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We extend our previous investigation of the two-loop Φ-derivable approximation to the case of a finite
chemical potential μ and discuss Bose-Einstein condensation in the case of a charged scalar field with
Oð2Þ symmetry. We show that the approximation is renormalizable by means of counterterms which are
independent of both the temperature and the chemical potential. We point out the presence of an additional
skew contribution to the propagator as compared to the μ ¼ 0 case, which comes with its own gap equation
(except at Hartree level). We solve this equation together with the field equation, and the usual longitudinal
and transversal gap equations to find that the transition is second order, in agreement with recent lattice
results to which we compare. We also discuss a general criterion an approximation should obey for the
so-called Silver Blaze property to hold, and we show that any Φ-derivable approximation at finite
temperature and density obeys this criterion if one chooses an UV regularization that does not cut off the
Matsubara sums.
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I. INTRODUCTION

A continuous effort is being invested in understanding
nonperturbative phenomena at finite density using func-
tional methods. The main motivation is the exploration
of the phase diagram of strongly interacting matter on
the baryon density vs temperature plane. Existing first-
principles or effective model calculations involve either
lattice field theory simulations (for a review on Monte
Carlo results see [1], for more recent developments
using the complex Langevin equation see [2–5]) or more
analytical functional methods, e.g. the Dyson-Schwinger
approach [6,7], the functional renormalization group [8,9],
hard thermal loop calculations [10] or the n-particle
irreducible formalism [11]. The interested reader can find
a more exhaustive list of references in the review [12].
The charged scalar field model, or Oð2Þ model, at finite

density already exhibits some of the features and problems
common to various theories including a chemical potential
and for this reason, it is usually considered as a testing
ground for method development. Depending on the values
of the parameters, there could be a spontaneous symmetry
breaking or Bose-Einstein condensation-type phase tran-
sition and in this latter case the model exhibits the Silver
Blaze property described in [13]. On the lattice, the model
also suffers from the sign problem, and it has therefore been
used to test lattice methods which circumvent it [14,15].

The charged scalar model has been discussed as the
simplest model displaying Bose-Einstein condensation first
in [16–18], where both the free theory and the interacting
theory including perturbative one-loop corrections were
discussed. In [19] the Goldstone spectrum is analyzed using
the one-loop partition function. The phase diagram has
been discussed using the one-loop effective potential in
[20]. In the same framework finite size corrections have
been determined in [21], while the effects of the multipli-
cative anomaly have been studied in [22]. In [23] canonical
thermal field theory was used to study the phase transition,
while in [24] the importance of dimensional reduction is
discussed.
In the present work, we examine the Oð2Þ model, with

quartic self-coupling at finite density within the two-
particle-irreducible (2PI) framework. This is the simplest
model in which one can study how the chemical potential is
implemented in the 2PI formalism. Even though we focus
on the so-called two-loop Φ-derivable approximation, we
try to describe, as generally as possible, some of the
subtleties the introduction of a chemical potential leads
to in the 2PI formalism. This work will thus serve as the
basis for future applications in other models. One possible
application is the relativistic description of superfluidity,
where a 2PI treatment at Hartree-Fock level has already
been carried out in [25]. In this work questions were raised
concerning renormalization, which were clarified in [26].
Another possible application is the question of pion
condensation. It has been studied using the 2PI framework
in the Hartree-Fock and lowest order 1=N truncations,
neglecting vacuum fluctuations in [27]. The inclusion of
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vacuum fluctuations was done in [11] using the Oð2NÞ
model at the lowest order of the 2PI-1=N expansion. These
efforts were further extended in [28]. For more details on
pion condensation we point the reader to the functional
renormalization group study of [29] and references therein.
The natural step forward would be to consider the next-to-
leading-order approximation in this 1=N expansion.
Although doable, this is particularly demanding numeri-
cally. A simpler way to consider corrections to the results of
[11] is to consider the two-loopΦ-derivable approximation,
which is also the natural extension for the superfluidity
studies.1 In this work, we test this approximation in the
simpler framework of the Oð2Þ model.
The paper is structured as follows. In Sec. II we describe

the model, the corresponding Euclidean action at finite
temperature and finite chemical potential, and its sym-
metries. In Sec. III we introduce the 2PI formalism at finite
chemical potential. The fact that the Euclidean action is
complex at nonzero (real) chemical potential leads to
certain complications in the 2PI formalism (and in fact
in any approach based on a Legendre transform) which we
describe and deal with. We also derive the equations in
the two-loop Φ-derivable approximation. In Sec. IV, we
relate the Silver Blaze property mentioned above (and its
generalization to n-point functions) to the transformation
property of the Euclidean action under certain gauge
transformations of the charged field, and from this we
deduce a simple condition for the Silver Blaze property to
be fulfilled in any given Φ-derivable approximation. In
Sec. V, we briefly discuss the renormalization of the two-
loop Φ-derivable approximation in the presence of a finite
chemical potential by making use of the Silver Blaze
property. In Sec. VI we discuss our numerical results for
the two-loop approximation together with a qualitative
comparison to existing lattice results [15]. Various technical
details are gathered in the appendixes.

II. GENERALITIES

In this work we consider a two-component real scalar
field φ ¼ ðφ1;φ2Þt whose Lagrangian density2

L ¼ 1

2
ð∂μφaÞð∂μφaÞ −

1

2
m2

bφaφa −
λb
48

ðφaφaÞ2 ð1Þ

is invariant under Oð2Þ transformations. Any such trans-
formation is either an element of SOð2Þ or the product of an
element of SOð2Þ by the reflection ðφ1;φ2Þ → ðφ1;−φ2Þ.
It will be sometimes convenient to reformulate the
problem in terms of the field χ ¼ ðΦ;Φ�Þt with two

complex components Φ≡ ðφ1 þ iφ2Þ=
ffiffiffi
2

p
and Φ�≡

ðφ1 − iφ2Þ=
ffiffiffi
2

p
. The Lagrangian density then takes the

form

L ¼ ∂μΦ�∂μΦ −m2
bΦ

�Φ −
λb
12

ðΦ�ΦÞ2; ð2Þ

the SOð2Þ symmetry translates intoUð1Þ symmetry and the
reflection symmetry into charge conjugation symmetry
Φ ↔ Φ�. Going from the real field formulation in terms
of ϕ to the complex field formulation in terms of χ amounts
to the change of variables χ ¼ Uφ with

U ¼ 1ffiffiffi
2

p
�
1 i

1 −i

�
; ð3Þ

and we shall make use of this remark whenever it is
convenient.
To the continuous and global SOð2Þ or Uð1Þ invariance,

Noether’s theorem associates a conserved charge3

Q ¼
Z

d3x½π2φ1 − π1φ2� ð4Þ

which enters the grand canonical partition function as

Z ¼ Tre−βðH−μQÞ; ð5Þ

where μ is the corresponding chemical potential and
β ¼ 1=T is the inverse temperature. It is well known that
the partition function (5) can be given a functional integral
representation [30]

Z ∝
Z
PBC

D½φ1;φ2�e−
R
x
LE ; ð6Þ

where
R
x stands for

R β
0 dτ

R
d3x, the functional integration

is to be performed over fields obeying the periodic
boundary conditions (PBC) φað0; ~xÞ ¼ φaðβ; ~xÞ, and the
Euclidean Lagrangian density LE is given by

LE ¼ 1

2
ð _φ1 þ iμφ2Þ2 þ

1

2
ð _φ2 − iμφ1Þ2

þ 1

2
ð∇φaÞð∇φaÞ þ

1

2
m2

bφaφa þ
λb
48

ðφaφaÞ2; ð7Þ

or, in the complex field formulation, by1One could also consider the Hartree-Fock approximation
in the case of the pion condensation. However, a known
problem of this approximation is that, in the chiral limit, the
order of the phase transition is first order, contrary to what is
usually expected.

2A summation over repeated indices is implied.

3We use a different sign convention for the charge than the one
found in the standard references [30,31]. Our convention co-
incides with that used in [15] and is such that a positive chemical
potential corresponds to a positive charge density.
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LE ¼ ð _Φ� − μΦ�Þð _Φþ μΦÞ

þ ð∇Φ�Þð∇ΦÞ þm2
bΦ

�Φþ λb
12

ðΦ�ΦÞ2: ð8Þ

The presence of the chemical potential μ in LE does not
break the SOð2Þ or Uð1Þ symmetry, as it can be readily
checked using Eqs. (7) or (8).4 In contrast, reflection or
charge conjugation symmetry is explicitly broken, in
agreement with the fact that a nonvanishing chemical
potential discriminates between particles and antiparticles.
We note also that the presence of the chemical potential
does not break parity but breaks “time reversal” defined
here asΦðτ; ~xÞ → Φðβ − τ; ~xÞ andΦ�ðτ; ~xÞ → Φ�ðβ − τ; ~xÞ.
Finally, it is easily checked using Eq. (8) that the

Lagrangian density considered as a functional for fields
with arbitrary boundary conditions is invariant under a
gauge transformation of the form

Φ → eiατΦ; Φ� → e−iατΦ�; ð9Þ

provided the external parameter μ is changed simultane-
ously according to μ → μ − iα. This property plays a role in
the general discussion of the Silver Blaze property, to be
given in Sec. IV, and has interesting consequences such as
the renormalizability of the model at finite μ. We note that,
if one wants to maintain the periodicity of the fields under
such a transformation, α must be chosen equal to a bosonic
Matsubara frequency ωn ¼ ð2π=βÞn, with n ∈ Z.

III. THE 2PI EFFECTIVE ACTION AT FINITE
CHEMICAL POTENTIAL

A. General considerations

The chemical potential μ enters the Euclidean
Lagrangian densities (7) and (8) through their quadratic
parts only, whose kernels are denoted respectively G−1

0 and
G−1
0 in what follows. It is then straightforward to obtain

the one-particle-irreducible (1PI) or 2PI effective actions at
finite μ, by updating G−1

0 or G−1
0 in the corresponding

formulas at μ ¼ 0 (there is a subtle point hidden here,
related to the fact that the Euclidean action becomes
complex at finite μ, but we postpone its discussion until
the end of the subsection). For instance, in the real field
formulation (7), the 2PI effective action takes the usual
form

Γ½ϕ;G�¼1

2
Tr½lnG−1þG−1

0 ðGþϕϕtÞ�þΓint½ϕ;G�; ð10Þ

where “Tr” stands both for an integration over imaginary
time and position and for a summation over the internal
indices of the field, while the free inverse propagator reads

G−1
0 ðτ; ~x; τ0; ~x0Þ
¼ δðτ − τ0Þδð3Þð~x − ~x0Þ

×

�− ∂2
∂τ02 − Δþm2

b − μ2 −2iμ ∂
∂τ0

þ2iμ ∂
dτ0 − ∂2

∂τ02 − Δþm2
b − μ2

�
:

ð11Þ

The variable ϕ ¼ hφi is a vector-valued one-point function
that represents the expectation value of the field φ in the
presence of external local and bilocal sources. The variable
G ¼ hφφti − hφihφti is a matrix-valued two-point function
that represents the connected correlator of the field φ in the
presence of the same sources. By construction, it obeys the
property

Gabðx; yÞ ¼ Gbaðy; xÞ: ð12Þ

Finally, −Γint½ϕ; G� is the sum of 2PI diagrams that one can
draw using the propagator G and the vertices of the shifted
theory, defined by the action S½ϕþ φ�. The standard 1PI
effective action is obtained as Γ½ϕ� ¼ Γ½ϕ; Ḡϕ� where Ḡϕ

obeys the stationarity condition 0 ¼ δΓ½ϕ; G�=δGjϕ;Ḡϕ
with

the derivative δ=δG taken in the space of propagators
obeying (12). Owing to this stationarity condition, the
extrema ϕ̄ of Γ½ϕ� can be obtained from the equa-
tion 0 ¼ δΓ½ϕ; G�=δϕjϕ̄;Ḡϕ̄

.

In the case of a homogeneous system, to which we
restrict in this work, the field ϕ̄ and the propagator Ḡϕ̄ are
translation invariant: ϕ̄ðxÞ ¼ ϕ̄ and Ḡϕ̄ðx; yÞ ¼ Ḡϕ̄ðx − yÞ.
It is then enough to restrict the 2PI effective action to fields
and propagators of this form, in which case one can factor
out a trivial volume factor βV. This defines the 2PI effective
potential

γ½ϕ; G� ¼ 1

2

Z
T

Q
½lnG−1 þ G−1

0 ðGþ ϕϕtÞ� þ γint½ϕ; G�
ð13Þ

which we have expressed conveniently in terms of the
Fourier transform

GabðQÞ ¼ T
Xþ∞

n¼−∞

Z
d3q
ð2πÞ3 e

iωnτ−i~q·~xGabðτ; ~xÞ: ð14Þ

Owing to Eq. (12), it is such that

4In the case of Eq. (7), one can rewrite the first two terms as

1

2
_φa _φa −

1

2
μ2φaφa þ iμ

0
B@

0

0

1

1
CA ·

0
B@
0
B@

_φ1

_φ2

0

1
CA∧

0
B@

φ1

φ2

0

1
CA
1
CA

which makes the invariance under SOð2Þ manifest.
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GabðQÞ ¼ Gbað−QÞ: ð15Þ

We have also

G−1
0 ðQÞ ¼

�
Q2 − μ2 þm2

b −2μωn

þ2μωn Q2 − μ2 þm2
b

�
; ð16Þ

where Q2 ≡ ω2
n þ q2. The standard 1PI effective potential

is obtained as γðϕÞ ¼ γ½ϕ; Ḡϕ� where Ḡϕ obeys the
stationarity condition 0 ¼ δγ½ϕ; G�=δGjϕ;Ḡϕ

, with the

derivative δ=δG [which includes a factor ð2πÞ3=T] taken
in the space of propagators obeying (15). Accordingly,
the extrema ϕ̄ of γðϕÞ can be obtained from the equa-
tion 0 ¼ ∂γ½ϕ; G�=∂ϕjϕ̄;Ḡϕ̄

.

A word of caution now. Even though the formulas (10)
and (13) turn out to be correct, it is important to keep in
mind that, owing to the presence of the (real) chemical
potential, the Euclidean Lagrangian density is complex.
So, in general, and in contrast to what occurs at μ ¼ 0, the
Legendre variables that enter the 1PI or 2PI effective
actions are not real valued, even if the original sources
are taken real valued. If we consider for instance the 1PI
effective action and we work with the real field formulation
(7), it is natural to introduce a generating functional Wμ½J�
for connected Green functions such that the real-valued
field φ is coupled to a real-valued source J. However, at
nonzero μ, the corresponding Legendre variable ϕ, which is
nothing but the expectation value of φ in the presence of the
source, is usually complex valued.5 Moreover the Legendre
variable is not completely unconstrained because it should
correspond to a real-valued source through the inverse
Legendre transform. One way to circumvent these diffi-
culties is to work from the beginning with a complex-
valued source to which corresponds an unconstrained
complex-valued Legendre variable. However this does
not completely solve the problem because one still needs
to show that the observables that one computes within this
extended framework are real.
Fortunately, we do not need to extend the sources in the

present work because, as we show in Appendix A, if the
source J is real valued and homogeneous,6 the correspond-
ing Legendre variable ϕ is also real valued and homo-
geneous. In fact the functional Wμ½J� itself is real for any
real and homogeneous J. A similar result holds for the 2PI
effective action: for a homogeneous system, both the
homogeneous field ϕ̄ and the Fourier transform Ḡϕ̄ðQÞ
of the translationally invariant propagator are real. So,
despite the fact that the Euclidean action is complex at finite
μ, we can assume that all the variables that enter the 2PI

effective potential (13) are real. In particular, any thermo-
dynamical observable which is derived from this potential
is real.
Yet another difficulty related to the fact that the

Euclidean Lagrangian density is complex at finite μ is that
it is not obvious a priori whether one should consider
minima or maxima of the effective potential γðϕÞ. The
reason is that in the case of a homogeneous source and for a
given nonzero μ, it is not obvious whether the (real-valued)
function Wμ½J� is convex for every μ. Usual proofs of
convexity require a positive definite measure. In the present
case, it is simple to rewrite the path integral in such a way
that the measure is real, but we were not able to ensure that
its sign be always positive when μ ≠ 0; see Appendix A.
This indicates that continuum approaches based on the use
of effective actions may not be able to completely elude the
sign problem. We should however qualify this as a “small
sign problem” in the sense that it does not prevent actual
calculations but only makes it difficult to decide which
solution to choose when both minima and maxima are
present. In the present model where the sign problem can be
solved using for instance the flux tube representation of the
partition function [15], it is probably possible to solve the
small sign problem. In the present work, we will not try to
do so. For homogeneous J, Wμ½J� is convex for μ ¼ 0 and
probably also for small μ; see Appendix A. We shall
assume (but we have currently no proof for this) that it is in
fact convex for any μ which implies that one should look
for the minimum of γðϕÞ.

B. Symmetry constraints

In practice, and following the discussion about trans-
lation invariance in the previous section, it is convenient to
use as many symmetries of the problem as possible in order
to constrain the form of Ḡϕ (with homogeneous ϕ) and thus
the space of propagators that it is sufficient to restrict to.
For instance, in the OðNÞ model at μ ¼ 0, the symmetries
impose that Ḡϕ has only longitudinal and transversal
components, that is Ḡϕ

ab ¼ ḠLPL
ab þ ḠTPT

ab, with

PL
ab ≡ ϕaϕb

ϕ2
and PT

ab ≡ δab − PL
ab: ð17Þ

This allows one to restrict the 2PI effective potential
to propagators admitting the same decomposition, that
is to consider the restricted functional γ½ϕ; GL; GT �≡
γ½ϕ; GLPL þGTPT �.
In the present Oð2Þ model at finite μ, the symmetries

alone do not constrain enough the structure of the propa-
gator (this has to do with the fact that the symmetry group is
Abelian) and we need some additional input. Using SOð2Þ
invariance together with the explicit form of the 2PI
effective action, we show in Appendix B that

Ḡϕ
ab ¼ ḠLPL

ab þ ḠTPT
ab þ ḠAεab; ð18Þ

5We illustrate this point in Appendix A where we give the
explicit relation between the source and the Legendre variable in
the case of the free theory.

6In fact, we only need to assume that the source is static.
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with εab the antisymmetric tensor such that ε12 ¼ 1
and where, owing to (15), ḠL;Tð−QÞ ¼ ḠL;TðQÞ and
ḠAð−QÞ ¼ −ḠAðQÞ. More precisely, because parity is
manifest, GL;T;AðQÞ are invariant under ~q → −~q whereas,
in contrast, “time reversal” is broken by the presence of the
chemical potential, which is reflected in the fact thatGAðQÞ
is not invariant, but rather changes sign, under ωn → −ωn.
The presence of the skew component ḠA stems from the
fact that, in contradistinction with the case μ ¼ 0, we do not
have Ḡϕ

abðQÞ ¼ Ḡϕ
baðQÞ; see Appendix B.

The decomposition (18) shows that it is enough to
consider the restricted functional γ½ϕ; GL; GT;GA�≡
γ½ϕ; GLPL þGTPT þGAε�. The usual 1PI effective
potential is obtained as γðϕÞ ¼ γ½ϕ; ḠL; ḠT; ḠA� where
the propagators ḠL;T;A are determined from the stationarity
conditions or gap equations

0 ¼ δγ½ϕ; GL; GT; GA�
δGL;T;A

����
ϕ;ḠL;ḠT ;ḠA

; ð19Þ

where δ=δGL;T;A are derivatives in the space of propagators
such that GL;Tð−QÞ ¼ GL;TðQÞ and GAð−QÞ ¼ −GAðQÞ.

The physical value of the one-point function is obtained at
the minimum of γðϕÞ which, as any other extremum ϕ̄, and
owing to the stationarity conditions (19), obeys the field
equation

0 ¼ δγ½ϕ; GL; GT; GA�
δϕa

����
ϕ̄;ḠL;ḠT ;ḠA

; ð20Þ

where it is understood that ḠL;T;A are evaluated at ϕ ¼ ϕ̄. In
what follows we shall solve the gap and field equations (19)
and (20) in the two-loop Φ-derivable approximation, to be
defined in the next section.

C. The two-loop approximation

The 2PI effective action cannot be computed exactly
and some approximation is required. Here, we consider
the two-loop Φ-derivable approximation which amounts
to keeping in Γint½ϕ; G� diagrams up to two-loop order.
After rescaling the field and the propagator as ϕ →

ffiffiffiffiffi
Z2

p
ϕ

and G → Z0G, the 2PI effective action to this order of
approximation reads

Γ½ϕ; G� ¼ 1

2

Z
x
tr½lnG−1 þ G−1

0 ðZ0Gþ Z2ϕϕ
tÞ�ðx; xÞ þ λ4

48

Z
x
ðϕtðxÞϕðxÞÞ2

þ λðAÞ2

24

Z
x
ϕtðxÞϕðxÞtrGðx; xÞ þ λðBÞ2

12

Z
x
ϕtðxÞGðx; xÞϕðxÞ þ λðAÞ0

48

Z
x
½trGðx; xÞ�2 þ λðBÞ0

24

Z
x
trG2ðx; xÞ

−
λ2⋆
144

Z
x

Z
y
ϕtðxÞGðx; yÞϕðyÞtr½Gðx; yÞGðy; xÞ� − λ2⋆

72

Z
x

Z
y
ϕtðxÞGðx; yÞGðy; xÞGðx; yÞϕðyÞ; ð21Þ

where we have dropped an infinite term proportional to βV.
The need for two field-strength renormalization factors Z0

and Z2 and five bare couplings λðA;BÞ0 , λðA;BÞ2 and λ4 will be
discussed in Sec. V. We shall also need to introduce two
different bare masses Z0m2

b → m2
0 and Z2m2

b → m2
2. All

these bare parameters will be fixed in terms of two

renormalized parameters m⋆ and λ⋆, as it should because
there are only two free parameters in the model.
Restricting the 2PI effective action to translationally

invariant fields and propagators and to propagators that
admit the decomposition (18), one obtains the restricted 2PI
effective potential

γ½ϕ; GL; GT; GA� ¼
1

2

Z
T

Q
½− lnðGLðQÞGTðQÞ þG2

AðQÞÞ þ ðZ0ðQ2 − μ2Þ þm2
0ÞðGLðQÞ þGTðQÞÞ þ 4Z0μωnGAðQÞ�

þ
�
1

2
ðm2

2 − μ2Z2Þ þ
λ4
48

ϕ2 þ λðAþ2BÞ
2

24
T ½GL� þ

λðAÞ2

24
T ½GT �

�
ϕ2 þ λðAþ2BÞ

0

48
ðT 2½GL� þ T 2½GT �Þ

þ λðAÞ0

24
T ½GL�T ½GT � −

λ2⋆
144

ϕ2ð3S½GL� þ S½GL;GT ;GT �Þ −
λ2⋆
72

ϕ2ð3S½GA;GA;GL� − S½GA;GA;GT �Þ;
ð22Þ

where we have introduced similar notations as in [32], namely λðαAþβBÞ
0;2 ≡ αλðAÞ0;2 þ βλðBÞ0;2 and
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T ½G�≡
Z

T

Q
GðQÞ; ð23aÞ

B½G1;G2�ðKÞ≡
Z

T

Q
G1ðQÞG2ðQþ KÞ; ð23bÞ

S½G1;G2;G3�≡
Z

T

Q

Z
T

K
G1ðQÞG2ðKÞG3ðQþ KÞ;

ð23cÞ

as well as B½G�ðKÞ≡ B½G;G�ðKÞ and S½G�≡ S½G;G;G�
(the function B is needed below). It is to be noticed that, in
the case where all propagators are even, the relative sign
between Q and K in the definitions of B and S can be
chosen arbitrarily, but in all the other cases some care needs
to be taken.
Because of SOð2Þ invariance, the restriction of (21) to

translationally invariant fields and propagators and to
propagators that admit the decomposition (18) depends
on the vector ϕ only through ϕ2. Then, in order to obtain
(22), we chose conveniently ϕa ¼

ffiffiffiffiffi
ϕ2

p
δa1, in which case

we have PL
ab ¼ δa1δb1 and PT

ab ¼ δa2δb2, from which it
follows that

G ¼
�

GL GA

−GA GT

�
ð24Þ

and thus for instance tr lnG ¼ ln detG ¼ lnðGLGT þG2
AÞ.

The formula (22) is of course valid for any direction ϕa.
The gap equations (19) are equivalent to

ḠL;TðKÞ
ḠLðKÞḠTðKÞ þ Ḡ2

AðKÞ ¼ K2 − μ2 þ M̄2
T;LðKÞ;

ḠAðKÞ
ḠLðKÞḠTðKÞ þ Ḡ2

AðKÞ ¼ 2μωn − M̄2
AðKÞ; ð25Þ

with K2 ¼ ω2
n þ k2 and

M̄2
LðKÞ ¼ ðK2 − μ2ÞðZ0 − 1Þ þm2

0

þ λðAþ2BÞ
0

12
T ½ḠL� þ

λðAÞ0

12
T ½ḠT �

þ ϕ2

12

�
λðAþ2BÞ
2 −

3λ2⋆
2

B½ḠL�ðKÞ

−
λ2⋆
6
B½ḠT �ðKÞ þ λ2⋆B½ḠA�ðKÞ

�
; ð26aÞ

M̄2
TðKÞ ¼ ðK2 − μ2ÞðZ0 − 1Þ þm2

0

þ λðAÞ0

12
T ½ḠL� þ

λðAþ2BÞ
0

12
T ½ḠT �

þ ϕ2

12

�
λðAÞ2 −

λ2⋆
3
B½ḠL; ḠT �ðKÞ− λ2⋆

3
B½ḠA�ðKÞ�

�
;

ð26bÞ

M̄2
AðKÞ ¼ −2ðZ0 − 1Þμωn

þ λ2⋆
12

ϕ2

�
1

3
B½ḠT ; ḠA�ðKÞ − B½ḠL; ḠA�ðKÞ

�
:

ð26cÞ

The propagator components ḠL;T;A can be expressed in
terms of the momentum-dependent gap masses M̄2

L;T;A by
inverting the relations (25). One obtains

ḠL;TðKÞ ¼ ðK2 − μ2 þ M̄2
T;LðKÞÞΔ−1ðKÞ; ð27aÞ

ḠAðKÞ ¼ ð2μωn − M̄2
AðKÞÞΔ−1ðKÞ; ð27bÞ

with

ΔðKÞ ¼
Y
i¼L;T

ðK2 − μ2 þ M̄2
i ðKÞÞ þ ð2μωn − M̄2

AðKÞÞ2:
ð27cÞ

Finally, the field equation (20) takes the form

0 ¼ ϕ̄a

�
−μ2Z2 þm2

2 þ
λ4
12

ϕ2 þ λðAþ2BÞ
2

12
T ½ḠL�

þ λðAÞ2

12
T ½ḠT � −

λ2⋆
24

S½ḠL� −
λ2⋆
72

S½ḠL; ḠT ; ḠT �

−
λ2⋆
12

S½ḠA; ḠA; ḠL� þ
λ2⋆
36

S½ḠA; ḠA; ḠT �
�
: ð28Þ

We obtain the numerical solution presented in Sec. VI by
iterating the coupled gap and field equations. We also
compute derived quantities like the density or the curvature
masses, which depend on the solutions, using the same
routines. More details on our numerical method can be
found in Sec. VI.

D. Phase transition

In order to study the phase transition, we shall monitor
the nature of the extrema ϕ̄ that solve the field equation by
computing the curvature tensor ∂2γ=∂ϕa∂ϕb at ϕ ¼ ϕ̄. We
note that the SOð2Þ invariance of γðϕÞ implies that γðϕÞ ¼
gðϕ2Þ and thus the curvature tensor has the general structure

∂2γ

∂ϕa∂ϕb
¼ γð2ÞL PL

ab þ γð2ÞT PT
ab ð29aÞ
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with

γð2ÞL ¼ 2g0ðϕ2Þ þ 4ϕ2g00ðϕ2Þ; ð29bÞ

γð2ÞT ¼ 2g0ðϕ2Þ: ð29cÞ

Because the field equation takes the form 0 ¼ g0ðϕ̄2Þϕ̄a, we
have two types of solutions. Those for which ϕ̄ ¼ 0, in

which case γð2ÞL ¼ γð2ÞT ¼ 2g0ð0Þ and those for which

g0ðϕ̄2Þ ¼ 0 in which case γð2ÞL ¼ 4ϕ̄2g00ðϕ̄2Þ and γð2ÞT ¼ 0.
This last identity is nothing but the Goldstone theorem.
In what follows, we find it more convenient to work with

the curvature mass tensor

M̂2
ab ≡ ∂2γ

∂ϕa∂ϕb
þ δabμ

2 ¼ M̂2
LP

L
ab þ M̂2

TP
T
ab; ð30Þ

with M̂2
L;T ¼ γð2ÞL;T þ μ2. The reason for considering this

tensor is that, in the exact theory, it coincides with the gap
mass tensor M̄2

abðK ¼ 0Þ≡ M̄2
ab. In particular, in the exact

theory and in the broken phase, both M̂2
T and M̄2

T obey the
Goldstone theorem in the form M̂2

T ¼ M̄2
T ¼ μ2, just as in

the general discussion of [33]. In a given truncation of the
2PI effective action, such as the two-loop truncation
considered here, M̄2

T generically violates the Goldstone
theorem, even though, as we will see, it could be almost
satisfied in certain regions of the ðμ; TÞ plane.
Coming back to the discussion of the various solutions of

the field equation, we note that in order for ϕ̄ ¼ 0 to be
considered the physical solution that is corresponding
to the absolute minimum of γðϕÞ, a necessary condition
is that g0ð0Þ ≥ 0. In the case where the transition is second
order, as we will find it to be in the present approximation,
one moves continuously from a symmetric phase solution
ϕ̄ ¼ 0 to a broken phase solution ϕ̄ ≠ 0. The transition line
μcðTÞ or TcðμÞ in the ðμ; TÞ plane where this occurs is
determined from the condition g0ð0Þ ¼ 0 or equivalently
from the condition that the curvature mass at the origin of
the potential M̂2

ϕ¼0 ¼ 2g0ð0Þ þ μ2 becomes equal to μ2.
This mass can be obtained by noting that g0ðϕÞ can be
read off from the expression inside the bracket in the
rhs of Eq. (28) and by using that, when ϕ ¼ 0,
Ḡϕ¼0

L ¼ Ḡϕ¼0
T ≡ ḠI. One gets then

M̂2
ϕ¼0 ¼ −μ2ðZ2 − 1Þ þm2

2 þ
λðAþBÞ
2

6
T ½ḠI�

−
λ2⋆
18

ðS½ḠI� þ S½Ḡϕ¼0
A ; Ḡϕ¼0

A ; ḠI�Þ: ð31Þ

Moreover, since at ϕ¼0, M̄2
A;ϕ¼0ðKÞ¼−2ðZ0−1Þμωn and

M̄2
L;ϕ¼0ðKÞ ¼ M̄2

T;ϕ¼0ðKÞ≡ ðK2 − μ2ÞðZ0 − 1Þ þ ΔM̄2
ϕ¼0,

we have, owing to (27a) and (27b),

ḠIðKÞ ¼ Z0ðK2 − μ2Þ þ ΔM̄2
ϕ¼0

ðZ0ðK2 − μ2Þ þ ΔM̄2
ϕ¼0Þ2 þ 4Z2

0μ
2ω2

n
; ð32aÞ

Ḡϕ¼0
A ðKÞ¼ 2Z0μωn

ðZ0ðK2−μ2ÞþΔM̄2
ϕ¼0Þ2þ4Z2

0μ
2ω2

n
; ð32bÞ

with

ΔM̄2
ϕ¼0 ¼ m2

0 þ
λðAþBÞ
0

6
T ½ḠI�; ð33Þ

which follows from either (26a) or (26b).

E. Complex formulation

Before closing this section, let us finally remind that
one can always switch to the formulation in terms of the
field χ ¼ ðΦ;Φ�Þt. In fact we could have derived the 2PI
effective action directly within this formulation. However,
it is simpler to do so indirectly, using the real field
formulation and the change of variables (3). Using the
notationsX ¼ hχi and G ¼ hΦΦ†i − hΦihΦ†i to denote the
expectation value of the field χ and the corresponding
connected correlator, one has X ¼ Uϕ and G ¼ UGU†

with U the matrix given in (3). The 2PI effective action
in the complex formulation is thus obtained as ~Γ½X ;G� ¼
Γ½ϕ; G�. One gets

~Γ½X ;G� ¼ 1

2
Tr½lnG−1 þ G−1

0 ðGþ X ~XÞ� þ ~Γint½X ;G�;
ð34Þ

with ~Γint½X ;G� ¼ Γint½ϕ; G� and

G−1
0 ðτ; ~x; τ0; ~x0Þ ¼ δðτ − τ0Þδð3Þð~x − ~x0Þ

0
B@−ð ∂

∂τ0 þ μÞ2 − Δþm2
b 0

0 −ð ∂
∂τ0 − μÞ2 − Δþm2

b

1
CA; ð35Þ

the kernel of the quadratic form (8). The same difficulty as in the real field formulation occurs: the fields Φ and Φ� (the
components of χ) that enter the path integral being complex conjugate of each other, it is natural to couple them to sources
J� and J which are also complex conjugate of each other. However, the corresponding Legendre variables (the components
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of X ) will not be complex conjugate of each other in
general and we shall rather denote them by F and F̄
respectively. Thus χ ¼ ðΦ;Φ�Þt and X ¼ ðF ; F̄ Þt with
F � ≠ F̄ in general. The notation ~X in (34) stands for
ðF̄ ;F Þ. It boils down to X† when F̄ ¼ F �. To check that
this is the correct notation to be introduced, we write

TrG−1
0 ϕϕt ¼ TrU†G−1

0 UU†XX tU� ¼ TrG−1
0 X ~X ; ð36Þ

where we have used the cyclicity of the trace and

U�U† ¼
�
0 1

1 0

�
: ð37Þ

Again, one can show that, in the case of homogeneous
external sources, the components of the expectation value
X are complex conjugate to each other, that is F � ¼ F̄ . In
this case also ~X coincides with X†. Finally, the standard
1PI effective action is obtained from (34) as ~Γ½X � ¼
Γ½X ; ḠX � where ḠX obeys the stationarity condition
0 ¼ δ ~Γ=δGjḠX

.
The complex field formulation is particularly useful in

the symmetric phase. Indeed, owing to Uð1Þ invariance,
ḠX¼0 is invariant under Uð1Þ transformations and thus its
charged off-diagonal components need to vanish, just as for
the free propagator derived from (35). So, in the symmetric
phase, it is definitely simpler to work in the complex field
formulation because the propagator is diagonal.7 A simple
application of this remark is the determination of the
curvature mass at ϕ ¼ 0. In the form (31), it is cumbersome
(although doable) to perform the Matsubara sums. Instead,
we can switch to the complex field formulation, for
which the propagator reads ḠX¼0 ¼ UðḠI1þ Ḡϕ¼0

A εÞU† ¼
ḠI1 − iḠϕ¼0

A σ3 where we have used that UεU† ¼ −iσ3
with σ3 the third Pauli matrix. Then

ḠX¼0ðKÞ ¼
�
D̄ðKÞ 0

0 D̄�ðKÞ

�
ð38Þ

with

D̄ðKÞ ¼ ḠIðKÞ − iḠϕ¼0
A ðKÞ

¼ 1

Z0ððωn þ iμÞ2 þ q2Þ þ ΔM̄2
X¼0

; ð39Þ

where ΔM̄2
X¼0 ≡ ΔM̄2

ϕ¼0, that is after applying the change
of basis to (33)

ΔM̄2
X¼0 ¼ m2

0 þ
λðAþBÞ
0

6
T ½D̄�: ð40Þ

To rewrite the curvature mass M̂2
X¼0 in terms of D̄, it is

useful to note that, ḠA being odd, integrals such as T ½ḠA�
and S½ḠA; ḠI; ḠI� vanish. It is then a very simple exercise
to show that

M̂2
X¼0 ¼ −μ2ðZ2 − 1Þ þm2

2 þ
λðAþBÞ
2

6
T ½D̄�

−
λ2⋆
18

S½D̄; D̄�; D̄�: ð41Þ

The Matsubara sums in (41) are now easily computed (see
Appendix D) because μ enters as a mere (imaginary) shift
of the Matsubara frequencies.

IV. SILVER BLAZE PROPERTY

Before discussing our results in the two-loopΦ-derivable
approximation, we need to explain how the corresponding
equations are renormalized; see Sec. V. Our renormaliza-
tion can be carried out using counterterms which do not
depend on the chemical potential (and neither on the
temperature). That this is possible can be seen as the
consequence of a basic property known as the Silver Blaze
property, and its extension to n-point functions. As we now
argue, these properties can be seen as consequences of the
particular transformation property of the Euclidean
Lagrangian density under (9) which we discussed in Sec. II.

A. Generalities

Let us denote by Zμ the partition function of the system
in the presence of a complex chemical potential μ. As long
as the system is in the symmetric phase we expect Zμ to be
analytic in some strip jReμj < μcðTÞ with μcðTÞ > 0. Now,
if we consider a gauge transformation (9) with α ¼ ωn,
combined with a shift of μ by δμ ¼ −iωn, the invariance of
the Lagrangian density under such a transformation and the
fact that the boundary conditions on the field remain
unchanged imply that the partition function is periodic
in μ with period iωn: Zμ−iωn

¼ Zμ. At zero temperature,8

this periodicity property translates into the independence of
Zμ with respect to the imaginary part of μ, and thus, after
analytic continuation, to the μ independence of Zμ, and in
turn of any thermodynamical observable derived from it, in
the whole strip jReμj < μc ≡ μcðT ¼ 0Þ. This is the so-
called Silver Blaze property.
The Silver Blaze property can be extended to n-point

functions in the following way. Using the complex field
formulation (8), let us introduce the generating functional

7In the broken phase, the propagators have four nonvanishing
components in both formulations. There is however a preference
for the real field formulation since the four components of the
propagator in Fourier space are real, which makes the numerical
implementation easier. 8More precisely, in the limit n → ∞ with T ¼ ω=ð2πnÞ.
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eWμ½J;J�� ≡
Z

D½Φ;Φ��e−
R
x
LEþ

R
x
ðJ�ðxÞΦðxÞþJðxÞΦ�ðxÞÞ; ð42Þ

for any complex μ in the strip jReμj < μcðTÞ. The same
argument as above leads to the identity

Wμ−iωn
½eiωnτJ; e−iωnτJ�� ¼ Wμ½J; J��: ð43Þ

If we denote by Γμ½F ; F̄ � the Legendre transform of
Wμ½J; J��, this result takes the form

Γμ−iωn
½eiωnτF ; e−iωnτF̄ � ¼ Γμ½F ; F̄ �: ð44Þ

Functional derivatives of this identity evaluated at F ¼
F̄ ¼ 0 yield the following identities for 2m-point vertex
functions, if the system is in the symmetric phase,

eiωnðτ1þ…þτn−σ1−…−σnÞΓðm;mÞ
μ−iωn

ðx1;…; xn; y1;…; ynÞ
¼ Γðm;mÞ

μ ðx1;…; xn; y1;…; ynÞ: ð45Þ

At finite temperature, we do not know how to analytically
continue this relation from iωn to z because the continu-
ation is not unique. In contrast, at zero temperature (again,
the zero temperature limit should be taken as in footnote 8)
and for jReμj < μc, the continuation is unique in the strip
jReðμ − zÞj < μc and we have

ezðτ1þ…þτn−σ1−…−σnÞΓðm;mÞ
μ−z ðx1;…; xn; y1;…; ynÞ

¼ Γðm;mÞ
μ ðx1;…; xn; y1;…; ynÞ: ð46Þ

In particular, for z ¼ μ and jReμj < μc, we obtain

eμðτ1þ…þτn−σ1−…−σnÞΓðm;mÞ
0 ðx1;…; xn; y1;…; ynÞ

¼ Γðm;mÞ
μ ðx1;…; xn; y1;…; ynÞ; ð47Þ

which shows that, at zero temperature and in the symmetric
phase, the dependence of the vertex functions with respect
to μ is trivial and amounts to appropriate phase multi-
plications in configuration space. Note that for m ¼ 0,
Eq. (47) is nothing but the expression of the Silver Blaze
property Zμ ¼ Z0 in terms of the Legendre transform Γμ.
For m > 0, we can go to Fourier space to obtain the
following simple generalization of the Silver Blaze prop-
erty: the n-point vertex functions for T ¼ 0 and μ < μc are
obtained from those at T ¼ 0 and μ ¼ 0 after shifting the
external (continuous) Matsubara frequencies according
to iω → iω� μ with the sign � depending on whether
the external leg corresponds to a particle or an antiparticle.
We shall see explicit realizations of this property in
Appendix D.
One consequence of the above result is that, at zero

temperature and in the symmetric phase, the ultraviolet
divergences at finite μ are exactly those at μ ¼ 0. In

particular μ does not require any renormalization factor,
in line with similar arguments found in the literature [20].
This result is expected since, even though the chemical
potential appears effectively as an internal microscopic
parameter in Eqs. (7) and (8), it is an external macroscopic
parameter, just like the temperature, and as such should not
be renormalized. We stress however that the previous
argument is valid only in the symmetric phase and at
T ¼ 0. Its extension to the broken phase and/or at finite
temperature is given in Appendix C.

B. Silver Blaze and Φ-derivable approximations

Based on the previous discussion, we expect the Silver
Blaze property to be obeyed in a given framework, if the
approximation, the UV regularization and the discretization
that one uses, all preserve the transformation property of
the Euclidean Lagrangian density under the gauge trans-
formation (9). For instance, if one has in mind a lattice
approach where the imaginary time τ is discretized accord-
ing to τk ¼ kβ=N ≡ ka, it is convenient to rewrite the
continuum Euclidean Lagrangian density (8) as

LE ¼ Uμ∂τðU−μΦ�ÞU−μ∂τðUμΦÞ

þ ð∇Φ�Þð∇ΦÞ þm2
bΦ

�Φþ λb
12

ðΦ�ΦÞ2; ð48Þ

with UμðτÞ ¼ eμτ and then to discretize the time derivatives
according to

U−μ∂τðUμΦÞ →
1

a
½eμaΦkþ1 − Φk�; ð49aÞ

Uμ∂τðU−μΦ�Þ → 1

a
½e−μaΦ�

kþ1 − Φ�
k�: ð49bÞ

The discretized action is then invariant under the change
of variables Φk → eiωnτkΦk, Φ�

k → e−iωnτkΦ�
k, μ → μ − iωn

and the Silver Blaze property holds. Introducing the
chemical potential through link variables in analogy with
the gauge fields is the standard discretization on the lattice,
and as shown in [34] this avoids the appearance of
quadratic divergences in the case of free fermions.
Let us now discuss the Silver Blaze property within

Φ-derivable approximations. To this purpose, it is conven-
ient to employ the complex field formulation (34). Because
the chemical potential in (35) is combined with time
derivatives in the form of covariant derivatives, it is clear
that9

Z
β

0

dτ0G−1
0;μ−iαðτ; τ0Þðeiατ

0QXðτ0ÞÞ ¼ eiαQG−1
0;μXðτÞ ð50Þ

9In the real field formulation, this property would readR β
0 dτ0G−1

0;μ−iαðτ; τ0ÞRðτ0Þϕðτ0Þ ¼ RðτÞG−1
0;μϕ, with RðτÞ an

SOð2Þ rotation with angle ατ.
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where Q is the charge operator and we have made the μ
dependence of G−1

0;μ explicit in the notation. It follows that
the explicit trace in (34) is invariant under X → eiατQX,
G → eiατQGe−iατ

0Q, provided the chemical potential is
changed according to μ → μ − iα. Moreover, it is simple
to convince oneself that any diagram contributing to
~Γint½X ;G� is invariant under the same transformation. It
follows that, for any diagrammatic truncation of the 2PI
effective action

~Γμ−iα½eiατQX ; eiατQGe−iατ
0Q� ¼ ~Γμ½X ;G�: ð51Þ

Assuming that there is a unique ḠX
μ for each X that solves

0 ¼ δ ~Γ=δGjX ;ḠX
μ
, this implies that

ḠeiατQX
μ−iα ¼ eiατQḠX

μ e−iατ
0Q; ð52Þ

and thus that the corresponding approximation ~Γμ½X � ¼
~Γμ½X ; ḠX

μ � to the 1PI effective action obeys the property

~Γμ−iα½eiατQX � ¼ ~Γμ½X � ð53Þ

from which the Silver Blaze property follows, as explained
in the previous section. Thus any diagrammatic truncation
of the 2PI effective action is compatible with the Silver
Blaze phenomenon. We note that we have not paid much
attention to the UV regularization but, clearly, any regu-
larization that does not imply a discretization of the time
interval ½0; β� maintains the Silver Blaze property.10 This is
one of the reasons why, in this work, we consider a
regularization that does not cut off the Matsubara sums.
Nevertheless, in practical, numerical calculations, we con-
sider a finite, however large, number of frequencies
2Nτ þ 1. In the limit T → 0, we need to make sure that
the largest Matsubara frequency ωNτ

≡ 2πNτT goes to
infinity, in order for the Silver Blaze property to hold; see
Fig. 1. Indeed, if the frequency is cut off in the zero-
temperature integrals, the simple transformation property of
the Lagrangian density under (9), which lies at the root of
the Silver Blaze property, is not exactly fulfilled.

V. RENORMALIZATION

In Appendix C, using the Silver Blaze property together
with an expansion of the perturbative propagator around
the corresponding propagator at μ ¼ 0, we show that the
elimination of UV divergences in perturbation theory at
finite T and finite μ requires the same counterterms as those
needed at finite T and μ ¼ 0. Because the renormalization

of Φ-derivable approximations is just a resummed version
of perturbative renormalization, we expect the two-loop
Φ-derivable approximation at finite T and finite μ to be
renormalizable using the same procedure as the one
detailed in [32] for the two-loopΦ-derivable approximation
at finite T and μ ¼ 0.

A. Renormalization and consistency conditions

In the two-loop Φ-derivable approximation at μ ¼ 0,
two bare masses m0 and m2 were needed because, as we
mentioned above, the gap and curvature masses do not
agree within a given truncation. In order to fix the two bare
masses in terms of a unique renormalized mass m⋆ one
considers the usual renormalization condition

M̂2
ϕ¼0;T¼T⋆;μ¼0 ¼ m2⋆ ð54Þ

supplemented by a consistency condition

M̂2
ϕ¼0;T¼T⋆;μ¼0 ¼ M̄2

ϕ¼0;T¼T⋆;μ¼0 ð55Þ

which enforces the equality between the curvature and gap
masses at the renormalization point. For convenience,
we impose the renormalization and consistency conditions
at a fixed temperature T ¼ T⋆, which plays the role of the
renormalization scale.
Similarly, the possibility to obtain the four-point function

in three different ways [32,35], which do not agree in a
given Φ-derivable approximation and which not all obey
the crossing symmetry, requires the introduction of five

bare couplings λðA;BÞ0 , λðA;BÞ2 and λ4. In order to fix these bare
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FIG. 1 (color online). Illustration of the Silver Blaze phenome-
non based on the differential pressure PðT; μÞ − Pð0; 0Þ at T ¼ 0
as a function of the chemical potential in the BEC case, obtained
in our two-loop approximation with parameters m2⋆=T2⋆ ¼ 0.1;
λ⋆ ¼ 3. In the symmetric phase μ < μc ≡ μcðT ¼ 0Þ, the pressure
is constant, in agreement with the Silver Blaze property. The inset
shows violations of the Silver Blaze property which occur if we
do not ensure that the largest Matsubara frequency ωNτ

≡ 2πNτT
goes to infinity as T → 0 (see text for explanation).

10Note also that it is important that α be chosen equal to a
Matsubara frequency because, strictly speaking, in equilibrium,
the fields that enter as arguments of the 2PI effective action
should obey periodic boundary conditions.

GERGELY MARKÓ, URKO REINOSA, AND ZSOLT SZÉP PHYSICAL REVIEW D 90, 125021 (2014)

125021-10



couplings in terms of a single renormalized coupling λ⋆ one
considers the usual renormalization condition supple-
mented by four consistency conditions which impose that
the three different definitions of the four-point function
agree with each other, and obey crossing symmetry, at the
renormalization point, that is at T ¼ T⋆, ϕ ¼ 0 and μ ¼ 0.
The explicit expressions for the bare parameters that

follow from the renormalization and consistency conditions
can be found in [32] and are used in the present work as
well. We note however that, because we have not taken Z0

equal to 1 yet (see below) one should replace in all these
expressions G⋆ ¼ 1=ðQ2 þm2⋆Þ by 1=ðZ0Q2 þm2⋆Þ.

B. Field renormalization at finite μ

So far we did not discuss the need for field renormaliza-
tion. In a general approximation, one needs to express the
bare field in terms of the renormalized field φ →

ffiffiffiffi
Z

p
φ and

the renormalization factor Z is used to absorb certain
divergences. In the 2PI framework, the same reason that
leads to the introduction of two different bare masses m0

and m2 leads to the introduction of two different renorm-
alization factors Z0 and Z2, corresponding respectively to
rescalings of the propagator G and the field ϕ that enter as
arguments of the 2PI effective action Γ½ϕ; G�; see the
beginning of Sec. III C.
The reason why these renormalizations are not needed

in the two-loop Φ-derivable approximation at μ ¼ 0 is
twofold. First of all, in this approximation, the gap equation
and the corresponding two-point function Ḡϕ do not
involve diagrams that require the field renormalization
Z0. Second, even though the two-point function
δ2Γ=δϕaδϕb that one can construct from the corresponding
approximation to the effective action Γ½ϕ� ¼ Γ½ϕ; Ḡϕ�
involves diagrams that do require the field renormalization
Z2, the analysis of [32] focuses on the effective potential
γðϕÞ which gives only access to the zero frequency/
momentum value of this two-point function for which
field renormalization is not needed.
At finite μ, the situation is slightly different. It is still true

that the two-point function that one obtains from solving
the gap equation does not require the field renormalization
Z0 (because the topologies that enter the gap equation are
the same as for μ ¼ 0). The latter could then be fixed to 1,
but we shall keep it arbitrary (but finite) for the moment. In
contrast, the two-point function that one obtains from γðϕÞ
does require the field renormalization Z2, even though it
still corresponds to the two-point function at zero fre-
quency/momentum. The simplest way to understand why
this is so is to consider the symmetric phase at zero
temperature. There, the Silver Blaze property relates vertex
functions at finite μ and vanishing external frequencies/
momenta to the same vertex functions at μ ¼ 0 but with
nonvanishing and μ-dependent external frequencies. Thus,
it is no question that field renormalization is needed at finite
μ to renormalize the effective potential.

We fix the renormalization factor Z2 with a renormal-
ization condition imposed on M̂2

ϕ¼0 which mimics the usual
way of fixing the wave function renormalization. The
renormalization factor Z0 is fixed through a consistency
condition which, in the exact theory limit, would ensure
that the two renormalization factors converge to the same
expression. The conditions we use are

d
dμ2

M̂2
ϕ¼0jT⋆;μ¼0 ¼ 1 − α; ð56Þ

d
dμ2

M̂2
ϕ¼0jT⋆;μ¼0 ¼

d
dμ2

M̄2
ϕ¼0jT⋆;μ¼0 ð57Þ

from which we deduce the following expressions for Z0

and Z2:

Z2 ¼ αþ λðAþBÞ
2

6

dT ½D̄�
dμ2

����
T⋆;μ¼0

−
λ2⋆
18

dS½D̄; D̄�; D̄�
dμ2

����
T⋆;μ¼0

;

ð58Þ

Z0 ¼ αþ λðAþBÞ
0

6

dT ½D̄�
dμ2

����
T⋆;μ¼0

: ð59Þ

Carrying out the differentiations in (58) and (59), bearing in
mind that chemical potential dependence is either explicit
or through the gap mass M̄2

ϕ¼0 and using the expression for

λðAþBÞ
0 and λðAþBÞ

2 given in [32] but including the factor Z0

as explained above, one obtains

Z2 ¼ Z0 þ
λ2⋆
6
B⋆½G⋆�ð0Þ

�∂T ½D̄�
∂μ2

�����
T⋆;μ¼0

−
λ2⋆
18

�∂S½D̄; D̄�; D̄�
∂μ2

�����
T⋆;μ¼0

; ð60Þ

Z0 ¼ αþ λ⋆
3

∂T ½D̄�
∂μ2

����
T⋆;μ¼0

: ð61Þ

Owing to the fact that the divergent part of T ½D� does not
depend on μ (see Appendix D) this last expression for Z0

makes it explicit that Z0 is finite, as already argued.
Moreover, it is easily checked that upon the rescaling
α → cα, m2⋆ → cm2⋆ and λ⋆ → c2λ⋆, the renormalization
factors and the squared bare masses are scaled by c and the
bare couplings by c2. It is easily checked then that,11 up to a
T and μ-independent divergence

11This is pretty clear for the explicit terms of (22), up to a T and
μ-independent divergence. For the diagrammatic contributions to
γint½ϕ; G�, we use that Eþ 2I ¼ 4V where E is the number of
occurrences of ϕ in the diagram, I the number of occurrences
of G and V the number of vertices. We have then
Γint½ϕ=

ffiffiffi
c

p
; G=c; c2λ� ¼ c2V−E=2−IΓint½ϕ; G; λ� ¼ Γint½ϕ; G; λ�.
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γ½ϕ= ffiffiffi
c

p
; G=c; cm2⋆; c2λ⋆; cα� ¼ γ½ϕ; G;m2⋆; λ⋆; α�; ð62Þ

where we have made the dependence on the renormalized
parameters and on α explicit. Assuming the unicity of Ḡϕ

for each ϕ it follows that cḠϕ=
ffiffi
c

p
;cm2⋆;c2λ⋆;cα ¼ Ḡϕ;m2⋆;λ⋆;α and

then that

γ½ϕ= ffiffiffi
c

p
; cm2⋆; c2λ⋆; cα� ¼ γ½ϕ;m2⋆; λ⋆; α�: ð63Þ

This last relation expresses the fact that the model has only
two free parameters and that α is arbitrary. In other words,
two systems characterized by the parameters ðα; m2⋆; λ⋆Þ

and ðcα; cm2⋆; c2λ⋆Þ lead to the same physical predictions.
For instance the differential pressure of the system obtained
at the minimum of γðϕÞ is clearly the same for these two
systems. Similarly, even though the curvature at the origin
of the potential is scaled by c when one moves from system
ðα; m2⋆; λ⋆Þ to system ðcα; cm2⋆; c2λ⋆Þ, the transition line,
that is the line in the ðμ; TÞ plane where the curvature at the
origin vanishes is the same for the two systems.
Because the choice of α is arbitrary, in what follows, we

choose it such that Z0 ¼ 1. Hence, from now on we will
omit Z0. Carrying out the differentiations and limits
appearing in (60) yields

Z2 ¼ 1 −
λ2⋆
18

�
3

Z
T⋆

Q
ðG2⋆ðQÞ − 4ω2

nG3⋆ðQÞÞ½B⋆½G⋆�ðQÞ − B⋆½G⋆�ð0Þ� þ 4

Z
T⋆

Q

Z
T⋆

K
ωnωmG2⋆ðQÞG2⋆ðKÞG⋆ðQþ KÞ

�
:

ð64Þ

Now that we have explained how to fix all the renorm-
alization factors and bare parameters, we could give a
detailed proof of how these parameters indeed absorb all
the divergences which appear in the two-loop Φ-derivable
approximation at finite T and finite μ. Even though this is
possible by extending the ideas described in Appendix C,
we shall not do this here. We will limit ourselves to provide
a proof for the finiteness of the density in the broken phase
(see Appendix C) because this is a quantity we shall be
dealing with later on and because its renormalization
involves the renormalization factor Z2, which is a new
element as compared to our earlier discussion in [32].

VI. RESULTS

The numerical solution of the field and gap equations
is obtained iteratively, as mentioned earlier. We extend the
approach used in [36] which exploits Fourier analysis and
rotation invariance. We mention however that the skew
component ḠA is odd under the transformation ωn → −ωn
which leads to certain complications in the practical
implementation of our approach. More precisely, even
though it is straightforward to implement the numerical
convolution of an even function with an odd function, this
requires a sampling of the odd function different from the
one used for the even function. This leads to a certain loss
of information when evaluating the propagators using (27a)
and (27b), because Δ involves both even and odd functions
which are not sampled in the same way. To avoid a loss of
information, we choose to rewrite our equations in terms of
a function ḡA such that ḠA ¼ ωnḡA. This function ḡA is
even under the transformation ωn → −ωn. The only con-
volutions that we have to consider are thus convolutions
involving two even functions, for which we can use the
routines described in [36]. Our results do not depend on the

particular value chosen for ḡAðωn ¼ 0Þ. We also note that
(64) contains frequency-odd sum integrands, which we
treat using ωnωm ¼ ½ðωn þ ωmÞ2 − ω2

n − ω2
m�=2.

A. Transition line

As already mentioned, the transition line TcðμÞ is
obtained from the condition

M̂2
ϕ¼0;T¼TcðμÞ;μ ¼ μ2; ð65Þ

where the curvature mass is given in (31) [or equivalently in
(41)] in terms of the gap mass M̄2

ϕ¼0 [M̄
2
X¼0]. We mention

that the curvature at the origin of the potential is defined
only if the gap equation (40) for M̄2

ϕ¼0, which enters the
expression for M̄2

ϕ¼0, admits a solution. This gap equation

can be written as 0 ¼ fðM̄2
ϕ¼0Þ with fðM2Þ ¼

−M2 þm2
0 þ ðλðAþBÞ

0 =6ÞT ½D� where fðM2Þ is defined
for M2 ≥ μ2. We thus need to study the zeroes of fðM2Þ
for M2 ≥ μ2. A direct calculation shows that

f0ðM2Þ ¼ −1 −
λðAþBÞ
0

6
B½D� < 0; ð66Þ

where it is implicitly assumed that we keep our cutoff
below the Landau scale,12 that is we have always both

λðAÞ0 > 0 and λðBÞ0 > 0; see our discussion in [32,36]. From
(66), it follows that fðM2Þ decreases from fðμ2Þ to −∞ and
thus there is a solution if and only if fðμ2Þ ≥ 0. The

12The presence of the Landau pole makes renormalization
meaningful only if there is a large separation between the
physical scales and the Landau scale. For this reason, we restrict
our analysis to parameter values such that the Landau scale is
much larger than our renormalization scale T⋆.
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condition fðμ2Þ ¼ 0, or equivalently M̄2
ϕ¼0 ¼ μ2 defines a

line T̄cðμÞ below which the gap equation at ϕ ¼ 0 has no
solution. It would correspond to the critical line TcðμÞ if the
gap and curvature masses were to coincide. If both T̄cðμÞ
and TcðμÞ exist then by definition TcðμÞ ≥ T̄cðμÞ at any μ,
as the gap equation at vanishing field loses its meaning
for T < T̄cðμÞ.
There are three different cases based on the value of the

two critical temperatures at μ ¼ 0. We call the spontaneous
symmetry breaking (SSB) case, the one where both Tc
and T̄c are defined and larger than zero for μ ¼ 0. We call
the Bose-Einstein condensation (BEC) case the one where
neither Tc nor T̄c exists at vanishing chemical potential, but
they appear at critical values μc and μ̄c respectively. There
is also a third case when Tc > 0 exists at μ ¼ 0; however
T̄cðμ ¼ 0Þ is not defined. Since this is just an artifact of the
two-loop Φ-derivable approximation, we will not discuss
this case any further. The different cases divide them2⋆ − λ⋆
parameter plane as shown in Fig. 2. The typical behavior of
the TcðμÞ and T̄cðμÞ curves in both cases is shown in Fig. 3.

B. Isodensity lines

The density is defined as

ρ ¼ 1

βV
∂ lnZ
∂μ ¼ 1

VZ
TrQe−βðH−μQÞ: ð67Þ

Since the path integral formula for lnZ depends on μ only
through the quadratic part of the Lagrangian density we
obtain

ρ ¼ μhφ2
1ð0Þ þ φ2

2ð0Þi þ ih _φ2ð0Þφ1ð0Þi − ih _φ1ð0Þφ2ð0Þi

¼ μZ2ϕ̄
2 þ μ

Z
Q
ðḠLðQÞ þ ḠTðQÞÞ − 2

Z
Q
ωnḠAðQÞ;

ð68Þ
where we have used (24). In the symmetric phase, we
have ϕ̄ ¼ 0 and ḠL ¼ ḠT ¼ ḠI and it is more convenient
to express the density in terms of D̄ ¼ ḠI − iḠA and
D̄ ¼ ḠI þ iḠA. Writing 2ḠI ¼ D̄þ D̄� and 2ḠA ¼
iðD̄ − D̄�Þ, we arrive at
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BEC
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FIG. 2 (color online). The parameter space divided into SSB
and BEC regions according to the existence of the critical
temperatures Tcðμ ¼ 0Þ and T̄cðμ ¼ 0Þ. Systems for which both
temperatures exist show SSB whereas systems for which neither
exist show BEC. The greyed region is an artifact of the two-loop
2PI approximation and has no physical interpretation. The
labeled dashed lines denote the limits over which the Landau
pole is smaller than 50T⋆ and 100T⋆ respectively. The filled
circles denote points where we carried out further investigations.
At points (A) and (B) the isodensity lines are compared to the
corresponding results obtained in the Hartree-Fock approxima-
tion (see Sec. VI B), while the unmarked points are used in the
lattice comparison (see Sec. VI C).
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FIG. 3 (color online). Phase diagrams and isodensity lines in
the SSB (top panel) and BEC (bottom panel) cases. The
parameter values chosen correspond to points (A) and (B) of
Fig. 2 respectively, that is ðm2⋆=T2⋆; λ⋆Þ ¼ ð0.04; 3Þ for (A) and
ðm2⋆=T2⋆; λ⋆Þ ¼ ð0.1; 3Þ for (B). The full lines are the isodensity
lines in the two-loop approximation, the dot-dashed lines are
their counterpart in the Hartree-Fock approximation. The dashed
lines are the critical temperature curves, while the dotted lines
are the limiting lines in the Hartree-Fock approximation, under
which the gap equation has no solution at the would-be minimum
of the potential. The chosen ρ values from left to right
are fρ=T3⋆ ¼ 0.05; 0.01; 0.02; 0.04g in the SSB case, and
f0.001; 0.0025; 0.05; 0.01; 0.02; 0.04g in the BEC case.
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ρ ¼
Z
Q

�
iωn þ μ

−ðiωn þ μÞ2 þ ε2q
−

iωn − μ

−ðiωn − μÞ2 þ ε2q

�
ð69Þ

which is easily computed to be

ρ ¼
Z
q

�
1

eβðεq−μÞ − 1
−

1

eβðεqþμÞ − 1

�
; ð70Þ

with εq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ M̄2

ϕ¼0

q
. The density in the symmetric

phase is thus finite provided M̄2
ϕ¼0 is. That this is the case

follows immediately from the fact that the divergent part of
the tadpole integral in the rhs of (40) does not depend on μ;
see Appendix D. The renormalization in the broken phase
using the renormalization factor Z2 is done in Appendix C.
We took two example points (shown in Fig. 2) in the

m2⋆=T2⋆ − λ⋆ plane, one in the SSB region ðm2⋆=T2⋆ ¼
0.04; λ⋆ ¼ 3Þ and one in the BEC region ðm2⋆=T2⋆ ¼ 0.1;
λ⋆ ¼ 3Þ. We located the TcðμÞ and T̄cðμÞ curves, then
determined density values on a grid from which we
interpolated isodensity lines, i.e. lines of constant density.
The results are compared to the same quantities obtained
in the lower Hartree-Fock approximation in Fig. 3. Deep in
the symmetric phase the Hartree-Fock and the two-loop
approximations are equivalent for the density. The small
difference is caused by the error of the interpolation. The
main difference is in the “breakpoint” of the curves, which
is determined by the location of the phase transition, which
is different in the two approximations. Furthermore in the
Hartree-Fock approximation the density lines are in fact
discontinuous as the transition is first order, however the
weakness of the phase transition makes this negligible for
the purpose of this comparison. In the broken phase lines of
constant ρ are almost lines of constant μ in both approx-
imations, although the values are different.
We must note that there are certain regions of the μ − T

plane, which cannot be accessed by our current approxi-
mation. For large temperature and chemical potential in the
broken phase the coupled field and gap equations lose their
solution. There seem to be two connected yet distinguish-
able reasons behind the loss of solution. The first one can
be summarized as follows. For μ − T pairs under the T̄cðμÞ
curve, by definition of T̄c, there exists a ϕcðμ; TÞ such that
for ϕ < ϕc the gap equations lose their solution, as the
difference M̄2

T − μ2 would become negative, rendering
integrals containing ḠT meaningless. The solution of the
coupled field and gap equations is lost if ϕc reaches ϕ̄ at a
certain μ − T point. The same mechanism prevents us from
solving the Hartree-Fock approximation in the regions
bordered by the dotted grey lines of Fig. 3. The other
reason is connected with the infrared sensitivity of dia-
grams included in our approximation. As ϕ̄ approaches ϕc,
M̄2

T − μ2 gets closer and closer to zero. However the zero
external momentum value of the bubble diagram with two
transverse propagators, appearing in the longitudinal gap

equation (26a), diverges in this limit. This leads to a loss of
solution, however in a slightly different way as in the first
case. As a consequence the Goldstone theorem may not be
fulfilled in any way in the two-loop approximation, neither
in any other approximations where these infrared diver-
gences are not tamed by further resummations. Figure 4
shows the effective transverse gap mass as a function of the
chemical potential for several high temperatures, together
with ϕ̄ in the inset, at point (A) of the parameter space, to
illustrate the loss of solution.

C. Comparison to lattice results

The Oð2Þ model at finite density has been studied on the
lattice in [15] using an appropriate lattice discretization
similar to (48) and the flux tube representation of the
partition function which solves the sign problem in this
case. These results show excellent agreement with those
obtained using stochastic quantization and complex
Langevin dynamics in [14]. The lattice results are remark-
ably reproduced both by a mean-field approach [37] and a
semianalytical approach, the so-called extended mean-field
method [38]. Both approaches use the same lattice dis-
cretization as in [14,15] and of course the same bare
parameters.
It is for us difficult to compare to these results because

we did not use the lattice action as our starting point.13
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FIG. 4 (color online). The difference M̄2
T − μ2 as a function of μ

for several temperatures. The integrals in the coupled field and
gap equations lose their meaning for M̄2

T − μ2 < 0. This happens
for the largest temperature in the region where the solution is
missing, while for the smaller temperatures arbitrary many points
could be taken in the shown region, jumps are only consequences
of the chosen resolution. The inset shows the corresponding ϕ̄ðμÞ
curves for each M̄2

TðμÞ − μ2 curve.

13Unfortunately, we were not aware of the references [14,15]
when starting this work. Moreover, one of our original motiva-
tions was to exploit our earlier studies at zero density, which used
a different UV regularization than the one on the lattice.
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A comparison would only make sense if the cutoff (inverse
lattice spacing) used in [14] or [15] was large with respect
to the other scales in the problem, in which case renorma-
lizability ensures that the physics at small momentum
scales should not depend much on the starting microscopic
theory within the same class of universality. However the
lattice spacings a considered in [14] or [15] are comparable
to physical scales (for instance for the parameters chosen in
[15] aμc ≈ 1.15 and aμc ≈ 0.18). We could of course lower
our cutoff but we would then be sensitive to the micro-
scopic details between (8) and the lattice discretized version
of (48).
Even though a quantitative comparison does not really

make sense, we tried the following qualitative comparison.
We chose the parameters of the two-loop Φ-derivable
approximation, such that the Tcðμ=μcÞ=μc curve shown
on Fig. 5 of [15] with the bare parameters λb ¼ 1 and η ¼ 9
in lattice units, was reproduced. We show the comparison
on Fig. 5. We chose the parameters such that the curve was
reproduced by our TcðμÞ curve, while we could also use
T̄cðμÞ for this purpose. However, as the minimum of the
potential changes at Tc and not at T̄c we choose the former.
Note that this procedure does not fix our parameters
completely, as we can only reproduce the phase transition
curve up to some accuracy to which corresponds some
patch in the parameter space. Instead of really finding
the boundaries for a certain error we choose three
distinctly different parameter sets (½m2⋆=T2⋆; λ⋆�∶ ½0.6; 12.5�;
½0.8; 11.5�; ½1.0; 10.5�) to estimate the dependence of the
results on the remaining arbitrariness.
At the chosen parameters we compare the dimensionless

quantity ρ=μ3c. The results are shown in Fig. 6. We find that

our density is smaller than the lattice values. As mentioned
above, we do not expect quantitative agreement but we note
that, interestingly, the difference between our results and
the lattice results is a constant scaling factor which does not
depend on the chemical potential and depends mildly on
the temperature. Furthermore the dependence of the density
on the choice of parameters is almost negligible in the
symmetric phase, while somewhat stronger in the broken
phase, but the apparent slope of the curves still does not
come close to the lattice results. We note also that, as shown
in [37], a mean-field approximation using the lattice
discretized propagator agrees very well in the symmetric
phase with the lattice results of [14]. Since the mean-field
gap equation solved in [37] is the lattice discretized version
of our equation for M̄2

ϕ¼0,
14 the good agreement between

the results of [14, 34] seem to indicate that the discrepancy
between our and the lattice results originates mainly from
the difference between the lattice discretized and the
continuum form of the propagators present at the lattice
spacing used in the lattice studies, and not from the
truncation that we have used. It could be that in the broken
phase part of the difference is due to the fact that we solve
the 2PI formalism in a given truncation, but to assess this
we should solve the 2PI equations using a lattice discretized
propagator and the same lattice spacing used in the lattice
approach.

VII. CONCLUSIONS

We studied the charged scalar Oð2Þ model with quartic
interaction at finite temperature and nonzero chemical
potential within the two-loop Φ-derivable approximation.
The fact that the Euclidean action is complex in the
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FIG. 6 (color online). The dimensionless density ρ=μ3c as a
function of μ=μc for two different temperatures. The shaded
regions show the two-loop 2PI results including the uncertainty
our parameter fixing carries, while the lattice data were approx-
imately read off from Fig. 6 of [15].
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FIG. 5 (color online). To fix the 2PI parameters m2⋆ and λ⋆ for a
comparison to lattice results, we choose to reproduce the TcðμÞ
curve obtained with lattice simulations in [15] parametrized by
the bare quantities λb ¼ 1 and η ¼ 9 (the shown data were read
off approximately from Fig. 5 of [15]). This however does not fix
our parameters completely; there is still some arbitrariness left.
Both axes are scaled by the critical chemical potential value at
zero temperature, μc, to compare dimensionless quantities. 14We thank the referee for pointing this out.
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presence of a real chemical potential poses certain prob-
lems in the 2PI formalism (and more generally in any
approach based on Legendre transforms) which are rem-
iniscent of the sign problem on the lattice. We discussed
these issues and solved some of them in the particular
equilibrium context of this work.
We solved the approximation by extending the numerical

approach of [36] which exploits rotation invariance and the
fast Fourier transform algorithm. Depending on the values
of the parameters m2⋆ and λ⋆, the system displays either
spontaneous symmetry breaking or Bose-Einstein conden-
sation. From the chemical potential and temperature
dependence of the effective potential we concluded that
both phase transitions are of the second-order type. In the
Bose-Einstein condensation case our numerical results
were consistent with the Silver Blaze property. This comes
as no surprise because the approximation, the regulariza-
tion and the discretization that we used respect a particular
transformation rule of the Euclidean action under certain
gauge transformations of the field, which we showed to be
at the root of the Silver Blaze property and its generali-
zation to higher vertex functions. This generalization
allowed us to argue in particular that the model at finite
chemical potential can be renormalized using the same
counterterms as those needed at zero chemical potential.
We compared with the lattice results of [15] even though

a quantitative comparison is not possible since cutoff
effects are not small at the lattice spacings used in [15]
and also because in our study we were not using the lattice
action. Nevertheless we can choose parameters to repro-
duce the phase transition line on the μ − T plane to good
accuracy. At the parameters fulfilling this parametrization
criterion, we compared the density as a function of the
chemical potential at several temperatures, where we
reproduced the qualitative features of the curves.
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APPENDIX A: COMPLEX ACTIONS

In the case of a real-valued action with a real-valued
(multicomponent) field φ coupled to a real-valued source J,
the Legendre transformation, which allows us to obtain the
1PI effective action Γ½ϕ� from the generating functional
W½J�, maps the real-valued source J into the real-valued
Legendre variable ϕ. If the action becomes complex, as it is
the case in the presence of a finite chemical potential, even
though it is still natural to consider a real-valued source
because the field over which one integrates remains real,
the Legendre transformation maps this source into a
complex-valued Legendre variable. Moreover, the compo-
nents of this variable are constrained since they should

correspond, by inverse Legendre transformation, to a
source with real-valued components.
Let us illustrate these points by computing the 1PI

effective action of the theory (7) in the limit of zero
coupling (in this case the bare mass m2

b is finite and we
write it m2 in what follows). We first determine the
generating functional Wμ½J� in the presence of a real-
valued source J. This boils down to the evaluation of the
Gaussian integral

eWμ½J� ¼
Z

Dφe−
1
2
φtG−1

0
φþJtφ; ðA1Þ

where we have used a schematic notation in terms of
infinite vectors and matrices whose coordinates are labeled
not only by the internal indices of the field but also by space
and time variables, and periodic boundary conditions are
understood even though our notation does not make it
explicit. The usual way to deal with this integral is to
redefine the field as φ → φþ G0J. This gives

eWμ½J� ¼ e
1
2
JtG0J

Z
Dφe−

1
2
φtG−1

0
φ; ðA2Þ

where we have used the fact that G−1
0;abðx;x0Þ¼G−1

0;baðx0;xÞ,
as it can be readily checked using Eq. (11). We have
cheated a bit in writing (A2) because G−1

0 being complex
the change of variables φ → φþ G0J changes the region
over which the fields are integrated. Note that this only
affects the integral in (A2) which does not depend on the
sources. Moreover, it can still be argued that this integral is
equal, up to some factor, to ðdetG−1

0 Þ−1=2. Now that we
know the explicit dependence of Wμ½J� with respect to the
sources, we can obtain the explicit relation between the
source and the variable ϕ that enters the 1PI effective
action. It is ϕ ¼ G0J or J ¼ G−1

0 ϕ, which we write more
explicitly as

J1 ¼ −
� ∂2

∂τ2 þ Δ −m2 þ μ2
�
ϕ1 − 2iμ

∂ϕ2

∂τ ; ðA3Þ

J2 ¼ −
� ∂2

∂τ2 þ Δ −m2 þ μ2
�
ϕ2 þ 2iμ

∂ϕ1

∂τ : ðA4Þ

These formulas show very clearly that, in general, ϕ1 and
ϕ2 cannot be real if the sources J1 and J2 are taken real.
Nevertheless, we can pursue the determination of the 1PI
effective action which reads

Γμ½ϕ� ¼ Jtϕ −Wμ½J� ¼
1

2
ϕtG−1

0 ϕþ 1

2
Tr lnG−1

0 : ðA5Þ

We have thus obtained the usual formula. The only change
with respect to the case where the action is real is that, as
one varies the real-valued components of the source J, the
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components of the Legendre variable ϕ take complex
values, constrained by the fact that the components of
the original source are real.
One way to avoid the presence of this constraint is to

consider a complex-valued source J in which case ϕ is
complex valued with unconstrained components. However,
in some situations of interest, it is not necessary to consider
such an extension of the source because ϕ can remain real
valued despite the fact that the action is complex. For
instance, according to (A3) and (A4), a situation where this
is true in the free theory is that of a static system. In fact this
holds also in the interacting case as we now argue. The
relation between the source J and the Legendre variable ϕ
is nothing but

ϕðxÞ≡
R
DφφðxÞe−

R
x
ðLE−JtφÞR

Dφe−
R
x
ðLE−JtφÞ

: ðA6Þ

Taking the complex conjugate of Eq. (A6) and using that
the sources are chosen real, one obtains

ðϕðxÞÞ� ≡
R
DφφðxÞe−

R
x
ðL�

E−J
tφÞ

R
Dφe−

R
x
ðL�

E−J
tφÞ

: ðA7Þ

We can now consider a change of variables that corre-
sponds to “time reversal” defined here as φðxÞ → φðTxÞ
with x≡ ðτ; ~xÞ and Tx≡ ðβ − τ; ~xÞ. Upon such a change
of variables, the action is changed into its complex
conjugate while the source term remains the same,
because we consider a static source J. It follows that
ðϕðxÞÞ� ¼ ϕðTxÞ. Now since time-translation invariance is
assumed not to be broken, ϕðxÞ does not depend on τ and is
therefore real, as announced.
Consider now the case of the 2PI effective action which

is obtained as the Legendre transformation of the generat-
ing functionalWμ½J; K� in the presence of local and bilocal
sources. We consider a homogeneous system and thus
restrict to translation invariant sources J and K. The
propagator Ḡϕðx − yÞ reads

Ḡϕðx − yÞ≡
R
DφφðxÞφtðyÞe−

R
x
ðLE−JtφÞR

Dφe−
R
x
ðLE−JtφÞ

− ϕðxÞϕtðyÞ:
ðA8Þ

A similar argument as above shows that Ḡϕðx−yÞ� ¼
Ḡϕðy−xÞ. In Fourier space this leads to ḠϕðQÞ� ¼
ḠϕðQÞ. This means that we can restrict the 2PI effective
action to propagators whose Fourier transform GðQÞ
is real.
Another difficulty related to the fact that the Euclidean

action is complex in the presence of a finite chemical
potential concerns the convexity of Wμ½J�. First of all we
note that, if the sources are arbitrary, the question of

convexity is not well posed because Wμ½J� is not even
real. In the case of homogeneous sources, where Wμ½J�
is real, determining whether Wμ½J� is convex can be a
difficult task. For any real vector η, one shows that
ηaηb∂2W=∂Ja∂Jb is equal to

R
DφðRx ηaðφaðxÞ − ϕaÞÞ2e−

R
x
ðLE−JtφÞ

R
Dφe−

R
x
ðLE−JtÞ

; ðA9Þ

that is the expectation value of a positive quantity
P ≡ ðRx ηaðφaðxÞ − ϕaÞÞ2, with however a complex
weight. We can rewrite this average in terms of a real
weight

R
DφPe−

R
x
ðLμ¼0

E −μ2φ2−JtφÞ cosðμ R β
0 dτQðτÞÞR

Dφe−
R
x
ðLμ¼0

E −μ2φ2−JtφÞ cosðμ R β
0 dτQðτÞÞ

ðA10Þ

where we have again used a “time reversal” transformation
and

QðτÞ ¼
Z

d3x½ _φ2φ1 − _φ1φ2� ðA11Þ

is the charge associated with a given configuration φ. If μ
is very small, the only configurations which make the
oscillating cosine function in (A10) deviate from 1 are
those for which the time integrated charge

R β
0 dτQðτÞ is

large but these configurations are suppressed by the real
exponential factor in the measure. For nonsmall values of μ,
the situation is more subtle and the convexity of Wμ½J�
could rely on cancellations between differently charged
field configurations. This is what we referred to in the main
text as the “small sign problem.”

APPENDIX B: STRUCTURE OF ḠabðQÞ
Let us see to which extent the SOð2Þ invariance of (7)

constrains the form of Ḡϕ. First of all, the propagator Ḡϕ is
covariant upon SOð2Þ rotations of ϕ:

ḠRϕ
ab ðQÞ ¼ RacRbdḠ

ϕ
cdðQÞ: ðB1Þ

We remark that despite the fact that ḠabðQÞ ¼ Ḡbað−QÞ,
we do not have a priori Ḡabð−QÞ ¼ ḠabðQÞ since parity is
conserved but not time reversal. Thus ḠabðQÞ is not
necessarily symmetric under a ↔ b. Let us then decom-
pose ḠabðQÞ into a symmetric part ḠS

abðQÞ and an
antisymmetric part ḠA

abðQÞ. They both obey (B1). The
antisymmetric part reads ḠAðQÞεab and, because εab is
SOð2Þ invariant, (B1) implies that ḠAðQÞ is invariant under
rotations of ϕ, that is it depends only on ϕ2. On the other
hand, because it is real, the symmetric part ḠS

abðQÞ admits
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two orthogonal eigenvectors. If we write one of them as
Sϕϕ with Sϕ ∈ SOð2Þ, we obtain

ḠS
abðQÞ ¼ SϕacS

ϕ
bdðḠLðQÞPL

cd þ ḠTðQÞPT
cdÞ: ðB2Þ

Using that SOð2Þ is Abelian and (B1) one shows that S
does not depend on ϕ and that ḠL and ḠT depend on ϕ only
through ϕ2. We have thus shown that

ḠabðQÞ ¼ SacSbdðḠLðQÞPL
cd þ ḠTðQÞPT

cdÞ þ ḠAðQÞεab:
ðB3Þ

This is the most general form of the propagator compatible
with (B1). Note the presence of the arbitrary SOð2Þ matrix
S. The reason why the presence of this arbitrary matrix S is
compatible with (B1) is that SOð2Þ is Abelian.
In order to fix even further the form of the propagator we

need to use some extra information. This is provided by the
form of the 2PI effective action (21). From the 2PI effective
action, we obtain the gap equation (taking Z0 ¼ 1)

Ḡ−1
abðKÞ ¼ ðK2 − μ2Þδab − 2μωnεab þ M̄2

abðKÞ ðB4Þ

with

M̄2
abðKÞ ¼ m2

0δab þ
λðAÞ2

12
ϕ2δab þ

λðBÞ2

6
ϕaϕb þ

λðAÞ0

12
δab

Z
T

Q
trḠðQÞ þ λðBÞ0

6

Z
T

Q
ḠabðQÞ

−
λ2⋆
72

ϕaϕb

Z
T

Q
tr½ḠðQÞḠðQþ KÞ� − λ2⋆

36

Z
T

Q
ϕḠðQÞϕḠabðQþ KÞ

−
λ2⋆
36

ϕa

Z
T

Q
½ḠðQÞḠðQþ KÞϕ�b −

λ2⋆
36

ϕb

Z
T

Q
½ḠðQþ KÞḠðQÞϕ�a −

λ2⋆
36

Z
T

Q
½ϕḠðQÞ�a½ϕḠðQþ KÞ�b: ðB5Þ

It is then not difficult to check that these equations are
compatible with the above decomposition only if S ¼ 1.

APPENDIX C: RENORMALIZATION
AT FINITE μ

1. Perturbation theory

At zero temperature and zero chemical potential, to each
diagram of the perturbative expansion, the Forest formula
associates a series of counterterm diagrams that eliminate
all the divergences of the original diagram. It is well known
that the same diagram considered at finite temperature is
renormalized by the same series of diagrams extended to
finite temperature but with the same counterterms as those
determined at zero temperature. Even though this feature is
expected on physical grounds,15 checking it in the imagi-
nary time formalism usually requires the explicit evaluation
of the Matsubara sums for each diagram, which makes the
proof cumbersome. If one adds the chemical potential,
it is possible to generalize the previous result. One way is
again to evaluate explicitly the Matsubara sums as in the
examples discussed in Appendix D. However, as we now
show the situation is in fact simpler because the discussion
can be carried out without evaluating the Matsubara sums
explicitly.
Let us consider an example first, using a perturbative

propagator of D (and its conjugate D�) of the form (39)

with Z0 ¼ 1 and some tree-level mass. At zero chemical
potential, the sunset diagram ð−λ2=18ÞS½Dμ¼0�ðKÞ is
renormalized by the following series of counterterm
diagrams

K2δZ þ δm2 þ δλ

3
T ½Dμ¼0� ðC1Þ

with δZ, δm2 and δλ determined at zero temperature.
In particular δλ is needed to absorb the divergent
part of the bubble diagram −ðλ2=2ÞB½Dμ¼0�. We would
like to show that at finite μ, the sunset diagram
ð−λ2=18ÞS½D;D�;D�ðKÞ, which is a contribution to the
self-energy corresponding to hΦ�ðxÞΦðyÞi, is renormalized
by the series of counterterm diagrams

ððωn þ iμÞ2 þ k2ÞδZ þ δm2 þ δλ

3
T ½D� ðC2Þ

with the same counterterms as in (C1). The reason why δZ
is multiplied by ðωn þ iμÞ2 þ k2 and not just K2 is that the
chemical potential modifies the quadratic part of the
Euclidean action.
Because we already know that (C1) renormalizes

the sunset diagram at μ ¼ 0, it is enough to show that
the difference ð−λ2=18Þ½S½D;D�;D�ðKÞ − S½Dμ¼0�ðKÞ� is
renormalized by the difference between the counterterm
diagrams of (C2) and those of (C1), that is

ð2iμωn − μ2ÞδZ þ δλ

3
½T ½D� − T ½Dμ¼0��: ðC3Þ

15Since counterterms are mere redefinitions of the parameters
of the microscopic theory, it should be possible to find schemes in
which they do not depend on external parameters such as the
temperature or the chemical potential.
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Since we deal with differences of diagrams involving either
the propagators D andD�, or the propagatorDμ¼0 ¼ D�

μ¼0,
it is now natural to write D as Dμ¼0 þ ΔD and D� as
Dμ¼0 þ ΔD�. Plugging these decompositions in the sunset
difference, one obtains eight sunset-type integrals, with
one, two or three occurrences ofΔD (which can also appear
in the form ΔD�). In order to discuss the UV behavior of
each of these pieces, it is convenient to extract the leading
UV contributions to ΔD:

ΔD ¼ D −Dμ¼0

¼ ðμ2 − 2μiωnÞDDμ¼0

¼ ðμ2 − 2μiωnÞD2
μ¼0 þ ðμ2 − 2μiωnÞ2DD2

μ¼0

¼ ðμ2 − 2μiωnÞD2
μ¼0 − 4μ2ω2

nD3
μ¼0 þDr: ðC4Þ

From this expansion, it is clear for instance that the sunset
contribution with three occurrences of ΔD is convergent by
simple power counting. For those contributions involving
two occurrences of ΔD, there are clearly no subdivergen-
ces, because any subloop involves at least one ΔD which
decreases the superficial degree of divergence of the
original logarithmically divergent subloop. Thus, in the
contributions involving two occurrences of ΔD there can
only be an overall divergence which we shall discuss more
precisely in a moment. Finally, those contributions involv-
ing one occurrence of ΔD rewrite ð−λ2=18ÞðS½ΔD;
Dμ¼0;Dμ¼0� þS½Dμ¼0;ΔD�;Dμ¼0� þS½Dμ¼0;Dμ¼0;ΔD�Þ.
They involve both subdivergences and overall divergences.
However, when combined with the second counterterm
diagram in (C3), which we rewrite for convenience as
ðδλ=9ÞðT ½ΔD� þ T ½ΔD�� þ T ½ΔD�Þ, it is pretty clear
that what remain are again overall divergences. These,
together with those present in the terms with two occur-
rences of ΔD can be treated in the following way. We note
first that, owing to (C4), it is only logarithmic and thus
originates from the zero temperature contribution of the
diagram. Then, from the Silver Blaze property, we con-
clude that the overall divergence has the same structure as
the one at μ ¼ 0, but with ωn replaced by ωn þ iμ [þiμ
here because we are considering a contribution to the
correlator hΦ�ðxÞiΦðyÞ], namely it is proportional to
K2 ¼ ðωn þ iμÞ2 þ k2. But this is precisely the same
structure as the first counterterm in (C3).
The discussion in the general case follows a similar

argumentation. The recursive way of renormalizing a
diagram finds always the smallest overall divergent sub-
graph (or a subgraph together with its subdivergences
already accounted for) of a graph and adds a diagram
where the divergent subgraph is replaced by a counterterm.
Because of the Silver Blaze property coupling and mass
overall divergences are unchanged as compared to their
μ ¼ 0 value, whereas field-strength divergences are modi-
fied just because they are proportional to ðωn þ iμÞ2 þ k2

[or ðωn − iμÞ2 þ k2 depending on the type of self-energy
insertion one is looking at] rather than ω2

n þ k2, but the
divergent factor that multiplies these quadratic functions
remains independent of μ.

2. Renormalization of the density

Because renormalization of Φ-derivable approximations
is just a resummed version of perturbative renormalization,
the above discussion is enough to argue that Φ-derivable
approximations at finite μ are renormalized by exactly the
same counterterms as those needed at μ ¼ 0. In fact,
extending the considerations of the above section it is in
fact possible to show explicitly that the bare parameters of
[32] together with the renormalization factor Z2 given in
(64) are enough to renormalize the two-loop Φ-derivable
approximation at finite μ. We shall not do this here in full
glory. Instead we concentrate on the renormalization of the
density in the broken phase which requires the use of Z2.
The density in the broken phase is given by

ρ ¼ μZ2ϕ̄
2 þ T ½μðḠL þ ḠTÞ − 2ωnḠA�: ðC5Þ

We now use an UV expansion of the propagators:

ḠL;T ¼ G⋆ − ΔM̄2
L;TG

2⋆ − 4μ2ω2
nG3⋆ þ… ðC6Þ

and

ωnḠA ¼ −ωnM̄2
AG

2⋆ − 2μω2
nG3⋆ðΔM̄2

L þ ΔM̄2
TÞ

þ 2μω2
nG⋆ðG⋆ − 4μ2ω2

nG3⋆Þ þ… ðC7Þ

where G⋆ ¼ 1=ðQ2 þm2⋆Þ is a reference massive free
propagator, ΔM̄2

L;T ¼ M̄2
L;T −m2⋆ − μ2 and the dots denote

terms which do not lead to divergences in ρ. Moreover, we
need only the dominant large momentum behavior of
ΔM̄2

L;T and M̄2
A which up to subleading terms reads

ΔM̄2
L ¼ ΔM̄2

L;l −
5λ2⋆
36

ϕ2½B½G⋆�ðKÞ − B½G⋆�ð0Þ� þ…;

ðC8Þ

ΔM̄2
T ¼ ΔM̄2

T;l −
λ2⋆
36

ϕ2½B½G⋆�ðKÞ − B½G⋆�ð0Þ� þ…;

ðC9Þ
and

M̄2
A ¼ μϕ2

λ2⋆
9
B½ωG2⋆;G⋆�ðKÞ þ… ðC10Þ

where ΔM2
L;T;l denote momentum-independent (local) UV

finite contributions which we do not need to specify more.
Plugging (C6) and (C7), with (C8)–(C10), back into (C5),
the potentially divergent contributions to ρ are
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μϕ2

�
2λ2⋆
9

Z
T

Q

Z
T

K
ωnG2⋆ðQÞωmG2⋆ðKÞG⋆ðK þQÞþ λ2⋆

6

Z
T

Q
ðG2⋆ − 4ω2

nG3⋆Þ½B½G⋆�ðQÞ − B½G⋆�ð0Þ�
�

þ μ

�
2

Z
T

Q
G⋆ð1 − 2ω2

nG⋆Þ − 8μ2
Z

T

Q
ω2
nG3⋆ð1 − 2ω2

nG⋆Þ−ðΔM̄2
L;l þ ΔM̄2

T;lÞ
Z

T

Q
G2⋆ð1 − 4ω2

nG⋆Þ
�
: ðC11Þ

The last three integrals present in (C11) are finite, as one
checks by direct calculations of the Matsubara sums. To
ease these calculations, it is convenient to express all the
Matsubara sums in terms of the tadpole one. For instance,
we write

Z
Q
G⋆ð1 − 2ω2

nG⋆Þ ¼
Z
Q
ð−G⋆ þ 2ε2qG2⋆Þ

¼
Z
Q

�
−1 − 2ε2q

d
dq2

�
G⋆

¼
Z
q

�
−1 − 2ε2q

d
dq2

�
1

2εq|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ finite:

ðC12Þ

Similarly

Z
T

Q
G2⋆ð1 − 4ω2

nG⋆Þ

¼
Z

T

Q
ð−3G2⋆ þ 4ε2qG3⋆Þ

¼
Z

T

Q

�
3

d
dq2

þ 2ε2q
d2

dðq2Þ2
�
G⋆

¼
Z
q

�
3

d
dq2

þ 2ε2q
d2

dðq2Þ2
�

1

2εq|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ finite: ðC13Þ

Finally

Z
T

Q
ω2
nG3⋆ð1 − 2ω2

nG⋆Þ

¼
Z

T

Q
ω2
nð−G3⋆ þ 2ε2qG4⋆Þ

¼
Z

T

Q
ð−G2⋆ þ 3ε2qG3⋆ − 2ε4qG4⋆Þ

¼
Z

T

Q

�
d
dq2

þ 3

2
ε2q

d2

dðq2Þ2 þ
1

3
ε4q

d3

dðq2Þ3
�
G⋆

¼
Z
q

�
d
dq2

þ 3

2
ε2q

d2

dðq2Þ2 þ
1

3
ε4q

d3

dðq2Þ3
�

1

2εq|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ finite: ðC14Þ

In order to discuss the first two lines of (C11), we note first
that they only contain an overall and thus temperature-
independent divergence. Then, a comparison to (64) shows
that this overall divergence is exactly canceled by Z2. This
completes the proof of the finiteness of the density.

APPENDIX D: SUM INTEGRALS

In this section we compute certain sum integrals which
occur in the symmetric phase, in particular in the equation
defining the transition line. For simplicity we consider
dimensional regularization but the calculation can be easily
adapted to any regularization that does not cut off the
Matsubara sums. Let us consider first the tadpole sum
integral

T ½D� ¼
Z

T

Q
DðQÞ; ðD1Þ

with DðQÞ ¼ 1=ððωn þ iμÞ2 þ q2 þm2Þ and jμj < m. To
compute the Matsubara sum, we use the formula

T
Xþ∞

n¼−∞
fðiωnÞ ¼ −

X
pôles z of f

nðzÞResfðzÞ ðD2Þ

valid for any function f whose pôles are simple (and not
equal to any iωn). Because

DðQÞ ¼ −
1

2εq

�
1

iωn − μ − εq
−

1

iωn − μþ εq

�
; ðD3Þ

it follows from (D2) that

T ½D� ¼
Z
q

1

2εq
½nεqþμ − n−εqþμ�

¼
Z
q

1

2εq
½1þ nεq−μ þ nεqþμ�; ðD4Þ

where we have used nx ¼ −1 − n−x. We note that the zero
temperature contribution to T ½D� is μ independent. We see
here at play the Silver Blaze property or more precisely
its generalization to vertex functions. At zero temperature
and in the symmetric phase, the μ dependence of vertex
functions is trivial and amounts to appropriate shifts of the
external frequencies of the corresponding vertices at μ ¼ 0.
Since the tadpole does not depend on the external fre-
quency, its zero temperature contribution cannot depend

GERGELY MARKÓ, URKO REINOSA, AND ZSOLT SZÉP PHYSICAL REVIEW D 90, 125021 (2014)

125021-20



on μ. This can also be checked without performing any
Matsubara sum. The zero temperature limit of (D1) writes

T T¼0½D� ¼
Z

T¼0

Q

1

ðωþ iμÞ2 þ q2 þm2
; ðD5Þ

where the Matsubara sum has been replaced by an integralR
R dω. But because jμj < m, we can deform the contour of
integration to −iμþR, without encountering any singu-
larity and thus

T T¼0½D� ¼
Z

T¼0

Q

1

ω2 þ q2 þm2
; ðD6Þ

which shows that T T¼0½D� is independent of μ.
We next compute the sunset sum integral

S½D;D�;D� ¼
Z

T

Q

Z
T

K
DðQÞD�ðKÞD�ð−K −QÞ: ðD7Þ

To this purpose, we follow the lines of [39]. It is convenient
to use the spectral representations16

DðQÞ ¼
Z
Q

ρðq0; qÞ
q0 − iωn þ μ

; ðD8Þ

D�ðQÞ ¼
Z
Q

ρðq0; qÞ
q0 þ iωn þ μ

¼
Z
Q

ρðq0; qÞ
q0 − iωn − μ

; ðD9Þ

which follow from (D3), with

ρðq0; qÞ ¼
1

2εq
½δðq0 − εqÞ − δðq0 þ εqÞ� ¼ −ρð−q0; qÞ:

ðD10Þ

Performing the double Matsubara sum and using the
identity ð1þ nx þ nyÞnxþy ¼ nxny, we arrive at

S½D;D�;D� ¼
Z
q0;q

Z
k0;k

Z
p0;p

ð2πÞd−1δðd−1Þð~qþ ~kþ ~pÞρðq0; qÞρðk0; kÞρðp0; pÞ

×
nq0þμnp0−μ þ nq0þμð−n−k0þμÞ þ ð−n−p0þμÞð−n−k0þμÞ

q0 þ k0 þ p0 − μþ iα
: ðD11Þ

Because q0 ¼ �εq due to the spectral function, jq0j > μ and then the identities nq0þμ ¼ −θð−q0Þ þ εðq0Þnjq0jþεðq0Þμ and
−n−q0þμ ¼ θðq0Þ þ εðq0Þnjq0j−εðq0Þμ split the thermal factors into a zero temperature contribution and a contribution which
vanishes as T → 0. Plugging these decompositions in (D11), we arrive at

S½D;D�;D� ¼ ST¼0½Dμ¼0�ðPμÞ þ
Z
q0

Z
q
εðq0Þρðq0; qÞðnjq0jþεðq0Þμ þ 2njq0j−εðq0ÞμÞBT¼0½Dμ¼0�ðq0 − μþ iα; qÞ

þ
Z
q0

Z
q

Z
k0

Z
k
½εðq0Þρðq0; qÞεðk0Þσðk0; kÞðnjq0j−εðq0Þμ þ 2njq0jþεðq0ÞμÞnjk0j−εðk0Þμ

×Dμ¼0ðq0 þ k0 − μþ iα; j~qþ ~kjÞ�; ðD12Þ

where we have made use of the spectral representation
and we have identified the analytic continuation
BT¼0½Dμ¼0�ðq0 − μþ iα; qÞof the zero-temperature integral

BT¼0½Dμ¼0�ðKÞ ¼
Z

T¼0

Q
Dμ¼0ðQÞDμ¼0ðQþ KÞ: ðD13Þ

Moreover ST¼0½Dμ¼0�ðPμÞ stands for the zero-temperature
sunset integral

Z
T¼0

Q

Z
T¼0

K
Dμ¼0ðQÞDμ¼0ðKÞDμ¼0ðK þQþ PμÞ;

ðD14Þ

where Pμ ¼ ðiμ; 0Þ. Because the thermal distribution func-
tions in the last two lines of (D12) vanish in the limit T → 0,
the above expression (D14) is nothing but the value of the

setting-sundiagramat finitechemicalpotential (jμj < m) and
zero temperature. This result is once again an illustration of
the Silver Blaze property. The zero temperature contribution
to the sunset, which from (D7) writes

Z
T¼0

Q

Z
T¼0

K

1

ðωþ iμÞ2 þ ε2q

1

ðν − iμÞ2 þ ε2k

×
1

ðνþ ωþ iμÞ2 þ ε2~kþ~q

ðD15Þ

16It could be tempting to remove μ from the denominator
appearing in the spectral representation by including it in the
spectral function. The calculations are however more straightfor-
ward if one leaves μ in the denominator.
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is in fact equal to the corresponding integral atμ ¼ 0butwith
the external frequency shifted by iμ:

Z
T¼0

Q

Z
T¼0

K

1

ω2 þ ε2q

1

ν2 þ ε2k

1

ðνþ ωþ iμÞ2 þ ε2~kþ~q

;

ðD16Þ

as it can be checked more directly by noticing that one can
deform the contours of integration fromω ∈ R and ν ∈ R to
ω ∈ −iμþ R and ν ∈ iμþR without encountering any
singularity.
Finally, integrating over the frequencies and performing

trivial angular integrals, we arrive at

S½D;D�;D� ¼ ST¼0½Dμ¼0�ðPμÞ þ
1

4π2

Z
∞

0

dq
q2

εq

X
σ

ðnεqþσμ þ 2nεq−σμÞBT¼0½Dμ¼0�ðσεq − μþ iα; qÞ�

þ 1

16π3

Z
∞

0

dq
q
εq

Z
∞

0

dk
k
εk

X
σ;τ

ðnεq−σμ þ 2nεqþσμÞnεk−τμ ln
−ðσεq þ τεk − μþ iαÞ2 þ ðqþ kÞ2 þ M̄2

−ðσεq þ τεk − μþ iαÞ2 þ ðq − kÞ2 þ M̄2
:

ðD17Þ
In dimensional regularization, the zero-temperature integrals ST¼0½Dμ¼0�ðPμÞ and BT¼0½Dμ¼0�ðσεq − μþ iα; qÞ can be
evaluated using standard techniques.
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