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By using a model with a spatially global scalar field, we show that the energy density of zero-point
modes is exponentially suppressed by an average number of field quanta in a finite volume with respect to
the energy density in the stationary state of minimal energy. We describe cosmological implications of the
mechanism.
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I. INTRODUCTION AND RECAPITULATION OF
THE COSMOLOGICAL CONSTANT PROBLEM

After primary speculations presented in [1], we find
that the cosmological constant [2] is associated with a
vacuum energy density generated by zero-point modes of
quantum fields [3,4]. In the framework of quantum field
theory, these quantum fluctuations are ordinarily diver-
gent and they should be renormalized. In this respect, the
relevant renormalization is related to actual thresholds of
energies, at which particles and forces contribute signifi-
cantly. Then, one usually supposes that some combina-
tions of Planckian scale and particle masses generate the
energy density of vacuum ρvac, so that the maximal
estimate corresponds to the greater scale known in real
physics and it yields ρvac ∼m4

Pl, where the reduced
Planck mass mPl ≈ 2.4 × 1018 GeV is given by the
Newton constant G as 8πGm2

Pl ¼ 1. Such types of
estimates are in direct conflict with the value extracted
from the cosmological data [5] giving ρvac ↦ ρΛ ¼ Λ4 at
Λ ∼ 10−3 eV, which is 30 orders of magnitude less than
the Planck mass.
However, nobody can guarantee that the Planck scale

defining the strength of the gravitational interaction has
to establish a fundamental mass scale or energy threshold
relevant to the cosmological constant. In this respect, one
could follow a more realistic way by using the generally
accepted description of particle physics in the Standard
Model. So the direct observation of the Higgs boson
allows us to evaluate the energy density of the electro-
weak vacuum from the effective potential of the Higgs
boson in terms of the masses of the Higgs boson and W
boson, which give ρEWΛ ∼m2

Hm
2
W ∼ ð102 GeVÞ4, exceed-

ing the contribution due to the additional condensates in
the quantum chromodynamics by at least 8 orders of
magnitude. Then, the magnitude of mismatching the scale
of the cosmological constant would be significantly

relaxed from 30 orders to 14 orders, which is still
significant. Notice that in this approach to the estimate
of the cosmological constant scale, one ignores an
arbitrary constant shift of the Higgs potential. This shift
can originate from physics of other fields. In addition, at
the observed mass value the Higgs potential can lose its
stability at very large fields below the Planckian range
due to effects of the renormalization group, which could
produce the tunnel decay of the present Universe to
another universe with a different vacuum.
Let us show that such a suppression can be explained due

to a finite volume effect for quantum fluctuations in an
excited nonstationary state. For the sake of clarity we
exhibit the mechanism by considering a time-dependent
scalar field ϕðtÞ, which is spatially global and free. The
action in a finite physical volume VR is given by the
expression

S ¼ VR

Z
dt

1

2
ð _ϕ2 −m2ϕ2Þ; ð1Þ

where _ϕ ¼ dϕ=dt and m is the field mass. The specific
reference frame of space-time suggestively should be
associated with the reference frame of the homogeneous
component of cosmic microwave background radiation in
the Universe, so that time t could correspond to the cosmic
time of Friedmann-Robertson-Walker-Lemaitre metrics.
The meaning of VR is the volume wherein the fluctuations
of the field are causal, so that it can be considered as
spatially global, while an inhomogeneity is evaluated by
j∇ϕj ∼ δϕ=λc, where λc is the Compton length, λc ¼ 1=m,
and δϕ denotes the field fluctuation. The basic motivation
and consideration are further considered in the field model
of (1), so we ignore the influence of curved space-time on
the main result for the moment. However, we return to the
discussion of this issue in Sec. III.
Formally, action (1) corresponds to the harmonic oscil-

lator of “frequency” m and “inertial mass” VR. Then, the
dimensionless operators*Valery.Kiselev@ihep.ru
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Q̂ ¼ ϕ

ϕ0

; P̂ ¼
_ϕ
_ϕ0

;

at

ϕ2
0 ¼

1

VRm
; _ϕ2

0 ¼
m
VR

;

define the operators of annihilation and creation for the
spatially global field quanta

â ¼ 1ffiffiffi
2

p ðQ̂þ iP̂Þ; â† ¼ 1ffiffiffi
2

p ðQ̂ − iP̂Þ;

with the standard commutator

½â; â†� ¼ 1:

The Hamiltonian takes the form

Ĥ ¼ 1

2
VRð _ϕ2 þm2ϕ2Þ ¼ 1

2
mðP̂2 þ Q̂2Þ ¼ m

�
â†âþ 1

2

�
:

ð2Þ

If the field is nonstationary excited, its quantum state can
be considered as a superposition of oscillatory coherent
states, which minimize uncertainties in the field ϕ and its
rate _ϕ. Let us consider the coherent state jαi with the
average number of quanta n in the volume VR:

âjαi ¼ αjαi; α�α ¼ n; α ¼ 1ffiffiffi
2

p ðQ0 þ iP0Þ:

The averaged energy reads as

hEi ¼ hαjĤjαi ¼ m

�
nþ 1

2

�
:

Usually, the minimal energy shift of this state from the
minimum of the potential is referred to as the energy level
of zero-point mode (ZPM),

δminE ¼ 1

2
m: ð3Þ

So, it defines the quantity that we call the bare cosmo-
logical constant,

ρbareΛ ¼ m
2VR

¼ hvacjρjvaci ¼ m2hvacjϕ2jvaci

¼ hvacj _ϕ2jvaci: ð4Þ

This shows that the finite volume sets nonzero fluctuations
of the spatially global field.

If the fluctuations of the field match the Planckian scale,
hvacjϕ2jvaci ∼m2

Pl, then the bare cosmological constant
ρbareΛ takes a huge value, which constitutes the cosmological
constant problem. On the other hand, if we restrict
ourselves to the range of the Standard Model, then we
expect that the mass of the scalar field is given by the mass
of the Higgs boson M, while the fluctuations of the field
square are of the order of the natural scale in the
electroweak physics, i.e., M2. So one can arrive at an
estimate that is consistent with the expectations of the
Standard Model, but it still would have a huge value.
However, in the next section we show that if the number

of quanta for ϕðtÞ is not equal to zero, n ≠ 0, then only a
fraction of an energy shift from the potential minimum
refers to the ZPM and the fractional part of the energy does
originate from the suppressed vacuum fluctuations; hence,
the suppressed fraction indeed corresponds to the vacuum
energy.

II. SUPPRESSION MECHANISM IN THE ACTION

Let us find the fraction of the ZPM in the energy shift
from the minimum of the potential for the coherent state.
So, decomposing the state into the sum of the vacuum jvaci
and the state jquantai with nonzero numbers of stationary
field quanta,

jαi ¼ Avacjvaci þAqjquantai;

we evaluate the average density of energy,

hαjρjαi ¼ jAvacj2hvacjρjvaci þ jAqj2hquantajρjquantai;
ð5Þ

where the probability to find k quanta in the coherent state
is given by the Poisson distribution,

jAkj2 ¼
nk

k!
e−n;

while the free Hamiltonian does not mix the stationary
states with different numbers of quanta.
Therefore, the average density of energy observed in

gravity, is decomposed as

hρi ¼ jAvacj2ρbareΛ þ ρq; ð6Þ

at

jAvacj2 ¼ e−n; ð7Þ
with ρq being the energy density of nonzero-point modes
that, for the coherent state, equals

ρq ¼
m
VR

�
nþ 1

2
−
1

2
e−n

�
¼ ρbareΛ ð2nþ 1 − e−nÞ:
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Thus, the true energy density generated by ZPMs in the
coherent state is suppressed and is given by

ρΛ ¼ jAvacj2ρbareΛ ↦ e−nρbareΛ : ð8Þ

Relation (8) remains valid generically by the order of
magnitude not only for the coherent state, but also for the
most ordinary, nonexotic states yielding jAvacj2 ∼ e−n. We
can hold the relation for the probability of the ZPM in the
quantum state as the definition of the effective number of
quanta in this state. Moreover, if the fluctuations of field
quanta are statistically occasional, then the probability with
respect to the number of quanta has to fit the Poisson
distribution, and hence, the quantum state should be the
coherent state.
Let us stress that the described effect of vacuum

fluctuation suppression in the excited nonstationary state
necessarily involves the finite volume, but it has no
connection to the well-known Casimir effect, which is also
related to a restricted volume. Indeed, the Casimir effect
takes place due to the relevant modification of ZPMs in the
state of minimal energy for the system of restricted volume,
while setting the state of minimal energy in our consid-
eration will mean n → 0 and the suppression factor will
disappear, which results in the ordinary situation for the
Casimir effect. In other words, the suppression factor
becomes essential if the system is excited to the nonsta-
tionary state, when the Casimir effect is irrelevant, and vice
versa, the Casimir effect takes place when the suppression
we are studying is inactive. In this respect, the problem of
the cosmological constant comes back when we deal with
the stationary state of minimal energy, while near this
state the Casimir effect represents the evidence for the
reality of vacuum energy.
The meaning of the bare cosmological constant is the

following: if the system is in the vacuum state, the bare
cosmological constant would be the energy density in the
system, i.e., in the empty vacuum without any fields,
particles, or quanta, only vacuum fluctuations. If the system
is not empty and it is occasionally excited, the actual
vacuum fluctuations are suppressed, which means the
suppression of the observed cosmological constant. In this
way, we assume in our model that there is not any different
contribution to the cosmological constant, say, like some
induced terms of various nature, since those additional
terms cannot be suppressed in the same manner.
The decomposition of (6)–(8) would remain formal, if

the field is free and it does not interact. Then ρbareΛ would set
the minimal density of energy, of course, while we would
observe the total density of field energy without the
possibility to extract the energy density of suppressed
zero-point fluctuations. However, if the field interacts, then
it goes through a nontrivial evolution: the quanta can mix
and transform into quanta of matter fields, while the
vacuum transfers itself into itself, i.e., into the vacuum,

since it is stable; hence, the contribution of ZPMs to the
energy density remains constant with the evolution, and
this contribution is much less than the bare term because
of the excited state of the field, which makes the
decomposition in (6)–(8) observable for the interacting
field.1 The suppressed contribution of ZPMs is observed
as the cosmological constant in the presence of matter
quanta.
In other words, the decomposition of (6)–(8) is based on

quantum mechanics, and it is detectable. The detection
suggests the interaction of field system. Roughly speaking,
the field quanta decay to visible particles of matter, while
the suppressed vacuum fluctuations form the observable
cosmological constant.
Let us look at the pressure of ZPMs in order to

justify their vacuum status. The bare ZPMs have the
energy Ebare ¼ 1

2
m independent of the reference volume.

This means that the pressure is given by pbare ¼
∂Ebare=∂VR ≡ 0, which can also be calculated by means
of averaging the spatial components of the energy-
momentum tensor,

hvacjTβ
αjvaci ¼ −δβαpbare

¼ −δβα
1

2
hvacjf _ϕ2ðtÞ −m2ϕ2ðtÞgjvaci ¼ 0:

In contrast, the true energy of suppressed vacuum fluctua-
tions in volume VR,

Evac ¼ VRρΛ ¼ 1

2
mjAvacj2;

can obtain the correct dependence on the volume if we
make the vacuum density of energy constant, which implies
jAvacj2=VR ¼ const and the pressure obtains the value,

p ¼ −
∂Evac

∂VR
¼ −ρΛ;

hence,

∂n
∂ lnVR

¼ −1:

Therefore, the reference volume exponentially declines
with the growth of quantum number n, and there is a
maximal number corresponding to a minimal volume of
Planckian length.
This derivation of the actual value for the parameter of

the vacuum state is elementary, but it could be absolutely
impossible if we ignored the variation of the suppression

1The energy-momentum tensor with interactions acts as the
source of matter production; hence, it can cause the creation of
quanta from the vacuum. However, this effect cannot influence
the contribution of ZPMs themselves into its energy density.
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"factor," in contrast to the case of the stationary
ground state.
Let us evaluate the relative inhomogeneity of the field

with respect to the energy density. Thus,

j∇ϕj2
m2hϕi2 ∼

m2ðδϕÞ2
m2hϕi2 ∼

δE
E

∼
1ffiffiffi
n

p ≪ 1:

Therefore, the inhomogeneity is negligible if the field is
nonstationary excited to a large value of quanta.

III. COSMOLOGY AND MODEL ESTIMATES

As we already emphasized, we ignored effects due to a
curved space-time, while we derived our mechanism for the
suppressed cosmological constant even though it is relevant
to the system with gravity. In this respect, we assume that
the relevant quantities can enter as the initial conditions for
the further evolution of the system by taking into account
the gravitational expansion. So the energy density of the
vacuum remains constant, while the quanta and their
energy densities follow the transformations in accordance
with the relative field equations, taking into account the
gravity as well.
Nevertheless, we have to mention that in the literature

there are computations of energy density for the ZPMs in a
curved background, which take into account the depend-
ence on the space-time curvature (see, for instance, the
textbook by Birrell and Davies [6]). Modern investigations
in [7,8] argue that in the curved space-time, for instance, in
the de Sitter space-time close to the space-time of inflation
in the early Universe the ZPMs themselves produce the
energy density that quadratically evolves with the Hubble
rate. We stress that such an effect means that the energy
density of ZPM is not the cosmological constant at all,
since the emergent equation of state (EOS) deviates from
the vacuum equation of state, when the ratio of pressure to
the energy density equals −1, and; hence, ZPMs generate
the form of dark energy. Thus, one has the opportunity to
evaluate the relevant parameter of EOS for such dark
energy. The effect found in [7,8] essentially changes the
energy density of ZPM if the Hubble rate H exceeds the
scale of ZPM energy density in the limit of H → 0, i.e., in
the flat space-time. In this respect, we expect that this
influence of space-time evolution on the ZPM energy
density could be suppressed as the energy density divided
by the second degree of Planck mass and the second degree
of a huge energy scale in the bare cosmological constant. In
addition, the effect found in [7,8] corresponds to the local
fields considered in the whole space-time, including
Hubble and super-Hubble distances, when, for instance,
the dynamics of light scalar fields would be essential [8]. In
contrast, in our model we deal with the global field in the
limited volume, which is much less than the Hubble
volume, when the approximation of the field with the
ordinary machinery of particle representation is very close

to the exact solutions at such distances deep inside the
Hubble horizon. Thus, we hope that the dynamical aspects
of ZPM energy density are not crucial for the scheme
offered in the present paper.
In this context, there are similar and more general

arguments in favor of the situation, when the vacuum
energy cannot be constant and, hence, it would never
represent the cosmological constant since the energy of the
vacuum in the curved space-time evolves due to the
renormalization group equations with the Hubble rate as
the evolution parameter [9–13]. Making use of the con-
formal anomaly and other constructions in models, such
investigations [14,15] argue that the dynamical vacuum
energy can be tested by precision data in cosmology. Again,
these studies deal with dark energy but not the cosmologi-
cal constant, which is considered in our paper.
In our treatment of the suppression factor, the calcu-

lations concerning ZPMs in the curved space-time would
change the exact value of the bare cosmological constant;
however, the mechanism itself starts to work if the system is
essentially excited to the occasional nonstationary state,
which yields the suppression factor of the bare cosmologi-
cal constant even in the presence of space-time curvature.
Thus, in our study we hold the standard point of view on the
vacuum energy equivalent to the cosmological constant and
do not involve the dynamical treatment of vacuum energy
evolving with the Universe expansion. In principle, we see
that the mechanism can be implemented in the studies with
dynamical vacuum energy, too, simply by the insertion of
the suppression factor for the evolving value of the vacuum
energy, which could be considered in further developments
presented elsewhere.
Another aspect of curved space-time is particle creation,

say, during the cosmological evolution [6]. Such creation
changes the energy density of matter by an additional term
depending on the square of the primary density of the
particles or the Hubble rate in the fourth degree, which is
typical for the quantum effects in curved space-time. In this
respect, the additional term is suppressed as the primary
density of energy to the Planck mass in the fourth degree.
This means that such a contribution is negligible if the
energy density is significantly below the Planckian density,
which is assumed for the Universe beyond the region of
quantum gravity. Moreover, such gravitational creation of
matter does not influence the initial cosmological constant
established at the start of evolution. Thus, we expect that
our model can be considered in cosmological aspects.
In the form of expression (8), the described mechanism

rigorously sets the quantum suppression of the bare
cosmological constant. It is relevant to the cosmology
because, at first, the spatially global scalar field could be
associated with the spatially global part of the inflaton
[16–19]; second, a finite volume of causal fluctuations
corresponds to a primary volume of the Universe at the start
of inflation, wherein the inflaton field can be considered as
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spatially global.2 In this way, we can make estimations in a
simple manner, say, by setting the primary fluctuations of
the field as

hvacjϕ2jvaci ∼m2
Pl ⇒

1

VR
∼mm2

Pl;

hence, the average number of the spatially global field
quanta is evaluated by

n ¼ ln
ρbareΛ

ρΛ
∼ 275 − 2 ln

mPl

m
≫ 1;

since the inflaton is quite heavy, i.e., m ∼ 1013 GeV
and n ∼ 250.
Since the mechanism should be accepted as real, we

need to figure out what the number of n is? Our studies
show that the answer can be found, for instance, in the
framework of the model with the inflaton nonminimally
coupled to gravity, i.e., due to the interaction term of the
Lagrangian in the form

Lint ¼
1

2
ξϕmPlR;

where R is the scalar curvature of the metric in the Jordan
frame [20–24]. In the Einstein frame, the inflation scale is
Λinf ∼ 1016 GeV, while the transformed inflaton obtains
the mass of the order of Λinf=ξ. The parameters obey the
relation for the strong coupling,3

n ∼ ξ ∼
mPl

Λinf
:

Note that ξ ≫ 1 results in a strong suppression of amplitude
in a spectrum of relic gravitational waves, if the inflaton
potential is exactly quadratic, when it satisfies the form of
the cosmic attractor for parameters of inflation [22,24]. A
valuable amplitude of relic gravitational waves would point
to the fact that the potential should involve some non-
quadratic terms breaking the attractor predictions at ξ ≫ 1.
This amplitude of primary gravitational waves could be
unambiguously extracted from the detection of B modes of
cosmic microwave background radiation if the foreground
polarization generated by the dust is suppressed in a region
of detection. At present, the enforced amplitude of the B
mode of cosmic microwave background radiation detected
by BICEP2 [25] corresponds to the secondary foreground
produced by the measured dust distribution as the Planck
Collaboration has reported in [26].

Thus, the issue of the enigmatic value of n is transformed
to fix the hierarchy of Λinf ≪ mPl. Why does the inflation
involve two energy scales? In our opinion, the answer
would solve the cosmological constant problem [9,27–29].

IV. DISCUSSION AND GENERALIZATIONS

Let us argue for the relevance of the spatially global
scalar field to the cosmological constant. In the frame-
work of quantum field theory, the sum of divergent
contributions of any existing fields into the vacuum
energy density should be treated as a new independent
global dimensional quantity with zero charges of vac-
uum. Therefore, we can consider this quantity as
reducible from the vacuum expectation of the appro-
priate scalar field ϕ by introducing the contribution to
the Lagrangian in the form of ϕΛ3

0, which reproduces
the cosmological constant at some ϕ ↦ hϕi ¼ ϕ0.
Without gravity, the value of the cosmological constant
is irrelevant to the physics, and it can take any value
that corresponds to the global shift symmetry
ϕ ↦ ϕþ ϕc, while the action can contain any scalar
terms dependent on ∂μϕ and the trivial flat potential of
ϕ. These properties are characteristic of the inflaton
field. This gravity is responsible for a generation of
terms breaking the global shift symmetry, particularly, a
nonflat potential as well as the kinetic term for ϕ, which
makes it the dynamical field of the inflaton.
Finally, we can straightforwardly generalize the mecha-

nism to the calculation of vacuum energy for the nonho-
mogeneous scalar field. In this case, the bare expression for
the average tensor of energy and momentum,

hvacjTν
μjvaci

¼ hvacj
�
∂μϕ∂νϕ −

1

2
δνμð∂ϕÞ2 þ 1

2
δνμm2ϕ2

�
jvaci;

can be written as the integral

hvacjTν
μjvaci

¼
Z

d4k
ð2πÞ4

i
k2 −m2 þ i0

�
kμkν −

1

2
δνμðk2 −m2Þ

�
:

After the Wick rotation k0 ¼ ik4 to the Euclidean space,
wherein k2 ¼ −k2E, we get

hvacjTν
μjvaci

¼
Z

d4kE
ð2πÞ4

1

k2E þm2

�
−kEμkνE þ 1

2
δνμðk2E þm2Þ

�
;

and the isotropic integration makes the replacement

kEμkνE ↦
1

4
k2Eδ

ν
μ;

2The volume of causal fluctuations is not equivalent to the
Hubble volume determined by the initial density of energy. The
Hubble volume could be greater than the finite volume of causal
fluctuations. Therefore, the inflaton can obtain a valuable
inhomogeneity in the initial Hubble volume.

3We will present more details elsewhere.
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resulting in the expected divergent expression with the
vacuum signature of δνμ in the tensor structure,

hvacjTν
μjvaci ¼ δνμ

1

4

Z
d4kE
ð2πÞ4

1

k2E þm2
fk2E þ 2m2g:

At this stage we can use the introduction of the effective
number of quanta with the Euclidean four-momentum kE,
n ¼ nðk2EÞ in order to get the true expression for the energy
density of suppressed vacuum fluctuations,

ρΛ ¼ 1

4

Z
d4kE
ð2πÞ4

e−nðk2EÞ

k2E þm2
fk2E þ 2m2g: ð9Þ

This value is finite if n increases with k2E, say, polynomially.
Thus, setting the ansatz of linear dependence

nðk2EÞ ¼ n̄þ k2E
Λ̄2

;

we find

ρΛ ¼ 1

32π2
e−n̄

�
Λ̄4 þm2Λ̄2 −m4

�
ln
Λ̄2

m2
− γE

þO
�
m2

Λ̄2
ln
Λ̄2

m2

���
;

where γE ≈ 0.5772 is the Euler gamma. In the limit of n̄ ↦
n given in the case of the spatially global field, the
cosmological constant obtains the leading term of Λ̄4 by
the virtual modes and subleading contribution of m2Λ̄2

analogous to the expression derived for the ZPMs of the
global field4 at Λ̄ ↦ mPl. The suppression factor gets the
form of exponentiating the effective number of quanta for
the spatially global field. Thus, the quantum description of
vacuum energy density in the nonstationary state shows the
justified difference from the naive expectations on the

cosmological constant formed by fluctuations of the ZPMs,
i.e., the bare cosmological constant.
Note that the energy density in the model of growing

nðk2EÞ formally becomes infinite, unless we introduce an
evident cutoff,

VR

Z
Λcut

0

d3k
ð2πÞ3 nðk

2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
¼ Etot;

by setting a finite total energy Etot in the reference volume.
Nevertheless, our consideration remains valid in the case
of Λcut ≫ Λ̄.
As is evident, our mechanism does not appear to be

straightforwardly effective in the case of any fermionic
field, when the occupation number takes only two values:
zero and unit. However, the global fermionic field is not
relevant to the cosmological constant. At this point, it is
important to note that we assign the bare cosmological
constant to the sum over all contributions of physical fields,
including fermionic fields and, say, the Higgs boson, quark-
gluon condensates and so on. The gravity is the reason why
the bare cosmological constant is transformed into the real
dynamical scalar field with the vacuum quantum numbers
of charges, i.e., into the inflaton, which is nonstationary
excited from the state of minimal energy in the finite
volume. Then, by quantum-mechanical means, the excita-
tion produces the suppression of the bare cosmological
constant.
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