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We study the pressure, P, of SUðNÞ gauge theory on a two-dimensional torus as a function of area,
A ¼ l=t. We find a crossover scale that separates the system on a large circle from a system on a small
circle at any finite temperature. The crossover scale approaches zero with increasing N and the
crossover becomes a first-order transition as N → ∞ and l → 0 with the limiting value of 2Pl

ðN−1Þt
depending on the fixed value of Nl.
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I. INTRODUCTION

The partition function for SUðNÞ gauge theory on a 2D
torus with spatial extent l and temperature t is only a
function of the area, A ¼ l=t, and is given by [1]

ZNðAÞ ¼
X
r

exp

�
−
Cð2Þ
r l
Nt

�
; ð1Þ

where Cð2Þ
r is the value of Casimir in the representation r.

One can arrive at Eq. (1) by taking the continuum limit of a
lattice formalism on a finite lattice [2]. The asymptotic
behavior at large N was studied in [3] where only
representations with Cð2Þ

r of OðNÞ dominate. Since the
partition function is a sum over stringlike states with
energies proportional to the spatial extent, l, the pressure
given by

P≡ t
∂
∂l lnZ ¼ ∂

∂A lnZ ¼ −
1

N
hCð2Þ

r i; ð2Þ

is negative.
The partition function for SU(2) is simple and is given by

Z ¼
X∞
λ¼0

e−
ðλ2þ2λÞA

4 ¼ 1

2
e
A
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� X∞
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e−
λ2A
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�
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� ffiffiffiffiffiffi
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e−
4π2λ2
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�
: ð3Þ

The asymptotic behavior of the equation of state is

Pl
t
¼ −

3

4

l
t
e−

3l
4t as l → ∞; ð4Þ

and

Pl
t
¼ −

1

2
as l → 0: ð5Þ

The behavior at large l is dominated by a few low-lying
energy states, whereas the behavior at small l comes
from a sum over all states and could be interpreted as
the equipartition limit with the number of degrees of
freedom being 1 for SU(2). The crossover from the
behavior on a large circle to a small circle is shown
in Fig. 1.
Expecting that the equipartition limit is given by

Pl
t
¼ −

N − 1

2
as l → 0; ð6Þ

for all N, we define

QðαÞ≡ −
2Pl

ðN − 1Þt ; with α ¼ Nl
t
; ð7Þ

and study this quantity in this paper.
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FIG. 1 (color online). The equation of state for SU(2) gauge
theory on a two-dimensional torus is shown as the solid curve.
The asymptotic values of Pl=t at small area is −0.5. At very large
area, Pl=t behaves as 0.75 expð−0.75l=tÞl=t, which is shown as
the dotted curve. There is a crossover between the two limits.
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II. SUMMARY OF RESULTS

We will show the following results in this paper using a
numerical simulation of the partition function in Eq. (1):
(1) QðαÞ falls on a universal curve as N → ∞.
(2) QðαÞ goes to zero as α goes to infinity. This result

implies that the pressure at infinite N is zero for all l
at any t as long as one takes N → ∞ keeping l and t
finite, and is consistent with physics being indepen-
dent of temperature and spatial extent in the infinite-
N limit [4,5].

(3) QðαÞ goes to unity as α goes to zero. This limit is
reached from a finite l and t only at finite N.

(4) There is a crossover point defined as a peak in the
susceptibility,

χ ¼ A
∂
∂AQ ¼ α

∂
∂αQ: ð8Þ

(a) The large l side of the crossover is dominated by
representations where Cð2Þ

r are of OðNÞ. This is
the case of interest for all nonzero l at infinite N
and was studied in [3].

(b) The small l side of the crossover is dominated by
representations where Cð2Þ

r are of OðN2Þ.
(5) Since the value of Q at infinite N and l ¼ 0 (or

equivalently t ¼ ∞) depends on the approach to the
limit, N → ∞ and l → 0, there is a first-order
transition confirming the argument in [6].

III. PROPERTIES OF CASIMIR FOR SUðNÞ
The representations of SUðNÞ are specified by the

sequence of integers Λr ¼ ðλ1; λ2;…; λN−1Þ, subjected to

the ordering λi ≥ λiþ1, and the value of Cð2Þ
r is

Cð2Þ
r ¼

XN−1

i¼1

λ2i −
XN−1

i¼1

iλi −
λ2

N
þ ðN þ 1Þλ where λ¼

XN−1

i¼1

λi:

ð9Þ

The maximum and minimum values of Casimir, given the
constraint that λ has to be kept fixed, will be used in the
subsequent sections. The representation with the maximum
value of Cð2Þ

r for a given λ is given by

Λmax ¼ ðλ; 0;…; 0Þ: ð10Þ
The minimum value of Cð2Þ

r is given by the sequence Λmin,

λi ¼
8<
:

⌊ λ
N−1⌋þ 1 if i ≤ k≡ λ − ðN − 1Þ⌊ λ

N−1⌋

⌊ λ
N−1⌋ if i > k:

ð11Þ

To prove that the two sequences extremize the Casimir,
note that the Casimir decreases under the transformation

ðλ1; λ2;…; λi;…; λj;…; λN−1Þ to ðλ1; λ2;…; λi − 1;…; λj þ
1;…; λN−1Þ for j > i, provided this transformation is
allowed. Such a transformation is not possible for Λmin.
Similarly, the reverse of that transformation is not possible
on Λmax. One can prove by contradiction that Λmin and Λmax
uniquely satisfy these properties.
We have shown the behavior of the maximum and

minimum values of Cð2Þ
r as a function of λ in Fig. 2.

The minimum of Cð2Þ
r shows a quasiperiodic behavior, with

troughs at λ ¼ qN for integer q. The values of Casimir at
these troughs are

Cmin ¼ N

�
1þ ⌊

q
N − 1

⌋

��
2q − ⌊

q
N − 1

⌋ðN − 1Þ
�
; ð12Þ

whose dependence on N is linear for q between two
multiples of ðN − 1Þ and is quadratic for q that are
multiples of ðN − 1Þ. On very large circles (or at very
low temperatures), one would expect that only the ex-
citations around these troughs at small q would be
important. On very small circles (or at very high temper-
atures), large values of q would become accessible, where
all possible Casimir areOðN2Þ. This is the region above the
red dotted line in Fig. 2 where Cð2Þ

r is larger than N2.
Qualitatively, this is the difference one might expect
between the low- and high-temperature phases.

IV. HEAT-BATH ALGORITHM

We simulated the partition function in Eq. (1) by
updating Λr with the heat-bath algorithm. Each heat-bath
update is a sequence of local updates from λ1 to λN−1, in
that order, such that the ordering of λi is preserved. For the
local update of λi, the probability distribution of λi is given
by a discrete version of the Gaussian distribution

TðλiÞ ∝ e−ðλi−μiÞ2=2σ2 ; ð13Þ
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FIG. 2 (color online). Behavior of Casimir as a function of λ.
The upper solid curve is the maximum value of Casimir given a
value of λ, as a function of λ. Similarly, the lower solid curve is
the minimum value of Casimir given a value of λ, as a function of

λ. The dotted line is where Cð2Þ
r ¼ N2.
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subject to the condition λiþ1 ≤ λi ≤ λi−1 for i > 1 and
λ2 ≤ λ1. The μi and σi for the above discrete Gaussian
distribution are functions of the rest of the λi’s forming the
heat bath,

μi ¼
λ̄þ Nð2i−N−1

2
Þ

N − 1
and σ2 ¼ N2

2AðN − 1Þ ; ð14Þ

where λ̄ ¼ P
j≠iλj. For i > 1, the set of allowed values for

λi is bounded from above and below. Hence, we included
all the allowed possibilities weighted by Eq. (13) as
candidates for the update. Since Eq. (14), along with the
inequality λ − λ1 < ðN − 2Þλ2, implies that μ1 < λ2, the
probability for λ1 is a monotonically decreasing function.
This enables one to put an upper cutoff on λ1. In our
calculation, we used an upper cutoff of λ2 þ 3σ. We also
checked that changing this value to λ2 þ 10σ does not
cause any statistically significant changes. Since a repre-
sentation r and its conjugate representation r̄ have the same
Casimir, one can do an over-relaxation step by a global
update λ0i ¼ λ1 − λN−iþ1.
In our simulations, the successive measurements were

separated by 100 iterations of 2 heat-bath and 1 over-
relaxation steps. The first 2000 measurements were

discarded for thermalization. In this way, we collected
104 configurations of Λr at all area and N.

V. RESULTS

In the top panel of Fig. 3, we show the behavior ofQ as a
function of the scaled area α for various values of N. The
important thing to notice is thatQ has a large-N limit when
plotted as a function of α. For α ≪ 1, Q seems to approach
1 for all N. This is in agreement with our intuition based on
the equipartition theorem. The nontrivial observation is that
this crossover to the equipartition limit happens at a finite
value of α in the large-N limit. For α ≫ 1, Q seems to
behave as N−1 exp ð−σα=NÞ for a constant σ ≈ 0.81 in the
large-N limit. This is shown in the bottom panel of Fig. 3.
Thus, it can also be seen as a crossover from the strong-
coupling regime, which has a scale σ, to the weak-coupling
regime with no underlying scale.
We determined the crossover point αc using the peak

position of the susceptibility χ, after interpolating using
multihistogram reweighting. We show χ as a function of α
in Fig. 4 for variousN. The susceptibility also has a large-N
limit when plotted as a function of α. The peak positions of
susceptibility for N > 19 agree within errors, giving us an
estimate αc ¼ 12.1ð2Þ. This implies that the crossover area
Ac ¼ αc=N shifts to smaller values at larger N. The width
of the susceptibility when expressed in terms of the area A
decreases inversely as N. This is characteristic of finite
volume scaling near a first-order phase transition, with the
large-N limit replacing the thermodynamic limit in
this case.
The reason for this crossover can be understood from the

scatter plot of Cð2Þ
r versus λ measured during the course of

the Monte Carlo run using a value of α. Such scatter plots at
various α are shown in Fig. 5 for two different N. We also
show the maximum and minimum values of Casimir at a
fixed λ, as a function of λ. As discussed earlier, the
minimum Casimir shows a quasiperiodic behavior, forming
wells with a periodicity N. At large values of α, the
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FIG. 3 (color online). Q as a function of the scaled area α ¼ NA
is shown in the top panel. It is seen that Q as a function of α has a
large-N limit. For very small values of α, Q approaches 1. In the
bottom panel, the large area behavior of Q in the large-N limit is
shown. In this case, QN behaves as exp ð−σα=NÞ.
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FIG. 4 (color online). Susceptibility χ as a function of the
scaled area α ¼ NA. The crossover coupling αc is shown by the
vertical line.
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representations near the troughs of these wells at small
values of λ get populated. The representations within these
wells are sparse, and this discreteness governs the large area

behavior. At very small area, the most probable Cð2Þ
r moves

away from the line of minimum Cð2Þ
r and remains in a

region where one can approximate the distribution of
Casimir by a continuum. The crossover between the two
behaviors is what shows up as a peak in χ. As discussed in
Sec. III, the Casimir near the troughs at small λ is of OðNÞ,
while the Casimir at very large λ is ofOðN2Þ. As shown by
the dotted line in Fig. 5, this crossover at α ≈ 12.1 roughly

occurs when the dominant behavior Cð2Þ
r changes from

OðNÞ to OðN2Þ.

VI. CONCLUSIONS

Yang-Mills theory in two dimensions is always in the
confined phase. We focused on the quantity, Q ¼ − 2Pl

ðN−1Þt,
to study the equation of state. We showed that the equation
of state shows a crossover from strong coupling (large
spatial extent) to weak coupling (small spatial extent)
within the confined phase. Viewed as a function of
α ¼ lN

t , QðαÞ approaches a universal curve as N → ∞ as

shown in Fig. 6. This behavior is similar to the Durhuus-
Olesen transition [7,8] with the double scaling limit for the
equation of state being N → ∞ and l → 0 (or t → ∞),
keeping α ¼ lN

t fixed. There is a line of crossover, lNt ¼ αc,
extending from the origin in the l

t − 1
N diagram as shown in

Fig. 7. Well above this line, Q ≪ 1, and it behaves as
expð−σAÞ=N. Well below this line, Q is approximately 1.
Depending on the slope, α, of the line along which the
N → ∞ and l

t → 0 limit is taken, the limiting value of Q
differs. Specifically, if the N → ∞ limit is taken after the
A → 0 limit is taken, then Q is 1. When the two limits are
reversed, Q becomes 0. Therefore, the crossover along
AN ¼ αc becomes a first-order transition at vanishing area
in the large-N limit.
The equation of state in four-dimensional Yang-Mills

theories for several different values of N has been recently
studied [9]. The pressure is found to be close to zero in the
confined phase. In light of this paper, it would be
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FIG. 5 (color online). Scatter plot of Cð2Þ
r =N2 versus λ=N at

various area A. The top panel is for N ¼ 47 and the bottom for
N ¼ 101. Each point corresponds to a Cð2Þ

r and λ measured in the
course of a Monte Carlo simulation at a particular α specified by
the color. The upper and lower solid curves are the maximum and
minimum values of Cð2Þ

r at a given λ, respectively.
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FIG. 6 (color online). The large-N limit of Q as a function of α.

FIG. 7 (color online). Phase diagram. Various approaches to
vanishing area at large N are indicated by lines with arrows. The
critical value of the slope AN ¼ αc is shown as the dot-dashed
line. For values of AN ≫ αc (the dotted line), Q decays
exponentially with area. For values of AN ≪ αc (the dashed
line), Q ≈ 1. In particular, when A is reduced to 0 after taking the
large-N limit (i.e., along the y axis), Q vanishes. When the two
limits are interchanged (i.e., along the x axis), Q becomes 1.
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interesting to perform a careful study of the equation of
state in the confined phase in three and four dimensions and
see if one can see a crossover similar to the one seen here in
two dimensions.
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