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In a previous paper a formalism to analyze the dynamical evolution of classical and quantum probability
distributions in terms of their moments was presented. Here the application of this formalism to the system
of a particle moving on a potential is considered in order to derive physical implications about the classical
limit of a quantum system. The complete set of harmonic potentials is considered, which includes the
particle under a uniform force, as well as the harmonic and the inverse harmonic oscillators. In addition, as
an example of anharmonic system, the pure quartic oscillator is analyzed. Classical and quantum moments
corresponding to stationary states of these systems are analytically obtained without solving any
differential equation. Finally, dynamical states are also considered in order to study the differences
between their classical and quantum evolution.
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I. INTRODUCTION

Even if the foundations of the theory of quantum
mechanics are very well settled, there are still open
questions about its classical limit and the interaction
between classical and quantum degrees of freedom. In
fact, there are hybrid theories which take into account
classical as well as quantum degrees of freedom (see for
instance [1–7]), but will not be considered here.
Concerning the classical limit of quantum mechanics, in
Ref. [8] the idea that such a limit should be an ensemble of
classical orbits was proposed. This classical ensemble
should be described by a classical probability distribution
on phase space and, thus, its evolution would be given by
the Liouville equation. It is not possible to compare directly
classical and quantum probability distributions since they
are defined on different spaces. Therefore, a very conven-
ient way to perform such a comparison is by decomposing
both probability distributions in terms of its infinite set of
moments. These moments are the observable quantities and
one could directly relate (and experimentally measure) their
classical and quantum values.
The formalism to analyze the evolution of these

moments was first developed in [9] for the Hamiltonian
of a particle on a potential. A formalism similar to this one,
but with a different ordering of the basic variables, was
presented in [10,11] on a canonical framework and for
generic Hamiltonians. Let us comment that this latter
formalism has found several applications in the context
of quantum cosmology [12]. For example, isotropic models
with a cosmological constant have been analyzed [13,14].
Bounce scenarios have also been studied within the
framework of loop quantum cosmology [15]. In addition,
the problem of time has also been considered in [16,17].

Remarkably this framework is also useful when the
dynamics is generated by a Hamiltonian constraint, as
opposed to a Hamiltonian function [18].
Recently the classical counterpart of the formalism

developed in [10,11] was presented [19]. In this reference
it was argued that the quantum effects have two different
origins. On the one hand, distributional effects are due to
the fact that, because of the Heisenberg uncertainty
principle, one needs to consider an extensive (as opposed
to a Dirac delta) distribution with nonvanishing moments.
These effects are also present in the evolution of a classical
ensemble and, for instance, they generically prevent the
centroid of the distribution (the expectation value of the
position and momentum) from following a classical tra-
jectory on the phase space. On the other hand, non-
commutativity or purely quantum effects appear as
explicit ℏ terms in the quantum equations of motion and
have no classical counterpart. In the present paper, this
formalism for the evolution of classical and quantum
probability distributions will be applied to the case of a
particle moving on a potential with the particular aim of
measuring the relative relevance of each of the mentioned
effects.
The analysis will be made in two parts. On the one hand,

the systems with a harmonic Hamiltonian will be consid-
ered, that is, those that are at most quadratic on the basic
variables. This includes the system of a particle under a
uniform force (which trivially includes also the free particle
case), the harmonic oscillator, and the inverse harmonic
oscillator. One of the properties of this kind of
Hamiltonians is that there is no purely quantum effect
and, thus, they generate the same dynamics in the quantum
and in the classical (distributional) cases. In addition, the
equations of motion generated by this harmonic
Hamiltonians are much simpler than in the general case,
so it will be possible to obtain analytically the explicit form*david.brizuela@ehu.es
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of their moments corresponding to stationary as well as to
dynamical states.
On the other hand, due to the complexity of the

anharmonic case, a concrete particular example must be
analyzed. In our case, between the large set of anharmonic
systems, we have chosen the pure quartic potential in order
to study both its stationary and dynamical states with this
formalism. As simple as it might seem, the quartic
harmonic oscillator cannot be solved analytically and
one usually resorts either to numerical or analytical
methods of approximation. Nonetheless, from a perturba-
tive perspective the model of the quartic oscillator corre-
sponds to a singular perturbation problem due to the fact
that in the limit of a vanishing coupling constant, several
physical quantities diverge [20,21]. Hence, even if it has
been studied during decades and, for instance, its energy
eigenvalues are well known from numerical computations
[22,23], this model is still considered of interest in different
context and new approximation techniques are being
developed to treat it, see e.g., [24,25].
The rest of the paper is organized as follows. In Sec. II a

summary of the formalism presented in Ref. [19] is given.
Section III presents the equations of motion for a
Hamiltonian of a particle on a potential. In Sec. IV the
harmonic cases are analyzed. Section V deals with the
anharmonic example of the pure quartic oscillator. Finally,
Sec. VI summarizes the main results and details the
conclusions of the paper.

II. GENERAL FORMALISM

Given a quantum system with one degree of freedom
described by the basic conjugate variables ðq̂; p̂Þ, it is
possible to define the quantum moments as follows:

Ga;b ≔ hðp̂ − pÞaðq̂ − qÞbiWeyl: ð1Þ

In this equation p ≔ hp̂i and q ≔ hq̂i have been defined,
and Weyl (totally symmetric) ordering has been chosen.
The sum between the two indices of a given moment,
(aþ b), will be referred as its order.
The evolution equations for these moments are given by

the following effective Hamiltonian, which is defined as the
expectation value of the Hamiltonian operator Ĥ, and it is
Taylor expanded around the position of its centroid ðq; pÞ:

HQðq; p;Ga;bÞ ≔ hĤðq̂; p̂ÞiWeyl

¼ hĤðq̂ − qþ q; p̂ − pþ pÞiWeyl

¼
X∞
a¼0

X∞
b¼0

1

a!b!
∂aþbH
∂pa∂qb G

a;b

¼ Hðq; pÞ þ
X
aþb≥2

1

a!b!
∂aþbH
∂pa∂qb G

a;b:

ð2Þ

The Hamiltonian Hðq; pÞ is the function obtained by
replacing in the Hamiltonian operator Ĥðq̂; p̂Þ every
operator by its expectation value.
The equations of motion for the expectation values ðq; pÞ

and for the infinite set of moments Ga;b are directly
obtained by computing the Poisson brackets between the
different variables with the Hamiltonian (2). In particular, it
is easy to show that Poisson brackets between expectation
values and moments vanish. Furthermore, a closed formula
is known for the Poisson bracket between any two moments
[11,14]. In this way an infinite system of ordinary differ-
ential equations is obtained, which is completely equivalent
to the Schrödinger flow of states. In the general case, as will
be shown below, in order to perform the resolution of this
system, it is necessary to introduce a cutoff Nmax and drop
all moments of an order higher than Nmax.
The classical counterpart of this formalism is obtained by

assuming a classical ensemble described by a probability
distribution function ρð ~q; ~p; tÞ on a phase space coordin-
atized by ð ~q; ~pÞ. As it is well known, the evolution equation
of such a distribution is given by the Liouville equation.
Following the same procedure as in the quantum case,
making use of the probability distribution ρð ~q; ~p; tÞ, one
can define a classical expectation value operation on the
phase space:

hfð ~q; ~pÞic ≔
Z

d ~qd ~pfð ~q; ~pÞρð ~q; ~p; tÞ; ð3Þ

where the integration extends to the whole domain of the
probability distribution. With this operation at hand, the
classical moments can be defined as

Ca;b ≔ hð ~p − pÞað ~q − qÞbic; ð4Þ

q and p being the position of the centroid of the distribu-
tion, that is, q ≔ h ~qic and p ≔ h ~pic. Note that in this
classical case, everything commutes and, thus, the ordering
in the definition of the moments is indifferent. As in the
quantum case, the effective Hamiltonian that encodes the
dynamical information of these variables is constructed by
computing the expectation value of the Hamiltonian and
expanding it around the position of the centroid. In this
way, one obtains the classical effective Hamiltonian:

HCðq; p; Ca;bÞ ≔ hHð ~q; ~pÞic
¼ Hðq; pÞ þ

X
aþb≥2

1

a!b!
∂aþbHðq; pÞ
∂pa∂qb Ca;b:

ð5Þ

The equations of motion for the classical moments and
expectation values ðq; pÞ are then obtained by computing
their Poisson brackets with this Hamiltonian. The infinite
system of equations of motion that is obtained by this
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procedure is then completely equivalent to the evolution
given by the Liouville equation.
The evolution equations obeyed by the classical

moments are the same as the ones fulfilled by their quantum
counterparts with the particularization ℏ ¼ 0. These ℏ
factors only appear when computing the Poisson brackets
between two moments due to the noncommutativity of the
basic operators q̂ and p̂.
In this formalism it is very clear that the classical limit,

understood as ℏ → 0, of a quantum theory is not a unique
trajectory on the phase space, but an ensemble of classical
trajectories described by a probability distribution ρ or its
corresponding moments Ca;b. In this way, the quantum
effects have two different origins. On the one hand,
distributional effects are due to the fact that moments
cannot be vanishing (due to the Heisenberg uncertainty
relation) and generically the centroid of a distribution
ðq; pÞ does not follow a classical point trajectory on phase
space. (The classical orbit obtained with an initial Dirac
delta distribution, for which all moments vanish, will be
referred as classical point trajectory.) These distributional
effects are also present in a classical setting. On the other
hand, there are noncommutativity or purely quantum
effects, which appear as explicit ℏ factors in the quantum
equations of motion. These latter effects are due to the
noncommutativity of the basic operators and have no
classical counterpart.
The evolution of the classical and quantum moments

differ for a generic Hamiltonian due to the commented ℏ
terms. Nevertheless the harmonic Hamiltonians, defined as
those that are at most quadratic in the basic variables, have
very special properties and, in particular, they generate
exactly the same evolution in the classical and quantum
frameworks. In this paper the Hamiltonian of a particle on a
potential will be studied and, due to these special properties
of the harmonic Hamiltonians, the analysis will be sepa-
rated between the harmonic and the anharmonic case. All
possible harmonic systems will be studied but, regarding
the anharmonic sector, which is much more involved, only
a particular example will be worked out: the pure quartic
oscillator.
Once the equations of motion are obtained, the only

information left to obtain a dynamical state are the initial
conditions. Nonetheless, the stationary states play a fun-
damental role in quantum mechanics. In this setting,
moments corresponding to a stationary state can be
obtained as fixed points of the dynamical system under
consideration; that is, by dropping all time derivatives on
the equations of motion for ðq; p;Ga;bÞ and solving the
remaining algebraic system. This system of algebraic
equations, as will be made explicit below, is sometimes
incomplete and thus it is not possible to fix the values of all
variables ðq; p;Ga;bÞ of a stationary state by this method.
Nonetheless, as shown in [26–28], another condition for the
stationary states can be derived as a recursive relation

between moments of the form G0;n, by making use of the
fact that these states are eigenstates of the Hamiltonian
operator (hĤi ¼ E). For the kind of Hamiltonians that will
be treated in this paper, corresponding to mechanical
systems of a particle on a potential Ĥ ¼ p̂2=2þ Vðq̂Þ
with potentials of the form Vðq̂Þ ¼ qm and vanishing
expectation value q in its stationary state, this recursive
relation can be written in the following way (see [19] for
more details):

ð2kþmþ 2ÞG0;kþm ¼ 2Eðkþ 1ÞG0;k

þ ℏ2

4
ðkþ 1Þkðk − 1ÞG0;k−2: ð6Þ

In consequence, whenever moments up to order G0;m are
known, the higher-order fluctuations of the position can be
obtained directly. Classical stationary moments obey this
very same equation dropping the last term.
In order to finalize the summary of previous works, let us

comment that the moments corresponding to a valid
probability distribution (wave function) are not free and
obey several inequalities. The most simple examples are the
non-negativity of moments with two even indices,

G2n;2m ≥ 0; for n;m ∈ N; ð7Þ

and the Heisenberg uncertainty principle,

ðG1;1Þ2 ≤ G2;0G0;2 −
ℏ2

4
: ð8Þ

As always, inequalities for classical moments are obtained
from the ones of the quantum moments by taking ℏ ¼ 0. In
Ref. [19] several inequalities for high-order moments were
obtained. These inequalities will be used below to constrain
the values of certain moments of stationary states as well as
to monitor the validity of the numerical resolution of
dynamical states.

III. PARTICLE ON A POTENTIAL

For definiteness, in order to check the interpretation and
applicability of the formalism for classical and quantum
moments summarized in previous section, here the
Hamiltonian for a particle moving on a potential will be
assumed,

Ĥ ¼ p̂2

2
þ Vðq̂Þ: ð9Þ

Let us define the dynamics for the quantum expectation
values and moments. The effective quantum Hamiltonian is
given by
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HQ ¼ p2

2
þ VðqÞ þ 1

2
G2;0 þ

X∞
n¼2

1

n!
dnVðqÞ
dqn

G0;n: ð10Þ

From there, it is straightforward to obtain the equations
of motion for the centroid of the distribution:

dq
dt

¼ p; ð11Þ

dp
dt

¼ −V 0ðqÞ −
X∞
n¼2

1

n!
dnþ1VðqÞ
dqnþ1

G0;n: ð12Þ

Note that the evolution equation of the position q is not
modified by the moments. On the contrary, the equation of
motion for its conjugate momentum p does receive
corrections due to the presence of the moments G0;a in
the right-hand side of Eq. (12). It is straightforward to see
that the Hamiltonian HC, which would describe the
evolution of a classical distribution on the phase space,
it is obtained by replacing the quantum moments Ga;b by
the classical ones Ca;b in Eq. (10). The centroid of that

classical distribution will follow the evolution given by (11)
and (12), replacing again Ga;b by Ca;b.
It is enlightening to combine the last two equations in

order to obtain the corrected Newton equation,

d2q
dt2

¼ −V 0ðqÞ −
X∞
n¼3

1

n!
dnVðqÞ
dqn

G0;n−1: ð13Þ

The moment terms that appear in this modified equation are
sometimes referred as the quantum contributions to the
Newton equations. Nevertheless, we see from our analysis
that the equations of motion for a centroid of a classical
distribution in the phase space characterized by moments
Ca;b will obey this very same equation. Therefore this
equation must be understood as the fact that the centroid of
a distribution does not follow a classical point trajectory.
Taking the Poisson brackets between moments Ga;b and

the Hamiltonian (10), and separating the terms with an
explicit dependence on ℏ, the equations of motion for the
quantum moments Ga;b can be written as

dGa;b

dt
¼ bGaþ1;b−1 þ a

X∞
n¼2

VðnÞðqÞ
ðn − 1Þ! ½G

0;n−1Ga−1;b −Ga−1;bþn−1�

−
X∞
n¼3

XM
k¼1

VðnÞðqÞ
ðn − 2k − 1Þ!

�
a

2kþ 1

��
−
ℏ2

4

�
k

Ga−2k−1;bþn−2k−1; ð14Þ

with M being the integer part of ½Minða; nÞ − 1�=2. The
evolution equation for the classical moments can be
formally obtained from last equation by replacing all
Ga;b by Ca;b moments and imposing ℏ ¼ 0, that is,
removing all terms that appear in the second line:

dCa;b

dt
¼ bCaþ1;b−1

þ a
X∞
n¼2

VðnÞðqÞ
ðn − 1Þ! ½C

0;n−1Ca−1;b − Ca−1;bþn−1�: ð15Þ

In summary, Eqs. (11) and (12), in combination with
(14), form an infinite closed system of ordinary differential
equations that describes the quantum dynamics of a particle
on a potential VðqÞ and are completely equivalent to the
Schrödinger flow of quantum states (or the Heisenberg flow
of quantum operators). On the other hand, the infinite
system composed by Eqs. (11), (12) (replacing G0;n terms
by C0;n), and (15) describes the classical evolution of a
probability distribution on the phase space, which is
equivalent to the Liouville equation.
As can be seen in these equations of motion, for a generic

potential VðqÞ, all orders couple. Hence, in order to make

these equations useful for a practical purpose, it is neces-
sary to introduce a cutoff by hand, and assume Ga;b to be
vanishing for all aþ b > Nmax, Nmax being the maximum
order to be considered. In order to impose this cutoff, due to
the special properties of the Poisson brackets between two
moments, care is needed (see [19] for a more detailed
discussion). In order to truncate properly the system at an
order Nmax, taking into account all contributions up to this
order, it is straightforward to see that the upper limit of the
summation in Eq. (12) should be taken as Nmax. Regarding
the equation for the moments (14), the sum of the first line
should clearly go up to ðNmax þ 1Þ for the quadratic term in
moments, but only up to ðNmax − a − b − 2Þ for the second
linear term. The summations in the second line of that
equation are more involved and should be replaced by

X∞
n¼3

XM
k¼1

→
Xnmax

n¼3

XM
k¼kmin

; ð16Þ

with nmax ¼ Nmax þ a − b and, for every fixed n, kmin the
maximum between 1 and ⌈ðaþ bþ n − Nmax − 2Þ=4Þ⌉.
For the classical equations, the same limits as in their
corresponding quantum equations should be imposed.
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The validity of this cutoff should be proved a posteriori
by solving the equations of motion with different cutoffs
and checking that the solution converges with the cut-
off order.
If an integer Nmax exists, for which VðnÞðqÞ vanishes for

all values n > Nmax, the infinite sums on the right-hand
side of Eq. (12) will become finite. Regarding the quantum
Ga;b (14) and the classical moments Ca;b (15) of order
aþ b, the highest order that appears in their corresponding
equations of motion is of order ðaþ bþ Nmax − 2Þ.
Therefore, only in the case that Nmax ≤ 2 the introduction
of a cutoff will not be necessary. This is in fact the case of a
harmonic Hamiltonian, which will be analyzed in the next
section.

IV. HARMONIC POTENTIALS: V000ðqÞ ¼ 0

The harmonic HamiltoniansHðq; pÞ are defined as those
for which all derivatives with respect to the basic variables
ðq; pÞ higher than second order vanish. In the case of a
Hamiltonian of a particle on a potential (9), this happens
when V 00ðqÞ ≕ ω2 is a constant.
This kind of Hamiltonians has very special properties,

which were analyzed in Ref. [19]. Let us briefly summarize
its main properties. First, for this kind of Hamiltonians,
equations at every order decouple from the rest of the
orders. Second, equations of motion of expectation values
ðq; pÞ do not get any correction from moment terms and
thus there is no backreaction. Hence, the centroid of the
distribution follows a classical point trajectory. In addition,
given the same initial data, classical and quantum moments
have exactly the same evolution since no ℏ term appears in
the equations of motion. As will be shown in this section,
classical and quantum stationary states differ because the
equations of motion do not provide the complete informa-
tion to fix the value of all moments and thus recursive
relation (6) will have to be used.
Due to the mentioned properties, most of the analysis of

this section applies equally to classical as well as to
quantum moments. Thus the whole analysis will be
performed for quantum moments and emphasis will be
made in the particular points where the situation is different
for classical moments.
The expectation value of a Hamiltonian of a particle on a

potential VðqÞ, such that V 00ðqÞ ¼ ω2 is a constant value,
can be written in the following way in terms of expectation
values and moments:

HQ ¼ p2

2
þ ω2

2
q2 þ 1

2
G2;0 þ ω2

2
G0;2: ð17Þ

This is, as explained in previous section, the effective
quantum Hamiltonian that can be used to obtain the
equations of motion. In particular, the equations of motion
for the expectation values q and p reduce to their usual
form,

dq
dt

¼ p; ð18Þ

dp
dt

¼ −V 0ðqÞ: ð19Þ

Here it can be seen that, as already commented above, there
is no backreaction of moments in the equations for the
centroid, in such a way that the centroid follows a classical
phase space orbit.
The equations for the moments (14) reduce to

dGa;b

dt
¼ bGaþ1;b−1 − aω2Ga−1;bþ1: ð20Þ

The classical moments Ca;b fulfill this very same equation,
replacing all quantum moments Ga;b by their classical
counterparts Ca;b, as can be readily checked from (15).
As it is well known, it is not necessary to solve Eqs. (18)

and (19) explicitly to obtain the phase-space orbit that is
followed by the centroid. It is sufficient to divide both
equations to remove the dependence on time and integrate
the resulting equation. This procedure leads to the implicit
solution,

Ecentroid ¼ p2=2þ VðqÞ; ð21Þ

Ecentroid being the integration constant that parametrizes
different orbits, which can obviously be interpreted as the
energy of the centroid. Note that this Ecentroid energy is not
the expectation value of the Hamiltonian HQ. In particular,
since HQ (and for the classical treatment HC) is also a
constant of motion, the difference between both leads to
another conserved quantity in terms of second-order
moments: G2;0 þ ω2G0;2 (and C2;0 þ ω2C0;2 for the
classical moments).
The first derivative of the potential V 0ðqÞ only appears in

the evolution equation for the momentum p (19) and,
certainly, the phase-space orbit followed by the centroid
(21) depends on the precise form of the potential.
Nonetheless, note that the equations of the moments
(20) only depend on the second derivative of the potential
ω2. Therefore, in order to fully analyze the evolution of the
moments, the study will be split in the two possible and
physically different cases: ω2 ¼ 0 and ω2 ≠ 0. The former
describes a particle moving under a uniform force, whereas
the latter corresponds to the harmonic (ω2 > 0) and the
inverse harmonic (ω2 < 0) oscillators.

A. Particle under a uniform force: V00ðqÞ ¼ ω2 ¼ 0

In this subsection the generic linear potential V ¼ βqþ
V0 will be analyzed. Without loss of generality, V0 will be
chosen to be vanishing. This potential represents a particle
under a constant force. The case of a free particle (β ¼ 0)
will also be included in the analysis.
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As explained above, in this case all orders decouple and
the centroid of the distribution follows a classical point
trajectory in phase space: βqþ p2=2 ¼ Ecentroid, with
Ecentroid a constant value. Since the full Hamiltonian HQ
is also a constant of motion, it is obvious then that the
moment G2;0 is also constant during the evolution. In fact,
looking at the equations of motion (20), it is immediate to
see that the fluctuations of the momentum at all orders Ga;0

are constants of motion.
Let us first analyze the stationary states, that is, the fixed

points of the dynamical system. Dropping all time deriv-
atives in the system of equations (18)–(20), it is straightfor-
ward to see that only the free particle (β ¼ 0) case allows
for stationary solutions that would be given by p ¼ 0
(particle at rest) and all moments Ga;b vanishing for all
a ≥ 1 and b ≥ 0. The position q and its fluctuations at all
orders G0;b could, in principle, take any value. That is, the
particle can be anywhere and with an unbounded uncer-
tainty in its position. Nonetheless, even if this choice of
moments is valid for the classical case, it is not for the
quantum case since it violates the Heisenberg uncertainty
relation (8). Therefore as it is well known, and contrary to
the classical case, no stationary state can be constructed for
the free quantum particle.
The analytical solution for a dynamical state can be

found explicitly for the evolution of all moments,

Ga;bðtÞ ¼
Xb
n¼0

�
b
n

�
ðt − t0Þb−nGaþb−n;n

0 ; ð22Þ

for initial data Ga;b
0 ≔ Ga;bðt0Þ. The evolution of the

moments is independent of the value of β, thus this solution
is valid both for the case of the free particle and the particle
under a uniform force. As can be seen, each moment is
given by a linear combination of the initial value of the
moments of its corresponding order with polynomial
coefficients on the time parameter. The state spreads away
from its initial configuration and, for large times, the
moments Ga;b increase as tb. The initial conditions of this
state are still free. For instance, it is possible to choose an
initial state of minimum uncertainty but, even so, all
moments, except the constants of motionGa;0, will increase
with time.

B. Harmonic and inverse harmonic oscillators:
V00ðqÞ ¼ ω2 ≠ 0

It is well known that any potential of the form V ¼
ω
2
~q2 þ β ~qþ V0 can be taken to the form V ¼ ω2

2
q2 by a

shift of the variable q ¼ ~qþ β
ω2 and a redefinition of the

value of the potential at its minimum (V0 ¼ β2

2ω2), which
does not have any physical meaning. Ifω2 is positive, this is
the potential of a harmonic oscillator, a ubiquitous system
in all branches of physics. Since the equations of motion for
expectation values (18) and (19) do not get any

backreaction by moments, their solutions are oscillatory
functions and they follow an elliptical orbit in phase space.
On the other hand, the case ω2 < 0 corresponds to the
inverted harmonic oscillator. This system can be viewed as
an oscillator with imaginary frequency. The solution for the
expectation values ðq; pÞ are hyperbolic functions and they
follow hyperbolas in phase space. In the rest of this
subsection the behavior of the moments will be considered
for both systems.
Let us first analyze the stationary states. Equaling to zero

the right-hand side of the equations of motion (18)–(20),
the equilibrium point p ¼ 0 ¼ q for the expectation values
as well as the recursive relation bGaþ1;b−1 ¼ aω2Ga−1;bþ1

for the moments are obtained. The solution to this recursive
relation is given by the following condition for moments
with both indices even numbers,

G2a;2b ¼ 2a!2b!
ð2ðaþ bÞÞ!

ðaþ bÞ!
a!b!

ω2aG0;2ðaþbÞ; ð23Þ

whereas the rest of the moments must vanish. If the sign of
ω2 was negative, that would impose some moments with
even indices to be negative. This is not acceptable since all
moments of the form G2a;2b are non-negative by construc-
tion (7). Thus, from here it is immediately concluded that
the inverse oscillator cannot have stationary states.
As can be appreciated in the last relation (23), even if the

information concerning the stationary state contained in the
equations of motion has been exhausted, there is still one
freedom left at each order. This freedom is represented
in this equation by the high-order fluctuations of the
position G0;n.
In order to fix the moments G0;n, the recursive relation

(6) can be made use of. For the potential under consid-
eration, that relation reads

ω2ðkþ 2ÞG0;kþ2 ¼ 2ðkþ 1ÞEG0;k

þ ℏ2

4
ðkþ 1Þkðk − 1ÞG0;k−2: ð24Þ

This last equation allows us to compute all G0;n moments
as function of the energy at the stationary point E ¼
ðG2;0 þ ω2G0;2Þ=2 ¼ G2;0 and Planck constant ℏ. Taking
the limit ℏ → 0, the (two point) recursive relation obeyed
by classical moments is obtained, which can be easily
solved. Combining this solution with (23), the classical
moments corresponding to a stationary situation of the
harmonic oscillator can be written in a closed form. Those
with two even indices read

C2a;2b ¼ ð2aÞ!ð2bÞ!
a!b!ðaþ bÞ!

Eaþb

2aþbω2b ; ð25Þ

and the rest are vanishing.
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The quantum case is a little bit more involved. The
second-order momentsG2;0 andG0;2 have the same form as
their classical counterparts in terms of the energy E and the
frequency ω (25). But higher-order moments will take
corrections as a power series in the parameter ℏ2 when
solving the recursive relation (24). Here we give the explicit
expression of all the fluctuations of the position G0;n up to
order 10:

G0;2 ¼ E
ω2

;

G0;4 ¼ 3

2

�
E
ω2

�
2

þ 3

8

�
ℏ
ω

�
2

;

G0;6 ¼ 5

2

�
E
ω2

�
3

þ 25

8

�
E
ω2

��
ℏ
ω

�
2

;

G0;8 ¼ 35

8

�
E
ω2

�
4

þ 245

16

�
E
ω2

�
2
�
ℏ
ω

�
2

þ 315

128

�
ℏ
ω

�
4

;

G0;10 ¼ 63

8

�
E
ω2

�
5

þ 945

16

�
E
ω2

�
3
�
ℏ
ω

�
2

þ 5607

128

�
E
ω2

��
ℏ
ω

�
4

:

The rest of the nonvanishing moments are proportional to
these and can be obtained by using the solution (23). Note
that a quantum moment Ga;b is equal to its classical
counterpart (25) plus certain corrections that are given as
an even power series in ℏ. This power series goes from ℏ2

up to ℏ2n, n being the integer part of ðaþ bÞ=4.
The only information that is left here is the exact form of

the energy spectrum: E ¼ ℏωðnþ 1=2Þ. This is the only
input needed in order to obtain the complete realization of
the system. In fact, one could obtain all the moments
corresponding to the ground state by assuming that it is an
unsqueezed state with minimum uncertainty that saturates
the Heisenberg relation (8), G2;0G0;2 ¼ ℏ2=4, which
implies Eground ¼ ℏω=2. In addition note that, as expected,
for this ground state the expression of the quantum
moments reduces to the moments corresponding to a
Gaussian probability distribution with width

ffiffiffiffiffiffiffiffiffi
ℏ=ω

p
.

[The explicit expression for the moments of a Gaussian
state is given below (42).]
Regarding the dynamical states, it is easy to solve the

equations of motion (18)–(20). The solution for the
moments Ga;b can be written as a linear combination of
functions of the form e�iαωt. For moments of even orders,
aþ b ¼ 2n, α takes even values: α ¼ 0; 2;…; 2n; whereas
for those of odd orders, aþ b ¼ 2nþ 1, it takes odd
values: α ¼ 1; 3;…; 2nþ 1. Thus, the dynamical behavior
of the harmonic oscillator (ω2 > 0) and the inverse oscil-
lator (ω2 < 0) is completely different. For the oscillatory
case (ω2 > 0), all moments Ga;b are bounded and they are
oscillating functions. On the contrary, the moments

corresponding to the inverse oscillator are exponentially
growing and decreasing functions of time.

V. THE ANHARMONIC CASE: THE PURE
QUARTIC OSCILLATOR

The potential of the pure quartic oscillator is given by

VðqÞ ¼ λq4; ð26Þ
which leads to an effective Hamiltonian of the form

HQ ¼ p2

2
þ q4λþ 1

2
G2;0 þ 6q2λG0;2 þ 4qλG0;3 þ λG0;4:

ð27Þ
From this Hamiltonian it is easy to get the equations of
motion for the expectation values,

dq
dt

¼ p; ð28Þ

dp
dt

¼ −4λðq3 þ 3qG0;2 þ G0;3Þ; ð29Þ

and for the moments

dGa;b

dt
¼ bGaþ1;b−1 þ 4aλ½3qG0;2 þ G0;3�Ga−1;b

− 4aλ½3q2Ga−1;bþ1 þ 3qGa−1;bþ2 þGa−1;bþ3�
þ aℏ2λða − 2Þða − 1Þ½qGa−3;b þ Ga−3;bþ1�: ð30Þ

As can be seen, in this case all orders couple. More
specifically, in the equation for a moment Ga;b there appear
moments of order 2, 3 and of all orders from Oðaþ b − 3Þ
to Oðaþ bþ 2Þ.
The centroid of a classical distribution will follow the

same equations (28) and (29), replacing moments Ga;b by
their classical counterparts,

dq
dt

¼ p; ð31Þ

dp
dt

¼ −4λðq3 þ 3qC0;2 þ C0;3Þ; ð32Þ

whereas the evolution of the classical moments will be
given by

dCa;b

dt
¼ bCaþ1;b−1 þ 4aλ½3qC0;2 þ C0;3�Ca−1;b

− 4aλ½3q2Ca−1;bþ1 þ 3qCa−1;bþ2 þ Ca−1;bþ3�:
ð33Þ

The explicit order coupling differs a little bit from the
quantum case, since in this equation there are only
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moments of order 2, 3 and of all orders between Oðaþ
b − 1Þ and Oðaþ bþ 2Þ.

A. Stationary states

In order to obtain the stationary states of the pure quartic
oscillator, the infinite set of algebraic equations obtained by
equaling to zero the right-hand side of Eqs. (28)–(30) must
be solved. Furthermore, recursive relation (6) must also be
obeyed. In this particular case, that relation takes the
following form:

2λðaþ 3ÞG0;aþ4 ¼ 2Eðaþ 1ÞG0;a

þ ℏ2

4
ðaþ 1Þaða − 1ÞG0;a−2; ð34Þ

with the energy given by the numerical value of the
expectation value of the Hamiltonian,

E ¼ HQ: ð35Þ

In practice, due to the coupling of the system, it is
necessary to introduce a cutoff in order to get a finite
system and be able to solve it. In our case different cutoffs
have been considered (specifically Nmax ¼ 15, 20, 25, and
30) and the mentioned system of equations, in combination
with relation (34) and the definition of the energy (35), has
been analytically solved. The idea behind performing this
computation for several cutoffs is to study the convergence
of the solution, that is, to check whether the solution for the
moments does not change when considering higher-order
cutoffs.
In principle, there are two different solutions: one that

corresponds to the classical stationary configuration (and
thus its equilibrium position is at the origin q ¼ 0) and
another, for which the position must not be vanishing [note
that this is possible due to the moment terms that appear in
the Hamilton equation (29)] and does not have a classical
point counterpart. Nevertheless, for this latter case, the
solution for some moments with both even indices turns out
to be negative, which makes this solution invalid.
Therefore, and as one would expect from symmetry
considerations, the expectation values of any stationary
state of the quartic oscillator corresponds to the origin of
the phase space (p ¼ 0 ¼ q). Furthermore, it can be seen
that all its corresponding moments Ga;b are vanishing in
case any of the indices a or b is an odd number. The
remaining moments can be written in terms of the energy E
and the fluctuation of the position G0;2, or any other chosen
moment. That is, there is not enough information in our
system of equations to fix all moments and one of them
is free.
Regarding the convergence of the solution, comparing

the solution obtained with the cutoff Nmax ¼ 30 with the
one corresponding to Nmax ¼ 15, we see that the expres-
sion of all moments coincides up to order 8, whereas the

solution with Nmax ¼ 30 and Nmax ¼ 20 give the same
expression for all moments up to order 12. Finally,
solutions that correspond to Nmax ¼ 30 and Nmax ¼ 25
coincide up to order 14. From here the existence of a clear
convergence of the solution with the cutoff order is
concluded. Nevertheless, this convergence seems to be
slower with higher orders. Here the explicit expressions for
all nonvanishing moments up to sixth order is provided:

G2;0 ¼ 4

3
E;

G4;0 ¼ 2

7
ð8E2 þ 15ℏ2λG0;2Þ;

G2;2 ¼ 1

5
ð4EG0;2 þ ℏ2Þ;

G0;4 ¼ 1

3λ
E;

G6;0 ¼ 10

77
ð32E3 þ 228Eℏ2λG0;2 þ 21ℏ4λÞ;

G4;2 ¼ 2

45
Eð24EG0;2 þ 41ℏ2Þ;

G2;4 ¼ 4

21λ
E2 þ 6

7
ℏ2G0;2;

G0;6 ¼ 3

20λ
ð4EG0;2 þ ℏ2Þ: ð36Þ

The classical moments Ca;b, as always, take the same
values as their quantum counterparts with the particulari-
zation ℏ ¼ 0. In these expressions the singular behavior of
the limit λ → 0 is made explicit as the divergence of several
moments. This fact does not allow to perform regular
perturbative treatments of this system.
In summary, after imposing the stationarity condition on

Eqs. (28)–(30) and using the definition of the energy (35) in
combination with the recursive relation (34), the only
information left in order to characterize completely any
stationary state of the pure quartic oscillator is the energy E
and the fluctuation of the position G0;2.
In addition to these equations already mentioned, there is

still some information more than we can get by making use
of the inequalities obtained in Ref. [19]. In the following,
use will be made of those relations to constrain the values of
G0;2 and the energy E. For instance, Heisenberg uncertainty
principle (8) provides a lower bound for the product
between E and G0;2:

3ℏ2

16
≤ EG0;2: ð37Þ

Higher-order inequalities give more complicated relations,
which must be fulfilled by the energy E and the fluctuation
of the position G0;2 of any stationary state of this system.
For the particular case of the ground state a reasonable

assumption is that, as happens for the harmonic oscillator, it
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saturates the above relation. This would give G0;2
ground ¼

3ℏ2=ð16EgroundÞ and let the energy of the ground state
Eground as the only unknown physical quantity in (36).
Introducing then these expressions of the moments of the
ground state in terms of Eground in the higher-order inequal-
ities, an upper and lower bound for the energy is obtained.
By considering inequalities that only contain moments up
to fourth order yields the following result:

3

4

�
45

68

�
1=3

≤
Eground

ðℏ4λÞ1=3 ≤
1

4

�
85

4

�
1=3

; ð38Þ

or, in decimal notation,

0.654 ≤
Eground

ðℏ4λÞ1=3 ≤ 0.692; ð39Þ

which already provides a good constraint on the energy.
Furthermore, all inequalities that contain moments up to
order 6 reduce to the following tighter interval of validity
for the energy:

3

4

�
45

68

�
1=3

≤
Eground

ðℏ4λÞ1=3 ≤
9

4

�
3

116

�
1=3

; ð40Þ

or, writing these fractions as decimal numbers,

0.654 ≤
Eground

ðℏ4λÞ1=3 ≤ 0.665: ð41Þ

This gives a very tight constraint on the energy of this
bound state. Nevertheless, the exact (numerically com-
puted) energy of this state is available in the literature
(see e.g., [22,23]): Eground ¼ 0.670039ðℏ4λÞ1=3 [29]. This
numerical value is very close but outside the derived
interval. Therefore, we can conclude that, even if the
saturation of the Heisenberg uncertainty is a reasonable
assumption for the ground state that provides a good
estimation of the ground energy, this assumption is not
satisfied and the uncertainty relation is not completely
saturated for the present model.
This analysis shows the practical relevance of the

inequalities that were derived in Ref. [19] as a comple-
mentary method to extract physical information from the
system. Certainly the inequalities will not give exact
relations between different quantities, but intervals of
validity can be extracted from them. Finally, let us stress
the importance of considering higher-order inequalities.
Note that the interval derived from fourth-order inequalities
(39) does indeed allow the exact (numerical) value of the
ground energy, and thus in principle permits the saturation
of the uncertainty relation. Therefore, in this particular
example inequalities up to fourth order allowed a property
of the system, which is forbidden by the stronger condition
derived from higher-order ones.

B. Dynamical states

The classical point trajectory of the pure quartic oscil-
lator, that is, the solution to Eqs. (28) and (29) neglecting all
moments, can only be written in terms on hypergeometric
functions. Nevertheless, the orbits on the phase space are
easily obtained by the conservation of the classical energy:
Eclass ¼ p2

2
þ λq4. Contrary to the harmonic oscillator, the

period depends on the energy Eclass of the orbit, and it is not
a constant for different orbits. For latter use, note that the
maximum (classical) value of the position and the momen-
tum can be directly related to the energy as q4max ¼ Eclass=λ
and p2

max ¼ 2Eclass. In order to compare different solutions,
below we will also make use of a (squared) Euclidean
distance on the phase space (p2 þ q2). The maximum
distance from the origin of a given orbit is reached
at (ðp2 þ q2Þmax ¼ 2Eclass þ 1=ð8λÞ).
We are interested on analyzing the quantum and classical

evolution of a distribution that, respectively, follows
Eqs. (28)–(30) and (31)–(33). Nonetheless, due to the
complicated form of these evolution equations, the pos-
sibility of getting an analytical solution seems unlikely.
Hence, in order to analyze the dynamics of the system, it is
necessary to resort to numerical methods. Here a comment
about notation is in order. When the meaning is not clear
from the context, we will sometimes denote as qqðtÞ the
solution of the quantum distributional system (28)–(30),
qcðtÞ the solution of the classical distributional system
(31)–(33), and finally qclassðtÞ the solution corresponding to
the classical point trajectory, that is, the solution to Eqs. (28)
and (29) dropping all moments. The very same notation will
be used for the different solutions of the momentum pðtÞ.
For a numerical resolution of the system, two choices

have to be made. On the one hand, for practical reasons, a
cutoff Nmax has to be considered in order to truncate the
infinite system. On the other hand, it will be necessary to
choose initial conditions for the state to be analyzed.
Regarding the truncation of the system, the dynamical

equations for different values of the cutoff will be consid-
ered. More precisely, both the quantum system (28)–(30)
and the classical distributional system (31)–(33) for every
order up to tenth order will be solved. In this way, it will be
possible to check the convergence of the solution with the
considered Nmax, as well as study differences between the
classical and quantum moments.
Concerning the initial conditions, since the movement of

the system is oscillatory around the equilibrium point
q ¼ 0, a vanishing value for the initial expectation of
the position qð0Þ ¼ 0 will be considered without loss of
generality. For the expectation of the momentum p, in order
to check the dependence of the properties of the system
with the energy, we will make evolutions for several values,
namely pð0Þ ¼ 10, 102, and 103. Note that the initial
classical (point) energy (pð0Þ2=2) will not be conserved
through evolution; instead, the complete Hamiltonian (27)
will be constant. Nevertheless, due to the correspondence
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principle, the larger the classical energy, a somehow more
classical behavior is expected to be found. This can already
be inferred from the equations themselves: in the case that
moments are negligible with respect to expectation values q
and p, the centroid will approximately follow a classical
point orbit on phase space.
As for the initial values of the fluctuations and higher-

order moments, a peaked state given by a Gaussian of widthffiffiffi
ℏ

p
will be chosen. Its corresponding moments Ga;b are

vanishing if any of the indices a or b are odd. The only
nonvanishing moments take the following values [14]:

G2a;2b ¼ ℏaþb 2a!2b!

22ðaþbÞa!b!
: ð42Þ

Therefore, initially the fluctuation of the position and of the
momentum are G0;2 ¼ G2;0 ¼ ℏ2=2. In principle the initial
conditions for the classical pair q and p should be chosen
large in comparison with their fluctuations, so that we can
be safely say that we are in a semiclassical region where
this method is supposed to provide trustable results.
Nonetheless, in this case the system oscillates around
q ¼ 0 and in the turning points the momentum vanishes
p ¼ 0. Thus, for this case the condition of q and p being
much larger than their corresponding fluctuations cannot be
a good measure of semiclassicality. We will check if, as
already mentioned above, the classical (point) energy of the
system does play such a role.
Given this setting, we will be interested in analyzing

several aspects of the system: (i) the validity of this method
based on the decomposition of the classical and quantum
probability distributions in terms of moments (in particular
the convergence of the system with the truncation order
Nmax as well as other control methods, like the conservation
of the full Hamiltonian, will be analyzed); (ii) the dynamical
behavior of the moments; (iii) the deviation, due to quantum
effects, from the classical trajectory on the phase space;
(iv) the relative relevance of the two different quantum
effects that have been discussed in Sec. II: the distributional
ones and the noncommutativity or purely quantum ones;
(v) the validity of the correspondence principle. That is, do
systems with a larger energy have somehow amore classical
behavior than those with lower energy?
Regarding the first two questions [(i) and (ii)] all results

that will be commented for the quantum moments apply
also to the classical ones. Furthermore, except for the last
issue [(v)] about the correspondence principle, the quali-
tative behavior of the system is the same for all considered
values of initial momentum pð0Þ. Hence, the results
regarding the first four points [(i) to (iv)] will be presented
for the particular case of pð0Þ ¼ 10 and, finally, the last
point [(v)] will be discussed by comparing results obtained
for different initial values of the classical energy. In all
numerical simulations λ ¼ 1 and ℏ ¼ 10−2 have been
considered.

(i) The natural tendency of the both quantum and
classical moments is to increase with time, since the
dynamical states are deformed through evolution. This
formalism is best suited for peaked states so, when higher-
order moments become important, it is expected not to give
trustable results. Numerically this is seen in the fact that,
after several periods, the system becomes unstable and thus
the results are no longer trustable.
In order to check the validity of our results we have

several indicators at hand: numerical convergence of the
solution, conservation of the constants of motion (in this
case the full Hamiltonian), convergence of the results with
the order of the cutoff, and fulfillment of the inequalities
derived in [19]. The numerical convergence has been
checked by the usual method: by computing several
solutions with an increasing precision and confirming that
the difference between them and the most precise one tends
to zero. The full Hamiltonian has also been verified to be
conserved during the evolutions presented in this paper.
For the analysis of the convergence of the system with

the truncation order, we define the squared Euclidean
distance between points on the phase space as
ΔnðtÞ≔ ½qnðtÞ−qn−1ðtÞ�2þ ½pnðtÞ−pn−1ðtÞ�2, with qnðtÞ
and pnðtÞ being the solution of the system truncated at nth
order. In particular q1ðtÞ ¼ qclassðtÞ and p1ðtÞ ¼ pclassðtÞ
correspond to classical point orbits. This will serve as a
measure of the departure of the solution at every order from
the previous order. In Fig. 1 the distance Δn between

1 2 3
T

15

10

5

log10 n

FIG. 1 (color online). The squared Euclidean distance on phase
space between orbits corresponding to consecutive orders Δn ≔
½qnðtÞ − qn−1ðtÞ�2 þ ½pnðtÞ − pn−1ðtÞ�2 is shown in a logarithmic
plot for n ¼ 2;…; 8. The distance between the second-order and
the classical point trajectory (Δ2) corresponds to the black
(thickest) line. For the distance corresponding to higher orders
(Δn), the following colors have been used: brown (n ¼ 3), green
(n ¼ 4), red (n ¼ 5), blue (n ¼ 6), purple (n ¼ 7), and orange
(n ¼ 8); the thickness of the lines being decreasing with the
order. The estimated numerical error of these solutions is around
10−16, thus higher orders are almost numerical error during the
first two periods. Note that, at any time, we get a very rapid and
strong convergence with the considered order.
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consecutive solutions is drawn in a logarithmic scale for
n ¼ 2;…; 8 for the first three periods of the evolution.
From this plot it is clear that, at least during a few periods,
the convergence is very fast with the truncation order. We
have not included the Δ9 and Δ10, since their value is lower
than 10−16, the estimated numerical error for the solutions
shown in this plot, during the first three periods. It is
interesting to note that, whereas the rest of the Δn have a
more complicated structure, Δ2 (shown by the thickest
black line in Fig. 1) follows a periodic pattern with a local
minimum every quarter of a period. These points of
minimum deviation from the classical orbit correspond
to points with maximum momentum (q ¼ 0) and to turning
points (p ¼ 0).
Remarkably we have found that the inequalities are the

first indicator to signalize the wrong behavior of the system.
In the particular case with pð0Þ ¼ 10, the tenth order
solution obeys all inequalities that contain only moments
up to fourth order during more than five periods. But some
of the inequalities that contain moments of sixth order are
violated soon after the fourth cycle. Finally, some inequal-
ities with eighth order moments are violated after around
2.5–3 cycles. In fact, it is expected that the values obtained
for higher-order moments be less accurate than those for
lower-order ones due to the truncation of the system.
As already commented above, in the evolution equation
of a moment Ga;b, there appear moments from order
Oðaþ b − 3Þ to Oðaþ bþ 2Þ [only from Oðaþ b − 1Þ
to Oðaþ bþ 2Þ for the classical moments]. Thus, when
we perform the truncation, let us say, at order Nmax, we
remove several terms from the equations of motion for
moments of order ðNmax − 1Þ and ðNmax − 2Þ, whereas
evolution equations for lower-order moments are consid-
ered in a complete form. Therefore, moments of order
ðNmax − 1Þ and ðNmax − 2Þ suffer the presence of the cutoff
directly. On the other hand, lower-order moments only feel
the presence of the cutoff indirectly, due to the coupling of
the equations.
In summary, after the analysis explained in the last few

paragraphs, it is quite safe to assert that the results derived
during the first 2.5 cycles are completely trustable [for
pð0Þ ¼ 10]. As can be seen, in most of the plots only two
periods are shown.
(ii) The fluctuations and higher-order moments are

oscillatory functions that evolve increasing their amplitude.
In Fig. 2 the evolution of some moments, as well as of the
expectation value of the position q, is shown as an example.
Note that, for illustrational purposes, the moments
have been multiplied by different factors and the position
is divided by its (classical) maximum value qmax.
Interestingly, moments G0;2 and G0;4 are almost vanishing
at turning points, when the position takes its maximum
value, and have a maximum soon after q crosses its origin.
(iii) and (iv) In order to analyze the deviation of the

quantum and classical distributional trajectories from their

corresponding classical point orbit, two operators, δ1 and
δ2, are defined as follows:

δ1qðtÞ ≔ qcðtÞ − qclassðtÞ; ð43Þ

δ2qðtÞ ≔ qqðtÞ − qcðtÞ: ð44Þ

The same definitions apply for δ1p and δ2p. These
operators are a measure of the two quantum effects that
were defined in [19] and have been discussed in Sec. II of
the present paper. On the one hand, the operator δ1 will
contain the strength of the distributional effects. On the
other hand, δ2 will encode the intensity of purely quantum
effects, whose origin is due to the ℏ factors that appear
explicitly in the quantum equations of motion. In our
numerical analysis qcðtÞ and qqðtÞ will be considered to be
the solutions to the corresponding truncated system at order
10. Finally, the complete departure from the classical orbit
will be given by the sum of both differences:

δq ¼ δ1qþ δ2q ¼ qq − qclass: ð45Þ

Figure 3 shows the evolution of the system as well as the
differences given by the operators δ1 and δ2 acting on
different variables in terms of time. (Note that these
differences are multiplied by certain enhancement factors
for illustrational purposes.) More precisely, in the upper
plot of the mentioned figure the evolution of the position
divided by its (classical) maximum q=qmax, as well as the
differences δ1q and δ2q, are shown. The middle plot
represents the evolution of p=pmax with its corresponding
δ1p and δ2p. Finally, in the lower graphic the squared
Euclidean distance from the origin of the phase space is

1 2
T

1.0

0.5

0.5

1.0

q qmax, Ga,b

FIG. 2 (color online). In this figure the evolution of the position
q over its maximum value qmax (black continuous thick line) with
respect to to the time (measured in terms of the period T) is
shown. The rest of the lines correspond to some moments Ga;b

rescaled by a factor for illustrational purposes. More precisely,
the red (long-dashed) line corresponds to 50G0;2, the green
(dot-dashed) line to 103G0;4, the blue (dotted) line to 10G1;1,
and the gray (continuous thin) line to 102G2;1. The behavior of
the moments is oscillatory, with an increasing amplitude.
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plotted, as well as the deviations ðδ1p2 þ δ1q2Þ and
ðδ2p2 þ δ2q2Þ [30]. This distance has been divided by
its maximum classical value which, as commented
above, can be easily related to the initial conditions
as ðp2 þ q2Þmax ¼ pð0Þ2 þ 1=ð8λÞ.
Looking at the enhancement factors that have been

introduced for the differences δ1 and δ2 so that objects
that have been plotted appear approximately with the same
order of magnitude, it is straightforward to see that for all

quantities the departure from the classical point trajectory δ
is mainly due to the distributional effects measured by δ1. In
particular, during the two cycles that are shown, the
absolute maximum departure from the classical trajectory
is of the order of δq ≈ δ1q ≈ 5 × 10−3 for the position and
δp ≈ δ1p ≈ 3 × 10−2 for the momentum. Combining this
result, it is direct to obtain the maximum departure as
measured by the squared Euclidean distance on the phase
space: δq2 þ δp2 ≈ 10−3; which also can be obtained from
the lower plot of Fig. 3.
As already commented, and as one of the main results of

this paper, in this model we have shown that the distribu-
tional effects are much more relevant than the purely
quantum ones. Let us analyze its relative importance: from
the values that can be seen in Fig. 3 we have that
δ2q=δ1q ≈ δ2p=δ1p ≈ 10−4. This ratio happens to be of
the order of ℏ2, which is a measure of the purely quantum
effects in the equations of motion. Nevertheless, as we will
be shown below when considering initial conditions of
higher energy, this is not generic. In fact, this is a property
of the nonlinearity of the equations: the effects of a term of
order ℏ2 on the equations of motion are not necessarily of
the same order in the solution.
Finally, it is of interest to analyze the time evolution of

the terms δ1q and δ2q. Note that both are periodic
functions, with approximately the same period as the
classical system T, with an amplitude that increases with
time. In fact, δ1q and δ2q follow the same pattern, that is,
they have qualitatively the same form, but with a phase
difference of T=4 so that when one of them is at a
maximum (or at a minimum) the other one is around zero.
In the case of δ1p and δ2p, they are also periodic functions
with period T, follow the same pattern and T=4 dephased.
The main difference between the pattern followed by δ1q
and δ2q with respect to the one followed by δ1p and δ2p is
that, whereas the formers have just a critical point between
consecutive changes of sign, the latters oscillate twice
(producing three critical points) between two of their zeros.
The net result of all commented effects on the phase-

space orbits can be seen in the lower plot of Fig. 3.
Minimum departure from classical orbit occurs at turning
points and when q crosses the origin. In this plot it is
possible to see again that δ1 and δ2 follow qualitatively the
same pattern but, interestingly, they are (almost) not
dephased; the phase differences in position and in momen-
tum compensate each other. In a more detailed level, it is
possible to observe that critical points of ðδ1q2 þ δ1p2Þ and
ðδ2q2 þ δ2p2Þ do not exactly coincide in time: there is a
slight delay between them. In addition, from these plots it
can also be inferred that the orbit followed by the expect-
ation values of quantum states does not coincide at any
point with its classical counterpart, since there is no time
when all corrections vanish: δ1q ¼ δ2q ¼ δ1p ¼ δ2p ¼ 0.
(v) Finally, regarding the correspondence principle, it is

necessary to relate the results commented above for the

FIG. 3 (color online). In these plots the evolution of q, p, and
ðq2 þ p2Þ (divided by their maximum values) is shown in
combination with the operators δ1 and δ2 acting on them. The
black (thinnest) line represents the evolutions of the quantity we
are considering, for instance in the upper plot q=qmax, the blue
(thickest) line represents the distributional effects, in the men-
tioned plot δ1q, whereas the red line stands for the purely
quantum effects, in the considered graphic δ2q.
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case pð0Þ ¼ 10, with results obtained for larger values of
the initial condition of the momentum. In particular, Fig. 4
shows the plot equivalent to the last graphic of Fig. 3 for the
initial value pð0Þ ¼ 100. As already commented above, the
qualitative behavior of the system does not change.
Nonetheless, there are significant modifications in quanti-
tative aspects that lead us to conclude that the behavior is
more classical.
First of all we notice that the larger the value of pð0Þ, the

longer (in terms of its period) the system stays stable. This
is due to the fact that the corrections due to the moments are
relatively smaller and take longer to move the system
significantly from its classical trajectory. More precisely, as
can be seen in Fig. 4, the system has to be evolved during
six cycles so that the departure from the classical trajectory,
dominated by distributional effects, ðδ1q2 þ δ1p2Þ is of the
same order of magnitude as the one obtained for the
previous (pð0Þ ¼ 10) case with just two cycles.
In addition, as another important result of this paper, we

note that the relative importance between the two quantum
effects, which can be measured by the quantity

γ ≔ ðδ2q2 þ δ2p2Þ=ðδ1q2 þ δ1p2Þ; ð46Þ

is smaller the larger the energy of the system. That is, from
Fig. 4, we get γ ≈ 10−11 for the case with larger energy
[pð0Þ ¼ 100], whereas γ ≈ 10−8 for the previous less-
energetic case with pð0Þ ¼ 10. The case pð0Þ ¼ 1 has
also been checked for which, after a little bit more than half
a cycle, the following values are measured: ðδ1q2 þ
δ1p2Þ ≈ 10−3 and ðδ2q2 þ δ2p2Þ ≈ 10−8. These results give
γ ≈ 10−5 for the case pð0Þ ¼ 1. This result shows that the
quantity γ defines a semiclassical behavior of a system
when its value is small. Nonetheless, when γ tends to zero
there are still distributional effects present. This shows that,
as commented in the Introduction, the classical limit of a
quantum state is an ensemble of classical trajectories

described, in this context, by its corresponding classical
moments.

VI. CONCLUSIONS

In this paper the formalism presented in Ref. [19], to
analyze the evolution of classical and quantum probability
distributions, has been applied to the system of a particle on
a potential. Due to the kinetic term, the Hamiltonian of this
system is quadratic in the momentum, and its dependence
on the position is completely encoded in the potential. The
special properties of the harmonic Hamiltonians, which are
defined as those that are at most quadratic on the basic
variables, makes them much easier to be analyzed. Thus,
the study has been divided in two different sectors. On the
one hand, the complete set of harmonic Hamiltonians has
been studied; and, on the other hand, for the anharmonic
case an interesting example has been chosen: the pure
quartic oscillator.
By choosing different functional forms of the potential,

three physically different harmonic Hamiltonians can be
constructed: first, the system of a particle moving under a
uniform force, which also includes the free particle when
the value of this force is considered to be zero; second, the
harmonic oscillator with a constant frequency ω; and
finally the inverse harmonic oscillator, which can be
understood as a harmonic oscillator with imaginary fre-
quency. For all of them the moments corresponding to their
stationary and dynamical states have been explicitly
obtained. In this framework the stationary states correspond
to fix points of the dynamical system, which is composed
by the infinite set of equations of motions for expectation
values and moments. Therefore, in order to find these
stationary moments, the algebraic system obtained by
dropping all time derivatives must be solved. With this
procedure, and contrary to the usual treatment of consid-
ering the time-independent Schrödinger equation, the sta-
tionary moments can be obtained without solving any
differential equation.
More precisely, regarding the particle under a uniform

force, it has been shown that even if the classical (dis-
tributional) case accepts a stationary state where the particle
is at rest at any position and with arbitrary value of its
corresponding (high-order) fluctuations, such a state is
forbidden in the quantum system by the Heisenberg
uncertainty principle. For the harmonic oscillator, the
moments corresponding to any stationary state have been
obtained in terms of the frequency of the oscillator and the
energy of the state. These relations are valid for any
stationary state. The only ingredient that is not derived
by the present formalism, and thus one needs to include by
hand, are the eigenvalues of the energy. Finally, it has been
proven that the inverse harmonic oscillator cannot have
stationary states.
Concerning the pure quartic oscillator, the moments

corresponding to any stationary state have been derived

FIG. 4 (color online). In this figure the initial value of the
momentum is pðt0Þ ¼ 100. Note that enhancement factors, by
which differences between solutions are multiplied, differ from
the previous case.
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by making use of the above technique. In this case, the
system of equations is not complete and thus it does not fix
the whole set of moments. Hence, apart from the energy of
the state, the fluctuation of the position has been left as a
free parameter. Furthermore, in order to constraint the
values of these two parameters, use has been made of
the high-order inequalities which were derived in [19]. For
the particular case of the ground state, a reasonable
assumption is that the Heisenberg uncertainty relation is
saturated. This leads to a tight interval for the value of the
ground energy (41). It turns out that the exact (numerically
computed) value of this energy is not contained in this
interval, but it is quite close. Therefore one can assert that,
even if the exact saturation of the Heisenberg uncertainty
relation provides a good approximation for the ground state
of the pure quartic oscillator, it is not exactly obeyed.
The above analysis shows the practical relevance of the

inequalities that were derived in [19] as a complementary
method to extract physical information from the system. In
particular, high-order inequalities are of relevance because
the conditions they provide are stronger than the ones
obtained from lower-order inequalities.
Finally, a numerical computation of the dynamical states

corresponding to the pure quartic oscillator has been
performed. To that end, a Gaussian in the position has
been assumed as the initial state. In this setting, a number of
interesting results have been obtained.
First, the validity of the method has been analyzed. The

present formalism is valid as long as the high-order
moments that one drops with the cutoff are small. The
natural tendency of the moments in this system is to
oscillate with a growing amplitude and thus, from certain
point on, this method will not give trustable results. In order
to find the region of validity of the method, on the one
hand, different cutoffs have been considered and the
convergence of the solution with the cutoff order has been
studied. On the other hand, the conservation of the
Hamiltonian, as well as the fulfillment of the high-order
inequalities mentioned above, has been monitored during
the evolution. With these control methods at hand, one can
estimate when (after how many cycles) the formalism is not

valid anymore. In particular, this “validity time” increases
with the value of the initial classical energy.
Second, the departure of the centroid from its classical

point trajectory has been analyzed, as well as the relative
relevance of the two different quantum effects: the dis-
tributional and the purely quantum effects. It has been
shown that, as one would expect, the former ones, which
are also present in the evolution of a classical probability
distribution, are much more relevant than the latter ones.
Nonetheless, the strength of the purely quantum effects in
the equations of motion is of order ℏ2. Therefore, a change
in the numerical value of the Planck constant would tune
the relative relevance of these effects.
Finally, the correspondence principle has also been

verified in the sense that the larger the classical initial
value of the energy is chosen, the smaller purely quantum
effects are measured. In particular, the smallness of the
quantity γ, as defined in (46), gives a precise notion of
semiclassicality. In fact the vanishing of γ would define a
complete classical (distributional) behavior of the system.
Let us stress the fact that this classical behavior is
distributional. In other words, and as commented already
throughout the paper, the classical limit of a quantum state
is not a unique orbit on the phase space but, instead, an
ensemble of classical trajectories which are described by a
probability distribution or, in the context of the present
formalism, by its classical moments.
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