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We present an exact solution to the Boltzmann equation which describes a system undergoing boost-
invariant longitudinal and azimuthally symmetric radial expansion for arbitrary shear viscosity to entropy
density ratio. This new solution is constructed by considering the conformal map between Minkowski
space and the direct product of three-dimensional de Sitter space with a line. The resulting solution respects
SOð3Þq ⊗ SOð1; 1Þ ⊗ Z2 symmetry. We compare the exact kinetic solution with exact solutions of the
corresponding macroscopic equations that were obtained from the kinetic theory in ideal and second-order
viscous hydrodynamic approximations. The macroscopic solutions are obtained in de Sitter space and are
subject to the same symmetries used to obtain the exact kinetic solution.
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I. INTRODUCTION

One of the most important cornerstones of statistical
physics is the Boltzmann equation. This equation has been
extremely useful in describing the behavior and transport
properties of a dilute gas in terms of its intrinsic micro-
scopic dynamics. The Boltzmann equation is a partial
differential equation with a very rich and complex math-
ematical structure which makes it difficult to solve it
exactly by analytical means. There are very few exact
solutions to the Boltzmann equation in the scientific
literature. As a matter of fact, even for classical systems,
the problem of the existence and uniqueness of solutions to
this kinetic equation has not been completely sorted out for
any collision kernel except in some particular cases [1].
Due to these limitations, there have been different expan-
sion schemes put forward in the literature that allow one to
obtain approximate solutions to the Boltzmann equation.
Among the most important approaches are the Chapman-
Enskog and Grad’s moments methods [2]. The generali-
zation of these methods to relativistic kinetic theory has
been a source of debate since its foundations. For instance,
at first order the Chapman-Enskog method [2,3] leads to the
relativistic Navier-Stokes (NS) equations which are acausal
and unstable [4,5]. To address this problem, Israel and
Stewart (IS) [6] generalized Grad’s original idea to the
relativistic case to create a causal second-order formulation

of relativistic viscous hydrodynamics.1 However, the origi-
nal IS approach presents certain inconsistencies when
obtaining the fluid dynamical equations using truncated
approximations to the distribution function. A consistent
framework has been developed recently in [11,12]. Despite
these advances, different approximation schemes can
lead to different results for key physical quantities such
as the transport coefficients [2,13]. Exact solutions to the
Boltzmann equation allow one to compare and characterize
the effectiveness of the different approximation methods. In
addition, an exact solution has the potential to shed light on
the process of momentum isotropization in a nonequili-
brated system.
There are also very few exact solutions to the hydro-

dynamic equations of motion. Recently, Gubser developed
a method to construct exact solutions to the relativistic ideal
and first order NS hydrodynamical approximations for a
conformal fluid [14,15] undergoing simultaneously boost-
invariant longitudinal and azimuthally symmetric (“radial”)
transverse expansion (“Gubser flow”). The Gubser solution
is based on powerful symmetry considerations: It is
symmetric under the SOð3Þq ⊗ SOð1; 1Þ ⊗ Z2 group of

1It is also possible to formulate higher-order relativistic
viscous hydrodynamics using the second law of thermodynamics
as a guiding principle [7] or Chapman-Enskog like methods in the
relaxation time approximation [8–10].
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transformations (“Gubser group”). In Minkowski coordi-
nates this symmetry group is not explicitly manifest, and
hence the strategy is to make use of the conformal map
between Minkowski space and the curved spacetime
formed by the direct product of a three-dimensional de
Sitter (dS) space with a line, dS3 ⊗ R, in which the Gubser
symmetry is manifest [15]: A fluid that expands in
Minkowski space with Gubser-symmetric flow looks static
in dS3 ⊗ R. The equations of motion for the remaining
hydrodynamic fields (temperature, energy density, etc.) are
much simpler in de Sitter space than in Minkowski space
and easily solved. Once the solutions are known in dS3 ⊗ R,
it is straightforward to transform them back to Minkowski
space. This yields a one-parameter set of velocity and
temperature profiles with nontrivial radial and time depend-
ence, characterizedby a single overall scale parameter [14,15].
Recently, Gubser’s solution was extended to second-

order conformal IS hydrodynamics [16]. Furthermore, the
authors of [17,18] generalized Gubser’s original approach
by considering more general conformal maps between
Minkowski space and other curved spaces, resulting in
exact solutions including vorticity and associated dissipa-
tive corrections to ideal hydrodynamics.
In this paper we discuss how to carry out a similar

program for kinetic theory. If a very densely populated
system is invariant under a certain group of symmetries, it
is natural to ask how this symmetry becomes manifest in
the one-particle distribution function. For instance, if
there is homogeneity along a certain direction, say along
the x axis, this means that the distribution function
fðxμ; piÞ ¼ fðt; y; z;piÞ, i.e. it does not depend on x and
the number of independent variables on which the solution
of the Boltzmann equation can depend has correspondingly
been reduced by one. One can guess that eventually, if the
system has enough symmetries, it must be possible to solve
the Boltzmann equation exactly. In the context of ultra-
relativistic heavy-ion collisions, this strategy was first
discussed by Baym [19] who solved the Boltzmann
equation exactly using the relaxation time approximation
(RTA) for the collisional kernel.2 In this case, longitudinal
boost invariance and invariance under translations in the
transverse plane were the only ingredients necessary to
obtain the exact solution. It describes a transversely
homogeneous system expanding along the longitudinal
direction with the boost-invariant (scaling) flow profile
discovered by Bjorken [23]. Despite its beauty and sim-
plicity, this solution has limited applications since the
spacetime dynamics of any spatially finite system is
affected by transverse expansion, with highly nontrivial
and experimentally observable consequences.
Gubser’s important achievement was to generalize

Bjorken’s macroscopic hydrodynamic solution to systems

undergoing additionally transverse expansion. In this paper
we show how this generalization can be extended to the
microscopic level, by solving the Boltzmann equation with
RTA collision term exactly for systems with Gubser
symmetry that undergo simultaneous boost-invariant longi-
tudinal and azimuthally symmetric transverse expansion.
Our solution can be used to describe systems with any
value of the shear viscosity to entropy density ratio η=S,
and the result can be used to test the efficiency of various
macroscopic (hydrodynamic) approximation methods. In
addition, it can help us to understand the dynamics of the
isotropization/thermalization process in anisotropically
expanding systems with different longitudinal and trans-
verse expansion rates.
Some of the ideas presented in this paper were already

introduced by us in a previous publication [24]. In this
paper we present a more detailed derivation of our exact
solution as well as an extended discussion of our findings.
The paper is organized as follows. In Sec. II we present a
short overview of the exact Gubser solution of conformal
hydrodynamics. In Sec. III we discuss the necessary aspects
of the Boltzmann equation in a curved spacetime. In
Sec. IV we present the main result of this work, our
new exact solution to the Boltzmann equation for a
conformal system with Gubser symmetry. In this section
we also describe how to recover first- and second-order
conformal hydrodynamics from the exact solution of the
Boltzmann equation. In Sec. V we discuss some aspects of
the exact solution, illustrate it graphically, and make
comparisons with the predictions of different approxima-
tion methods for solving the Boltzmann equation. Our
conclusions are summarized in Sec. VI.
Before proceeding to the body of this paper, let us define

our metric conventions and notations. The metric signature
is taken to be “mostly plus”: in Minkowski space the
spacetime distance between two events is written in
Cartesian coordinates xμ ¼ ðt; xÞ as

ds2 ¼ gμνdxμdxν ¼ −dt2 þ dx2 þ dy2 þ dz2: ð1Þ

With this signature convention the flow velocity uμ is
normalized as uμuμ ¼ −1. Milne coordinates in Minkowski
space are defined by xμ ¼ ðτ; x; y; ςÞ, with longitudinal
proper time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
, spacetime rapidity ς ¼

tanh−1ðz=tÞ, and metric ds2¼−dτ2þdx2þdy2þτ2dς2.
Polar coordinates in the transverse plane are defined as
usual by r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and ϕ ¼ tan−1ðy=xÞ. We denote the

scalar product between two four-vectors with a dot,
i.e. AμBμ ≡ A · B.

II. THE GUBSER SOLUTION OF CONFORMAL
HYDRODYNAMICS

In this section we briefly review the techniques
introduced by Gubser [14] to find exact solutions for

2See also Refs. [20–22] for recent extensions to conformal and
nonconformal systems.
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conformally invariant relativistic fluid dynamics. For a
more complete discussion we refer the reader to the
original works [14,15]. The material discussed in this
section provides the necessary background for our
analogous treatment of the Boltzmann equation in
Sec. III.

Gubser’s exact solution to the conformal hydrodynamic
equations respects SOð3Þq ⊗ SOð1; 1Þ ⊗ Z2 symmetry.
The SOð3Þq group reflects invariance under rotations in
the transverse plane coupled with two special conformal
transformations. In the Minkowski coordinates xμ ¼
ðτ; r;ϕ; ςÞ the generators of SOð3Þq are given by [14]

ξ1 ¼ 2q2τr cosϕ
∂

∂ðqτÞ þ ð1þ q2τ2 þ q2r2Þ cosϕ ∂
∂ðqrÞ −

1þ q2τ2 − q2r2

qr
sinϕ

∂
∂ϕ ; ð2aÞ

ξ2 ¼ 2q2τr sinϕ
∂

∂ðqτÞ þ ð1þ q2τ2 þ q2r2Þ sinϕ ∂
∂ðqrÞ þ

1þ q2τ2 − q2r2

qr
cosϕ

∂
∂ϕ ; ð2bÞ

ξ3 ¼
∂
∂ϕ : ð2cÞ

Here q is an arbitrary energy scale; the solution is invariant
under a change of q if simultaneously its transverse radius r
and the longitudinal proper time τ are rescaled by 1=q.
Invariance under SOð1; 1Þ translates into boost invariance
along the longitudinal axis and its generator is simply ∂=∂ς.
The Z2 invariance is associated with longitudinal reflection
symmetry under ς → −ς.
It is not straightforward to obtain the flow velocity

profile from the SOð3Þq generators (2) in Minkowski space.
However, the flow is naturally understood [14,15] in the
curved spacetime dS3 ⊗ R which is related to Minkowski
space via a Weyl rescaling of the metric:

dŝ2 ¼ ds2

τ2
¼ −dτ2 þ dx2 þ dy2

τ2
þ dς2

¼ −dτ2 þ dr2 þ r2dϕ2

τ2
þ dς2: ð3Þ

If one parametrizes the variables ðτ; rÞ in terms of new
coordinates ðρ; θÞ defined by

ρðτ; rÞ ¼ −arcsinh
�
1 − q2τ2 þ q2r2

2qτ

�
; ð4aÞ

θðτ; rÞ ¼ arctan

�
2qr

1þ q2τ2 − q2r2

�
; ð4bÞ

then the measure (3) becomes

dŝ2 ¼ −dρ2 þ cosh2ρðdθ2 þ sin2θdϕ2Þ þ dς2; ð5Þ
with metric ĝμν ¼ diagð−1; cosh2ρ; cosh2ρsin2θ; 1Þ. In the
new coordinate system ðρ; θ;ϕ; ςÞ the SOð3Þq conformal
symmetry is manifest since the measure (5) is invariant
under rotations of the sphere parametrized by ðθ;ϕÞ. In
these coordinates, the generators of the SOð3Þq group are
given by

ξ1 ¼ 2

�
cosϕ

∂
∂θ − cot θ sinϕ

∂
∂ϕ

�
; ð6aÞ

ξ2 ¼ 2

�
sinϕ

∂
∂θ þ cot θ cosϕ

∂
∂ϕ

�
; ð6bÞ

ξ3 ¼
∂
∂ϕ ; ð6cÞ

which are precisely the well-known angular momentum
generators. In this paper, all quantities in de Sitter coor-
dinates are denoted with a hat.
In dS3 ⊗ R, it is straightforward to see that the flow

velocity ûμ ¼ ð−1; 0; 0; 0Þ is completely invariant under
the SOð3Þq generators (6).3 In order to obtain the velocity
profile in Minkowski space we simply have to map
back from the coordinate system x̂μ ¼ ðρ; θ;ϕ; ςÞ to
xμ ¼ ðτ; r;ϕ; ςÞ, combined with the appropriate Weyl
rescaling of the fluid velocity [15]:

uμ ¼ τ
∂x̂ν
∂xμ ûν: ð7Þ

This results in the following expressions for the Milne
components of the fluid four-velocity uμ in Minkowski
space [14,15]:

uτ ¼ − cosh κðτ; rÞ; ur ¼ sinh κðτ; rÞ;
uϕ ¼ uς ¼ 0; ð8Þ

with the transverse flow rapidity

3This can be compared with the Bjorken flow solution where
uμ ≡ ðuτ; ur; uϕ; uςÞ ¼ ð−1; 0; 0; 0Þ appears as the only timelike
unit vector that is invariant (i.e. has zero Lie derivative) under
translations ∂

∂x,
∂
∂y in the transverse plane, boosts ∂

∂ς, and rotations
∂
∂ϕ around the beam axis (z direction). Therefore, the temperature
and any other hydrodynamical variables become functions of τ
only.
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κðτ; rÞ ¼ tanh−1
�

2q2τr
1þ q2τ2 þ q2r2

�
: ð9Þ

In de Sitter space the ideal hydrodynamic equations reduce
to a single continuity equation for the thermal equilibrium
energy density ε̂. For dissipative hydrodynamics one has to
solve in addition an equation of motion for the shear-stress
tensor π̂μν. Some aspects of the dissipative IS solution are
discussed in Appendix A; for a more complete discussion
we direct the interested reader to Ref. [16]. From the
solutions for the hydrodynamical fields in de Sitter space
one obtains the nontrivial solution in Minkowski space
through the transformation rules [14,15]

εðτ; rÞ ¼ ε̂ðρðτ; rÞÞ
τ4

; ð10aÞ

πμνðτ; rÞ ¼
1

τ2
∂x̂α
∂xμ

∂x̂β
∂xν π̂αβðρðτ; rÞÞ: ð10bÞ

III. RELATIVISTIC BOLTZMANN EQUATION
IN CURVED SPACES

The general relativistic Boltzmann equation for the on-
shell one-particle distribution function is given by [3,25,26]

pμ∂μf þ Γλ
μipλpμ ∂f

∂pi
¼ C½f�; ð11Þ

where the distribution function f ¼ fðxμ; piÞ is defined in a
seven-dimensional phase space. A point in this phase space
is described by seven coordinates, the spacetime coordi-
nates xμ ¼ ðt; x; y; zÞ and the three spatial covariant
momentum components pi ¼ ðpx; py; pzÞ. The zero com-
ponent of the momentum is obtained from the on-shell
condition p0 ¼ p0ðxλ; piÞ. Moreover, in Eq. (11) the
Christoffel symbol Γλ

μi is defined as4

Γλ
μν ¼

gλβ

2
ð∂μgβν þ ∂νgβμ − ∂βgμνÞ: ð12Þ

Equation (11) is covariant under general coordinate trans-
formations xμ → x̂μðxλÞ, although not manifestly so
[25,26]. There are other ways to write this equation where
the general coordinate covariance is explicit [26].
For instance, one can define an off-shell distribution
Fðxμ; pμÞ that satisfies a manifestly covariant Boltzmann
equation [25,26]. We will not make use of this approach
since the form of Eq. (11) is more convenient for our

purposes. The explicit form of the collision term on the
right-hand side for 2↔2 scattering can be found in [25,26].
In this paper, we restrict ourselves to a simple approxima-
tion for the collisional kernel, the relaxation time approxi-
mation (RTA), in which C½f� is given by [27,28]

C½f� ¼ p · u
τrel

½fðxμ; piÞ − feqðxμ; piÞ�: ð13Þ

Here uμ is the fluid velocity, T is the temperature in the
local rest frame, τrel is the relaxation time which can depend
on proper time, feqðxμ; piÞ ¼ feqðp · u=TÞ is the local
equilibrium Jüttner distribution, and the fluid velocity is
defined in the Landau frame.
For a given distribution function fðxμ; piÞ one obtains

the energy-momentum tensor Tμν as the following moment
of the distribution function [2,3]:

TμνðxÞ ¼
Z

d3p
ð2πÞ3 ffiffiffiffiffiffi−gp

p0
pμpνfðxμ; piÞ: ð14Þ

The relevant macroscopic variables, such as the energy
density, pressure, etc., are most easily identified by decom-
posing the four-momentum into temporal and spatial parts
in the local rest frame, pμ ¼ −ðu · pÞuμ þ Δμνpν, where
−uμuν and Δμν ¼ gμν þ uμuν are the projectors parallel and
orthogonal to uμ. Given this vector decomposition, the
energy-momentum tensor (14) for a theory with vanishing
bulk viscosity (as is the case in a conformal theory) can be
written as

TμνðxÞ ¼ εðxÞuμuν þ ΔμνPðxÞ þ πμνðxÞ; ð15Þ

where ε is the energy density, P is the thermodynamic
pressure, and πμν is the shear-stress tensor which is trace-
less, symmetric, and orthogonal to the fluid velocity. The
macroscopic quantities above can be obtained as momen-
tum moments of an arbitrary distribution function [3]:

εðxÞ ¼
Z

d3p
ð2πÞ3 ffiffiffiffiffiffi−gp

p0
ðp · uÞ2fðxμ; piÞ; ð16aÞ

PðxÞ ¼ 1

3

Z
d3p

ð2πÞ3 ffiffiffiffiffiffi−gp
p0

Δμνpνpμfðxμ; piÞ; ð16bÞ

πμνðxÞ ¼
Z

d3p
ð2πÞ3 ffiffiffiffiffiffi−gp

p0
phμpνifðxμ; piÞ: ð16cÞ

In Eq. (16c) we introduce the notation phμpνi ¼ Δμν
αβp

αpβ

where the double projector Δμν
αβ ¼ ðΔμ

αΔν
β þ Δμ

βΔν
α−

2
3
ΔμνΔαβÞ=2 selects the traceless and orthogonal (to uμ)

part of a tensor. We will make use of these relations in
Sec. IV to study the dynamics of the macroscopic variables

4For a general curved spacetime the Christoffel symbols are
nonvanishing but they can also be nonzero for a given flat
spacetime depending on the choice of coordinates. For instance
when parametrizing any vector xμ in Minkowski space by using
Milne coordinates xμ ¼ ðτ; x; y; ςÞ, the Christoffel symbols with
nonzero components are Γτ

ςς ¼ τ and Γς
ςτ ¼ Γς

τς ¼ 1=τ.
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for a distribution function that exactly solves the RTA
Boltzmann equation with Gubser symmetry.

A. The RTA Boltzmann equation in Milne coordinates

For a system with boost-invariant longitudinal expansion
it is convenient to use Milne coordinates xμ ¼ ðτ; x; y; ςÞ
with metric gμν ¼ diagð−1; 1; 1; τ2Þ. In this coordinate
system the RTA Boltzmann equation (11) is written as
(see footnote 4)

pτ∂τfþpx∂xfþpy∂yfþ
pς

τ2
∂ςf¼

p ·u
τrel

ðf−feqÞ: ð17Þ

The on-shell condition allows us to determine pτ:

pμpνgμν ¼ −m2 ⇒ pτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
y þ p2

ς=τ2
q

: ð18Þ

Since the Gubser symmetry to be studied in the following
section embodies conformal invariance which would be
broken by nonzero mass terms, we set all masses to zero in
this work.

B. Emergent Weyl invariance in the massless limit

Building on recent work on Weyl invariant hydrody-
namics [29] for systems close to local equilibrium, we here
use similar techniques to study their nonequilibrium
dynamics, as described by the Boltzmann equation. We
start by showing that, for massless particles, conformal
transformations are a symmetry of the Boltzmann equation
in the RTA approximation.
Under a Weyl transformation, the metric changes as

gμνðxÞ → e−2ΩðxÞgμνðxÞ; ð19Þ
whereΩðxÞ is an arbitrary scalar function. AWeyl rescaling
is not a general coordinate transformation: The Ricci scalar

changes, so a flat space transforms into a curved space.5

This transformation is similar to the Mercator projection
map used in cartography which maps the surface of the
earth to a plane. Under a Weyl rescaling, a ðm; nÞ tensor
Qμ1���μm

ν1���νn transforms as follows [29]:

Qμ1���μm
ν1���νn ðxÞ → eðΔþm−nÞΩðxÞQμ1���μm

ν1���νn ðxÞ; ð20Þ

where Δ is its canonical dimension, m is the number of
contravariant indices, and n is the number of covariant
indices. For example, the velocity vector transforms as
uμ → e−Ωuμ, uμ → eΩuμ while the temperature transforms
as T → eΩT. Scalar products of four-vectors transform with
the sum of their canonical dimensions.
Note that, to prove theWeyl covariance of the Boltzmann

equation (11) we note that, consistent with its interpretation
as a probability density in phase space, the distribution
function fðxμ; piÞ in Eq. (11) is a scalar with zero canonical
dimension and thus invariant under Weyl transformations.
Since for a conformal system τrel ∼ 1=T, the RTA collision
term (13) on the rhs of the Boltzmann equation (11)
transforms homogeneously as C½f� → e2ΩC½f� (as argued
in [29] for a general collision term). Given (20), the
first term on the lhs of Eq. (11) and the term multiplied
by the Christoffel symbol are seen to transform in the same
way: pμ∂μf → e2Ωpμ∂μf and pλpμ ∂f

∂pi
→ e2Ωpλpμ ∂f

∂pi
.

However, the Christoffel symbol Γλ
μi itself transforms

nontrivially under a Weyl rescaling:

Γλ
μν → Γλ

μν − ðgλν∂μΩþ gλμ∂νΩ − gμν∂λΩÞ: ð21Þ

This leads to an additional term on the lhs of the Boltzmann
equation (11):

ðgλi∂μΩþ gλμ∂iΩ − gμi∂λΩÞpλpμ ∂f
∂pi

¼ ðpip · ∂Ωþ ∂iΩp · p − pip · ∂ΩÞ ∂f∂pi

¼ p · p∂iΩ
∂f
∂pi

: ð22Þ

This term vanishes identically if and only if the particles are massless, i.e. if p · p ¼ 0. Under these conditions one sees that
the entire Boltzmann equation transforms homogeneously with e2Ω under Weyl rescaling:

pμ∂μf þ Γλ
μipλpμ ∂f

∂pi
− C½f� ¼ 0 ⇒ e2Ω

�
pμ∂μf þ Γλ

μipλpμ ∂f
∂pi

− C½f�
�

¼ 0: ð23Þ

In the massless limit, the microscopic dynamics encoded in the distribution function thus possesses an “emergent” Weyl
invariance, and conformal transformations from Minkowski to curved spaces are then indeed symmetries of the Boltzmann
equation. In the following section we will obtain an exact solution of the RTA Boltzmann equation by exploiting the
conformal map between Minkowski space and dS3 ⊗ R.

5A specific example was discussed in Sec. II: Due to the global factor 1=τ2, the measure dŝ2 in (3) does not parametrize standard
Minkowski space R3 ⊗ R.
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C. Solving the Boltzmann equation
with Bjorken symmetry

Before doing so we would like to return to the case of
boost invariant longitudinal expansion with translational
and rotational symmetry in the transverse plane studied by
Bjorken [23]. Transverse homogeneity implies that the
distribution function fðxμ; piÞ cannot depend on the trans-
verse coordinates x and y, while azimuthal symmetry
around the longitudinal axis stipulates that any dependence
on the transverse momentum components can be only

through pT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
. Longitudinal boost invariance

implies that any time dependence of f can only occur in
terms of the longitudinal proper time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
, and that

any dependence on the longitudinal position z and the
longitudinal momentum component pz must come in the
boost invariant combination6

w ¼ tpz − zE: ð24Þ

We see that longitudinal boost invariance imposes strong
constraints on the number of independent variables of the
distribution function and on the particular combination in
which the dependent variables appear [19–22,30–32]. As
we shall see in the following section, identifying these
independent combinations of phase-space variables will
be the key step in deriving the exact solution of the
Boltzmann equation for an SOð3Þq ⊗ SOð1; 1Þ ⊗ Z2

symmetric system.
With the above simplifications the RTA Boltzmann

equation (11) reduces to [19–22]

∂τf ¼ −
1

τrelðτÞ
ðf − feqÞ; ð25Þ

where f ¼ fðτ;pT; wÞ. Its general solution for a momen-
tum-independent relaxation time τrel is given by

fðτ;pT; wÞ ¼ Dðτ; τ0Þf0ðpT; wÞ

þ
Z

τ

τ0

dτ0

τrelðτ0Þ
Dðτ; τ0Þfeqðτ0;pT; wÞ; ð26Þ

where Dðτ2; τ1Þ is the damping function given by

Dðτ2; τ1Þ ¼ exp

�
−
Z

τ2

τ1

dτ00

τrelðτ00Þ
�
; ð27Þ

and f0ðpT; wÞ is the initial distribution function at τ ¼ τ0
[19–22,30–32]. In the past, different authors considered an

equilibrium initial condition f0ðpT; wÞ ¼ feqðτ0;pT; wÞ
[19,30–32]. Recently Florkowski et al. [20,21] relaxed
this assumption and studied a more general set of initial
profiles for f0, corresponding to an initially anisotropic
local momentum distribution. The approach of Florkowski
et al. has proven very useful since it allows one to test
different viscous and anisotropic hydrodynamic approxi-
mation schemes [33–46] against the underlying micro-
scopic Boltzmann dynamics, for both massless [20,21] and
massive cases [22].7

IV. EXACT SOLUTION OF THE RTA
BOLTZMANN EQUATION WITH

GUBSER SYMMETRY

A. The solution

We now discuss the consequences for the microscopic
kinetic evolution of the system of requiring invariance
under SOð3Þq ⊗ SOð1; 1Þ ⊗ Z2 transformations. The pre-
vious section taught us that this is most easily studied in a
coordinate system where the fluid is at rest. In addition,
one should use a spacetime where the group symmetries
are explicitly manifest. Hence, as pointed out in Sec. II,
the most natural choice is to use the space dS3 ⊗ R
parametrized by coordinates x̂μ ¼ ðρ; θ;ϕ; ςÞ.
As in the case of Bjorken symmetry, the Gubser

symmetry severely restricts the combinations of the coor-
dinates x̂μ ¼ ðρ; θ;ϕ; ςÞ and momenta p̂i ¼ ðp̂θ; p̂ϕ; p̂ςÞ on
which fðx̂μ; p̂iÞ can depend. Each of the three factors of the
Gubser group SOð3Þq ⊗ SOð1; 1Þ ⊗ Z2 imposes its own
constraints:

(i) The generators of SOð3Þq describe rotations of
spatial vectors parametrized by the ðθ;ϕÞ variables,
and simultaneously of momentum vectors parame-
trized by the coordinates ðp̂θ; p̂ϕÞ, over a sphere S2.
SOð3Þq symmetry demands that physical observ-
ables (such as the distribution function f) can only
depend on the following SOð3Þq-invariant combi-
nation of these four variables:

p̂2
Ω ¼ p̂2

θ þ
p̂2
ϕ

sin2θ
: ð28Þ

Geometrically p̂2
Ω is the radius of the sphere S2 in

ðp̂θ; p̂ϕÞ momentum-space coordinates.8 Thus, we

6The Lorentz γ factor for the Bjorken flow profile vz ¼ z=t is
γ ¼ ð1 − v2zÞ−1=2 ¼ t=τ. A particle with momentum pz at position
z in the lab frame thus has momentum p0

z ¼ γðpz − EvÞ ¼ ðtpz −
EzÞ=τ≡ w=τ in the local rest frame. Since the physics in the local
rest frame, in particular the p0

z distribution, is supposed to be
independent of z, f can depend on z and pz only through w.

7We point out that the solution (26) for the distribution
function was derived using only the symmetry constraints,
without assumptions about the particle mass [19]. This will be
different for the case of Gubser symmetry studied in the following
section.

8This situation is analogous to what happens in the hydrogen
atom problem in quantum mechanics. There, the only combina-
tion of the generators Lx, Ly and Lz of the SOð3Þ angular
momentum algebra with which all three generators commute is
the Casimir operator L2 ¼ L2

x þ L2
y þ L2

z.
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interpret p̂Ω as the total momentum associated with
the momentum components ðp̂θ; p̂ϕÞ.

(ii) The SOð1; 1Þ invariance imposes the same con-
straints on the distribution function as previously
discussed in Sec. III C for the case of Bjorken
symmetry: in Milne coordinates, the distribution
function depends only on the proper time τ, the
transverse momentum pT and the variable w (24),
but not on the spatial rapidity ς. The SOð3Þq
symmetry modifies the dependence on the first
two variables (τ and pT) in de Sitter space. Given
the conformal map betweenMinkowski and de Sitter
space one can show that the variable w is related to
the p̂ς component.9 Therefore, the SOð1; 1Þ invari-
ance implies that, in addition to p̂Ω, the distribution
function can depend in momentum space only on p̂ς.

(iii) The Z2 invariance implies that the distribution
function is invariant under reflection ς → −ς.

As a result of these considerations we see that the
conformal symmetry group demands that fðx̂μ; p̂iÞ ¼
fðρ; p̂2

Ω; p̂
ςÞ. Its only dependence on the spacetime coor-

dinates is through the “de Sitter time” ρ. Conformality also
imposes constraints on the functional dependence of the
relaxation time on the temperature: τrel ¼ c=T where c is a
free dimensionless parameter related to the shear viscosity
to entropy density ratio η=S. For the RTA collision kernel
used in this work one has [11,20,21,47]

c ¼ 5η

S
⇔

η

S
¼ 1

5
τrelT; ð30Þ

where η is the shear viscosity and S the entropy density.
Due to the conformal map between Minkowski space and
dS3 ⊗ R one has the relation

Tðτ; rÞ ¼ T̂ðρðτ; rÞÞ=τ: ð31Þ

Putting all these ingredients together, Gubser invariance
is seen to greatly simplify the RTA Boltzmann equa-
tion (17). Starting with the RTA Boltzmann equation in

Milne coordinates, changing the variables from xμ → x̂μ

and performing the necessary Weyl rescalings, one finds
that the kinetic equation can be written in dS3 ⊗ R
coordinates as

∂
∂ρ fðρ; p̂

2
Ω; p̂ςÞ ¼ −

T̂ðρÞ
c

½fðρ; p̂2
Ω; p̂ςÞ − feqðp̂ρ=T̂ðρÞÞ�;

ð32Þ

where p̂ρ is determined from the massless on-shell con-
dition

p̂ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2
Ω

cosh2ρ
þ p̂2

ς

s
: ð33Þ

Comparing Eqs. (32) and (25), the solution for fðρ; p̂2
Ω; p̂ςÞ

is easily found:

fðρ; p̂2
Ω; p̂ςÞ ¼ Dðρ; ρ0Þf0ðρ0; p̂2

Ω; p̂ςÞ

þ 1

c

Z
ρ

ρ0

dρ0Dðρ; ρ0ÞT̂ðρ0Þfeqðρ0; p̂2
Ω; p̂ςÞ:

ð34Þ

The damping function in this case is given by

Dðρ2; ρ1Þ ¼ exp

�
−
Z

ρ2

ρ1

dρ00
T̂ðρ00Þ
c

�
: ð35Þ

In Eqs. (34) and (35), ρ0 is the initial “time” in de Sitter
space at which f ¼ f0ðρ0; p̂2

Ω; p̂ςÞ. In the present paper we
assume that f0 is given by a Boltzmann equilibrium
distribution function at ρ0. With this assumption the
Weyl rescaling property is preserved for any value of the
ρ variable.

B. Energy-momentum tensor components

The solution (34) of the Boltzmann equation allows us to
calculate the evolution of all components of the energy-
momentum tensor from their definitions, Eqs. (16). For
reference, let us first calculate the energy density for a
Boltzmann equilibrium distribution function:

ε̂eqðρÞ¼
1

ð2πÞ3
Z

∞

−∞
dp̂ς

Z
∞

−∞

dp̂θ

coshρ

Z
∞

−∞

dp̂ϕ

coshρsinθ
p̂ρe−p̂

ρ=T̂ðρÞ

¼ 3

π2
T̂4ðρÞ: ð36Þ

As expected for a conformal theory, ε̂eq ∼ T̂4. The energy
density associated with the exact solution (34) of the
Boltzmann equation is obtained as follows:

9The covariant components of the momentum transform as [3]

p0μ ¼ ∂x0μ
∂xν p

ν: ð29Þ

When transforming from ðt; x; y; zÞ to ðτ; x; y; ςÞ coordinates, this
prescription yields for the ς component of the momentum the
expression

pς ¼ 1

τ2
ðtpz − zp0Þ ¼ w

τ2
¼ pς

τ2
;

where we used the definition (24) of the variable w. Under
Weyl rescaling (7) this component transforms into p̂ς ¼
τ2pς ¼ pς ¼ p̂ς ¼ w. Note that under a boost with rapidity
ςboost, ς → ςþ ςboost while p̂ς remains invariant.
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ε̂ðρÞ ¼ 1

ð2πÞ3
Z

∞

−∞
dp̂ς

Z
∞

−∞

dp̂θ

cosh ρ

Z
∞

−∞

dp̂ϕ

cosh ρ sin θ
p̂ρfðρ; p̂2

Ω; p̂ςÞ

¼ 3

π2

�
Dðρ; ρ0ÞH

�
cosh ρ0
cosh ρ

�
T̂4
0 þ

1

c

Z
ρ

ρ0

dρ0Dðρ; ρ0ÞH
�
cosh ρ0

cosh ρ

�
T̂5ðρ0Þ

�
; ð37Þ

where in the last line we used both Eqs. (34) and (36). In Eq. (37) T̂0 ≡ T̂ðρ0Þ, and the function HðxÞ is

HðxÞ ¼ 1

2

�
x2 þ x4

tanh−1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

�
: ð38Þ

It is straightforward to show that for the distribution function (34) the pressure (16b) is related to the energy density by the
conformal equation of state P̂ðρÞ ¼ ε̂ðρÞ=3 at all de Sitter times ρ.
From its definition, the shear stress tensor (16c) is

π̂μν ¼ 1

ð2πÞ3
Z

∞

−∞
dp̂ς

Z
∞

−∞

dp̂θ

cosh ρ

Z
∞

−∞

dp̂ϕ

cosh ρ sin θ
1

p̂ρ p̂
hμp̂νifðρ; p̂2

Ω; p̂ςÞ: ð39Þ

In the ðρ; θ;ϕ; ςÞ coordinate system the only nonzero components of the shear stress tensor are

π̂ςςðρÞ ¼ 1

ð2πÞ3
Z

∞

−∞
dp̂ς

Z
∞

−∞

dp̂θ

cosh2ρ

Z
∞

−∞

dp̂ϕ

sin θ
1

p̂ρ

�
p̂2
ς −

ðp̂ρÞ2
3

�
f

¼ 1

π2

�
Dðρ; ρ0ÞA

�
cosh ρ
cosh ρ0

�
T̂4
0 þ

1

c

Z
ρ

ρ0

dρ0Dðρ; ρ0ÞA
�
cosh ρ
cosh ρ0

�
T̂5ðρ0Þ

�
; ð40aÞ

π̂θθðρÞ ¼
1

ð2πÞ3
Z

∞

−∞
dp̂ς

Z
∞

−∞

dp̂θ

cosh2ρ

Z
∞

−∞

dp̂ϕ

sin θ
1

p̂ρ

�
p̂2
θ

cosh2ρ
−
ðp̂ρÞ2
3

�
f ¼ −

1

2
π̂ςςðρÞ; ð40bÞ

π̂ϕϕðρÞ ¼
1

ð2πÞ3
Z

∞

−∞
dp̂ς

Z
∞

−∞

dp̂θ

cosh2ρ

Z
∞

−∞

dp̂ϕ

sin θ
1

p̂ρ

�
p̂2
ϕ

cosh2ρsin2θ
−
ðp̂ρÞ2
3

�
f ¼ −

1

2
π̂ςςðρÞ: ð40cÞ

Here f ¼ fðρ; p̂2
Ω; p̂ςÞ, and we defined

AðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
ð1þ 2x2Þ þ ð1 − 4x2Þcoth−1ðx=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
Þ

2x3ðx2 − 1Þ3=2 : ð41Þ

Clearly, these expressions are consistent with SOð3Þq symmetry which demands π̂θθ ¼ π̂ϕϕ, and with the tracelessness of the
shear stress tensor, π̂θθ þ π̂ϕϕ þ π̂ςς ¼ 0. Equation (40) tells us that for a fluid undergoing Gubser flow [14–16] the shear stress
tensor has only a single independent nonzero component for which we choose π̂ςς. One checks easily that, as expected, all
shear stress components in (40) approach zero when f → feq.

C. Matching condition: Definition of temperature

For any point ρ, we define the local temperature T̂ðρÞ of the fluid using the traditional matching condition

ε̂ðρÞ ¼ ε̂eqðT̂ðρÞÞ ¼
3

π2
T̂4ðρÞ: ð42Þ

Inserting this into Eq. (37) we obtain the following integral equation for the temperature of the system:

T̂4ðρÞ ¼ Dðρ; ρ0ÞH
�
cosh ρ0
cosh ρ

�
T̂4ðρ0Þ þ

1

c

Z
ρ

ρ0

dρ0Dðρ; ρ0ÞH
�
cosh ρ0

cosh ρ

�
T̂5ðρ0Þ: ð43Þ
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This integral equation can be solved iteratively. Once T̂ðρÞ
has been determined, it can be used to calculate from
Eq. (34) the full distribution function and from Eq. (40a)
the nonvanishing component of the shear stress tensor.

D. Conformal hydrodynamics from
the exact kinetic solution

In this subsection we show how to obtain first- [14,15]
and second-order [16] conformal viscous hydrodynamics
from the exact solution (34) of the Boltzmann equation. To
obtain the evolution equation for the viscous shear stress
tensor one can follow the method described in [11,12]. Our
starting point is to rewrite the Boltzmann equation (32) in
the following form:

∂δf
∂ρ ¼ −

δf
τ̂relðρÞ

−
∂feq
∂ρ ; ð44Þ

where τ̂relðρÞ ¼ τrelðρÞ=τ ¼ c=T̂ðρÞ and δf ¼ f − feq. The
general expression for the shear-stress tensor (16c) in terms
of δf is

π̂hμνi ¼ 1

ð2πÞ3
Z

d3p̂ffiffiffiffiffiffi−gp
p̂ρ Δ̂

μν
αβp̂

αp̂βδf: ð45Þ

Taking the derivative with respect to ρ we obtain the
equation of motion,

∂ρπ̂
hμνi ¼ Δ̂μν

αβ

∂
∂ρ π̂

αβ ¼
Z

d3p̂
ð2πÞ3 Δ̂

μν
αβp̂

αp̂β

�
1ffiffiffiffiffiffi−gp
p̂ρ

∂δf
∂ρ þ δf

∂
∂ρ

�
1ffiffiffiffiffiffi−gp
p̂ρ

��
; ð46Þ

where Δ̂μν
αβ is the transverse and traceless double projector defined in dS3 ⊗ R with ðρ; θ;ϕ; ςÞ coordinates. In this step all

terms that vanish in the massless limit have been dropped. Using the Boltzmann equation (44) for δf together with
feq ¼ e−p̂

ρ=T̂ðρÞ one obtains the following (exact but implicit) evolution equation:

∂ρπ̂
hμνi ¼ −

π̂μν

τ̂rel
− 2π̂μν tanh ρ

−
tanh ρ

T̂

Z
d3p̂
ð2πÞ3

Δ̂μν
αβp̂

αp̂βffiffiffiffiffiffi−gp ðp̂ρÞ2
�

p2
θ

cosh2ρ
þ p2

ϕ

cosh2ρsin2θ

�
e−p̂

ρ=T̂ðρÞ

−
Z

d3p̂
ð2πÞ3

Δ̂μν
αβp̂

αp̂βffiffiffiffiffiffi−gp
p̂ρ δf

1

p̂ρ

∂p̂ρ

∂ρ : ð47Þ

As already discussed, we need to work this out only for the π̂ςς component. Performing the integral in the second line for
μ ¼ ν ¼ ς one obtains, after some algebra, its evolution equation in the following form:

∂
∂ρ π̂

ςς ¼ −
π̂ςς

τ̂rel
þ 4

3

η̂

τ̂rel
tanh ρ −

46

21
π̂ςς tanh ρ

þ tanh ρ
3ð2πÞ

Z
∞

0

dp̂ρ

Z
2π

0

dθðp̂ρÞ3 sin θ
�
25

21
− cos2θ

�
ð3cos2θ − 1Þδf: ð48Þ

Here the second term on the rhs arises from the integral
over feq in (47) where we used Eq. (30), the thermody-
namic relation εþ P ¼ ST, and the definition η̂≡ ητ3.
The second and last terms on the rhs of Eq. (47) were
rearranged, using the definition (45), to give the last two
terms in Eq. (48).
The first line of Eq. (48) gives the second-order

conformal IS evolution equation for the independent shear
viscous component (details of the derivation of the second-
order viscous hydrodynamical approximations are found in
Appendix A). The second line is a correction arising from
the exact treatment of the distribution function. It is
precisely this type of correction that can be missed when
an approximate method is used to solve the Boltzmann

equation. In Sec. V we will study how large these
deviations are by comparing the exact kinetic solution
with predictions from ideal and different variants of
second-order viscous hydrodynamics that were obtained
from the Boltzmann equation using different approxima-
tion schemes. Finally, we note that the first-order NS
solution is easily extracted from Eq. (48) by taking the
limit τ̂rel → 0:

π̂ςςNS ¼
4

3
η tanh ρ: ð49Þ

This is precisely the exact solution to conformal NS theory
previously obtained in [14,15].
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V. RESULTS AND DISCUSSION

In this section we present solutions to Eq. (34). To obtain
the solutions we first numerically solve the integral
equation for the effective temperature (43) using the
method of iteration [20–22]. One key difference from
the exact solutions obtained previously in [20–22] is that
one must solve Eq. (43) for both positive and negative
values of the de Sitter time ρ. In addition, another key
conceptual difference is that, instead of providing an initial
condition as a function of the radius at fixed proper time,
we must instead specify an initial condition at a fixed de
Sitter time ρ0 which maps to a line in τ and r in Milne
coordinates (shown in Fig. 1).10 Here we choose the initial
condition at ρ0 to be isotropic and ideal, i.e. we require that
the shear-stress tensor vanishes at ρ0. The code necessary to
obtain the exact numerical solution is included in the
Supplemental Material [48].
For the numerical solution we discretize ρ on an equally

spaced lattice from −ρmax to þρmax with ρmax ¼ 10. The
number of grid points required depends on η=S. For
4πη=S ¼ 0.1 one needs on the order of 2000 grid points
and on the order of 200 iterations; however, for larger η=S
it is possible to use fewer grid points, and convergence
can be achieved in a much fewer number of iterations. For
the initial guess for the solution used in the iterations, we
choose the ideal hydrodynamics solution of Gubser and
then iterate until the energy density converges to one part
in 1010 at all points on the lattice. Once the effective
temperature is obtained, it is used to compute the shear
stress, the full distribution function, and other observ-
ables, based on the results derived in the previous
sections.
In what follows we will compare our numerical

results with the free streaming result and three hydrody-
namical approximations: the ideal solution of Gubser,
the IS second-order viscous hydrodynamics solution of
Ref. [16], and a (new) complete second-order viscous
solution which we label as DNMR. The exact free stream-
ing result, which corresponds to the limit η=S → ∞
(c → ∞), can be obtained for both the de Sitter space
temperature profile and the ςς component of the shear-
stress tensor using Eqs. (43) and (40a), respectively. The
results are

T̂free streamingðρÞ ¼ H1=4

�
cosh ρ0
cosh ρ

�
T̂0ðρ0Þ; ð50Þ

with H defined in Eq. (38), and

π̂ςςfree streamingðρÞ ¼ A
�
cosh ρ
cosh ρ0

�
T̂4
0

π2
; ð51Þ

with A defined in Eq. (41).
In the other limit η=S → 0 (c → 0), which corresponds

to the ideal hydrodynamics case, one has [14,15]

T̂ idealðρÞ ¼
T̂0

cosh2=3ðρÞ : ð52Þ

For the second-order hydrodynamic approximation one
has to solve two coupled ordinary differential equations
subject to a boundary condition at ρ ¼ ρ0. For the IS
case, the necessary equations are

1

T̂

dT̂
dρ

þ 2

3
tanh ρ ¼ 1

3
π̄ςςðρÞ tanh ρ; ð53Þ

dπ̄ςς
dρ

þ 4

3
ðπ̄ςςÞ2 tanh ρþ π̄ςς

τ̂π
¼ 4

15
tanh ρ; ð54Þ

where π̄ςς ≡ π̂ςς=ðT̂ ŜÞ and τ̂π ¼ 5η=ðST̂Þ. One can go
beyond the IS approximation presented in Ref. [16] and
also include the complete second-order contribution (see
Appendix A for further details). In this case, the second
equation above should be replaced by

dπ̄ςς
dρ

þ 4

3
ðπ̄ςςÞ2 tanh ρþ π̄ςς

τ̂π
¼ 4

15
tanh ρþ 10

21
π̄ςς tanh ρ:

ð55Þ

If Eq. (55) is used, the result is labeled as DNMR.
For all cases shown in the results section we require

as the boundary condition for the solution in de Sitter
space that the system is ideal at ρ0 ¼ 0 such that
π̂μνðρ0Þ ¼ 0.

FIG. 1 (color online). Lines of constant ρ in the ðqτ; qrÞ plane.
The origin in de Sitter time, ρ ¼ 0, corresponds to the line going
through ðqτ; qrÞ ¼ ð1; 0Þ and the upper right corner of the graph.

10Due to rotational symmetry and boost invariance, by con-
struction we can ignore the dependence on ϕ and ς; however, in
reality the surface is, in fact, three dimensional. Note that,
according to Eq. (31), a fixed temperature along a line of constant
ρ implies a temperature profile that decreases like 1=τðrÞ as r and
τ increase.
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A. Solution in de Sitter coordinates

In Fig. 2 we compare the de Sitter space temperature
profile T̂ðρÞ for the choice ρ0 ¼ 0 with ε̂ðρ0Þ ¼ 1 [corre-
sponding to T̂0 ¼ ðπ2=3Þ1=4 ¼ 1.3468] and π̂ςςðρ0Þ ¼ 0.
The four panels (a)–(d) show the results obtained for
specific shear viscosities 4πη=S ¼ 1, 3, 10, and 100,
respectively. In each panel we show the exact kinetic
result as a solid black line, the IS approximation as a
red short-dashed line, the DNMR approximation as a blue
long-dashed line, the ideal hydro approximation as a green
dot-dashed line, and the free streaming approximation as an
orange medium-dashed line. There are two salient points to
make immediately regarding these figures: As η=S is
decreased one sees convergence to the ideal hydro result
for positive ρ; as η=S is increased one observes conver-
gence to the free streaming result for both positive and
negative ρ; however, using the boundary condition
π̂μνð0Þ ¼ 0 one is not able to smoothly connect to the
ideal limit for negative ρ. This occurs in the exact kinetic
solution and in both of the second-order viscous hydro-
dynamic solutions. One can fix this problem by fine-tuning
the value of πμνð0Þ, or instead by imposing the equilibrium
boundary condition at ρ ¼ −∞. We address this issue in
more detail in Appendix B where we show how to
smoothly connect to the ideal hydrodynamic limit. In that
same Appendix we comment additionally on constraints
that must be satisfied by the boundary conditions in order to
obtain physically meaningful solutions to the kinetic
equation.

Focusing next on the comparison of the second-order
viscous hydrodynamic approximations to the exact kinetic
solution for the de Sitter space temperature profile in Fig. 2,
one sees that for values of ρ near ρ ¼ 0, the DNMR
solution agrees better with the exact kinetic solution;
however, at large values of ρ (both positive and negative)
we find the IS result to be the better approximation to the
exact result. Finally, we note that only the exact kinetic
solution is able to properly describe the largest η=S case
[Fig. 2(d)], which for all intents and purposes is the free
streaming case.
In Fig. 3 we compare the different approximations for

the de Sitter space profile of the shear stress π̄ςςðρÞ, again
for the choice ρ0 ¼ 0 with ε̂ðρ0Þ ¼ 1 and π̄ςςðρ0Þ ¼ 0. The
four panels (a)–(d) show results for four different choices of
the specific shear viscosity: 4πη=S ¼ 1, 3, 10, and 100. In
each panel we show the exact kinetic result as a solid black
line, the IS hydrodynamic approximation as a short-dashed
red line, and the DNMR approximation as a long-dashed
blue line. As η=S is decreased, the hydrodynamic approx-
imations appear to approach the exact kinetic solution;
however, once again, although the DNMR solution seems
to agree better with the exact kinetic solution at small ρ, it
appears to do a poorer job than IS at large ρ. We note,
however, that one sees quite reasonable overall agreement
between the exact kinetic solution and the two second-order
viscous hydrodynamic solutions even at extremely large
values of η=S.
This approximate agreement, which holds at a qualitative

[Oð30%Þ] level even at large jρ − ρ0j, where for the exact

FIG. 2 (color online). Comparison of the de Sitter space temperature profile obtained from the exact kinetic solution, ideal
hydrodynamics, and two second-order formulations of viscous hydrodynamics. The four panels (a)–(d) show the results obtained
assuming 4πη=S ¼ 1, 3, 10, and 100, respectively. In all panels we fixed ρ0 ¼ 0 and Êðρ0Þ ¼ 1.
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solution of the RTA Boltzmann equation π̄ςςðρÞ appears to
approach a universal value of 0.5, is surprising. As we show
in Fig. 4, systems with Gubser flow expand so rapidly that
they are driven away from local equilibrium at an expo-
nentially increasing rate as the system evolves away from
the starting time ρ0 where local equilibrium initial con-
ditions were imposed.11 We define the Knudsen number in
de Sitter coordinates as

Kn ¼ τ̂micro=τ̂macro ¼ τ̂reljθ̂j≡ τ̂relj∇̂ · ûj; ð56Þ
where θ̂ ¼ ∇̂ · u (with ∇̂μ denoting the covariant derivative
in de Sitter coordinates) is the scalar macroscopic expan-
sion rate of the Gubser flow, and τ̂rel ¼ c=T̂ is the micro-
scopic relaxation time, evaluated for a ρ-dependent
temperature T̂ðρÞ that is obtained from the matching
condition (42) for the exact solution of the RTA
Boltzmann equation (solid black line) and from Eq. (52)
for the ideal fluid approximation (dashed red line).12 For
systems to approach local thermal equilibrium and hydro-
dynamics to become a valid approximation, Kn has to go to
zero. Figure 4 shows that, as jρ − ρ0j increases, Kn instead
grows exponentially, driving the system farther and farther

away from local equilibrium. The behavior of the red
dashed line in Fig. 4 is easy to understand: For the Gubser
flow, the expansion rate in de Sitter coordinates is

∇̂ · û ¼ 2 tanh ρ: ð57Þ

Combined with τ̂rel ¼ c=T̂ and Eq. (52), this yields
KnðρÞ ¼ ð2c=T̂0Þjtanh1=3ðρÞsinh2=3ðρÞj which grows as

FIG. 4 (color online). The de Sitter time evolution of the
Knudsen number Kn defined in Eq. (56), for the exact solution of
the RTA Boltzmann equation (solid black line) and its ideal
hydrodynamic approximation (red dashed line). The constant c in
τ̂rel ¼ c=T̂ was chosen to correspond to 4πη=S ¼ 1. See the text
for discussion.

FIG. 3 (color online). Comparison of the normalized de Sitter space shear profile π̄ςς ≡ π̂ςς=ðT̂ ŜÞ obtained from the exact kinetic
solution and two second-order formulations of viscous hydrodynamics. The four panels (a)–(d) show the results obtained assuming
4πη=S ¼ 1, 3, 10, and 100, respectively. In all panels we fixed ρ0 ¼ 0 and Êðρ0Þ ¼ 1.

11Note that this holds for both positive and negative values of
ρ − ρ0.

12The definition of Kn is independent of the coordinate system
chosen, and we evaluated it in de Sitter coordinates according to
the last expression in (56).
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eρ for large ρ.13 For the exact solution of the Boltzmann
equation, viscous heating increases the temperature relative
to the ideal fluid case, tempering somewhat the rate at
which Kn grows for large ρ − ρ0 without, however,
changing its exponential asymptotic behavior.
Figure 3 demonstrates that, in spite of the exponential

asymptotic growth of the Knudsen number, the viscous
stress of the system remains finite, π̄ςςðρÞ never growing
really big, in fact, for large Tτrel or η=S, π̄

ς
ςðρÞ never visibly

exceeds its asymptotic value 0.5. This is a consequence of
higher order hydrodynamic corrections: While the growing
expansion and decreasing scattering rates try to drive the
system farther and farther away from local momentum
isotropy, the growth of the microscopic relaxation rate
simultaneously slows down the evolution of the viscous
shear stress which eventually saturates at a finite value
instead of following the growth of the dissipative force that
drives it.

B. Solution in Minkowski space

Once the solution in de Sitter space for T̂ is obtained, one
can use Eqs. (4) and (31) to construct the solution in
Minkowski space, mapped by r and τ since the system is
azimuthally symmetric and longitudinally boost invariant.
For the purposes of this paper we present results for the
case q ¼ 1 fm−1 which corresponds to a fairly small source
size, with the “initial” temperature T̂0 ≡ T̂ðρ0 ¼ 0Þ ¼
1.3468 (from ε̂0 ¼ 1) translating into a temperature scale
at the origin r ¼ 0 at a reference time τ0 ¼ 1 fm=c of
T0 ≡ Tðτ0 ¼ 1 fm=c; r ¼ 0Þ≃ 266 MeV. However, all
plots remain unchanged under a change of the scale q if
we substitute r½fm� → qr and τ½fm=c� → qτ. The de Sitter
space results shown in Figs. 2 and 3 can thus be used for
any q and therefore describe an entire family of exact
solutions to the RTA Boltzmann equation and their asso-
ciated hydrodynamic expansions with varying source size.

The choice of q affects the range of ρ to be explored in
order to cover a given region in r which increases for larger
q values. Viscous corrections, and differences between the
exact microscopic and the approximate macroscopic evo-
lutions will be bigger at large values of ρ − ρ0.
In Fig. 5 we show snapshots of the radial temperature

profile at four different proper times, for 4πη=S ¼ 1 in
panel (a) and 4πη=S ¼ 10 in panel (b). One sees that
changing the shear viscosity by an order of magnitude does
not seem to have a strong effect on the evolution of the
matter near the center (for r≲ 3 fm=c). However, at larger
radii one notices an appreciable difference: for larger shear
viscosity the temperature decreases more rapidly at large r.
We note, however, that the weak dependence on the
assumed value of η=S partly stems from the fact that the
flow velocity profile is here constrained by the Gubser
symmetry to be always the same, irrespective of the value
of η=S.
The Minkowski space evolution of the scaled shear stress

π̄ςς ≡ π̂ςς=ðT̂ ŜÞ is plotted as a function of x and τ in Fig. 6,
for the exact solution of the Boltzmann equation with two
different values of the specific shear viscosity. Note that the
vertical scale changes between the left and right figures.
Also note that although we explicitly show the x depend-
ence the solution is cylindrically symmetric by construc-
tion. As this figure shows, the assumed value of η=S has a
strong effect on the spacetime evolution of the shear stress.
Finally, we compare in Fig. 7 [for η=S ¼ 1=ð4πÞ] and

Fig. 8 [for η=S ¼ 10=ð4πÞ] snapshots of the Minkowski
space temperature profile obtained from the exact kinetic
solution (solid black line) with different hydrodynamic
approximations: ideal hydrodynamics (dot-dashed green
line), second-order IS viscous hydrodynamics (red short-
dashed line), and the DNMR approximation to second-
order viscous hydrodynamics (long-dashed blue line). In
the top set of panels we show radial profiles at three
different longitudinal proper times, τ ¼ 1, and 10 fm=c. In
the bottom set of panels we show the ratio between the
temperatures corresponding to the exact kinetic result and
those of the two second-order viscous hydrodynamic

FIG. 5 (color online). Exact solution for the proper-time evolution of the temperature profile as a function of the radial coordinate r, for
4πη=S ¼ 1 in panel (a) and 4πη=S ¼ 10 in panel (b).

13These expressions assume ρ0 ¼ 0 but can obviously be
generalized to ρ0 ≠ 0.
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FIG. 8 (color online). Same as Fig. 7, but for 4πη=S ¼ 10.
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FIG. 7 (color online). Snapshots of the temperature profile in Milne coordinates obtained from the exact kinetic solution (solid black
line), ideal hydrodynamics (dot-dashed green line), the second-order IS solution (red short-dashed line), and the second-order DNMR
solution (long-dashed blue line). For this figure we assumed 4πη=S ¼ 1.

FIG. 6 (color online). Two-dimensional slice of the spatial and proper-time evolution of the unitless shear stress π̄ςς ≡ π̂ςς=ðT̂ ŜÞ, for
4πη=S ¼ 1 (left) and 4πη=S ¼ 10 (right).
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approximations. Note that even at the reference time τ0 ¼
1 fm=c the temperature profiles are not the same: since we
impose initial conditions not at a fixed longitudinal proper
time in Minkowski space, but at a fixed de Sitter time ρ0,
there is nothing special about the time τ ¼ 1 fm=c (except
that it is the natural longitudinal proper time scale for a
scale parameter q ¼ 1 fm−1). Figures 7 and 8 show that the
temperatures corresponding to the exact and approximate
solutions always agree at their peak value, and that the
position of this peak (which corresponds to the initial value
ρ0 ¼ 0 in de Sitter space) moves out in the radial direction
along the line r ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − 1

p
as τ increases [see Eq. (4a)].

From Fig. 7 we see that for 4πη=S ¼ 1 the maximum
error in the temperature from the IS approach is on the order
of 10%–15% in the ðτ; rÞ region shown in the plots, and
somewhat larger for the DNMR approximation. Somewhat
counterintuitively, Fig. 8 seems to show a significantly
smaller error for a 10 times larger shear viscosity. However,
more careful inspection reveals that this is only the case to
the right of the peak, which corresponds to negative ρ

values; in the central region (r≲ ffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − 1

p
) which corre-

sponds to positive ρ values, the late-time differences
between the exact kinetic solution and the second-order
viscous hydrodynamic approaches increasewith increasing
η=S, with the DNMR approach giving slightly better
agreement with the exact kinetic solution. In general, the
deviations of the hydrodynamic approximations from the
exact solution appear to be larger at negative than for
positive ρ values; this agrees qualitatively with the pattern
observed in Figs. 2 and 3. Not surprisingly, the ideal
hydrodynamic approximation fares worst in all cases.

VI. CONCLUSIONS

In this paper we presented an exact solution of the
Boltzmann equation in the relaxation time approximation
for a system that expands with Gubser symmetric longi-
tudinal and transverse flow. We showed that, in the
conformal (massless) limit, the Boltzmann equation has
an emergent Weyl symmetry. Transforming to de Sitter
coordinates and imposing the Gubser flow as the four-
velocity profile as well as other constraints imposed by the
Gubser symmetry on the allowed dependences of the
distribution function on the phase-space coordinates, we
were able to cast the Boltzmann equation into stationary
form. This allowed us to solve it in the form of one-
dimensional integral equations for the full distribution
function, temperature profile, and all components of the
energy-momentum tensor. From these integral equations
we could analytically extract the ideal hydrodynamic
solution, several variants of second-order viscous hydro-
dynamic solutions, and the free streaming solution.
The resulting one-dimensional integral equations were

then solved numerically using an iterative method which
allowed us to obtain an exact solution to the kinetic

equation to arbitrary numerical accuracy in de Sitter space.
The resulting exact de Sitter space solution can be
analytically mapped back to Minkowski space and can
be used to describe an entire family of exact solutions in
this space with varying physical source size. For a given
source size corresponding to the choice q ¼ 1 fm−1, we
then made quantitative comparisons between the different
hydrodynamic approximations and the exact kinetic sol-
ution. We found that, while not perfect, the second-order
hydrodynamic approximations gave reasonable results
even in the limit of large specific shear viscosities η=S.
One complication in these comparisons is that, in order

to preserve the Gubser symmetry, initial conditions must be
implemented at constant de Sitter time ρ in de Sitter space.
When mapped back to Minkowski space, one cannot
guarantee that the exact and approximate solutions have
the same radial temperature profile at a fixed longitudinal
proper time. While this introduces some subtleties into the
interpretation of the comparisons, it does not detract from
the fact that one is now able to construct exact solutions to
the Boltzmann equation for systems that feature simulta-
neous (albeit still highly symmetric) longitudinal and
transverse expansion, irrespective of the assumed value
of η=S (or, equivalently, the relaxation time τrel). Looking
forward, it will be interesting to compare the solutions
described in this paper with higher-order truncations
of viscous hydrodynamics and with anisotropic hydro-
dynamics. Moreover, using similar techniques it should be
possible to find additional exact solutions to the Boltzmann
equation for other relativistically expanding systems [fea-
turing e.g. transversally anisotropic (2þ 1)-dimensional
flow] by considering more general conformal maps
between Minkowski space and other curved spacetimes
[17,18]. We leave this for future work.
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APPENDIX A: CONFORMAL HYDRODYNAMICS

In this Appendix we derive the fluid-dynamical
equations of motion in de Sitter coordinates with the
metric ĝμν ¼ diagð−1; cosh2ρ; cosh2ρsin2θ; 1Þ. In these
coordinates our system is static, i.e. ûμ ¼ ð−1; 0; 0; 0Þ,
and the equations of motion simplify considerably and
can be solved with little numerical effort. The nonzero
components of the Christoffel symbol in these coordi-
nates are Γ̂ρ

θθ ¼ cosh ρ sinh ρ, Γ̂ρ
ϕϕ ¼ cosh ρ sinh ρsin2θ,

Γ̂θ
ρθ ¼ Γ̂θ

θρ ¼ Γ̂ϕ
ρϕ ¼ tanh ρ, Γ̂θ

ϕϕ ¼ − sin θ cos θ, and

Γ̂ϕ
θϕ ¼ Γ̂ϕ

ϕθ ¼ cot θ. Also, the determinant of the metric
is

ffiffiffiffiffiffi
−ĝ

p ¼ cosh2ρ sin θ.
The expansion rate θ̂ ¼ ∇̂μûμ is therefore given by

θ̂ ¼ 1ffiffiffiffiffiffi
−ĝ

p ∂̂μð
ffiffiffiffiffiffi
−ĝ

p
ûμÞ ¼ 2 tanh ρ ðA1Þ

(∇̂μ is the general relativistic covariant derivative in de

Sitter coordinates), while the shear tensor σ̂μν ¼ Δ̂αβ
μν∇̂αûβ

can be shown to be

σ̂μν ¼ Γ̂ρ
μν −

1

3
Δ̂μνθ̂ ¼ diag

�
0;
1

3
cosh ρ sinh ρ;

1

3
sin2θ cosh ρ sinh ρ;−

2

3
tanh ρ

�
: ðA2Þ

The projection operators Δ̂μν and Δ̂αβ
μν were defined in the main text of the paper.

The energy conservation equation can then be reexpressed as

ûμ∇̂με̂þ ðε̂þ P̂Þ∇̂μûμ þ π̂μνσ̂μν ¼ 0 ⇒ ∂ρε̂þ 2ðε̂þ P̂Þ tanh ρ − π̂ςς tanh ρ ¼ 0; ðA3Þ

where we used the tracelessness π̂μμ ¼ 0. Since for a
conformal fluid ε̂ ∼ T̂4, one can rewrite this equation as
an equation of motion for the temperature:

1

T̂
∂ρT̂ ¼ −

2

3
tanh ρþ 1

3

π̂ςς

ε̂þ P̂
tanh ρ: ðA4Þ

The equation for the shear stress tensor is written as

τ̂πΔ̂αβ
μν ûλ∇̂λπ̂αβ þ π̂μν ¼ −2η̂σ̂μν −

4

3
τ̂ππ̂μνθ̂ −

10

7
τ̂ππ̂

λ
hμσ̂νiλ:

ðA5Þ

The term π̂λhμσ̂νiλ can be simplified as follows:

π̂λhμσ̂νiλ ¼ Δαβ
μν π̂λασ̂βλ ¼

1

2
π̂λμσ̂νλ þ

1

2
π̂λνσ̂μλ þ

1

3
Δ̂μνπ̂

ςς tanh ρ;

ðA6Þ

where

π̂λhςσ̂ςiλ ¼ −
1

3
π̂ςς tanh ρ;

π̂λhθσ̂θiλ ¼ −
1

3
cosh ρ sinh ρπ̂ϕϕ;

π̂λhϕσ̂ϕiλ ¼
1

3
cosh ρ sinh ρsin2θπ̂θθ: ðA7Þ

The relaxation term Δ̂αβ
μν ûλ∇̂λπ̂αβ is worked out as

Δ̂αβ
μν ûλ∇̂λπ̂αβ ¼ D̂π̂μν − π̂αβD̂Δ̂αβ

μν ; ðA8Þ

where D̂ ¼ ûλ∇̂λ. The first term on the right is given by

D̂π̂μν ¼ ûλ∇̂λπ̂μν ¼ ûλ∂̂λπ̂μν − ûλΓ̂α
μλπ̂αν − ûλΓ̂α

νλπ̂αμ ðA9Þ

while the second one is

−π̂αβD̂Δ̂αβ
μν ¼ −π̂αβD̂ðΔ̂α

μΔ̂β
νÞ ¼ ðûνπ̂αμ þ ûμπ̂ανÞûσΓ̂λ

σαûλ:

ðA10Þ

Thus, the equations of motion for π̂θθ, π̂ϕϕ, and π̂ςς become

τ̂π∂ρπ̂θθ þ π̂θθ

¼ −
�
2

3
η̂cosh2ρþ 2

3
τ̂ππ̂θθ þ

10

21

τ̂ππ̂ϕϕ
sin2θ

�
tanh ρ; ðA11Þ

τ̂π∂ρπ̂ϕϕ þ π̂ϕϕ

¼ −
�
2

3
η̂cosh2ρsin2θ þ 2

3
τ̂ππ̂ϕϕ þ

10

21
τ̂ππ̂θθsin2θ

�
tanh ρ;

ðA12Þ

τ̂π∂ρπ̂ςς þ π̂ςς ¼
�
4

3
η̂ −

8

3
τ̂ππ̂ςς þ

10

21
τ̂ππ̂ςς

�
tanh ρ:

ðA13Þ
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One sees that π̂ςς decouples while the remaining two
components of the shear stress are coupled to each other.
Due to the tracelessness of the shear stress tensor it is,
however, sufficient to only solve the last equation, Eq. (A13).
Defining the scaled shear stress π̄ςς ¼ π̂ςς=ðε̂þ P̂Þ

and using the fact that in massless kinetic theory
η̂=τ̂π ¼ ðε̂þ P̂Þ=5, we arrive after a few more steps at
the following final form of the equations of motion in de
Sitter coordinates:

1

T̂
∂ρT̂ þ 2

3
tanh ρ ¼ 1

3
π̄ςς tanh ρ; ðA14Þ

∂ρπ̄
ς
ς þ π̄ςς

τ̂π
tanh ρþ 4

3
ðπ̄ςςÞ2 ¼ 4

15
tanh ρþ 10

7
π̄ςς tanh ρ:

ðA15Þ
In traditional Israel-Stewart theory [16], where the term
proportional to π̂λhμσ̂νiλ is absent, the equation of motion for

π̂ςς reduces to

∂ρπ̄
ς
ς þ π̄ςς

τ̂π
tanh ρþ 4

3
ðπ̄ςςÞ2 ¼ 4

15
tanh ρ: ðA16Þ

The last three equations are Eqs. (53)–(55) in Sec. V.

APPENDIX B: PHYSICAL CONSTRAINTS
ON THE DE SITTER SPACE
BOUNDARY CONDITION

As mentioned in the body of this paper, in order to obtain
the exact solution to the kinetic equation one must specify
an initial condition in de Sitter space. The exact kinetic
solution obtained herein assumed π̂ςςðρ0Þ ¼ 0 at some
particular value ρ0. In Sec. V we chose ρ0 ¼ 0 in order
to make the comparison between the various approaches
most transparent, however, one has some degree of freedom
in the choice of this parameter. One issue with the solutions
presented in the main body is that it is not possible to

FIG. 9 (color online). Comparison of the de Sitter space temperature profile obtained from the exact kinetic solution, ideal
hydrodynamics, and two second-order formulations of viscous hydrodynamics, with equilibrium initial conditions imposed at ρ0 ¼ −10
with T̂ðρ0Þ ¼ 2.02018 × 10−3. Panels (a)–(f) show the results obtained assuming 4πη=S ¼ 10−4, 10−2, 1, 10, 100, and 105, respectively.
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take the limit η=S → 0 in order to recover the ideal
hydrodynamics limit (see Fig. 2). As can be seen from
Fig. 2, for negative ρ the solution does not converge to the
ideal hydrodynamic limit as η=S → 0. In fact, for very
small values of η=S one finds that the solution diverges at
some finite negative ρ. This behavior is not restricted to the
exact kinetic solution and occurs within both the IS and
DNMR second-order viscous hydrodynamic approaches
as well.
In order to take the small η=S limit, one must very

carefully take η=S → 0 using a positive value of π̂ςςð0Þ
which vanishes only when η=S is precisely zero. For the
IS and DNMR second-order viscous hydrodynamic
solutions, one can iteratively determine the necessary
value of π̂ςςðρ0Þ required to recover the ideal hydro-
dynamic result as η=S → 0; however, due to the form of
the initial distribution function assumed herein, it is not
currently possible to implement a finite value for π̂ςςðρ0Þ
in the exact kinetic solution. As an alternative approach
which guarantees convergence to the ideal hydrodynamic
result as η=S → 0 one could instead fix the boundary
condition on the left edge of the simulation region.14

If this is done, one can straightforwardly take the
ideal limit.
To demonstrate this, in Fig. 9 we plot the results obtained

with such a boundary condition for both small and large
values of η=S. For very small specific shear viscosities the
exact kinetic solution is computationally very demanding
and cannot be obtained with our computing resources, so in
panels (a) and (b) we graph only our macroscopic solutions
for ideal and viscous hydrodynamics. Panel (a) shows that,
with equilibrium boundary conditions implemented at large
negative de Sitter times, the two viscous hydrodynamic
approximations (which in Fig. 2 are seen to bracket the
exact kinetic solution at negative values of ρ − ρ0) perfectly
reproduce the ideal fluid limit when η=S becomes very

small. Figure 10(f), on the other hand, demonstrates that for
very large values of η=S the exact kinetic solution con-
verges perfectly to the free streaming limit. For finite shear
viscosity, however, a complication with this type of
boundary condition is that by implementing it at the left
edge in de Sitter space one will not find the same
temperature and shear correction at positive ρ values
(which in Minkowski space map to the central fireball
region at times on the order of 1 fm=c). As a result, it is
more difficult to make apples-to-apples comparisons of the
Minkowski-space evolution in this case. It is for this
reason that in the body of the text we chose the simpler
“initial condition” π̂ςς ¼ 0 at ρ0 ¼ 0. This condition
guarantees that all approaches start with an isotropic
initial condition that is essentially free from shear correc-
tions near the fireball center at longitudinal proper times
on the order of 1 fm=c.
We note also that, for any value of η=S one could also

attempt to initialize the system in de Sitter space in
equilibrium at a positive value of ρ0; however, one finds
in practice that doing this can result in complex-valued
energy densities and, if ρ0 is taken to be large enough, the
numerical solution will fail to converge. Once again, this
behavior is not unique to the kinetic solution and similar
behavior can be seen in the second-order viscous hydro-
dynamic solutions. Of course, negative or complex energy
densities are unphysical, and this numerical phenomenon
indicates that the physical range of ρ values, where the
distribution function corresponding to a thermal equilib-
rium boundary condition at ρ0 remains positive definite for
all momenta, ends somewhere at sufficiently large negative
values of ρ − ρ0. We have observed this phenomenon even
for ρ0 ¼ 0 where it appears to happen at larger and larger
negative values of ρ as η=S decreases, but never completely
disappears.
As a concrete illustration of this, in Fig. 10 we plot the

de Sitter space profile of T̂4 in panel (a) and π̄ςς in panel
(b). In both panels, the black solid line is the real part of
the quantity and the red short-dashed line is the

FIG. 10 (color online). The de Sitter space temperature profile obtained from the exact kinetic solution assuming 4πη=S ¼ 3 and
ρ0 ¼ 3 with T̂ðρ0Þ ¼ 0.214477.

14As the simulation region is enlarged, this corresponds to
fixing the boundary condition at ρ → −∞.
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imaginary part of the quantity. In the case shown, the
code can be made to converge to arbitrary accuracy,
however, the resulting solutions are complex valued for
sufficiently negative ρ − ρ0. While this result is, in fact,
a mathematical solution to the RTA Boltzmann equation
subject to the Gubser flow profile, a complex temper-
ature is physically meaningless and (we believe) indica-
tive of deeper underlying problems related to a violation
of positivity of the distribution function f at large
negative ρ − ρ0. As a minimum, one must therefore
restrict the choice of ρ0 such that (a) the code converges
and (b) both the temperature and shear correction
remain real valued over the entire de Sitter space

domain considered.15 In future work we plan to relax
the requirement π̂ςςðρ0Þ ¼ 0 in which case it may be
possible to impose initial conditions over a larger range
of ρ0, without the solutions becoming unphysical.
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