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We present a complete list of the independent dimension-7 operators that are constructed using the
standard model degrees of freedom and are invariant under the standard model gauge group. This list
contains only 20 independent operators, far fewer than the 63 operators available at dimension 6. All of
these dimension-7 operators contain fermions and violate lepton number, and 7 of the 20 violate baryon
number as well. This result extends the standard model effective field theory and allows a more detailed
exploration of the structure and properties of possible deformations from the standard model Lagrangian.
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I. INTRODUCTION

The discovery of the Higgs boson at the Large Hadron
Collider (LHC) provided the latest of many examples of the
explanatory power of the standard model. However,
because of the hierarchy problem and the accompanying
angst regarding naturalness, it is widely believed that
beyond-the-standard-model (BSM) physics is necessary
at scales not much beyond the TeV scale. As of yet there
are no clear experimental signatures of new physics at these
scales; in particular, theoretically compelling extensions of
the standard model such as supersymmetry have yet to be
experimentally verified.
While searches for BSM particles at the LHC driven by

explicit theories such as supersymmetry or extra dimen-
sions are useful and ongoing, it may be beneficial to take an
alternative and complementary approach in the quest for
BSM physics. This avenue is the method of effective field
theory, which parametrizes all possible deviations from the
standard model that any particular UV theory might
explore. Effective field theory can be viewed as a universal
bottom-up approach to BSM physics, as opposed to the
top-down approach of particular UV theories.
Assuming no undiscovered light (≲TeV) particles,

integrating out the heavy degrees of freedom in a BSM
model will produce effective operators that are invariant
under the standard model gauge group. By constructing
every possible operator using the standard model degrees of
freedom and using standard model gauge group invariance
as a constraint, we can remain agnostic as to the specific
BSM theory that is producing these operators. Of course, a
given UV theory may have symmetries that forbid some of
the operators, or various operators may be loop suppressed,
but the point of effective field theory is to take a general
approach and cast a wide net. The operators constructed in
this manner collectively constitute the standard model
effective field theory (SMEFT).

Since operators with dimension greater than 4 are
suppressed by powers of an energy scale equal to the scale
at which the new physics is integrated out, the construction
of effective operators from standard model fields can be
organized by an expansion in the canonical dimension of
the operators. The canonical dimension is the total dimen-
sion of the fields making up an operator; dimensionful
couplings are not included. This expansion can be treated
as an expansion in powers of the dimensionless parameter
ε ¼ mSM=Λ, where Λ is the scale of the new physics and
standard model mass scales such as the Higgs mass or the
top quark mass are represented by mSM.
This constructive program is trivially implemented at

dimension 5, or equivalently ε1, since there is only one
possible dimension-5 gauge invariant operator—the
Weinberg neutrino mass operator [1]. At the dimension-
6 level (ε2), Buchmüller and Wyler counted 80 operators in
1986 [2]. Some of these 80 operators were redundant and
able be interrelated by using the standard model equations
of motion to make field redefinitions. An updated classi-
fication containing 59 independent dimension-6 operators
was published in 2010 [3]. Some dimension-7 and
dimension-8 operators have been studied in the literature
[4–14], but no complete operator basis has previously been
published for any dimension greater than 6.
Table I lists the number of operators in the SMEFT for

each order in the operator dimension expansion up to
dimension 7. This operator count does not include flavor
index permutations or Hermitian conjugates and ignores
operators that only contribute to topological quantum
effects, such as the QCD theta term θg23G

A
μν
~GAμν=ð32π2Þ.

The Higgs mass term ðH†HÞ is the solitary dimension-2
operator.
The formal properties of the dimension-6 operators of

the SMEFT have been extensively studied. A series
of papers calculated the full 59 × 59 anomalous
dimension matrix for the operators that preserve baryon
number [15–21], and the anomalous dimension matrix for*llehman@nd.edu
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the baryon-number violating operators followed soon after
[22].1 The dimension-6 operators were also recently noted
to have intriguing “holomorphic” properties [24]. Similar
examinations of the formal properties of the dimension-7
operators can now be undertaken utilizing the list presented
in this paper.
The SMEFTup to dimension 6 has also been widely used

in phenomenological studies. TheLHCphenomenology of a
specific toy model leading to some dimension-6 operators
was examined in Ref. [25]. The effects of the dimension-6
SMEFT on lepton flavor violation [26] and top quark
processes [27,28] have also been explored. Many papers
address the effects of dimension-6 operators on the Higgs
sector; for a representative sample, see Refs. [29–36] and
references therein. The implementation of operators involv-
ing the Higgs into FeynRules has aided such phenomeno-
logical efforts, allowing dimension-6 operators to be used in
Monte Carlo generators such as MadGraph [37]. The
dimension-7 operators will also be useful for phenomeno-
logical studies of possible signals of new physics in various
channels and processes. In particular, given the lepton and
baryon-number violating properties of the dimension-7
operators, they can be used to explore baryogenesis and
leptogenesis, giving possible methods of generating the
matter-antimatter asymmetry of the Universe.
The organization of this paper is as follows. Section II

establishes the relevant symbols and conventions, and the
complete list of the independent dimension-7 operators is
presented inSec. III. Somenecessary facts regarding fermions
and hypercharge are reviewed in Sec. IV. In Sec. V we work
through the details of the operator classification used to obtain
the list in Sec. III, and we conclude in Sec. VI.

II. NOTATION AND CONVENTIONS

The standard model degrees of freedom are listed for
convenience in Tables II and III. The SUð2ÞW generators

will be represented by τI, with I ¼ 1, 2, 3 the adjoint
representation indices. The indices for the fundamental
representation of SUð2ÞW will be fi; j; k; m; ng ∈ f1; 2g.
The field-strength tensors will be denoted by
Xμν ∈ fGA

μν;WI
μν; Bμνg, all with dimension 2. Dual tensors

are defined as ~Xμν ¼ ð1=2ÞϵμνρσXρσ. The indices fp; r; s; tg
will be used to denote fermion flavors (generations), and
the chirality indices fL;Rg will generally be suppressed.
To satisfy SUð2ÞW invariance, the complex conjugate of the
Higgs appears in the construction ~Hi ≡ ϵijðHjÞ�. The
symbol C will denote the Dirac charge conjugation matrix,
which links together same-chirality fermion fields in a
scalar current.
Color SUð3ÞC indices will always be suppressed, with

the convention that an operator with two quarks with color
indices fα; βg will always be contracted as δαβqαqβ, and an
operator with three quarks will have the color indices
contracted in the totally antisymmetric manner ϵαβγqαqβqγ.
There are no dimension-7 operators with more than three
quarks.
The SMEFT Lagrangian can contain the matter fields

shown in Table II, the gauge field-strength tensors Xμν,
and covariant derivatives Dμ. The SMEFT Lagrangian at
zeroth order, otherwise known as the standard model
Lagrangian, is

TABLE I. The number of operators invariant under the standard
model gauge group SUð3ÞC ⊗ SUð2ÞW ⊗ Uð1ÞY , organized by
canonical operator dimension. This enumeration only includes
operators with nontopological effects and does not consider
flavor permutations or Hermitian conjugates. Note that four of
the dimension-6 operators violate baryon number conservation,
leaving 59 that conserve baryon number.

Dimension Number of operators

2 1
4 13
5 1
6 63
7 20

TABLE III. The standard model gauge degrees of freedom and
their gauge group representations. All have dimension 1 and
transform in the vector representation of the Lorentz group.
A ¼ 1;…; 8 and I ¼ 1;…; 3.

Field SUð3ÞC SUð2ÞW Uð1ÞY
GA

μ 8 1 0
WI

μ 1 3 0
Bμ 1 1 0

TABLE II. The standard model matter degrees of freedom,
along with their dimensions and gauge and Lorentz group
representations.

Field SUð3ÞC SUð2ÞW Uð1ÞY Dimension SLð2;CÞ

QL ¼
� uL
dL

� 3 2 1=6 3=2 ð1
2
; 0Þ

uR 3 1 2=3 3=2 ð0; 1
2
Þ

dR 3 1 −1=3 3=2 ð0; 1
2
Þ

H ¼
�
Hþ

H0

�
1 2 1=2 1 (0,0)

LL ¼
� νL
eL

� 1 2 −1=2 3=2 ð1
2
; 0Þ

eR 1 1 −1 3=2 ð0; 1
2
Þ

1This reference also noted that only four of the five baryon-
number violating operators listed in Ref. [3] are independent, a
fact previously realized in Ref. [23].
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LSM ¼ −
1

4
GA

μνGAμν −
1

4
WI

μνWIμν −
1

4
BμνBμν

þ ðDμHÞ†ðDμHÞ þm2H†H −
1

2
λðH†HÞ2

þ iðL̄DLþ ēDeþ Q̄DQþ ūDuþ d̄DdÞ
− ðL̄YeeH þ Q̄Yuu ~H þ Q̄YddH þ H:c:Þ: ð1Þ

As mentioned before, we ignore topological terms—i.e.
terms that are total spacetime derivatives. The Lagrangian
and all operators apply above the electroweak symmetry
breaking scale.
The dimension-7 operators presented in Sec. III

generically violate lepton and/or baryon number. In fact,
all SMEFT operators of odd dimension must violate
either lepton number or baryon number, and perhaps both
[38–40]. Baryon number is defined as

B ¼ 1

3
ðnq − nqcÞ; ð2Þ

where nq is the number of quarks and nqc is the number of
antiquarks. Lepton number is

L ¼ ðnl − nlcÞ; ð3Þ

with nl the number of leptons and nlc the number of
antileptons.

III. COMPLETE LIST OF DIMENSION-7
OPERATORS

The complete list of independent dimension-7 operators
is presented in Table IV. It will be shown in Sec. IV that all
of the possible dimension-7 operators contain fermions, so
every operator in Table IV has suppressed flavor indices.
This can be contrasted with the dimension-6 case, where
four of the eight operator classes are fermion free and thus
do not need flavor indices. Some operators which might at
first glance seem to be missing from the list can be formed
from those included by adding or subtracting combinations
with different permutations of flavor indices. For example,

ϵinϵjmðd̄Li
pÞðQjLm

q ÞHn ¼ Oð2Þpq
LLQd̄H

−Oð1Þpq
LLQd̄H

; ð4Þ

where the Schouten identity ϵinϵjm ¼ ϵimϵjn − ϵijϵmn was
used. Writing out the lepton doublet flavor indices explic-
itly, we have

Oð1Þpq
LLQd̄H

¼ ϵijϵmnðd̄Li
pÞðQjCLm

q ÞHn and

Oð2Þpq
LLQd̄H

¼ ϵimϵjnðd̄Li
pÞðQjCLm

q ÞHn: ð5Þ

Another more complicated example using the same two
operators is

ϵinϵjmðd̄QjÞðLi
pLm

q ÞHn ¼ −ðOð2Þpq
LLQd̄H

þOð2Þqp
LLQd̄H

Þ
þ ðOð1Þpq

LLQd̄H
þOð1Þqp

LLQd̄H
Þ; ð6Þ

where Fierz identities were used along with the Schouten
identity mentioned above. As a third example, Ref. [5] lists
two dimension-7 operators with the field content
fL̄; Q;Q; d;Hg, which after passing to the notation used
here are

Opq
1 ¼ ϵijϵmnðQi

pCQ
j
qÞðL̄mdÞ ~Hn and

Opq
2 ¼ ϵjmϵinðQi

pCQ
j
qÞðL̄mdÞ ~Hn: ð7Þ

In terms of the single operator Opq
L̄QQdH given in Table IV,

these can be written

Opq
2 ¼ Oqp

L̄QQdH;

Opq
1 ¼ Opq

L̄QQdH −Oqp
L̄QQdH; ð8Þ

with the lepton flavor index assignment

Opq
L̄QQdH ¼ ϵijðQm

pCQi
qÞðL̄mdÞ ~Hj: ð9Þ

All of the dimension-7 operators violate lepton number,
and 7 of the 20 operators violate baryon number as well. In
fact, all of the operators that do not violate baryon number
do violate lepton number by two units, i.e. L ¼ þ2. The
baryon-number violating operators all have L ¼ −1, so that
B − L ¼ 2; therefore, all of the baryon-number violating
operators violate B − L as well. If the operators violating
B − L lead to proton decay, they will be suppressed by a
scaleΛ≳ 1010 GeV, since the proton lifetime is generically
experimentally constrained to be ≳1032 years [41–44].
However, the flavor structure of the B − L violating
operators could be such that they do not in fact lead to
proton decay within experimentally constrained time
scales. This could happen for example for an operator that
did not contain first-generation quarks, and such an
operator might be suppressed by some scale lower than
1010 GeV.2 The operators that do not violate baryon
number lead to neutrino mass generation, since they have
L ¼ þ2. Therefore, these operators are also suppressed by
a high scale, namely ≳104 TeV [13].
As mentioned in the Introduction, some of these dimen-

sion-7 operators have previously been examined in the
literature. For example, Ref. [8] lists nine dimension-7
operators with B ¼ þ1 and ten operators with L ¼ þ2 in
the context of SOð10Þ grand unified theories and nucleon

decay. The nine B ¼ þ1 operators are captured byOð1Þ
L̄QddD,

Oð2Þ
L̄QddD, OdddēD, OL̄QQdH, OēQddH, OL̄dddH, and OL̄uddH,

and the ten L ¼ þ2 operators correspond to the remaining

2I thank an anonymous reviewer for this insight.
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five operators in class 6, along with Oð1Þ
LLd̄uD

(there is not an

operator corresponding to Oð2Þ
LLd̄uD

). Another reference
listing several of the operators is Ref. [11]; this deals with
L ¼ þ2 operators that could produce Majorana masses for
neutrinos and lists the same five L ¼ þ2 operators from
class 6 in Table IV. Mention is also made here of OLHB,

OLHW ,OLHDe, and the class of operators comprisingOð1Þ
LHD

andOð2Þ
LHD, but a reduction to the minimal set of operators is

not carried out.

IV. FERMIONS AND HYPERCHARGE

It is not possible to construct any dimension-7 operators
without using fermion fields. To see this, recall that in the
absence of fermions the available field content consists
only of objects of dimension 1 (the Higgs doublet H or
covariant derivatives Dμ) and objects of dimension 2 (the
field strength tensors Xμν). Therefore, an odd number of
dimension-1 objects must be included in order to obtain a
total dimension of 7. However, since the Higgs has
hypercharge 1=2 and Xμν and Dμ each have zero hyper-
charge, each fermion-free operator must contain an even
number of Higgs fields in order to remain Uð1ÞY invariant.
Similarly, since the total number of Lorentz indices in each
operator must be even, each fermion-free operator must
contain an even number of derivatives (since there are no

fermions, there are no γμ’s to provide another source of
Lorentz indices). The dimensional constraint requires an
odd number of dimension-1 objects, and Lorentz plus
hypercharge constraints require an even number of dimen-
sion-1 objects, so we can conclude that there are no
possible fermion-free operators of dimension 7, or more
generally of any odd dimension.
Furthermore, consider the possibility of dimension-7

operators with multiple fermion currents. These operators
must always have an even number of fermions since
fermion fields have fractional dimensionality. The maxi-
mum possible number of fermion currents is therefore 2.
Since two fermion currents have total dimension 6, we must
add a dimension-1 object in order to get a dimension-7
operator, giving the two classes ψ4D and ψ4H discussed
in Sec. V.
Because of the ubiquity of fermions in dimension-7

operators, hypercharge constraints will play a crucial role in
the operator classification in Sec. V. For this reason, the
remainder of this section reviews the basics of fermion
currents and hypercharges in the standard model and
establishes two facts for easy reference when carrying
out the classification.
First, we do not need to use γ5 in fermion currents (such

as in the pseudovector matrix γμγ5) because all fermions
under discussion are chiral and thus eigenstates of γ5. So
the only fermion currents to consider are the scalar, vector,

TABLE IV. The dimension-7 operators. Color and flavor indices are left implicit, and SUð2ÞW indices are left implicit when the
contractions are obvious. The symbol C represents the Dirac charge conjugation matrix, as explained in Sec. IV. The six classes of
operators shown group the operators by the degrees of freedom H;X;D, and ψ .

1: ψ2H4 þ H:c: 2: ψ2H2D2 þ H:c:

OLH ϵijϵmnðLiCLmÞHjHnðH†HÞ Oð1Þ
LHD ϵijϵmnLiCðDμLjÞHmðDμHnÞ

Oð2Þ
LHD ϵimϵjnLiCðDμLjÞHmðDμHnÞ

3: ψ2H3Dþ H:c: 4: ψ2H2X þ H:c:

OLHDe ϵijϵmnðLiCγμeÞHjHmDμHn OLHB ϵijϵmnðLiCσμνLmÞHjHnBμν

OLHW ϵijðτIϵÞmnðLiCσμνLmÞHjHnWIμν

5: ψ4Dþ H:c: 6: ψ4H þ H:c:

Oð1Þ
LLd̄uD

ϵijðd̄γμuÞðLiCDμLjÞ OLLLēH ϵijϵmnðēLiÞðLjCLmÞHn

Oð2Þ
LLd̄uD

ϵijðd̄γμuÞðLiCσμνDνLjÞ Oð1Þ
LLQd̄H

ϵijϵmnðd̄LiÞðQjCLmÞHn

Oð1Þ
L̄QddD ðQCγμdÞðL̄DμdÞ Oð2Þ

LLQd̄H
ϵimϵjnðd̄LiÞðQjCLmÞHn

Oð2Þ
L̄QddD ðL̄γμQÞðdCDμdÞ OLLQ̄uH ϵijðQ̄muÞðLmCLiÞHj

OdddēD ðēγμdÞðdCDμdÞ OL̄QQdH ϵijðL̄mdÞðQmCQiÞ ~Hj

OL̄dddH ðdCdÞðL̄dÞH
OL̄uddH ðL̄dÞðuCdÞ ~H
OLeud̄H ϵijðLiCγμeÞðd̄γμuÞHj

OēQddH ϵijðēQiÞðdCdÞ ~Hj

LANDON LEHMAN PHYSICAL REVIEW D 90, 125023 (2014)

125023-4



and tensor currents. Second, recall that there are two ways
to write down a scalar fermion current—one connecting
left-handed fields with right-handed fields and the other
connecting fields of the same chirality with an insertion of
charge conjugation,

ψ1LðRÞCψ2LðRÞ and ψ̄1LðRÞψ2RðLÞ ; ð10Þ

where C is the Dirac charge conjugation matrix. The
operator C can be explicitly written as iγ2γ0 and causes a
Lorentz spinor to transform as its conjugate spinor. These
two possibilities can also be written in two-component
fermion notation; for a review see Ref. [45]. In this
case it is easiest to define all fields as left handed, so the
standard model fermions are Q;L; uc; dc, and ec, all
transforming under the ð1

2
; 0Þ representation of the

Lorentz group (a bar is often used instead of the
superscript c in the field names, but this would further
confuse the notation). Then the four-component currents
ðLCLÞ and ðdCdÞ become

LαLα ¼ ϵαβLαLβ and dc†_α dc† _α ¼ ϵ _α _βdc†_α dc†_β ð11Þ

in two-component notation, with α and β labelling spinor
indices. Similarly, the four-component current ðL̄dÞ is
written in two-component notation as

L†
_αd

c† _α ¼ ðLαÞ†dc† _α ¼ ϵ _α _βðLβÞ†dc† _α: ð12Þ

Four-component notation is used in the operator list, and
classification for continuity with the notation used in
Ref. [3], but it is useful to realize the two-component
counterparts, especially when applying Fierz identities.
Appendix A reproduces the list of dimension-7 operators
from Table IV in two-component notation.
Having established some conventions regarding fer-

mions, we now move to the hypercharge constraints.
Forming all possible scalar fermion currents using the
two methods in Eq. (10) and the fields from Table II shows
that there are no scalar fermion currents that have zero
hypercharge. Hereafter this statement will be referred to as
rule 1. The situation for tensor currents mirrors that of
scalar currents so far as the chirality of the two fields is
concerned, so rule 1 also applies to tensor currents.
Similarly, there are two ways to construct a vector

fermion current:

ψ̄1LðRÞγμψ2LðRÞ and ψ1LðRÞCγμψ2RðLÞ : ð13Þ

Translating to two-component notation gives for example
(suppressing the spinor indices)

L†σ̄μQ and Qσμdc† ð14Þ

for the four-component currents ðL̄γμQÞ and ðQCγμdÞ.
Again taking account of all of the possibilities using the
fields in Table II shows that there are no vector currents
with hypercharge �1=2. This will be called rule 2.
Summarizing:

Rule 1. There are no scalar or tensor fermion currents with
zero hypercharge.
Rule 2. There are no vector fermion currents with
hypercharge �1=2.
We will make extensive use of these rules in the

following section.

V. CLASSIFICATION OF OPERATORS

As was done in the previous dimension-6 classifications,
the dimension-7 classification will use the field equations
of motion (EOMs) in order to make field redefinitions and
thus allow some classes of operators to be subsumed into
other classes. For dimension-7 operators, the EOMs are
needed at Oð1=Λ3Þ, and we will neglect Oð1=Λ4Þ effects.
Therefore, the EOMs can be calculated using only the
original standard model Lagrangian LSM as given in
Eq. (1). It is important to note that this use of just the
classical EOMs is an approximation that may not always
be justified. In particular, it assumes that all of the
operators at a given dimension have the same cutoff scale
Λ. This may not always be the case, as the particles that
are integrated out to give an operator Oa may be much
lighter than the particles integrated out to give operator
Ob, leaving Oa with a lower cutoff than Ob. Hence, the
cutoff scale Λ should technically have an index i for each
independent operator: Λ ¼ Λi. As an example, the
dimension-5 Weinberg operator has a cutoff scale Λ ¼
Λdim5 that is experimentally constrained by the light
neutrino masses to be much higher than many of the
experimentally allowed values of Λ ¼ Λi;dim6 for dimen-
sion-6 operators.
Taking into account the fact that there are no fermion-

free operators, the following 11 distinct classes can be
formed from the dimension-7 combinations of the degrees
of freedom fX;D;ψ ; Hg:

ψ2X2;ψ2H4;ψ2H2D2;ψ2H3D;ψ2HD3;ψ2D4;

ψ2H2X;ψ2D2X;ψ2HDX;ψ4D;ψ4H: ð15Þ

These classes are individually examined in the following
subsections. Five classes are completely ruled out by rule 1
and rule 2, leaving the following six classes that will require
a closer look and that do end up containing operators:
1) ψ2H4, 2) ψ2H2D2, 3) ψ2H3D, 4) ψ2H2X, 5) ψ4D,
and 6) ψ4H.
Out of these six classes of operators, the EOMs only

need to be used in two classes: ψ2H2D2 and ψ4D. In each
of these classes, the use of the EOMs only reduces some
subset of the class of operators to other classes. This can be
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contrasted with the situation for the dimension-6 operators,
where the EOMs are instrumental in removing entire
classes from consideration [3]. Hypercharge constraints
are much more useful for the dimension-7 operators, a fact
that can be traced back to the absence of fermion-free
operators of dimension 7.

A. ψ2X2

The total number of Lorentz indices must be even, so the
fermion current has to be a scalar or a tensor. But since
the field-strength tensors do not carry hypercharge, the
fermion current must have zero hypercharge, and rule 1
rules this out.

B. ψ2H4

The fermion current must be a scalar and have hyper-
charge 0, �1, or �2. Rule 1 eliminates the zero hyper-
charge case. Examining the other scalar fermion current
possibilities using the fields in Table II shows that only the
current with two lepton doublets has hypercharge �1, and
only the current with two right-handed electrons has
hypercharge �2. The lepton doublet current leads to the
only operator in this class:

OLH ¼ ϵijϵmnðLiCLmÞHjHnðH†HÞ: ð16Þ

The other ways of contracting the SUð2ÞW indices are
either equivalent or identically zero. Forming SUð2ÞW
triplets instead of singlets does not produce anything
new, because of the group identity

τIjkτ
I
mn ¼ 2δjnδmk − δjkδmn: ð17Þ

For the right-handed electron current, there is no way to
contract the SUð2ÞW indices in a way that is not identically
zero,

ðeCeÞðH†
j
~HjÞ2 ¼ ðeCeÞϵijϵmnH�

i H
�
jH

�
mH�

n ¼ 0: ð18Þ

C. ψ2H2D2

To form a Lorentz scalar, the fermion current can be
either a tensor or scalar, and it must have hypercharge
0 or �1. Rule 1 eliminates the zero hypercharge
case, and the only scalar or tensor current that has
hypercharge �1 is the one with two lepton doublets.
The remaining analysis in this section closely follows the
calculations done in Ref. [3] for the dimension-6 operator
class ψ2HD2.
Consider first the case with a scalar fermion current.

Then there are five possibilities for where the derivatives
act: 1) both on a single Higgs, 2) both on a single

fermion, 3) one on each fermion, 4) one on each Higgs,
and 5) one on a fermion and the other on a Higgs. In the
work that follows, boxes signify generic classes of
operators. If both derivatives act on a single Higgs,
the operator can be reduced using the Higgs equation of
motion

ψ2HðDμDμHÞ ¼ m2 ψ2H2 þ ψ2H4 þ ψ4H : ð19Þ

If both derivatives act on a single fermion, the operator
can also be reduced with EOMs

ψH2ðDμDμψÞ ¼ ψH2ðημνDμDνψÞ
¼ ψH2DDψ þ ψ2H2X

¼ ψ2H3D þ ψ2H2X : ð20Þ

The second equality in Eq. (20) follows upon using
½Dμ; Dν� ∼ Xμν and the identity

γμγν ¼ ημν − iσμν; ð21Þ

and the third follows from the fermion EOMs. If the
derivatives act one on each fermion, a combination
of integration by parts and the two previous reduc-
tions can be used to change the operator to possibility
number 5,

H2ðDμψÞðDμψÞ ¼ −2HψðDμHÞðDμψÞ
− ψH2ðDμDμψÞ þ T

¼ −2HψðDμHÞðDμψÞ þ ψ2H3D

þ ψ2H2X þ T ; ð22Þ

where T represents total derivatives and the second
equality follows from Eq. (20). Similarly, if the deriva-
tives act one on each Higgs,

ψ2ðDμHÞðDμHÞ ¼ −2HψðDμψÞðDμHÞ
− ψ2HðDμDμHÞ þ T

¼ −2HψðDμψÞðDμHÞ þm2 ψ2H2

þ ψ2H4 þ ψ4H þ T ; ð23Þ

where the second equality follows from Eq. (19). So
possibility 4 can also be reduced to possibility 5. Now
consider the final possibility, number 5, where one
derivative acts on a fermion and the other acts on a
Higgs. Integrating by parts in this case just gives back the
same structure, so we need to check if it can be otherwise
reduced through gamma matrix algebra followed by
integration by parts,
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2ψHðDμψÞðDμHÞ ¼ 2ψHðημνDνψÞðDμHÞ
¼ ψHððγμDþDγμÞψÞðDμHÞ
¼ ψ2H3D − ðDνψÞðγνγμψÞHðDμHÞ − ψðγνγμψÞðDνHÞðDμHÞ − ψðγνγμψÞHðDνDμHÞ þ T

¼ ψ2H3D − ψ2ðDμHÞðDμHÞ þ iψσμνψðDνHÞðDμHÞ − ψ2HðDμDμHÞ þ iψσμνψHðDνDμHÞ þ T

¼ ψ2H3D þ ψ2H4 þ ψ4H þm2 ψ2H2 þ T þ 2ψHðDμψÞðDμHÞ þ iψσμνψðDνHÞðDμHÞ
þ iψσμνψðDνDμHÞ; ð24Þ

where the penultimate equality follows from the fermion
EOMs and Eq. (21) and the final equality follows from
Eqs. (19) and (23). Since we get the same structure back
along with some tensor current operators, this is an
independent contribution and must be included in the
operator list. There are two independent ways to contract
the SUð2ÞW indices, since there are four distinct funda-
mental representations of SUð2ÞW in the tensor product.
These give the following two operators:

Oð1Þ
LHD ¼ ϵijϵmnLiCðDμLjÞHmðDμHnÞ; ð25Þ

Oð2Þ
LHD ¼ ϵimϵjnLiCðDμLjÞHmðDμHnÞ: ð26Þ

The other contraction with ϵinϵjm is not independent,
because of the Schouten identity ϵinϵjm¼ϵimϵjn−ϵijϵmn.
Note that we can always choose which fermion the
derivative acts on, since the other case is equivalent up
to an integration by parts after using the above results.
Next consider the case with a tensor fermion current. In

this case, if both derivatives act on a single object, since σμν
is antisymmetric we are led to ½Dμ; Dν� and thus to the class
ψ2XH2, since ½Dμ; Dν� ∼ Xμν. If one derivative acts on a
fermion and one on a Higgs, by using fγμ; γνg ¼ 2ημν and
the fermion EOMs we have

−ð2iÞψσμνðDμψÞHðDνHÞ¼ψðDγν− γνDÞψHðDνHÞ
¼ 2ψðDνψÞHðDνHÞ
−2ψγνðDψÞHðDνHÞ

¼ ψ2H3D þ2ψHðDνψÞðDνHÞ;
ð27Þ

so this possibility can be eliminated in favor of the two
operators already constructed. If the derivatives act one on
each fermion, integrating by parts gives

ðDμψÞσμνðDνψÞH2 ¼ −ψσμνH2ðDμDνψÞ
− 2ψσμνHðDμψÞðDνHÞ þ T

¼ ψ2XH2 þ ψ2H3D

− 2iψHðDνψÞðDνHÞ þ T ; ð28Þ

where the second equality follows from Eq. (27). So this
possibility can also be reduced to the operators in Eqs. (25)
and (26). Similarly, the case with the derivatives acting one
on each Higgs reduces to classes ψ2H3D, ψ2XH2, and the
previous operators after integration by parts. Therefore,
there are no tensor current operators in this class.

D. ψ2H3D

The fermion current must be a Lorentz vector with
hypercharge �1=2 or �3=2. Rule 2 eliminates the hyper-
charge �1=2 case, and the only remaining vector current
that will work is the one connecting the lepton doublet with
the right-handed electron field.
If the derivative acts on either of the fermion fields,

two identical Higgs doublets must be contracted in order
to satisfy SUð2ÞW invariance, giving a result that is
identically zero. If the derivative does not act on either
fermion field, we only have to consider the derivative acting
on a single Higgs doublet, since all of the remaining cases
reduce to this. Then there is only one way to contract the
SUð2ÞW indices that is not identically zero, giving the
operator

OLHDe ¼ ϵijϵmnðLiCγμeÞHjHmDμHn: ð29Þ

E. ψ2HD3

The fermion current must be a Lorentz vector with
hypercharge �1=2. But this possibility is removed by
rule 2.

F. ψ2D4

The fermion current must be a scalar or tensor with
hypercharge zero, and therefore rule 1 eliminates this class.

G. ψ2H2X

The fermion current must be a tensor with hypercharge 0
or �1, since the field-strength tensors are traceless. The
only current that works is the one with two lepton doublets.
For Bμν there is only one independent way to contract the
SUð2ÞW indices, giving the following operator:

OLHB ¼ ϵijϵmnðLiCσμνLmÞHjHnBμν: ð30Þ
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For WI
μν, we need to include the triplet τI, and there are

generally six SUð2Þ singlets in the product of four
fundamentals and two triplets. However, some cases vanish
because of the two identical H fields, leaving four
independent singlets. Then allowing family index trans-
positions between the two leptons (as in the examples in
Sec. III) and accounting for the fact that the labels on the
Higgs fields are interchangeable leaves only one indepen-
dent operator:

OLHW ¼ ϵijðτIϵÞmnðLiCσμνLmÞHjHnWIμν: ð31Þ

The gluon field-strength tensor GA
μν cannot be used since

there are no other objects available with a nontrivial
SUð3ÞC transformation. The possibility of using the dual
tensors ~Bμν or ~WIμν does not give any new operators,
because of the identities

ϵαβμνσ
μν ¼ 2iσαβγ5 ð32Þ

and

γ5ψL;R ¼ ∓ψL;R: ð33Þ

H. ψ2D2X

The fermion current must be a scalar or tensor with zero
hypercharge, so this class is eliminated by rule 1.

I. ψ2HDX

The fermion current must be a vector with hypercharge
�1=2, so rule 2 removes this class.

J. ψ4D

The fermions must have zero total hypercharge, and one
of the two currents must be a vector current. If the
derivative acts on either of the two fermions in the vector
current, the operator can be reduced by using the fermion
EOMs to the class ψ4H. If the derivative acts on the scalar
or tensor current, the operator cannot be reduced. There
are only five current combinations that have a single vector
current and zero total hypercharge: ðd̄LÞðLCγμuÞ,
ðL̄dÞðQCγμdÞ, ðL̄γμQÞðdCdÞ, ðd̄γμuÞðLCLÞ, and
ðdCdÞðēγμdÞ. Using integration by parts along with the
fermion EOMs allows the derivative to be switched back
and forth between the two fermions in the scalar or tensor
current

ðψ1γμψ2ÞððDμψ3Þψ4Þ ¼ ðψ1γμψ2Þðψ3Dμψ4Þ
þ ðDμψ1γμψ2Þðψ3ψ4Þ
þ ðψ1γμDμψ2Þðψ3ψ4Þ þ T

¼ ðψ1γμψ2Þðψ3Dμψ4Þ þ ψ4H þ T ;

ð34Þ

so we can arbitrarily pick one of the two fermions for the
derivative to act on. Doing this for each of the five current
combinations gives the following five operators:

Oð1Þ
LLd̄uD

¼ ϵijðd̄γμuÞðLiCDμLjÞ; ð35Þ

Oð2Þ
LLd̄uD

¼ ϵijðd̄γμuÞðLiCσμνDνLjÞ; ð36Þ

Oð1Þ
L̄QddD ¼ ðQCγμdÞðL̄DμdÞ; ð37Þ

Oð2Þ
L̄QddD ¼ ðL̄γμQÞðdCDμdÞ; ð38Þ

OdddēD ¼ ðēγμdÞðdCDμdÞ: ð39Þ

The tensor current was chosen forOð2Þ
LLd̄uD

to avoid crossing
color indices between currents. The scalar current not
included can then be formed by using Fierz identities

and flavor index transpositions ofOð1Þ
LLd̄uD

andOð2Þ
LLd̄uD

. See
Ref. [45] or Ref. [46] for the relevant Fierz identities.

K. ψ4H

The fermions must have total hypercharge �1=2. The
operator must be constructed from two scalar currents, two
vector currents, or two tensor currents in order to preserve
Lorentz invariance. This places constraints on the hyper-
charge combinations that actually work.
For a given field content, we can calculate the number of

SLð2;CÞ singlets in the tensor product, thus allowing a
direct statement of the number of independent operators
with that field content without an explicit calculation of all
the possible Fierz transformations. For example, the field
content fL;L; Q̄; ug can be written as the product of two

TABLE V. The eight sets of four fermion fields that can be
joined into two scalar or two vector currents, have a total
hypercharge�1=2, and have an odd number of SUð2ÞW doublets.
The entries in the first column allow a single SLð2;CÞ singlet,
and the entries in the second column give two SLð2;CÞ singlets.

Fields

fL; L; Q̄; ug fL̄; u; d; dg
fL̄; Q;Q; dg fL̄; d; d; dg
fē; Q; d; dg fL;L;Q; d̄g
fL; e; u; d̄g fL;L; L; ēg
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vector currents or as the product of two scalar currents, but
there is only one SLð2;CÞ singlet in the tensor product
ð1
2
; 0Þ ⊗ ð1

2
; 0Þ ⊗ ð0; 1

2
Þ ⊗ ð0; 1

2
Þ. So we can choose the

product of scalar currents as the representative operator
(this choice does not cross color indices between currents,
so it is aesthetically more pleasing). Now we need to
consider the SUð2ÞW contraction. There are three ways to
contract the SUð2ÞW indices, two of which are independent.
But since there are two identical fields in the operator, two
of the three SUð2ÞW contractions are equivalent under a
transposition of flavor indices. Therefore, there is only one
independent operator for this set of fermion fields:

OLLQ̄uH ¼ ϵijðQ̄muÞðLmCLiÞHj: ð40Þ

The field contents that work for this class can be found
by a simple search, and they are listed in Table V. Carrying
out the procedure described in the previous paragraph for
these eight sets of fermion fields leads to the operators
listed for this class in Table IV. Whenever possible the
currents are chosen so that color indices are not crossed
between currents. Note that for the field content
fL;L;Q; d̄; Hg there are two SLð2;CÞ singlets and two
ways to contract the SUð2ÞW indices for each of these

singlets, leading to two independent operators after con-
sidering possible flavor index permutations. In this case,
the color indices must be crossed between currents so that
all of the possible SUð2ÞW singlets and Lorentz contrac-
tions can be formed from the two operators given.

VI. CONCLUSION

The standard model works extremely well at explaining
particle physics asweknow it, and noclearBSMsignals have
come into view at the LHC 7 and 8 TeV runs. It is therefore
imperative to study in detail all possible deviations from the
standard model in order to better understand the specific
channels where new physics might materialize. To further
this program, we have presented a complete classification of
the dimension-7 operators in the standard model effective
field theory. There are 20 dimension-7 operators, all lepton-
number violating, with seven of them also violating baryon
number. All of the operators include fermions, so the use of
hypercharge constraints plays a central role in the operator
classification. This catalog allows a closer examination of the
SMEFT structure and properties and provides a guide for
detailed studies utilizing an effective field theory approach to
physics beyond the standardmodel. Even thoughmost of the
operators are generically suppressed by a very high scale, it

TABLE VI. The dimension-7 operators in two-component fermion notation. All of the fermions are defined to be fundamentally left
handed, so the fermion fields are Q;L; d̄; ū, and ē, all transforming under the ð1

2
; 0Þ representation of the Lorentz group. The bar here is

part of the field name and in particular does not mean the Dirac bar used in four-component notation. Spinor indices are contracted
within parentheses. Color and flavor indices are left implicit, and SUð2ÞW indices are left implicit when the contractions are obvious.
The symbol C represents the Dirac charge conjugation matrix, as explained in Sec. IV.

1: ψ2H4 þ H:c: 2: ψ2H2D2 þ H:c:

OLH ϵijϵmnðLiLmÞHjHnðH†HÞ Oð1Þ
LHD ϵijϵmnðLiDμLjÞHmDμHn

Oð2Þ
LHD ϵimϵjnðLiDμLjÞHmDμHn

3: ψ2H3Dþ H:c: 4: ψ2H2X þ H:c:

OLHDe ϵijϵmnðLiσμē†ÞHjHmDμHn OLHB ϵijϵmnðLiσμνLmÞHjHnBμν

OLHW ϵijðτIϵÞmnðLiσμνLmÞHjHnWIμν

5: ψ4Dþ H:c: 6: ψ4H þ H:c:

Oð1Þ
LLd̄uD

ϵijðd̄σμū†ÞðLiDμLjÞ OLLLēH ϵijϵmnðēLiÞðLjLmÞHn

Oð2Þ
LLd̄uD

ϵijðd̄σμū†ÞðLiσμνDνLjÞ Oð1Þ
LLQd̄H

ϵijϵmnðd̄LiÞðQjLmÞHn

Oð1Þ
L̄QddD ðQσμd̄†ÞðL†Dμd̄†Þ Oð2Þ

LLQd̄H
ϵimϵjnðd̄LiÞðQjLmÞHn

Oð2Þ
L̄QddD ðQσμL†Þðd̄†Dμd̄†Þ OLLQ̄uH ϵijðQ†

mū†ÞðLmLiÞHj

OdddēD ðēσμd̄†Þðd̄†Dμd̄†Þ OL̄QQdH ϵijðL†
md̄†ÞðQmQiÞ ~Hj

OL̄dddH ðd̄†d̄†ÞðL†d̄†ÞH
OL̄uddH ðL†d̄†Þðū†d̄†Þ ~H
OLeud̄H ϵijðLiσμē†Þðd̄σμū†ÞHj

OēQddH ϵijðēQiÞðd̄†d̄†Þ ~Hj
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would be interesting to try to find loopholes in this supres-
sion, perhaps by utilizing the flavor structure of the B − L
operators as mentioned in Sec. III.
Some simple modifications allow the construction of

more independent operators, extending the reach of the
SMEFT beyond the standard model. For example, adding
another distinct Higgs doublet, as is done in supersymmetry,
allows the construction of a new operator at the dimension-5
level3 and would give several new operators at dimensions 6
and 7. Modifying the standard model by including right-
handed neutrinos also gives many new operators, some of
which were examined at the dimension-6 level in Ref. [22].
The SMEFT could also be extendedwhile remaining strictly
within the confines of the standard model by perfoming a
classification of the dimension-8 operators. This would
certainly be possible but would be tedious considering
the large number of operators available at dimension 8 as
opposed to dimension 7.
It would also be interesting to calculate the one-loop

anomalous dimension matrix for the dimension-7 operators

and check what, if any, of the holomorphy properties
defined in Ref. [24] are present, but this is beyond the scope
of this work. At this point, we simply note that, according
to the definition of holomorphy given in Ref. [24], there are
10 holomorphic and antiholomorphic operators and 10
nonholomorphic operators at dimension 7. Since none of
the dimension-7 operators is self-conjugate, the Hermitian
conjugates of the holomorphic (antiholomorphic) operators
will be antiholomorphic (holomorphic), and the Hermitian
conjugates of the nonholomorphic operators will also be
nonholomorphic. Perhaps some new structure may emerge
when the formal properties of the standard model effective
field theory are examined in more detail.
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