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In this paper, we extend our earlier study of the spontaneous CP violating scattering of quarks and
antiquarks from QCD Zð3Þ domain walls for the situation when these walls have asymmetric profiles of the
Polyakov loop order parameter lðxÞ. Dynamical quarks lead to the explicit breaking of Zð3Þ symmetry,
which lifts the degeneracy of the Zð3Þ vacua arising from spontaneous breaking of the Zð3Þ symmetry in
the quark-gluon plasma phase. The resulting domain walls have an asymmetric profile of lðxÞ (under the
reflection x → −x for a domain wall centered at the origin). We calculate the background gauge field
profile A0 associated with this domain wall profile. Interestingly, even with the asymmetric lðxÞ profile,
quark-antiquark scattering from the corresponding gauge field configuration does not reflect this
asymmetry. We show that the expected asymmetry in scattering arises when we include the effect of
the asymmetric profile of lðxÞ on the effective mass of quarks and antiquarks and calculate the resultant
scattering. We discuss the effects of such asymmetric Zð3Þ walls in generating quark and antiquark density
fluctuations in cosmology, and in relativistic heavy-ion collisions, e.g., event-by-event baryon fluctuations.
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I. INTRODUCTION

Search for the quark-gluon plasma (QGP) phase of QCD
in relativistic heavy-ion collision experiments (RHICE) has
reached a mature stage, with observations providing
compelling evidence that the QGP phase is created in
these experiments. While a definitive conclusion about the
discovery of QGP is still awaited, it is an appropriate time
to explore new effects and new structures in this exotic
phase of QCD. This is particularly important due to its
implications for the case of the early Universe, as well as
for the cores of dense astrophysical objects like neutron
stars. One such new effect is the possibility of extended
topological objects in the QGP phase which arise from
the spontaneous breaking of the center symmetry Zð3Þ of
the color SUð3Þ group. The Zð3Þ symmetry is broken
spontaneously as the Polyakov loop, lðxÞ, which is an order
parameter for the confinement-deconfinement phase tran-
sition for pure gauge theory [1], assumes a nonzero value in
the deconfined phase. The resulting domain walls, so-
called Zð3Þ walls [2–4], are in some sense similar to the
axionic domain walls in the Universe. Interestingly, just
like axionic cosmic strings, here also there are topological
strings associated with the junctions of these Zð3Þwalls [5].
The study of these defects becomes more relevant in the
present era of relativistic heavy-ion collision experiments
as the temperature and energy densities that are needed to
form these defects is (hopefully) accessible in these

accelerators. In fact, these defects are the only defects in
a relativistic quantum field theory that can be probed in
present day laboratory conditions.
In earlier works, some of us have studied the formation

and evolution of these topological objects in the initial
transition to the QGP phase in the context of RHICE [6].
Various consequences of Zð3Þ walls have been discussed in
these works for RHICE arising from the nontrivial scatter-
ing of quarks from Zð3Þwalls. Implications of the existence
of these walls in the early Universe has also been discussed
in [7], where it is shown that baryon inhomogeneities can
arise from the scattering of quarks from Zð3Þ walls.
Scattering of quarks/antiquarks was studied in [7] by
modeling the dependence of effective quark mass on the
magnitude of the Polyakov loop order parameter lðxÞ.
Spatial dependence of the profile of lðxÞ leads to spatially
varying effective mass, which behaves as potential in the
Dirac equation for quarks/antiquarks leading to nontrivial
scattering. As this effective mass (potential) is the same for
quarks and antiquarks, the resulting scattering is the same
for both.
In [8] we followed a different method for studying the

scattering of quarks/antiquarks from Zð3Þ walls. We
assume that the profile of lðxÞ corresponds to a sort of
condensate of the background gauge field A0 (following the
definition of the Polyakov loop order parameter). We
calculate this profile of the background gauge field from
the profile of lðxÞ. Such a gauge field configuration, when
used in the Dirac equation, leads to a potential which is
different for quark and antiquark, leading to spontaneous
CP violation in the scattering of quarks and antiquarks
from a given Zð3Þ wall. This CP violation is spontaneous,
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as it arises from a specific background configuration of the
gauge field corresponding to a given Zð3Þ wall. This was
first discussed by Altes et al. [9,10], who argued, in the
context of the Universe, that due to the nontrivial back-
ground field configuration for the standard model gauge
fields, the localization of quarks and antiquarks on the wall
is different. Its possible effects on the electroweak baryo-
genesis via sphalerons was discussed in [9,10]. This
spontaneous CP violation for the case of QCD was also
discussed in [11]. The CP violating effects discussed in the
above works were primarily qualitative, as the exact
profiles of A0 were not calculated. In [8], we use the
profile of Polyakov loop lðxÞ between different Zð3Þ vacua
[which was obtained by using the specific effective
potential for lðxÞ, as discussed in [12]] to obtain the full
profile of the background gauge field A0. This background
A0 configuration acts as a potential for quarks and
antiquarks, causing a nontrivial reflection of quarks from
the wall. There we also showed that this spontaneous CP
violation arising from the background A0 configuration
leads to different reflection coefficients for quarks and
antiquarks. In a series of follow-up works [13,14], we
studied the effect of this difference on the scattering of
quarks and antiquarks from Zð3Þ walls in the context of
ongoing relativistic heavy-ion collision experiments and
the early Universe. In [13], we discussed a novel mecha-
nism of J=ψ disintegration in the relativistic heavy-ion
collision experiments. We showed that the localized electric
field in the CP violating Zð3Þ domain wall in the QGP
phase leads to the disintegration of quarkonia. In [14], we
studied the effect of this CP violation on baryon transport
across the collapsing Zð3Þ domain walls in the early
Universe. We showed that it can lead to the formation of
quark nuggets as well as antiquark nuggets by segregating
baryons and antibaryons in different regions of the
Universe near a QCD phase transition epoch. As quarks
are concentrated in a given collapsing domain wall, similar
amounts of antiquarks get concentrated in another collaps-
ing domain wall which has the CP conjugate configuration
of A0 corresponding to the interchange of the two Zð3Þ
vacua with respect to the first domain wall case. Thus, for a
given size of collapsing domain walls, the resulting nugget
sizes are identical for quarks and antiquarks.
There have been some objections concerning the exist-

ence of Zð3Þ walls (and of the associated field A0) in the
Minkowski space. We refer to our earlier work [8] for a
discussion of this aspect. The existence of these Zð3Þ walls
becomes a nontrivial issue in the presence of quarks. It has
been argued that Zð3Þ symmetry loses its meaning in the
presence of dynamical quarks [15,16]. It is argued there
that these Zð3Þ domains have unacceptable thermodynamic
behavior, leading to negative specific heat and, more
seriously, negative entropy. We recognize that there are
certainly conceptual issues regarding the existence of these
structures. However, at the same time they allow very

interesting possibilities for the QGP phase, with rich
phenomenology. It therefore looks reasonable to explore
the possible consequences of these Zð3Þ domains and
associated walls. We may point out that despite these
conceptual issues, amongst all models allowing for exist-
ence of topological extended structures (domain walls,
strings, etc., which have been proposed in various particle
physics theories in the early Universe), these Zð3Þ domain
walls (and the associated QGP string) may be most well
motivated. Indeed, if these objects exist, these will be the
only relativistic field theory topological solitons which are
accessible in laboratory experiments. Their detection will
not only provide deep insights into the nontrivial physics of
the QGP phase, it will also have very important implica-
tions for cosmology.
We will follow the approach that one can regard the

effect of quarks in terms of the explicit breaking of Zð3Þ
symmetry [17–19]. This finds support in the recent lattice
calculations of QCD with quarks [20], which suggest that
there is a strong possibility of the existence of these Zð3Þ
vacua at high temperatures. Since the presence of quarks
lifts the degeneracy of different Zð3Þ vacua, the Zð3Þ
interfaces are no longer solutions of time independent field
equations as they move away from the region with the
unique true vacuum. However, it is important to note that
with quark effects (taken in terms of explicit symmetry
breaking), the interfaces survive as nontrivial topological
structures, even though they do not remain solutions of time
independent equations of motion. As the resulting profile of
lðxÞ between the true vacuum and a metastable vacuum is
no more symmetric, it raises interesting possibilities for the
generation of quark and antiquark inhomogeneities as a
network of collapsing domain walls is considered, with
different walls interpolating between different sets of Zð3Þ
vacua. The situation is even more interesting, as with
explicit symmetry breaking certain closed domain walls
with a true vacuum inside (and with sufficiently larger size)
may expand [21]. This can lead to the concentration of
quarks and antiquarks in a shell-like structure, which can
have important implications in cosmology (for large shells)
and in RHICE, where it may imply a concentration of
baryons or antibaryons near the surface of the QGP region.
With these motivations, we extend our earlier study of

[8] in this paper with an incorporation of the effects of
explicit symmetry breaking arising from dynamical quarks.
We find that even though the profile of lðxÞ is asymmetric
in this case (under the reflection x → −x), quark-antiquark
scattering from the gauge field configuration associated
with it does not show any difference from the symmetric
case when explicit Zð3Þ symmetry breaking is absent. More
precisely, the scattering of a quark from true vacua on the
wall is identical to the scattering of an antiquark from the
metastable one. We then include the effect of the asym-
metric profile of lðxÞ on the effective mass of quarks and
antiquarks and calculate resultant scattering. Because of the
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asymmetric profile of lðxÞ, the resulting effective mass of
quarks and antiquarks is different when considering the
scattering of the quark coming from the true vacua or from
the metastable one (though it is the same for quark and
antiquark). This, combined with the CP violating scattering
resulting from the background gauge field configuration
associated with this lðxÞ, leads to asymmetry in the
scattering of quarks moving from the true vacuum towards
the metastable vacuum and antiquarks moving from the
metastable vacuum towards the true vacuum. This will lead
to important differences in the resulting concentrations of
quarks and antiquarks in cosmology as well as in RHICE.
In our entire discussion we have assumed that the true
vacua is on the left of the domain wall, while the metastable
one is on the right.
The paper is organized in the following manner. In Sec. II

we recall the basic physics of the origin of spontaneous CP
violation due to the presence of Zð3Þ interfaces and briefly
introduce the effective potential for the Polyakov loop
incorporating the explicit breaking of Zð3Þ symmetry.
Calculation of the asymmetric profile of lðxÞ for this case
and its associated gauge field configuration is somewhat
nontrivial and we discuss this in Sec. III. In Sec. IV we first
discuss the scattering of quarks and antiquarks from this
gauge field configuration and show that it leads to the same
results for quark and antiquark concentrations as for the case
without any explicit symmetry breaking. We then introduce
the lðxÞ dependent effective mass for quarks and antiquarks
and show that the resultant scattering is different for quarks
moving from true vacuum towards the metastable vacuum
and antiquarks moving from metastable vacuum towards the
true vacuum. Section V presents a discussion and conclu-
sions where we discuss the possible implications of these
results for cosmology and RHICE.

II. SPONTANEOUS CP VIOLATION
FROM Zð3Þ WALLS

We briefly recall the basic physics of the origin of the
spontaneous CP violation arising from Zð3Þ walls. The
source of this CP violation is a background condensate of
the gauge field A0 which we take to correspond to the
profile of lðxÞ. This association is made following the
definition of the Polyakov loop [1,22,23],

LðxÞ ¼ 1

N
Tr

�
P exp

�
ig
Z

β

0

A0ð~x; τÞdτ
��

; ð1Þ

where A0ð~x; τÞ ¼ Aa
0ð~x; τÞTa; ða ¼ 1;…NÞ are the gauge

fields and Ta are the generators of SUðNÞ in the funda-
mental representation. P denotes the path ordering in the
Euclidean time τ, and g is the gauge coupling. Under the
global ZðNÞ symmetry transformation, the Polyakov loop
transforms as

LðxÞ ⟶ Z × LðxÞ; where Z ¼ eiϕ; ð2Þ
with ϕ ¼ 2πm=N; m ¼ 0; 1…ðN − 1Þ.

The thermal average of the Polyakov loop, hLðxÞi
[which we denote as lðxÞ], is related to the free energy
of an infinitely heavy test quark in a pure gluonic medium
[lðxÞ ∝ e−βF]. In the confined phase, a test quark should
have infinite energy implying that lðxÞ ¼ 0. In the decon-
fined phase, a test quark will have finite energy, implying a
nonzero value of lðxÞ. Thus lðxÞ serves as an order
parameter for the confinement-deconfinement transition.
In view of Eq. (2), a nonzero value of lðxÞ leads to a
spontaneous breaking of the ZðNÞ symmetry in the high
temperaturedeconfinedphase,while this symmetry is restored
in the low temperature confined phase when lðxÞ ¼ 0. For
QCD, N ¼ 3, hence, the confinement-deconfinement transi-
tion in QCD corresponds to a spontaneous breaking of Zð3Þ
symmetryleadingtotheZð3Þdomainwalls(andtheassociated
QGP string; see Ref. [5]).
As we mentioned, we determined the background gauge

field configuration A0 from the profile of lðxÞ for a specific
domain wall which interpolates between two Zð3Þ vacua
without quark effects. For determining the profile of lðxÞ
interpolating between different Zð3Þ vacua, we used the
specific effective potential for the Polyakov loop from
Ref. [12], with the Lagrangian density given by

L ¼ N
g2

j∂μlj2T2 − VðlÞ: ð3Þ

Here N ¼ 3 for QCD. T2 is multiplied in the first term to
give the correct dimensions to the kinetic term. The
effective potential VðlÞ for the Polyakov loop is given as

VðlÞ ¼
�
−
b2
2
jlj2 − b3

6
ðl3 þ ðl�Þ3Þ þ 1

4
ðjlj2Þ2

�
b4T4:

ð4Þ
The coefficients b2, b3, and b4 are dimensionless quantities.
These parameters are fitted in Refs. [17–19] such that the
effective potential reproduces the thermodynamics of pure
SUð3Þ gauge theory on a lattice [24,25]. The coefficients
are b2 ¼ ð1 − 1.11=xÞð1þ 0.265=xÞ2ð1þ 0.300=xÞ3 −
0.478 (with x ¼ T=Tc and Tc ∼ 182 MeV), b3 ¼ 2.0,
and b4 ¼ 0.6061 × 47.5=16. With these values, lðxÞ ⟶
y ¼ b3=2þ 1

2
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b23 þ 4b2ðT ¼ ∞Þ

p
as T ⟶ ∞. Various

quantities are then rescaled such that lðxÞ ⟶ 1 as
T ⟶ ∞. The scalings are

lðxÞ → lðxÞ
y

; b2 →
b2
y2

;

b3 →
b3
y
; b4 → b4y4: ð5Þ

At low temperatures where l ¼ 0, the potential has only
one minimum. For temperatures higher than Tc, the
Polyakov loop develops a nonvanishing vacuum expect-
ation value l0, and the cubic term above leads to Zð3Þ
degenerate vacua. The lðxÞ profile is calculated by energy
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minimization; see Ref. [5] for details. From the lðxÞ profile,
the A0 profile is calculated by inverting Eq. (1). Figure 1
shows the jlðxÞj profile as obtained by a minimization of
energy. This is the red (solid) curve on the left figure. We
then calculate the A0 profile from the lðxÞ profile, which is
shown on the right in Fig. 1. This A0 profile was then used
to calculate jlðxÞj again to see if it reproduces the jlðxÞj as
given by the energy minimization program. Cal jLj (dashed
curve) in the left figure shows the profile calculated from
A0. The inset shows the error between two jLj values,
clearly showing that our method works very well.
Forvarious conceptual issues regarding this calculation,we

refer to our earlier work [8]. To address the issue of uncer-
tainties in the determinationof theA0 profile dependingon the
choice of the specific form of the effective potential, we had
repeated this calculation of A0 profile, in Ref. [8], for another
choice of an effective potential of the Polyakov loop, as
providedbyFukushima[26]. Itwas found thateven though the
two effective potentials (in Refs. [12] and [26]) are of
qualitatively different shapes, the resulting wall profile and
theA0 profilewere very similar. This gives us confidence that
our conclusions arising from the calculations of the scattering
of quarks and antiquarks from Zð3Þ walls are not crucially
dependent on the specific choice of the effective potential.
We now include the effects of dynamical quarks leading

to an explicit breaking of Zð3Þ symmetry. For this, we will
follow the approach where the explicit breaking of the Zð3Þ
symmetry is represented in the effective potential by
inclusion of a linear term in l [17–19,27]. The above
potential VðlÞ with the linear term becomes

VðlÞ ¼
�
−
b1
2
ðlþ l�Þ − b2

2
jlj2

−
b3
6
ðl3 þ l�3Þ þ 1

4
ðjlj2Þ2

�
b4T4: ð6Þ

Here coefficient b1 measures the strength of explicit
symmetry breaking. [In view of Eq. (5), b1 is scaled as
b1 → b1=y3.] A discussion of various values that b1 can

have is given in [27]. A nonzero value of b1 lifts the
degeneracy between the three Zð3Þ vacua. Vacua corre-
sponding to θ ¼ 2π=3 (l ¼ z) and θ ¼ 4π=3 (l ¼ z2)
remain degenerate, while the true vacuum with a lower
energy corresponds to l ¼ 1 (θ ¼ 0). Thus, the l ¼ z and
l ¼ z2 vacua become metastable. The value of b1 can be
related to the estimates of explicit Zð3Þ symmetry breaking
arising from quark effects which have been discussed in the
literature. In the high temperature limit, the estimate of the
difference in the potential energies of the l ¼ z vacuum and
the l ¼ 1 vacuum, ΔV, is given in Ref. [28] as

ΔV ∼
2

3
π2T4

Nl

N3
ðN2 − 2Þ; ð7Þ

where Nl is the number of massless quarks. If we take
Nl ¼ 2, then ΔV ≃ 3T4. For T ¼ 400 MeV, this value of
ΔV is obtained if we take the value of b1 ¼ 0.645. For
temperatures of order Tc, it is not clear what should be the
appropriate value of b1. It is entirely possible that b1 may
be very small near Tc. (Possible reasons for taking very
small values of b1 are discussed in detail in Ref. [21].) We
mention that as the parameter values for the effective
potential [Eq. (6)] are appropriate for T near Tc, we confine
our attention to temperatures between Tc and 400 MeV (as
a sample value). This is also the regime of the temperature
of interest for heavy-ion collisions and for baryon inho-
mogeneity generation before the quark-hadron transition in
the Universe. For such temperatures, the number of mass-
less quarks Nl ¼ 2 looks appropriate. This already gives a
very large value of ΔV, as mentioned above (compared to
the central barrier height of the effective potential, as
explained in detail in Refs. [5–7]). Nl ¼ 3 will give an
even larger value ofΔV, leading to a somewhat larger value
of b1. The smallest value of b1 we consider to be 0.03 as a
sample value for small explicit symmetry breaking. Such
values were considered in Ref. [21], as with small explicit
symmetry breaking there is a range of temperatures where a
first order transition happens. For large values of b1, the
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FIG. 1 (color online). Plot of jlðxÞj obtained from an energy minimization for b1 ¼ 0.0 and T ¼ 400 MeV. The corresponding A0

configuration is on the right. The A0 profile fits well with a tanh function.
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first order transition disappears. In view of these uncer-
tainties in the magnitude of explicit symmetry breaking for
temperatures near Tc, we will consider a range of values of
b1 between 0.03–0.65. This range seems large enough to
illustrate the basic physics of how asymmetry of the wall
affects the reflection coefficients. We determine the profile
of lðxÞ and the associated A0 profile for these values of b1.

III. PROFILES OF lðxÞ AND ASSOCIATED GAUGE
FIELD CONFIGURATION WITH EXPLICIT

SYMMETRY BREAKING

The explicit symmetry breaking arising from quark
effects will have important effects on the structure of
Zð3Þ walls. For nondegenerate vacua, even planar Zð3Þ
interfaces do not remain static and move away from the
region with the unique true vacuum. Thus, while for the
degenerate vacua case every closed domain wall collapses,
for the nondegenerate case this is not true anymore.
A closed wall enclosing the true vacuum may expand if
it is large enough so that the surface energy contribution
does not dominate.
The absence of time independent solutions of the field

equations for Zð3Þ walls leads to complications in the
implementation of the techniques of Ref. [5] for a deter-
mination of the lðxÞ profile for the domain wall which was
based on the algorithm of energy minimization. In Ref. [5],
the correct lðxÞ profile was obtained from an initial trial
profile by fluctuating the value of lðxÞ at each lattice point
and determining the acceptable fluctuation which lowers
the energy (with suitable overshoot criterion, etc., as
described in detail in Ref. [5]). For the case without explicit
symmetry breaking, a trial initial configuration of lðxÞ with
appropriate fixed boundary conditions [corresponding to
the two Zð3Þ vacua under consideration] yielded the correct
profile of lðxÞ for the wall within relatively few iterations.
However, with explicit symmetry breaking, this simple
procedure fails, as energy can always be lowered by

shifting the wall towards metastable vacua (thus expanding
the region with a true vacuum).
From the computational point of view, one of the major

changes due to the inclusion of the b1 term is the scaling.
Without b1, all of the vacua are degenerate, so jlðxÞj → 1 in
all of the vacua. However, that is not the case with the
potential given by Eq. (6). This leads to the b1 dependence
of the scaling. We normalize the potential in such a manner
that jlðxÞj → 1 in the true vacuum. As we mentioned above,
the energy splitting between vacua itself amounts to a
pressure difference between the two vacua. Thus the
program tries to minimize the energy by moving the
domain wall in one direction till it goes completely out
of the lattice; in the process it changes the boundary values
too if they are not held fixed. If we fix the boundary value in
the far left and far right region of the lattice, the program
minimizes the energy by not only moving the profile in the
intermediate region but also by readjusting the values of
jlðxÞj on the two sides. The effect is most pronounced for
the large b1. This statement becomes clearer if we look at
Fig. 2. It shows the initial and final profiles of lðxÞ between
the l ¼ 1 and l ¼ z vacua for b1 ¼ 0.645 at T ¼ 400 MeV.
The asymmetry is pretty clear in the boundary conditions of
the initial trial configuration itself. Note the central region
in the final configuration (the solid curve). There is a sharp
variation of jlðxÞj in a small region and on either side of it
the jlðxÞj values are the same (but different from actual
boundary values), leading to a stable configuration in the
middle. Since the domain wall is characterized by the sharp
variation of the field in a small spatial region, we fit the
profile such that it meets the correct boundary values while
keeping the variation as given by the energy minimization
program. This is shown by the dotted curve in the left
figure. Though this procedure of a smoothening of the
domain wall profile near its edges is somewhat ad hoc, it
will not affect our results much, as the scattering of quarks
and antiquarks is primarily decided by the height and width
of the sharply varying profile of lðxÞ. Upon comparison
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FIG. 2 (color online). Plot of jlðxÞj obtained from the energy minimization for b1 ¼ 0.645 (the solid curve). On the left is the initial
trial configuration. The final configuration is on the right.
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with Fig. 1 (for the b1 ¼ 0 case), we note that the explicit
breaking of the Zð3Þ symmetry leads to asymmetric profiles
of lðxÞ. This immediately suggests that there will be a
difference between the scattering of a quark coming from
the right (from the metastable vacuum side) and the
scattering of the one coming from the left (from the true
vacuum side).
The A0 profile corresponding to the lðxÞ profile was

calculated in our earlier paper [8], where we also discussed
various conceptual issues related to the ambiguities in the
extraction of a colored quantity A0 from color singlet lðxÞ.
We choose the Polyakov gauge (diagonal gauge) for A0:

A0 ¼
2πT
g

�
a
λ3
2
þ bλ8

2

�
; ð8Þ

where g is the coupling constant and T is the temperature,
while λ3 and λ8 are the diagonal Gell-Mann matrices. The
A0 profile was obtained from the lðxÞ profile (Fig. 2) by
inverting Eq. (1). We present a brief discussion of how to
obtain the A0 profile from the lðxÞ profile. See Ref. [8] for
details. Substituting Eq. (8) into Eq. (1) and comparing the
real and imaginary parts, we get

cosðαÞ þ cosðβÞ þ cosðγÞ ¼ 3jlðxÞj cosðθÞ; ð9aÞ

sinðαÞ þ sinðβÞ þ sinðγÞ ¼ 3jlðxÞj sinðθÞ; ð9bÞ

where, α ¼ 2πðaþ bÞ, β ¼ 2πðb − aÞ, and γ ¼ 2πð−2bÞ
[(a,b) are defined in Eq. (8)]. θ is defined by
lðxÞ ¼ jlðxÞjeiθ. For each of the l ¼ 1; z; z2 vacua, the
solutions are a set of the ordered pairs ða; bÞL¼1;z;z2 . We
choose one pair, ða; bÞL¼1, as the initial condition. By
demanding that a and b (and hence A0) vary smoothly
across the wall [as the profile of LðxÞ changes smoothly],
we approach the appropriate values of ða; bÞL¼z in the L ¼
z; z2 vacuum. Once we have the a and b profiles, A0 is
calculated using Eq. (8). We have carried out this calcu-
lation for the profiles of lðxÞ obtained from the energy
minimization program for b1 ≠ 0 (Fig. 2). The calculated

a; b was then used to calculate A0 using Eq. (8). The A0

profile thus obtained is reasonably well fitted to the
function A0ðxÞ ¼ p tanhðqxþ rÞ þ s using GNUPLOT.
The calculated A0 profile and the fitted A0 profile are
plotted in Fig. 3.
We note that the fit to the tanh profile is almost perfect,

just as in the case of b1 ¼ 0 in Fig. 1. We thus conclude that
the scattering of a quark coming from the side of a true
vacuum with such an A0 profile (in the Dirac equation) will
be the same as the scattering of an antiquark coming from
the side of the metastable vacuum (with the same kinetic
energy). Thus a collapsing domain wall with l ¼ 1 inside
and l ¼ z outside will give the same reflection coefficients
(and hence the same resulting concentration) for quarks
inside as a collapsing domain wall with l ¼ z inside and
l ¼ 1 outside will give for antiquarks (assuming zero
baryon chemical potential). This is interesting in view of
the asymmetric profiles of lðxÞ in Fig. 2 for b1 ≠ 0 cases.
There will still be important differences from the b1 ¼ 0
case, however, as now a sufficiently large closed domain
wall with a true vacuum (l ¼ 1) inside will expand instead
of collapsing, leading to the concentration of quarks or
antiquarks in a shell-like region. We will discuss these
possibilities later in Sec. V.
It may also be noted that we have shown A11

0 for b1 ¼
0.645 and A22

0 for b1 ¼ 0.03. This is because both of the
profiles are similar in shape and size. It has to do with the
choice of initial ða; bÞ values while calculating A0. When
extracting A0 from the lðxÞ profile by inverting Eq. (1)
using Eq. (8), we get various sets of values for ða; bÞ. We
take one set as the initial condition and get the A0 profile.
Now if we take another value, say ð−a; bÞ, then from
Eq. (8) it is clear that A11

0 and A22
0 get interchanged. This

means that whatever the reflection probability for the red
quark in the first case was, it is the same for the green quark
in the second case. That is the case in Fig. 3. This
essentially means that we should compare the reflection
of the red quark in the b1 ¼ 0.645 case with the reflection
of the green quark in the b1 ¼ 0.03 case. One may use the
hit and trial method to find a specific choice of ða; bÞ in the
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FIG. 3 (color online). Plot of the calculated A0 and the fitted profile [A0ðxÞ ¼ p tanhðqxþ rÞ þ s] for b1 ¼ 0.03 and 0.645.
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case of b1 ¼ 0.03 such that the A11
0 obtained has the same

spatial variation as the one for b1 ¼ 0.645. We refer to
Ref. [8] for further details on this issue of initial conditions.
We would like to point out that there were typographical
errors in Eq. (7), and in the definitions of α; β; γ in Eq. (8)
in Ref. [8].
As we mentioned, it is interesting to note that the

asymmetry of lðxÞ is not reflected in the background gauge
configuration. The effect of nonzero b1 is reflected in the A0

profile not in terms of the change in shape but in terms of the
height of the potential getting reduced. For b1 ¼ 0.645, the
height of A0 is almost 100 MeV less than the height of A0 in
the b1 ¼ 0.03 case. However, this decrease in height will not
give any asymmetry in the reflection of the quarks and
antiquarks from the A0; neither will it change the amount of
reflection in a drastic fashion. We will now consider another
possibility which allows for asymmetry in the concentration
of quarks and antiquarks for the b1 ≠ 0 case.
For this we recall the discussion of quark/antiquark

scattering due to l dependent effective mass, as discussed
in Ref. [7]. The basic idea proposed in Ref. [7] was that as
lðxÞ is the order parameter for the quark-hadron transition,
physical properties such as the effective mass of the quarks
should be determined in terms of lðxÞ. This also looks
natural from the expected correlation between the chiral
condensate and the Polyakov loop. Lattice results indicate
that the chiral phase transition and the deconfinement phase
transition may be coupled, i.e., as the Polyakov loop
becomes non zero across Tc, the chiral order parameter
attains a vanishingly small value. Thus, if there is a spatial
variation in the value of lðxÞ in the QGP phase, then the
effective mass of the quark traversing that region should also
vary (say, due to a spatially varying chiral condensate). For
regions where lðxÞ ¼ 0, quarks should acquire constituent
mass as appropriate for the confining phase. To model the
dependence of the effective quark mass on lðxÞ, we could
use the color dielectric model of Ref. [29] identifying lðxÞ
with the color dielectric field χ in Ref. [29]. The effective
mass of the quark was modeled in [29] to be inversely
proportional to χ. This leads to a divergent quark mass in the
confining phase consistent with the notion of confinement.
However, we know that the divergence of quark energy in
the confining phase should be a volume divergence (effec-
tively, the length of string connecting the quark to the
boundary of the volume). 1=lðxÞ dependence will not have
this feature; hence, we do not follow this choice. For the sake
of simplicity and for order of magnitude estimates at this
stage, we will model the quark mass dependence on lðxÞ in
the following manner:

mðxÞ ¼ mq þm0ðl0 − jlðxÞjÞ: ð10Þ

Here lðxÞ represents the profile of the Zð3Þ domain wall,
and l0 is the vacuum value of jlðxÞj (for the true vacuum)
appropriate for the temperature under consideration. mq is

the current quark mass of the quark as appropriate for the
QGP phase with jlðxÞj ¼ l0, with mu ≃md ¼ 10 MeV and
ms ≃ 140 MeV. m0 characterizes the constituent mass
contribution for the quark. We will take m0 ¼ 300 MeV.
Note that here mðxÞ remains finite even in the confining
phase with lðxÞ ¼ 0. As mentioned above, this is reason-
able since we are dealing with a situation where lðxÞ differs
from l0 only in a region of thickness of order 1 fm
(thickness of the domain wall).
The space dependent part of mðxÞ in Eq. (10) is taken as

a potential term in the Dirac equation for the propagation of
quarks and antiquarks. As we can see from Fig. 1, lðxÞ
varies across a Zð3Þ interface, acquiring a small magnitude
in the center of the wall. A quark passing through this
interface, therefore, experiences a nonzero potential barrier
leading to a nonzero reflection coefficient for the quark.
The important thing here is that because of the asymmetric
profile of l (Fig. 2), the effective mass of the quarks/
antiquarks will have different values on the two sides of the
domain wall. This effect, when combined with the scatter-
ing from the background A0 configuration, will lead to
asymmetry in the scattering of the quarks from one side
and that of the antiquarks from the other side of the
domain wall.
One may be concerned here whether combining the

scattering from the A0 configuration with the scattering due
to the l dependent effective mass amounts to double
counting, in the sense that both effects originate from
the same lðxÞ profile. For this we note that there are indeed
two different effects at play here due to the existence of
Zð3Þwalls. The first effect arises from the existence of three
different phases of the QGP characterized by the sponta-
neous breaking of Zð3Þ symmetry. In the absence of
explicit symmetry breaking one will expect that the physics
should be identical for these three phases. Thus, even the l
dependent effective mass of quarks should have the same
value in these three phases, as indeed is the case in Eq. (10)
due to the same value of jlj in the three Zð3Þ phases.
However, with explicit symmetry breaking, there is no
physical argument to say that the physics should be the
same for the three Zð3Þ vacua, as the two vacua (l ¼ z and
l ¼ z2) become metastable. As jlj in these two vacua has a
smaller magnitude, the effective mass of the quarks may
actually be larger in these two phases of QGP. As explained
for Eq. (10), we can think of this jlj dependent mass in
terms of a chiral condensate whose value will depend on
lðxÞ. [We mention that the lðxÞ dependent quark mass by
itself is a nontrivial implication of our proposal and it will
have many other interesting implications on the propaga-
tion of quarks/antiquarks in QGP in the presence of these
Zð3Þ domains.] Next we come to the presence of the
background gauge field. This arises from a spatial variation
of lðxÞ leading to a color electric field from which quarks
and antiquarks scatter in different manner. This color
electric field is entirely localized at the boundary of
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Zð3Þ domains [where lðxÞ has a spatial variation] and
vanishes in the interiors of the Zð3Þ domains. It couples
differently to quarks/antiquarks of different color charges.
Hence, this effect is entirely different from the effect of an
effective mass which has different values in the interiors of
the two domains, irrespective of the color charges of quarks
and antiquarks [even though for scattering purposes, both
effects lead to a nontrivial potential at the location of the
Zð3Þ wall].

IV. REFLECTION AND TRANSMISSION
COEFFICIENTS WITH EXPLICIT

SYMMETRY BREAKING

We now calculate the reflection and transmission coef-
ficient for quarks and antiquarks subject to the above two
effects. One is CP violating, arising from the background
gauge field A0 [Eq. (8)], and the other is CP preserving,
arising from the space dependent effective mass of the
quarks/antiquarks [Eq. (10)]. We recall the steps for
calculation from [8]. To calculate the reflection and trans-
mission coefficient, we need the solutions of the Dirac
equation in the Minkowski space, but the A0 profile is
calculated in Euclidean space. We start with the Dirac
equation in the Euclidean space, with the spatial depend-
ence of A0 calculated from the Zð3Þ wall profile as
mentioned above, and with the space dependent mass term
as given in Eq. (10):

½γ0e∂0δ
jk−gγ0eA

jk
0 ðzÞþðiγ3e∂3þmðxÞÞδjk�ψk ¼ 0; ð11Þ

where γ0e ≡ iγ0 and γ3e ≡ γ3 are the Euclidean Dirac
matrices. ∂0 denotes ∂=∂τ, with τ ¼ it being the
Euclidean time. j; k denote color indices. mðxÞ is the
effective mass given in Eq. (10). We now analytically
continue Eq. (11) to the Minkowski space to get

½iγ0∂0δ
jkþgγ0Ajk

0 ðzÞþðiγ3∂3þmðxÞÞδjk�ψk ¼ 0; ð12Þ

where ∂0 now denotes ∂=∂t in the Minkowski space.
Equation (12) is used to calculate the reflection and

transmission coefficients. For a general smooth potential
we followed a numerical approach given by Kalotas and
Lee [30]. They have discussed a numerical technique to
solve a Schrödinger equation with potentials having arbi-
trary smooth space dependence. We applied this technique

of Ref. [30] for solving the Dirac equation (see Ref. [8] for
details).
The results for the charm quark and the antiquark (with

E ¼ 3.0 GeV taken as the example for each case) are given
in Table I. As we discussed above, the A0 profile depends
on the choice of ða; bÞ [Eq. (8)]. Thus, to have a proper
comparison of the effect of the values of b1, it is important
to have the most similar profiles possible for A0 for the
different choices of b1. The profiles used for calculating the
reflection coefficients in Table I corresponded to A11

0 for
b1 ¼ 0.126 and 0.645, while the profile of A22

0 was used for
b1 ¼ 0.03. As we mentioned, the important quantity for us
to calculate is the reflection coefficient of (say) quarks
moving from the true vacuum towards the metastable
vacuum through the wall and compare it with the reflection
coefficient of the antiquarks (with the same kinetic energy)
moving from the metastable vacuum towards the true
vacuum through the wall. Any (possible) difference in
these two reflection coefficients directly relates to the
expected concentration of quarks and antiquarks by a
domain wall of one kind and its opposite wall [interpolating
between the two Zð3Þ vacua in reverse order]. Table I
shows a clear difference in these two reflection coefficients.

V. DISCUSSION

In this work we have extended our earlier studies of CP
violating scattering of quarks/antiquarks from Zð3Þ walls
[8,13,14] by including the effects of the explicit breaking of
Zð3Þ symmetry which is expected to arise due to dynamical
quarks. The resulting profile of lðxÞ between the true
vacuum and a metastable vacuum is no more symmetric
in this case, which leads to new effects. We study the
scattering of quarks and antiquarks from the background A0

field associated with the profile of lðxÞ while also incor-
porating the effect of spatially varying the effective mass of
quarks and antiquarks in the respective Zð3Þ domains. The
combined effect of the scattering shows interesting behav-
ior leading to the asymmetry in the scattering of quarks
moving from the true vacuum towards the metastable
vacuum and antiquarks moving from the metastable vac-
uum towards the true vacuum. This will lead to important
differences in the resulting concentrations of quarks and
antiquarks in cosmology as well as in RHICE. For example,
in the early Universe, a network of domain walls will arise
with varying sizes and interpolating between different Zð3Þ

TABLE I. Table for the reflection coefficients Rq for the charm quark and Raq for the charm antiquark for smooth
profiles of A0 and mðxÞ.

b1 ¼ 0.03 0.126 0.645

true → metastable vacuumRq 1.65437 × 10−6 4.40706 × 10−6 1.43314 × 10−10

metastable → true vacuumRq 0.00003366 0.0141752 0.00394808
true → metastable vacuumRaq 2.25671 × 10−6 1.85367 × 10−7 2.07835 × 10−7

metastable → true vacuumRaq 0.000376883 0.0820803 0.073885
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vacua. For all domain walls of a given size interpolating
between two given vacua in a given order, there will be
roughly the same number of walls with a similar size but
interpolating between the same two Zð3Þ vacua in the
reverse order (though explicit symmetry breaking may also
produce differences between the formation of such walls,
introducing further richness in the effects of explicit
symmetry breaking). In the absence of explicit symmetry
breaking, if the first type of walls gives a certain concen-
tration of (say) quarks, then the other set of walls will give a
similar concentration of antiquarks. This is, however, not
the case when explicit symmetry breaking effects are
incorporated. In view of the results from Table I, the
two sets of walls will lead to very different concentrations
of quarks and antiquarks (especially if the value of b1 is
large). Though for each domain wall (say, interpolating
between l ¼ 1 and l ¼ z), there is always the conjugate
wall (interpolating between l ¼ 1 and l ¼ z2) which will
lead to the same scattering between quarks and antiquarks.
The final effect of our results will then appear as two
different magnitudes for the concentrations of quarks and
antiquarks, even if one takes all of the domain walls of the
same size. This is very different from the case without
explicit symmetry breaking where domain walls of same

size will lead to quark and antiquark inhomogeneities of the
same magnitude (for the same kinetic energies of quarks
and antiquarks). This difference will be particularly dra-
matic for RHICE, where the number of domain walls is
of order 1 for each event [6]. Thus even for the same type of
events, one may get a very different concentration of
baryons or antibaryons in different events, leading to very
large event-by-event fluctuations.
The situation is even more interesting when we consider

the effect that with explicit symmetry breaking, certain
closed domain walls may expand—those with a true
vacuum inside (and with sufficiently larger size so that
the volume energy difference dominates over the surface
energy contribution [21]). This can lead to the concen-
tration of quarks and antiquarks in a shell-like structure. For
cosmology, very large expanding domain walls may trap
shells of baryons/antibaryons if enclosed by a collapsing
antiwall configuration. Such shells can form in RHICE also
and will have important observation signatures.
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