ eiρμΘð−μÞ; ð3Þ

where ΘðyÞ is the Heaviside step function, and the
momentum ρ ∈ ½0; πÞ is a solution of the (free) polymer
dispersion relation, εðρÞ ¼ 1 − cos ρ, considering a fixed
value of ε. Note that the energy spectrum is bounded from
above, and the bound depends on the length scale λ.
For τ > 0 the shutter has been removed and the dynam-

ics is free. By using the free polymer propagator [13],
namely

Kλðμ; τ; ν; τ0Þ ¼ iν−μJν−μðτ − τ0Þe−iðτ−τ0Þ; ð4Þ

the solution of (2), subject to the initial condition (3), is
then

ψμðτÞ ¼ e−iðτ−ρμÞΦμðρ; τÞ; ð5Þ

where we have defined

Φμðρ; τÞ≡
X−μ
ν¼−∞

JνðτÞeiðρþπ
2
Þν; ð6Þ

By using properties of Bessel functions, one can further
check that ψμðτÞ satisfies (2) and the initial condition (3).
The corresponding polymer density profile,

jψμðτÞj2 ¼
X−μ

ν;α¼−∞
JνðτÞJαðτÞ cos

��
ρþ π

2

�
ðν − αÞ

�
; ð7Þ

cannot be reduced to a simple form but can be treated
numerically. Plots of the polymer and the Moshinsky
density profiles for both the low and the high energy
regimes are presented in Figs. 1 and 2, respectively. At low
energies (ρ ≪ 1) the polymer and standard cases behave
qualitatively in a similar manner. However, at high energies
the polymer distribution exhibits some differences with
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FIG. 1 (color online). The low energy (ρ ¼ 0.3) polymer
density profile (a) as a function of time τ at a fixed distance
x10 [solid (blue) line], and (b) as a function of μ at a fixed time
τ ¼ 250 [discrete (blue) plot]. In both (a) and (b) the solid (red)
line corresponds to the Moshinsky distribution, and the solid
(black) line corresponds to the classical result.

2The kinematical Hilbert space can be written as
Hpoly ¼ L2ðRd; dμdÞ, with dμd the corresponding Haar measure
and Rd the real line endowed with the discrete topology.
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respect to the standard case. Next we discuss the afore-
mentioned limiting cases.
In Fig. 1(a) we plot the low energy polymer distribution

as a function of time τ at a fixed distance xμ. We observe
that the polymer result exhibits small oscillations super-
imposed on the Moshinsky result. This situation resembles
the quantum-classical transition problem, where the
classical distribution follows the spatial local average of
the quantum probability density for large quantum numbers
[14,15]. In this framework, Fig. 1(a) suggests that the
polymer and quantum-mechanical distributions approach
each other in a locally time-averaged sense at low energies.
As in the standard case, a good measure of the width of

the polymer diffraction effect in time can be obtained from
the difference δτ between the first two times at which
jψμðτÞj2 takes the classical value 1, i.e., δτ ¼ τ2 − τ1, as
shown in Fig. 1(a). In this case such a time difference can
be estimated the same way as in the quantum-mechanical
case (see Appendix A) because at first order of approxi-
mation, the low-energy polymer wave function converges

to the Moshinsky function evaluated on points in the lattice,
i.e., ψμðτÞ ∼Mðxμ; p; tÞ [see Eq. (19)] By using the Cornu
spiral [16] one obtains

δτ≃ 0.85
ffiffiffiffiffiffi
πμ

ρ3

r
; ð8Þ

for ρμ ≫ 1, in agreement with the results of Fig. 1(a).
In Fig. 1(b) we present the low energy polymer density

profile as a function of μ at a fixed time τ. As expected, we
observe that the polymer result (discrete blue plot) resem-
bles the standard result (continuous red line) as increasing
μ, showing oscillations near the edge. The width of these
oscillations can also be estimated the same way as in the
standard case (see Appendix A). With the help of the Cornu
spiral one obtains

δμ ¼ 0.85
ffiffiffiffiffi
πτ

p
: ð9Þ

It would be interesting to test whether these polymer
corrections could be detected with high sensitivity experi-
ments for the case of real quantum systems approaching the
quantum-polymer boundary. Currently, with the best posi-
tion measurements [1] no quantum gravity effect has been
detected in laboratory experiments, and therefore it repre-
sents an upper bound on the fundamental length scale
(at present λ ≪ 10−18 m). In the problem at hand, the
experimental verification of Moshinsky’s DIT phenomenon
presents several difficulties. In addition to the feebleness of
such an effect, dissipation, environmental noise, and
repulsive interatomic interactions tend to suppress it.
Currently, no DIT fringes on the density profile have been
observed, but recent developments of a guided atom
laser [17] open such a possibility. Regarding the
polymer corrections to Moshinsky’s density profile, the
difference between both distributions, Pðxμ;τÞ¼ jψμðτÞj2−
jMðxμ;p;tÞj2, represents a good measure of the residual
polymer behavior at quantum level; however, at low
energies such a difference is of the order of the fundamental
length scale of the theory, as we can see in Eq. (19).
Therefore at present the polymer corrections to the density
profile are virtually impossible to detect in the lab.
The analysis in Ref. [18] points out that the experimental

observation of quantum transients would be simpler for
time-energy uncertainty relation than for interference
effects on the density profile. In this framework, a series
of experiments [19,20] has culminated in the confirmation
of the time-energy uncertainty relation for pulse formation
predicted by Moshinsky [21]. It would be interesting to
study the pulse formation of polymer particles in order to
establish a modified time-energy uncertainty relation that
could be tested in the lab. In Sec. V we briefly discuss the
pulse formation, and we establish the starting point for its
analysis in polymer quantum mechanics.
The high energy polymer density profile as a function of

time τ at fixed distance xμ is presented in Fig. 2(a). Clearly,

1 220 40 60
0

1

2

20 40 60 80 100

1

2

FIG. 2 (color online). The high energy (ρ ¼ 2.5) polymer
density profile (a) as a function of time τ at a fixed distance
x10 [solid (blue) line], and (b) as a function of μ at a fixed time
τ ¼ 50 [discrete (blue) plot]. In both (a) and (b) the solid (red)
line corresponds to the Moshinsky distribution, and the solid
(black) line corresponds to the classical result.
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this case does not admit a simple analysis in terms of
the Cornu spiral because the polymer distribution differs
significantly with respect to the Moshinsky result.
However, we can construct a parametric like spiral to
perform a similar analysis. The standing point is that the
polymer distribution can be expressed as jReΦj2 þ jImΦj2,
where Im and Re stand for the imaginary and real parts of
the function Φ (6), respectively. Therefore we consider the
curve that results from the parametric representation
ðReΦ; ImΦÞ. In the like-spiral diagram of Fig. 3, the
polymer probability density (7) is the square of the radius
vector from the origin (0,0) to the point on the spiral whose
distance from the origin, along the curve, is τ. For the case
considered in Fig. 2(a), when τ goes from 0 to the classical
time of flight τcl ¼ μ

ρ, the polymer distribution increases
very slowly from 0 to 4.71 × 10−8. In other words, the
classical time τcl is very small for detecting time-diffracted
polymer particles.
The times at which the polymer distribution intersects

the classical value 1 correspond to the values of τ obtained
from the intersection of the like-spiral diagram with the
circle of radius 1 and center (0,0) in Fig. 3. The values of τ2
and τ1 are the lengths along the like spiral from the origin to
points 1 and 2 in Fig. 3, so that we have δτ≃ 19, in
agreement with that presented in Fig. 2(a). Of course, as the
energy increases, the time width δτ increases, but also it is
the first time τ1 the polymer distribution takes the classical
value. Therefore high energy polymer particles also exhibit
the diffraction effect in time, but with the characteristic
times (τ1 and δτ) increased. In the limiting case ρ → π the
time τ1 tends to infinite, and then the polymer particles
(with the maximum possible energy) do not exhibit the
diffraction effect in time. In the like-spiral diagram of

Fig. 3, this case looks like a dense spiral completely
contained in the unit circle.
In Fig. 2(b) we plot the high energy polymer distribution

as a function of μ at a fixed time τ. We observe that the
polymer distribution decreases abruptly before the particles
reach the edge and that the μ2 value is smaller than for low
energy polymer particles. Physically our results imply
that the high energy polymer effects become important
at short distances [Fig. 2(b)] and short times [Fig. 2(a)], as
expected. If quantum gravitational effects become relevant
near the Planck scale, as commonly believed, the energy
needed for detecting high energy time-diffracted particles
is of the order of Planck energy, which is extremely high
compared with the energies we are able to reach in our
experiments.

III. THE POLYMER-SCHRÖDINGER TRANSITION

It has been argued that if the lattice spacing λ is taken to
be sufficiently small, the polymer formulation should
reduce to the Schrödinger representation [12]. This is a
delicate issue because λ is regarded as a nonzero funda-
mental length scale of the polymer theory, and it cannot be
removed when working in Hpoly, no matter how small λ is.
This is analogous to the quantum-classical transition
problem through the ℏ → 0 limit, because ℏ is a nonzero
fundamental constant of the quantum theory [14,15].
To address the polymer-Schrödinger transition, we con-

sider the low energy regime of the polymer theory (ρ ≪ 1)
that one expects to be the domain of validity of the
Schrödinger theory. Clearly, the standard energy spectrum
is recovered in the ρ ≪ 1 limit,

EðpÞ ≈ p2

2m
≪

2ℏ2

mλ2
; ð10Þ

but it remains bounded from above due to nonzero λ. In
terms of the de Broglie wavelength λDB ¼ 2πℏ

p , this limit can
be expressed as λ ≪ λDB; i.e., the fundamental length is
very small compared with the characteristic quantum-
mechanical length. Taking λ in the order of the Planck
length, the typical diffraction experiments of electrons and
neutrons, for which λDB ∼ 10−10 m, strongly satisfy the
required condition [13].
Physically the λ ≪ λDB limit implies that we should take

a very large number of points between two arbitrary points,
but keep its distance fixed. Consequently for the distance
between the shutter and the observer we must consider
μ ≫ 1, and then the asymptotic behavior of Bessel func-
tions for large indices in Fig. 5 is required. On the other
hand, the time needed for the particle to move from xν to xμ
with momentum p is τ ¼ jμ−νj

ρ . Then by keeping the
distance fixed, the ρ ≪ 1 limit implies that τ ≫ 1, and
therefore the asymptotic behavior of (5) for large values
of τ is also required. Note that the argument of the Bessel
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FIG. 3 (color online). Parametric like spiral for Φ10ð2.5; τÞ.
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function grows faster than its order, so that the τ ≫ 1 limit
will dominate the transition [13].
The asymptotic expansion of the Bessel functions for

large arguments is well known [21]. It can be written as

JνðτÞ ∼
ei½τ−π

2
ðνþ1

2
Þ�ffiffiffiffiffiffiffiffi

2πτ
p fRνðτÞ þ R�

νðτÞe−2i½τ−π
2
ðνþ1

2
Þ�g; ð11Þ

where RνðτÞ≡ PνðτÞ þ iQνðτÞ, with

PνðτÞ ¼
X∞
n¼0

ð−1Þn
ð2nÞ!ð2zÞ2n

Γðνþ 2nþ 1
2
Þ

Γðν− 2nþ 1
2
Þ ;

QνðτÞ ¼
X∞
n¼0

ð−1Þn
ð2nþ 1Þ!ð2zÞ2nþ1

Γðνþ ð2nþ 1Þ þ 1
2
Þ

Γðν− ð2nþ 1Þ þ 1
2
Þ : ð12Þ

We observe that the expression (11) depends on the
order of the Bessel function through both the exponentials
and the Gamma functions in (12). Fortunately only the
second one becomes important for large indices ν ≫ 1.

Using the approximation Γðνþaþ1
2
Þ

Γðν−aþ1
2
Þ ∼ ν2a for ν ≫ 1, the

function RνðτÞ becomes

RνðτÞ ∼ ei
ν2

2τ : ð13Þ
Finally the asymptotic behavior of the Bessel function
JνðτÞ, for large arguments (τ ≫ 1) and large orders
(ν ≫ 1), yields

JνðτÞe−iτþiπν
2 ∼

e−i
π
4ffiffiffiffiffiffiffiffi

2πτ
p feiν22τ þ ið−1Þνe−iν22τ−2iτg: ð14Þ

One can further check that in this regime the term propor-
tional to e−2iτ makes no contribution to the asymptotic
behavior because it produces a distributional expression, as
pointed out in Ref. [13].
Substituting (14) in (5) we get a discrete version of the

Moshinsky function,

ψμðτÞ ∼mðxμ; p; tÞ≡ eiðρμ−
ρ2τ
2
Þ e−i

π
4ffiffiffiffiffiffiffiffi

2πτ
p

Xρτ−μ
ν¼−∞

ei
ν2

2τ ; ð15Þ

which satisfies analogous properties [8], i.e.,
(i) Under inversion of both xμ and p, it satisfies

mðxμ; p; tÞ þmð−xμ;−p; tÞ ¼ eiðρμ−
ρ2τ
2
Þϑ3ð0;−2πτÞ;

ð16Þ

where ϑ3 is Jacobi’s elliptic theta function [22].
(ii) The asymptotic behavior for jρτ − μj → ∞ and

ρτ ≥ μ is

mðxμ; p; tÞ ∼ e
i
ℏðpxμ−p2

2mtÞ; ð17Þ

which is the standard quantum-mechanical result: a
plane wave traveling to the right with momentum p
and energy p2

2m.
(iii) It satisfies the polymer Schrödinger equation (2).
To illuminate the correspondence between mðxμ; p; tÞ

and the Moshinsky function (A4) in a clear fashion, we first
approximate the sum in (6) by using the Euler-Maclaurin
formula,

Φμðρ; τÞ≃
Z

−μ

−∞
JνðτÞeiðρþπ

2
Þνdνþ 1

2
J−μðτÞe−iðρþπ

2
Þμ; ð18Þ

where we have used that JνðτÞ → 0 as ν → ∞. Now, by the
use of the asymptotic expansion of Bessel functions (14)
we obtain

mðxμ; p; tÞ ≅
e−i

π
4ffiffiffi
2

p e
i
ℏðpxμ−p2

2mtÞ
��

1

2
þ CðξÞ

�
þ i

�
1

2
þ SðξÞ

��

þ 1ffiffiffiffiffiffiffiffi
8πτ

p e−ið
π
4
þμ2

2τÞ; ð19Þ

where ξ≡ 1ffiffiffiffi
πτ

p ðρτ − μÞ ¼ ffiffiffiffiffi
m
πℏt

p ðptm − xμÞ. We recognize the

first term in (19) as the Moshinsky function (independent
of λ) evaluated on points in the lattice, i.e., Mðxμ; p; tÞ.
The second term is small because it depends on 1ffiffi

τ
p ≪ 1 but

it is nonzero. Of course, this additional term represents the
polymer residual behavior at quantum level. In this frame-
work at low energies we can neglect the correction term to
analyze the polymer behavior by using the Cornu spiral.

IV. POLYMER WAVE EQUATION

One may wonder if DIT takes place for different wave
equations, such as the ordinary wave equation and the
Klein-Gordon equation. In this framework Moshinsky
showed that the DIT phenomenon arises only for the
Schrödinger equation [7]. This is because only for the
time-dependent Schrödinger equation is there an analogy
with the phenomena of electromagnetic diffraction,
which has to do with the resemblance that the solutions
have with those that appear in Sommerfeld’s theory of
diffraction.
In this section we shall consider the shutter problem, but

we assume that the state ψμðτÞ satisfies the polymer wave
equation

∂2ψμðτÞ
∂τ2 ¼ ψμþ1ðτÞ þ ψμ−1ðτÞ − 2ψμðτÞ; ð20Þ

where τ≡ ct
λ , and c is the speed of light. As usual, we will

consider that initially ψμ and its time derivative are given by

ψμð0Þ ¼ Fμ;

�∂ψμðτÞ
∂τ

�
τ¼0

¼ Gμ: ð21Þ

DIFFRACTION IN TIME OF POLYMER PARTICLES PHYSICAL REVIEW D 90, 125027 (2014)
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The solution of (20) can be obtained by using the Fourier
integral theorem, i.e.,

ψμðτÞ ¼
1

2π

Z þπ

−π
dκ

�
fðκÞ cos ðεκτÞ þ gðκÞ sin ðεκτÞ

εκ

�
eiκμ;

ð22Þ

where fðκÞ and gðκÞ are the Fourier transforms of Fμ and

Gμ, and εκ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − cos κÞp

. One can further check that
ψμðτÞ satisfies the polymer wave equation (20) and the
initial conditions (21).
For τ < 0 the shutter was closed, and then we had on the

left side of the shutter the simple (truncated) plane wave
solution

ψμðτÞ ¼ eiðρμ−ερτÞΘð−μÞ: ð23Þ

This implies that at τ ¼ 0 we have

Fμ ¼ eiρμΘð−μÞ; Gμ ¼ −iερeiρμΘð−μÞ: ð24Þ

By Fourier transforming (24) we obtain that the initial
conditions in the Fourier space become

fðκÞ ¼ πδðκ − ρÞ þ i cot ðκ − ρÞ;
gðκÞ ¼ −iερfðκÞ: ð25Þ

These formulas are derived in Appendix B 1. We observe
that in the low energy regime fðκÞ reduces to the δþ
function in a clear fashion.
Substituting (25) into (22) we get

ψμðτÞ¼
1

2
eiðρμ−ερτÞ−

1

4πi
p:v:

Z þπ

−π
dκcotðκ−ρÞ

×

��
1þ ερ

εκ

�
eiðκμ−εκτÞ þ

�
1−

ερ
εκ

�
eiðκμþεκτÞ

�
: ð26Þ

In this expression we interpret the integral in the sense
of Cauchy’s principal value. We observe that, as in the
standard case, the integrand has a simple pole at κ ¼ ρ and
an essential singularity at κ ¼ 0; however, in (26) an
additional simple pole also emerges at κ ¼ ρ − π. As the
lattice spacing is reduced, the solution of (26) becomes a
simple task. In this regime, the limits of integration become
from −∞ to ∞, the standard dispersion relation εκ ¼ κ is
recovered, the initial condition fðκÞ becomes the δþ
function, and the pole at ρ − π does not take place. For
such a case the principal value can be computed directly by
using Cauchy’s theorem. For the polymer case the integral
becomes a difficult task, but it can be computed analyti-
cally. In Appendix B 2 we evaluate the principal value of
the integral in (26). The result is

ψμðτÞ ¼
1

2
eiðρμ−ερτÞ þ 2

πi

Xþ∞

ν¼−∞

J2νð2τÞ
ς

sin2
�
πς

2

�

×
�
1 − 2F1

�
1;−

ς

2
; 1 −

ς

2
; e2iρ

�
Θð−ςÞ

− 2F1

�
1;
ς

2
; 1þ ς

2
; e−2iρ

�
ΘðςÞ

�
; ð27Þ

where ς ¼ μþ ν ≠ 0, Jn are the Bessel functions of first
kind, and 2F1ða; b; c; zÞ are the Gauss hypergeometric
functions in the unit circle jzj ¼ 1. The Heaviside step
functions in (27) ensure the convergence of the correspond-
ing hypergeometric functions. In Fig. 4 we plot the density
profile for the solution (27). We observe that the density
profile is a simple oscillatory function, and this behavior
certainly has no resemblance to the DIT effect obtained for
the Schrödinger equation. For the Klein-Gordon equation
the solution (26) still works, but with the dispersion relation
ε2κ ¼ 4sin2 κ

2
þm02, where m0 ¼ mcλ

ℏ . Of course, no DIT
effect is expected. It would be interesting to study well-
known phenomena for spin-0 particles in the polymer
quantization scheme, e.g., polymer corrections to the
energy spectrum of a π− meson in a Coulomb potential.

V. DISCUSSION

The implications of the introduction of a nonzero funda-
mental length scale in quantum theory are quite profound.
For example, the Heisenberg theorem, one of the corner-
stones of quantum mechanics, states that the position x and
momentum p of a particle cannot be simultaneously known
with arbitrary precision, but the indeterminacies of a joint
measurement are always bounded by ΔxΔp ≥ ℏ

2
. The

implementation of such a minimal length in quantum
theory introduces a lower bound to the possible resolution
of distances. It has therefore been suggested that the
Heisenberg uncertainty relations should be modified to take
into account the effects of spatial “grainy” structure [4–6].

10 20 30 40

0.25

2

FIG. 4 (color online). Density profile for polymer wave
equation as a function of time τ at a fixed distance μ ¼ 10.
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In this framework, Generalized Uncertainty Principle (GUP)
theories predict both a minimal observable length and a
maximal momentum in the modified uncertainty relation
ΔxΔp ≥ ℏ

2
½1 − 2ℏ−1ΔxminΔpþ 4ℏ−2ðΔxminΔpÞ2�, with

2Δpmax ∼ ℏðΔxminÞ−1. The implementation of such ideas
in polymer quantum mechanics is a difficult task because
the momentum operator is not directly realized as in
Schrödinger quantum mechanics; furthermore the polymer
Hilbert space admits states with Δx ¼ 0, and then the
conventional uncertainty relations do not apply [23].
It is well known that ordinary diffraction phenomena for

beams of particles are closely associated with the position-
momentum uncertainty relation, and the appearance of
diffraction in time effects are closely connected with the
time-energy uncertainty relation ΔEΔt ≥ ℏ

2
. The possibility

of closing the shutter after a timeΔt has been used to form a
pulse. For small values of Δt the time-energy uncertainty
relation comes into play, broadening the energy distribution
of the resulting pulse [24]. In the problem at hand, the lower
bound to the possible resolution of distances introduces
a minimal temporal window for the pulse formation of
polymer particles. Therefore we suggest that also the time-
energy uncertainty relation must be modified to implement
the nonzero minimal uncertainty in time. Since fringes in
the density profile are difficult to detect in laboratory
experiments, it would be interesting to study the pulse
formation of polymer particles in order to establish such a
modified time-energy uncertainty relation. Such analysis is
beyond the scope of this paper, but we can establish the
starting point. The probability for detecting a time dif-
fracted polymer particle with energy ε ¼ 1 − cos ρ at time
Δτ after the beam is released is

Pðε; ε0;ΔτÞ ¼
				X

μ

φ�
μðτ ¼ 0ÞψμðΔτÞ

				2; ð28Þ

where φμðτ ¼ 0Þ ¼ eiρ
0μΘð−μÞ is the initial state of a

particle with energy ε0 ¼ 1 − cos ρ0, and ψμðΔτÞ is given
by Eq. (5). The resulting probability depends on both the
time width Δτ and the energies ε and ε0. Therefore we can
study the region for which Pðε; ε0;ΔτÞ differs significantly
from zero and then establish the corresponding modified
time-energy uncertainty relation. Another possible exten-
sion of this work includes more complicated (time-
dependent) shutter windows, focusing on the amplification
of the residual polymer behavior at low energies.
The implementation of both the position-momentum and

the time-energy modified uncertainty relations could play
an important role in other branches of physics. For
example, in the framework of local quantum field theories,
the reason we have ultraviolet divergencies is that in the
short time region Δt → 0, the uncertainty with respect to
energy increases indefinitely, ΔE → ∞, which in turn
induces a large uncertainty in momentum Δp. The large
uncertainty in momentum means that the particle states

allowed in the short distance region Δx grow indefinitely as
ðΔEÞ3 in four-dimensional space-time [25]. In these
theories where there is no built-in cutoff, all those states
are expected to contribute to amplitudes with equal strength
and consequently lead to UV infinities. A theory that
naturally provides the adequate modified uncertainty rela-
tions could shed light on the route for curing such UV
divergences.
Finally, let us summarize our results. In Sec. II we study

the quantum dynamics of a suddenly released beam of
polymer particles for both the low and the high energy
regimes. Our numerical results show that in the quantum
domain, the polymer distribution (as a function of time)
exhibits small oscillations superimposed on the quantum-
mechanical result [Fig. 1(a)]. Also the discrete spatial
behavior resembles the standard result for long distances,
as shown in Fig. 1(b). In Sec. III we show in an analytical
clear fashion that in the first order of approximation the
low energy polymer density profile converges to the
Monshinsky distribution, but also emerges as an additional
polymer correction term, responsible of the small temporal
and spatial deviations in Fig. 1. At high energies the
diffraction effect in time also takes place, but only for
long times [see Fig. 2(a)]. For polymer particles with the
maximum possible energy the DIT is no longer present.
Regarding the spatial behavior, the polymer distribution
decreases abruptly before the particles reach the edge, as
shown in Fig. 2(b). As expected, the polymer effects
become important at short distances and short times. On
the other hand, we find that no diffraction effect in time
arises when the wave functions satisfy the polymer wave
equation.
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APPENDIX A: THE MOSHINSKY SHUTTER

In the original Moshinsky setup [7], a quasimonochro-
matic beam of nonrelativistic quantum particles of momen-
tum p is incident upon a perfectly absorbing shutter located
at the origin and perpendicular to the beam. If the shutter is
suddenly removed at t ¼ 0, what will be the transient
density profile at a distance x from the shutter?
The initial wave function that we shall consider is

ψðx; t ¼ 0Þ ¼ ei
px
ℏΘð−xÞ; ðA1Þ

where ΘðxÞ is the Heaviside step function. Note that the
state is not really monochromatic due to the spatial
truncation, besides that is clearly not normalized. Since
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for t > 0 the shutter has been removed, the dynamics is free
and the time-evolved wave function is

ψðx; tÞ ¼
Z

∞

−∞
Kðx; t; x0; t0 ¼ 0Þψðx0; t0 ¼ 0Þdx0; ðA2Þ

with the free propagator

Kðx; t; x0; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2πiℏðt − t0Þ

r
e
imðx−x0Þ2
2ℏðt−t0Þ : ðA3Þ

The solution of (A2) with the initial wave function (A1)
is known as Moshinsky functions,

Mðx; p; tÞ ¼ e−i
π
4ffiffiffi
2

p e
i
ℏðpx−p2

2mtÞ
��

1

2
þ CðξÞ

�
þ i

�
1

2
þ SðξÞ

��
;

ðA4Þ
where CðξÞ and SðξÞ are the Fresnel integrals [16],
and ξ≡ ffiffiffiffiffi

m
πℏt

p ðptm − xÞ.

The “diffraction in time” term was introduced because
the temporal behavior of the quantum density profile
[see Fig. 6(a) below],

jMðx; p; tÞj2 ¼ 1

2

��
1

2
þ CðξÞ

�
2

þ
�
1

2
þ SðξÞ

�
2
�
; ðA5Þ

admits a simple geometric interpretation in terms of Cornu
spiral or clothoid, which is the curve that results from a
parametric representation of the Fresnel integrals (Fig. 5).
This is precisely the form of the intensity profile of a light
beam diffracted by a semi-infinite plane [26], which
prompted the choice of the DIT term. The probability
density is one-half of the square of the distance from the
point ð− 1

2
;− 1

2
Þ to any other point of the Cornu spiral. In

such a representation the origin corresponds to the classical
particle with momentum p released at time t ¼ 0 from the
shutter position.
In Fig. 6(a) we present the classical and quantum density

profiles at a fixed distance x as a function of time. The
corresponding classical problem admits a trivial solution:
the density profile vanishes if t is less than the time of flight
T ¼ mx

p , but one if t ≥ T. On the other hand, with the help of
the Cornu spiral we see that when t goes from 0 to T, the
quantum density profile increases monotonically from 0 to
1
4
, while when t is larger than T, then jMðx; k; tÞj2 behaves
as a damped oscillation around the classical value, tending
to this value when t → ∞.
The time width of this diffraction effect can be obtained

from the difference δt between the first two times at which
jMðx; p; tÞj2 takes the classical value, i.e., δt ¼ t2 − t1, as
shown in Fig. 6(a). Such times correspond to the values of ξ
obtained from the intersection of the Cornu spiral with the
circle of radius

ffiffiffi
2

p
and center ð− 1

2
;− 1

2
Þ. The difference δξ

(that corresponds to δt) can be estimated as the arc length
along the Cornu spiral between points 1 and 2 in Fig. 5, so
that we have δξ ¼ 0.85. For px ≫ ℏ the result is

1

2

- 0.5

- 0.5

0.5
C

0.5

S

FIG. 5 (color online). Cornu spiral.

T t1 t2
t

1

M x,p,t 2

x1 x2 X
x

1

M x,p,t 2

FIG. 6 (color online). Here we plot the classical (red line) and quantum (blue line) density profiles (a) as a function of time t at a fixed
distance x, and (b) as a function of position x at a fixed time t.
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δt≃ 0.85

ffiffiffiffiffiffi
πℏ
px

s
T: ðA6Þ

Figure 6(b) shows the classical and quantum density
profiles at a fixed time t as a function of position. We see
that an initial sharp-edge wave packet will move with the
classical velocity showing rapid oscillations near the edge,
located at X ¼ pt

m. As before, the width of these oscillations
can be estimated through the distance δx between the
first two values of x, starting from the edge, in which the
probability density takes the classical value, i.e.,
δx ¼ x2 − x1, as shown in Fig. 6(b). Using the Cornu

spiral we obtain δx ¼ 0.85
ffiffiffiffiffiffiffi
πℏX
p

q
.

A more general type of initial state has been considered,

ψðx; t ¼ 0Þ ¼ ei
px
ℏ þ Re−i

px
ℏ ; ðA7Þ

with R ¼ eiπα corresponding to a shutter with reflectivity
jRj2 ¼ 1. Under free evolution, ψðx; tÞ ¼ Mðx; p; tÞþ
RMðx;−p; tÞ. For a complete review of the theory, results
and experiments of quantum transients of single- to few-
body systems see Ref. [8].

APPENDIX B: CALCULATIONS OF SEC. IV

1. Derivation of f ðκÞ and gðκÞ
Here we derive the initial conditions in momentum space

by Fourier transforming (24), i.e.,

fðκÞ ¼
Xþ∞

μ¼−∞
Θð−μÞeiðρ−κÞμ: ðB1Þ

To evaluate the sum, we consider the discretized derivative
of the Heaviside step function,

∂ΘðμÞ
∂μ ≈

1

2
½Θðμþ 1Þ − Θðμ − 1Þ�: ðB2Þ

Note that this expression is equivalent to two delta
functions at μ ¼ �1. Then we find that

Xþ∞

μ¼−∞

∂ΘðμÞ
∂μ e−iζμ ¼ cos ζ: ðB3Þ

On the other hand, by substituting (B2) into (B3) and
relabeling indices we find that

Xþ∞

μ¼−∞

∂ΘðμÞ
∂μ e−iζμ ¼ i sin ζ

Xþ∞

μ¼−∞
ΘðμÞe−iζμ: ðB4Þ

By comparing (B3) and (B4) we obtain

Xþ∞

μ¼−∞
ΘðμÞe−iζμ ¼ −i cot ζ þ πδðζÞ: ðB5Þ

The π factor has been derived by using the property
ΘðμÞ þ Θð−μÞ ¼ 1. Finally with the help of (B5) we
establish (25). The second initial condition is proportional
to fðκÞ.

2. The principal value

Here we shall evaluate the integral (26). To this end, first
we rewrite the integral as simply as possible. By using the
well-known Jacobi-Anger expansion [16] we get

I≡ Xþ∞

ν¼−∞
Jνð2τÞ

Z þπ

−π
dκ cot ðκ − ρÞeiκς

×

�
½1þ ð−1Þν� − ½1 − ð−1Þν� sin ρ

2
csc

κ

2

�
; ðB6Þ

where Jν are the Bessel functions of first kind, and
ς≡ μþ ν

2
. Note that the first integral in I is restricted to

even values of ν (because it depends on ½1þ ð−1Þν�), while
the second one is restricted to odd values of ν. We observe
that the integrand has two simple poles at κ ¼ ρ; ρ − π and
an essential singularity at κ ¼ 0.
As the lattice spacing is reduced, the limits of integration

become from −∞ to ∞, and then the pole at ρ − π should
not be considered. In this limiting case the principal value
of I can be computed directly by using Cauchy’s theorem.
The case we consider is more subtle because momentum
is defined in a bounded region, and therefore we should
compute the principal value as usual.

FIG. 7. κ plane.
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We split the principal value of the integral I
as follows:

p:v:I ¼ lim
α;ϵ;β→0þ

�Z
ρ−π−α

−π
þ
Z

−ϵ

ρ−πþα
þ
Z

ρ−β

þϵ
þ
Z

π

ρþβ

�
Idκ;

ðB7Þ

where I is the integrand in (B6). See Fig. 7.
We obtain straightforwardly that the principal value of

the even integral in I is

Ie ≡ p:v:
Z þπ

−π
dκ cot ðκ − ρÞeiκς

¼ −
4

ς
sin2

�
πς

2

��
1 − 2F1

�
1;−

ς

2
; 1 −

ς

2
; e2iρ

�
Θð−ςÞ

− 2F1

�
1;
ς

2
; 1þ ς

2
; e−2iρ

�
ΘðςÞ

�
; ðB8Þ

where 2F1ða; b; c; zÞ are the hypergeometric Gauss func-
tions in the unit circle jzj ¼ 1. The Heaviside step functions
in (B8) ensure the convergence of the corresponding
hypergeometric functions.

On the other hand, we also obtain that the principal value of the odd integral in I is

Io ≡ p:v:
Z þπ

−π
dκ cot ðκ − ρÞ csc

�
κ

2

�
eiκς

¼ −2πi cot ρ − 2 cos ðπςÞ cot ρ
�
eiπςðBð−i; 2ς; 0Þ þ Bð−i; 1þ 2ς; 0ÞÞ

− e−iπςðBði; 2ς; 0Þ þ Bði; 1þ 2ς; 0ÞÞ þ 4i tan ρ

�
2F1ð1; 1þ2ς

4
; 5þ2ς

4
; e−2iρÞ

1þ 2ς
− 2F1ð1; 3þ2ς

4
; 7þ2ς

4
; e−2iρÞ

3þ 2ς

��
; ðB9Þ

where Bðz; a; bÞ are the incomplete Beta functions in the unit circle. Here we have omitted the Heaviside functions that
ensure the convergenge of each term. Note that the second term in Eq. (B9) vanishes because cos ðπςÞ ¼ 0 for odd values of
ν. Therefore only the first term in (B9) contributes to the integral. However, the substitution into Eq. (B8) vanishes because
of the symmetry of Bessel functions. Therefore this odd term does not contribute to the principal value of I.
By substituting (B9) into (B7) we finally obtain that

p:v:I ¼ −8
Xþ∞

ν¼−∞

J2νð2τÞ
ς0

sin2
�
πς0

2

��
1 − 2F1

�
1;−

ς0

2
; 1 −

ς0

2
; e2iρ

�
Θð−ς0Þ − 2F1

�
1;
ς0

2
; 1þ ς0

2
; e−2iρ

�
Θðς0Þ

�
ðB10Þ

with ς0 ¼ μþ ν. This result establishes (27).
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