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We study the consequences of the presence of a boundary in topological field theories in various
dimensions. We characterize, univocally and on very general grounds, the field content and the symmetries
of the actions which live on the boundary. We then show that these actions are covariant, despite
appearances. We show also that physically relevant theories like the 2D Luttinger liquid model or the
four-dimensional Maxwell theory, can be seen as boundary reductions of higher-dimensional topological
field theories, which do not display local observables.
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I. INTRODUCTION

It is well known that topological field theories acquire
local observables only once a boundary is introduced. One
of the most remarkable examples is non-Abelian 3D
Chern–Simons theory, of which the boundary embeds all
rational 2D conformal field theories [1]. In this paper we
consider topological field theories in three, four, and five
dimensions with a planar boundary. In all cases, on the
boundary nontopological actions are found, displaying
nontrivial physical content. The aim of this paper is to
give a unitary plot of the boundary reduction of topological
field theories, stressing some crucial points which were
not fully covered in previous papers [2–5], starting from
the role of gauge symmetry. The boundary is realized in
the action by means of a local term, proportional to the
Heaviside step function. The introduction of the boundary
spoils the gauge invariance of those theories of which the
Lagrangian transforms, under gauge transformations, into a
total derivative. This property is peculiar to topological
field theories of the Schwarz type [6] considered in this
paper. A boundary term compatible with locality and power
counting is added. The imposition that the complete action,
including the boundary term, is gauge invariant gives rise
to a condition, verified on shell, which is fundamental in
order to identify the field content and the symmetries of
the lower-dimensional theory living on the boundary. The
boundary conditions make also possible another kind of
identification. It is known, for instance, that certain
boundary conditions, called duality relations in Ref. [7],
lead to claim the existence of fermionic degrees of freedom
on the boundary, despite the fact that the bulk actions
are entirely bosonic. An explicit construction of these

fermionic modes has been done in Ref. [8]. This is most
relevant for the bulk 3D and four-dimensional (4D)
topological BF models, of which the boundary reductions
may describe the physics of topological insulators [9,10].
Hence, the boundary degrees of freedom are direct conse-
quences both of the gauge symmetry and of the boundary
conditions on the fields. But the role of gauge symmetry is
even more relevant. In fact, on the boundary a residual
gauge symmetry survives. It is functionally described by
Ward identities that generate relations between Green
functions. These, written in terms of boundary fields, are
interpreted as canonical commutation relations. The lower-
dimensional theory living on the boundary is obtained by
requiring that its equations of motion are compatible with
the commutation relations coming from the Ward identities
and with the boundary conditions.
We stress that the same starting topological model might

give rise to different models of boundary dynamics,
depending on the boundary terms introduced in the action.
For instance, we chose to preserve Lorentz invariance on
the boundary, which seems reasonable, but physical rea-
sons to relax this choice might occur. Even so, a kind of
ambiguity remains, because of some nonuniversal con-
stants, which are free parameters for the theory.
The outline of the paper is as follows. In Sec. II we give a

detailed account of our method applied to the 3D BF
model. This leads to identifying the 2D theory of Luttinger
liquid [11,12] as the edge reduction of 3D BF theory. In
Sec. III we extend our method to the 4D and five-
dimensional (5D) BF model. The Cho and Moore model
[13] is recovered on the boundary of the 4D BF model
which on shell reduces to a 3D Maxwell theory or a free
scalar theory. On the boundary of the 5D BF model, we
obtain an action which on shell corresponds to the Kalb–
Ramond theory [14] or a free scalar theory. Finally, in
Sec. IV we consider a theory which we call the BC model,
built by means of two rank-2 tensors and no gauge fields.
Also for this model, we recover the Maxwell theory as an
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on-shell reduction of the boundary action. For each model
the boundary theory is selected by time reversal discrete
symmetry. The covariance of the boundary theories we
obtained is proved, which is not an obvious issue, since this
approach originates from the breaking of covariance by
means of the introduction of a boundary and by the choice
of a noncovariant gauge fixing in the bulk. Our results are
summarized in Sec. V.
The notations used throughout the paper are (in D

dimensions):

μ; ν;… ¼ f0; 1;…; D − 1g
i; j;… ¼ f0; 1;…; D − 2g
α; β;… ¼ f1;…; D − 2g

x ¼ xμ ¼ ðx0; x1;…; xD−1Þ
X ¼ Xi ¼ ðx0; x1;…; xD−2Þ

gμν ¼ diagð−1; 1; 1;…Þ; ð1:1Þ
for D ¼ 3,

ϵ012 ¼ 1

ϵij ¼ ϵij2; ð1:2Þ
for D ¼ 4,

ϵ0123 ¼ 1

ϵijk ¼ ϵijk3; ð1:3Þ
and for D ¼ 5,

ϵ01234 ¼ 1

ϵijkl ¼ ϵijkl4: ð1:4Þ

II. ABELIAN 3D BF THEORY WITH BOUNDARY

A. Action and its symmetries

We consider the Abelian 3D BF model, defined on the
flat Minkowski space-time with a boundary on the plane
x2 ¼ 0. The action of the model is

Sbulk ¼
Z

d3xϵμνρ½∂μAνBρ þ kAν∂μBρ�θðx2Þ: ð2:1Þ

It describes the interaction between two gauge fields, Aμ

and Bμ, and the presence of the boundary is implemented
by the introduction of the Heaviside step function θðx2Þ.
Since we are in the Abelian case, the canonical mass
dimensions of the fields are not fixed, and the only
condition on them is ½A� þ ½B� ¼ 2. We make the choice

½A� ¼ ½B� ¼ 1: ð2:2Þ
The action (2.1) is invariant under the discrete time reversal
symmetry T defined as

Tx0 ¼ −x0 Txα ¼ xα

TA0 ¼ A0 TB0 ¼ −B0

TAα ¼ −Aα TBα ¼ Bα; ð2:3Þ

under which the field Aμ transforms as the electromagnetic
potential, while Bμ can be viewed as a kind of spin current.
This reflects the possibility of identifying the 3D BF theory
as the model for the 2D topological insulators [13].
The presence of the Heaviside step function modifies the

usual rule for integration by parts into

Z
d3xϵμνρ∂μAνBρθðx2Þ þ

Z
d3xϵμνρAν∂μBρθðx2Þ

þ
Z

d3xϵijAiBjδðx2Þ ¼ 0; ð2:4Þ

where the third term comes from the differentiation of the θ
function. Only two of the three terms in (2.4) are inde-
pendent from each other, so we can study the action in the
form (2.1), where k is a coupling constant which cannot be
absorbed by field redefinitions and keeping in mind that the
boundary term

R
d3xϵijAiBjδðx2Þ can be obtained from the

bulk ones after an integration by parts. Identity (2.4)
imposes a condition on the coupling constant,

k ≠ 1; ð2:5Þ

otherwise the action (2.1) would reduce to a pure boundary
term. The presence of the boundary allows us to add to the
action (2.1) the most general boundary term compatible
with locality and power counting,

Sbd ¼
Z

d3x

�
a1
2
AiAi þ a2

2
BiBi þ a3AiBi

�
δðx2Þ; ð2:6Þ

where a1; a2; a3 are dimensionless constant parameters. The
boundary action (2.6) breaks the symmetryunderT (which is
preserved only if a3 ¼ 0). We can define the action

SBF3 ¼ Sbulk þ Sbd: ð2:7Þ

The bulk equations of motion derived from (2.1) are

½ð1 − kÞϵijð∂jB2 − ∂2BjÞ�θðx2Þ ¼ 0 ð2:8Þ

½ð1 − kÞϵij∂iBj�θðx2Þ ¼ 0 ð2:9Þ

½ð1 − kÞϵijð∂jA2 − ∂2AjÞ�θðx2Þ ¼ 0 ð2:10Þ

½ð1 − kÞϵij∂iAj�θðx2Þ ¼ 0; ð2:11Þ

and the boundary conditions are obtained putting equal to
zero the δ-dependent part of the equations ofmotionderiving
from the whole action (2.7):
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a1Ai þ a3Bi − ϵijBjjx2¼0
¼ 0 ð2:12Þ

a2Bi þ a3Ai þ kϵijAjjx2¼0
¼ 0: ð2:13Þ

Without the boundary, the bulk action of the 3D BF
model would be invariant under the following gauge
transformations:

δð1ÞAμ ¼ ∂μφ

δð1ÞBμ ¼ 0 ð2:14Þ

and

δð2ÞAμ ¼ 0

δð2ÞBμ ¼ ∂μξ; ð2:15Þ

where φðxÞ and ξðxÞ are local gauge parameters. The
presence of the boundary breaks the gauge invariance:

δð1ÞSBF3 ¼
Z

d2xφ∂i½kϵijBj − a1Ai − a3Bi�δðx2Þ ð2:16Þ

δð2ÞSBF3 ¼ −
Z

d2xξ∂i½ϵijAj þ a2Bi þ a3Ai�δðx2Þ:

ð2:17Þ

But the gauge invariance can be restored on shell; in fact,
substituting the boundary conditions (2.12) and (2.13)
respectively into (2.16) and (2.17), we get

δð1ÞS0
BF3 ¼ ðk − 1Þ

Z
d3xφϵij∂iBjδðx2Þ ð2:18Þ

δð2ÞS0
BF3 ¼ ðk − 1Þ

Z
d3xξϵij∂iAjδðx2Þ: ð2:19Þ

So the conditions of gauge invariance (keeping in mind that
k ≠ 1) are

ϵij∂iBjjx2¼0
¼ 0 ð2:20Þ

ϵij∂iAjjx2¼0
¼ 0; ð2:21Þ

which are immediately verified on shell since they respec-
tively correspond to the equations ofmotion (2.9) and (2.11).
We will also see that these conditions are crucial in order to
identify the nature of the fields on the boundary.
The introduction of the boundary term (2.6) preserves

the gauge invariance of the theory, and it is crucial to give
nontrivial dynamics on the boundary. Indeed, in the
absence of the boundary term (2.6), the boundary con-
ditions would lead to the constraints

Aijx2¼0 ¼ Bijx2¼0 ¼ 0; ð2:22Þ

which would completely trivialize the boundary
dynamics.

B. Solutions of the boundary conditions

In the previous section, we presented the model and its
symmetries. Before the complete treatment of the boundary
dynamics, it is important to find out which values of the
constant parameters a1; a2; a3 are solutions of the boundary
equations (2.12) and (2.13). There are two solutions which
yield nontrivial boundary dynamics:
(1)

a1a2 ¼ −k; a1 ≠ 0; a3 ¼ 0; ð2:23Þ
of which the boundary conditions are combined into
a unique one:

a1Ai − ϵijBj ¼ 0: ð2:24Þ

This is the only solution which extends the time
reversal symmetry (2.3) also to the boundary.

(2)

k ¼ −1; a1 ¼ a2 ¼ 0; a3 ¼ �1; ð2:25Þ

of which the boundary conditions are

ϵijAj ¼ �Ai; ϵijBj ¼ �Bi: ð2:26Þ

In this case there is not any relation between Ai

and Bi because the conditions (2.25) decouple the
boundary equations (2.12) and (2.13).

C. Gauge fixing and residual gauge invariance

To study the dynamics of the model, we need to fix a
gauge and couple the fields to external sources. We define
the total action,

Stot ¼ Sbulk þ Sgf þ SJ þ Sbd; ð2:27Þ

where

Sgf ¼
Z

d3x½bA2 þ dB2�θðx2Þ ð2:28Þ

fixes the axial gauge choice with the introduction of the
Lagrange multipliers b and d, which corresponds to the
gauge condition

A2 ¼ B2 ¼ 0; ð2:29Þ

while

SJ ¼
Z

d3x½JiAi þ KiBi�θðx2Þ ð2:30Þ
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couples the gauge fields A and B to auxiliary external
sources J and K respectively. The action (2.27) is still
invariant under gauge transformations that do not depend
on x2, and the residual gauge invariance is functionally
expressed by two Ward identities (one for each symmetry
δð1Þ and δð2Þ):

½∂iJi þ ∂2b�θðx2Þ ¼ 0 ð2:31Þ

½∂iKi þ ∂2d�θðx2Þ ¼ 0: ð2:32Þ

Integrating over the x2 coordinate and using the equations
of motions derived from (2.27) (which now include also the
Lagrange multipliers b and d), the Ward identities become

Z
∞

0

dx2∂iJi ¼ ðk − 1Þϵij∂iBjjx2¼0
ð2:33Þ

Z
∞

0

dx2∂iKi ¼ ðk − 1Þϵij∂iAjjx2¼0
: ð2:34Þ

Going on shell (i.e. putting J ¼ K ¼ 0), we recover the
conditions (2.20) and (2.21).

D. Boundary algebra and 2D boundary action

From the conditions of gauge invariance (2.20) and
(2.21), it is possible to identify the gauge fields in terms of
derivatives of two scalar fields, Λ and ζ:

ϵij∂iBjjx2¼0
¼ 0 ⇒ Bijx2¼0 ¼ ∂iζðXÞ ð2:35Þ

ϵij∂iAjjx2¼0
¼ 0 ⇒ Aijx2¼0 ¼ ∂iΛðXÞ: ð2:36Þ

Their canonical mass dimensions are

½ζ� ¼ ½Λ� ¼ 0; ð2:37Þ

and their definitions induce the shift symmetries:

δζ ¼ c ð2:38Þ

δΛ ¼ c0; ð2:39Þ

with c; c0 constants. Deriving the Ward identity (2.33) with
respect to Jiðx0Þ, one obtains the following equal time
commutation relation:

ð1 − kÞ½B1ðXÞ; A1ðX0Þ�jx0¼x00 ¼ i∂1δðx1 − x01Þ: ð2:40Þ

And with similar differentiations,

½A1ðXÞ; AjðX0Þ�jx0¼x00 ¼ 0 ð2:41Þ

½B1ðXÞ; BjðX0Þ�jx0¼x00 ¼ 0: ð2:42Þ

The commutation relations, written in terms of the scalar
fields Λ and ζ, take the form

ð1 − kÞ½ζðXÞ; ∂ 0
1ΛðX0Þ�jx0¼x00 ¼ iδðx1 − x01Þ ð2:43Þ

½ζðXÞ; ζðX0Þ�jx0¼x00 ¼ 0 ð2:44Þ

½∂1ΛðXÞ; ∂ 0
1ΛðX0Þ�jx0¼x00 ¼ 0: ð2:45Þ

Notice that the form of (2.42) would imply that the
commutation relation in (2.44) is a c number, but it must
be 0 since the commutation relation needs to change sign
under the exchange X ↔ X0. The relations (2.43), (2.44),
and (2.45) can be interpreted as canonical commutation
relations between the conjugate variables:

qðXÞ≡ ð1 − kÞζðXÞ ð2:46Þ

pðXÞ≡ ∂1ΛðXÞ: ð2:47Þ

The final task of this section is to construct a 2D boundary
action which is invariant under (2.38) and (2.39) and
compatible with the boundary conditions and the definition
of the canonical variables (2.46) and (2.47). The kinetic
term of the corresponding Lagrangian will be

Lkin ¼ p _q ¼ ð1 − kÞ∂0ζ∂1Λ: ð2:48Þ

The potential terms must be invariant under (2.38) and
(2.39) and cannot contain time derivatives. The most
general gauge invariant action is

S ¼
Z

d2X

�
ð1 − kÞ∂0ζ∂1Λþ c1

2
ð∂1ζÞ2

þ c2
2
ð∂1ΛÞ2 þ c3∂1ζ∂1Λ

�
; ð2:49Þ

where c1; c2; c3 are constants to be determined. Its equa-
tions of motions are

δS
δζ

¼ ðk − 1Þ∂0∂1Λ − c1∂2
1ζ − c3∂2

1Λ ¼ 0 ð2:50Þ

δS
δΛ

¼ ðk − 1Þ∂0∂1ζ − c2∂2
1Λ − c3∂2

1ζ ¼ 0; ð2:51Þ

which can be written as

∂1½ð1 − kÞ∂0Λþ c1∂1ζ þ c3∂1Λ� ¼ 0 ð2:52Þ

∂1½ð1 − kÞ∂0ζ þ c2∂1Λþ c3∂1ζ� ¼ 0: ð2:53Þ

The equations of motions must be compatible with the
solutions of the boundary equations discussed in Sec. II B.
We study each solution separately:
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(1) Theory invariant under time reversal also on the
boundary. The boundary condition (2.24) can be
written in terms of the fields ζ and Λ:

a1∂iΛ − ϵij∂jζ ¼ 0: ð2:54Þ

The compatibility between (2.54) and the equa-
tions of motion fixes the values of the constants:

c1 ¼
1 − k
a1

ð2:55Þ

c2 ¼ a1ð1 − kÞ ð2:56Þ

c3 ¼ 0: ð2:57Þ

The 2D boundary action takes the following form:

Sð1Þ
2D ¼ ð1 − kÞ

Z
d2X

�
∂0ζ∂1Λþ 1

2a1
ð∂1ζÞ2

þ a1
2
ð∂1ΛÞ2

�
: ð2:58Þ

It corresponds to the theory of the Luttinger liquid
[11,12]. Notice that the positivity of the Hamiltonian
density associated to the action (2.58) implies that
a1ðk − 1Þ > 0. We remark that the action is left
invariant by the exchange of the two fields, provided
that the coupling constant a1 goes into its reciprocal:

ζ ↔ Λ ð2:59Þ

a1 →
1

a1
: ð2:60Þ

This is a strong-weak coupling duality, which in our
case emerges naturally as a consequence of the bulk
gauge symmetry.
The action (2.58) is written in a noncovariant way,

but it is possible to verify its covariance by means of
a criterion proposed by Schwinger [15], which
concerns the algebra formed by the components
of the stress-energy tensor:

i½T00ðXÞ; T00ðX0Þ�
¼ ½T0αðXÞ þ T0αðX0Þ�∂αδðX − X0Þ: ð2:61Þ

We compute explicitly the components of the stress-
energy tensor,

T00 ¼ k − 1

2

�
1

a1
ð∂1ζÞ2 þ a1ð∂1ΛÞ2

�
ð2:62Þ

T01 ¼ ðk − 1Þ∂1ζ∂1Λ; ð2:63Þ

and verify the identity (2.61),

i½T00ðXÞ; T00ðX0Þ�

¼ i
ð1 − kÞ2

4
f½ð∂1ζðXÞÞ2; ð∂ 0

1ΛðX0ÞÞ2�
þ ½ð∂1ΛðXÞÞ2; ð∂ 0

1ζðX0ÞÞ2�g
¼ −ð1 − kÞ½∂1ζðXÞ∂ 0

1ΛðX0Þ
þ ∂1ΛðXÞ∂ 0

1ζðX0Þ�∂1δðx1 − x01Þ
¼ ½T01ðXÞ þ T01ðX0Þ�∂1δðx1 − x01Þ; ð2:64Þ

where we have used the commutation relations
(2.43), (2.44), and (2.45).
The covariance can also be realized on shell. In

fact, eliminating the field Λ through (2.54), the
action (2.58) becomes the one of a free massless
scalar field:

Sð1Þ
2D ¼ ð1 − kÞ

2a1

Z
d2X∂iζ∂iζ: ð2:65Þ

Eliminating ζ the action (2.58) becomes

Sð1Þ
2D ¼ a1ð1 − kÞ

2

Z
d2X∂iΛ∂iΛ; ð2:66Þ

confirming the symmetry under the exchange of the
two fields and inversion of the constant a1. The fact
that Λ and ζ are free scalars can be also obtained
simply as a consequence of (2.54), applying a
derivative ∂i or ∂j on it.

(2) The time reversal invariance is broken on the
boundary. The boundary conditions (2.26) become

ϵij∂jΛ ¼ �∂iΛ ð2:67Þ

ϵij∂jζ ¼ �∂iζ: ð2:68Þ

They are compatible with the equations of motion if

c1 ¼ c2 ¼ 0 ð2:69Þ

c3 ¼ �ð1 − kÞ ¼ �2: ð2:70Þ

The corresponding 2D boundary action is

Sð2Þ
2D ¼ 2

Z
d2Xð∂0ζ � ∂1ζÞ∂1Λ; ð2:71Þ

of which the corresponding Hamiltonian density is

T00 ¼ ∓2∂1ζ∂1Λ: ð2:72Þ

Since (2.72) is not definite positive, we must
discard also this solution, leaving (2.58) as the
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unique 2D boundary action from the 3D topo-
logical BF theory.

III. GENERALIZATION TO BF MODELS IN
HIGHER DIMENSIONS

In this section we generalize the method presented in
Sec. II, applying it to the Abelian BF models in higher
dimensions. In particular, we treat the Abelian 4D and 5D
cases. The procedure is analogous to the one used in the
previous section, so we skip most of the calculations,
stressing our attention on the solutions of the boundary
conditions and on the D − 1-dimensional boundary action.
For D > 3 the time reversal symmetry does not select any
term since the time reversal invariance is always preserved
both in the bulk and on the boundary.

A. Abelian 4D BF model with boundary

The action of the Abelian 4D BF model with a boundary
on the plane x3 ¼ 0 is

Sbulk ¼
Z

d4xϵμνρσ½∂μAνBρσ þ kAν∂μBρσ�θðx3Þ; ð3:1Þ

with k ≠ 1. It depends on the gauge field Aμ and on the
rank-2 tensor field Bμν. The condition on the canonical
mass dimensions is ½A� þ ½B� ¼ 3. We make the choice
½A� ¼ ½B� ¼ 3

2
, and we choose the axial gauge A3 ¼

B3i ¼ 0. The most general boundary action compatible
with locality and power counting is

Sbd ¼
Z

d4x

�
a1
2
AiAi þ

a2
2
BijBij

�
δðx3Þ; ð3:2Þ

where a1; a2 are constant parameters. The boundary con-
ditions and the gauge invariance requirement define the
fields on the boundary:

ϵijk∂iBjkjx3¼0
¼ 0 ⇒ Bij ¼ ∂iζjðXÞ − ∂jζiðXÞ ð3:3Þ

ϵijk∂jAkjx3¼0
¼ 0 ⇒ Ai ¼ ∂iΛðXÞ: ð3:4Þ

The definitions of the scalar field Λ and the vector field ζi
induce the gauge invariance for the vector field ζi and the
translation invariance for the scalar field Λ,

δζi ¼ ∂iθ ð3:5Þ

δΛ ¼ c; ð3:6Þ

and their canonical mass dimensions are ½Λ� ¼ ½ζ� ¼ 1
2
. The

boundary conditions of the model can be reduced to a
unique one,

ϵijkBjk þ a1Aijx3¼0
¼ 0; ð3:7Þ

which, written as a relation between the 3D boundary
fields, becomes

a1∂iΛþ 2ϵijk∂jζk ¼ 0; ð3:8Þ

with the condition between the parameters appearing in (3.2):

a1a2 ¼ −2k: ð3:9Þ

From the Ward identities describing the residual gauge
invariance on the boundary, we get the relevant commutation
relation between the boundary fields,

2ðk − 1Þϵαβ½ΛðXÞ; ∂ 0
αζβðX0Þ�jx0¼x00 ¼ iδð2ÞðX − X0Þ;

ð3:10Þ

while the other ones are simply generalizations of (2.44)
and (2.45).
The most general gauge and translations invariant 3D

action compatible with the boundary condition (3.8) and
with the commutation relation (3.10) is

S3D ¼ 2ðk − 1Þ
Z

d3X

�
∂0Λϵ0αβ∂αζβ −

1

2a1
FαβFαβ

−
a1
4
∂αΛ∂αΛ

�
; ð3:11Þ

with Fαβ ≡ ∂αζβ − ∂βζα and where the gauge choice
ζ0 ¼ 0 has been imposed. Notice that the action (3.11)
is completely equivalent to the one proposed by Ref. [13]
for the study of topological insulators. The relation
a1ðk − 1Þ > 0 holds again. The covariance of the action
(3.11) can be easily checked by means of Schwinger’s
criterion [15] on the components of the stress-energy
tensor Tμν, which is satisfied thanks to the crucial
commutation relation (3.10). Alternatively, we can show
the covariance on shell with the elimination of the field Λ
through (3.8). The action (3.11) becomes

S3D ¼ ð1 − kÞ
a1

Z
d3XFijFij; ð3:12Þ

where the gauge condition ζ0 ¼ 0 has not been imposed.
Remarkably, we obtain the 3D Maxwell theory on the
boundary of the 4D topological BF model. In the same
way, eliminating the field ζi, we obtain the action of a
free scalar, analogously to the previous model:

S3D ¼ a1ð1 − kÞ
2

Z
d3X∂iΛ∂iΛ: ð3:13Þ

B. Abelian 5D BF model with boundary

The action of the Abelian 5D BF model with a boundary
on the plane x4 ¼ 0 is
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Sbulk ¼
Z

d5xϵμνρστ½∂μAνBρστ þ kAν∂μBρστ�θðx4Þ;
ð3:14Þ

with k ≠ 1. It depends on the gauge field Aμ and the rank-3
tensor Bμνρ. We as sign to the fields the canonical mass
dimensions ½A� ¼ ½B� ¼ 2, and we make the usual axial
gauge choice A4 ¼ B4ij ¼ 0. The boundary term is

Sbd¼
Z

d5x

�
a1
2
AiAiþ

a2
2
BijkBijkþa3ϵijklBijmBm

kl

�
δðx4Þ:

ð3:15Þ

The gauge invariance identifies the boundary fields as a
scalar Λ and an antisymmetric rank-2 tensor ζij,

ϵijkl∂iBjkljx4¼0
¼ 0 ⇒ Bijk ¼ ∂iζjkðXÞ
þ cyclic permutations ð3:16Þ

ϵijkl∂kAljx4¼0 ¼ 0 ⇒ Ai ¼ ∂iΛðXÞ; ð3:17Þ

together with the symmetries,

δζij ¼ ∂iθj − ∂jθi ð3:18Þ

δΛ ¼ c: ð3:19Þ

The boundary condition is

ϵijklBjkl þ a1Aijx4¼0
¼ 0; ð3:20Þ

where the constant parameters appearing in (3.15) are
constrained as follows:

a3 ¼ 0; a1a2 ¼ −6k: ð3:21Þ

The boundary condition (3.20) written in terms of Λ and
ζαβ is

3ϵijkl∂jζkl þ a1∂iΛ ¼ 0: ð3:22Þ

In close analogy with the previous analysis, the commu-
tation relation between the boundary fields is

3ð1 − kÞϵαβγ½ΛðXÞ; ∂ 0
αζβγðX0Þ�jx0¼x00 ¼ iδð3ÞðX − X0Þ:

ð3:23Þ

Finally, the gauge invariant 4D boundary action compatible
with (3.22) is

S4D ¼ 3ð1− kÞ
Z

d4X

�
∂0Λϵ0αβγ∂αζβγ þ

3

2a1
ðϵ0αβγ∂αζβγÞ2

þa1
6
∂αΛ∂αΛ

�
; ð3:24Þ

with the gauge condition ζ0α ¼ 0 and a1ðk − 1Þ > 0. The
commutation relation (3.23) between the components of
the stress-energy tensor guarantees again the validity of
Schwinger’s criterion (2.61).
Eliminating the field Λ through (3.22), the action (3.24)

takes the on-shell covariant form,

S4D ¼ 3ð1 − kÞ
a1

Z
d4XFijkFijk; ð3:25Þ

where Fijk ¼ ∂iζjk þ ∂kζij þ ∂jζki. Once again, eliminat-
ing the filed ζij, the action (3.24) becomes

S4D ¼ a1ð1 − kÞ
2

Z
d4X∂iΛ∂iΛ; ð3:26Þ

which confirms the duality of the models with actions
(3.25) and (3.26), as claimed in Ref. [14].

IV. ABELIAN 5D BC MODEL WITH BOUNDARY

In this section we extend our treatment to the so-called
BC model, built from two rank-2 tensors [16], with
boundary on the plane x4 ¼ 0, which was studied in
Euclidean space-time in Ref. [17]. In Minkowski 5D flat
space-time, its action is defined by

Sbulk ¼
Z

d5xϵμνρστ½∂ρBμνCστ þ kBμν∂ρCστ�θðx4Þ; ð4:1Þ

with k ≠ 1. The canonical mass of the tensors Bμν and Cμν

is ½A� ¼ ½B� ¼ 2. The most general boundary term which
can be introduced is

Sbd ¼
Z

d5x½a1BijBij þ a2ϵijklBijBkl þ a3CijCij

þ a4ϵijklCijCkl þ a5BijCij�δðx4Þ: ð4:2Þ

The bulk action (4.1) is invariant under two discrete
symmetries involving inversion of time,

T1x0 ¼ −x0 T1xα;4 ¼ xα;4

T1B0α ¼ B0α T1C0α ¼ −C0α

T1B04 ¼ B04 T1C04 ¼ −C04

T1Bαβ ¼ −Bαβ T1Cαβ ¼ Cαβ

T1Bα4 ¼ −B0α4 T1Cα4 ¼ Cα4 ð4:3Þ

and
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T2x0 ¼ −x0 T2xα;4 ¼ xα;4

T2B0α ¼ −C0α T2C0α ¼ −B0α

T2B04 ¼ −C04 T2C04 ¼ −B04

T2Bαβ ¼ Cαβ T2Cαβ ¼ Bαβ

T2Bα4 ¼ C0α4 T2Cα4 ¼ Bα4: ð4:4Þ

Notice that T2 is a symmetry only if k ¼ −1. The vector
boundary fields are defined in the usual way from the Ward
identities describing the residual gauge invariance on
x4 ¼ 0:

ϵijkl∂jCkljx4¼0
¼ 0 ⇒ Cijjx4¼0

¼ ∂iξjðXÞ − ∂jξiðXÞ
ð4:5Þ

ϵijkl∂jBkljx4¼0
¼ 0 ⇒ Bijjx4¼0

¼ ∂iζjðXÞ − ∂jζiðXÞ:
ð4:6Þ

Their canonical mass dimensions are ½Λ� ¼ ½ζ� ¼ 1, and
their definitions induce the gauge symmetries:

δξi ¼ ∂iφ ð4:7Þ

δζi ¼ ∂iθ: ð4:8Þ

The boundary conditions of the model are

−ϵijklCkl þ 2a1Bij þ 2a2ϵijklBkl þ a5Cijjx4¼0 ¼ 0 ð4:9Þ

−kϵijklBkl þ 2a3Cij þ 2a4ϵijklCkl þ a5Bijjx4¼0 ¼ 0:

ð4:10Þ

The only consistent solutions are those which respect time
reversal also on the boundary [17]. We study them
separately:
(1) The solution imposing T1,

a2 ¼ a4 ¼ a5 ¼ 0; a1a3 ¼ −k; ð4:11Þ

with the unique boundary condition

−ϵijklCkl þ 2a1Bijjx4¼0 ¼ 0; ð4:12Þ

which, written in terms of ξi and ζi, is

−ϵijkl∂kξl þ a1ð∂iζj − ∂jζiÞ ¼ 0: ð4:13Þ

It induces the 4D gauge invariant action,

Sð1Þ
4D ¼ 4ð1 − kÞ

Z
d4X

�
ϵαβγ∂0ξα∂βζγ

−
1

4

�
1

a1
FαβFαβ þ a1GαβGαβ

��
; ð4:14Þ

where Fαβ ≡ ∂αξβ − ∂βξα and Gαβ ≡ ∂αζβ − ∂βζα
and with the gauge choice ξ0 ¼ ζ0 ¼ 0 and the
condition a1ðk − 1Þ > 0. The action displays an
electromagneticlike duality, as it is invariant under
the symmetry,

ζ ↔ ξ

a1 →
1

a1
; ð4:15Þ

which exchanges the “electriclike” and “magnetic-
like” fields.
Also in this last case, it can be verified that the

components of the stress-energy tensor satisfy
Schwinger’s identity (2.61), in virtue of the com-
mutation relation,

4ð1 − kÞϵαβγ½ξαðXÞ; ∂ 0
βζγðX0Þ�j

x0¼x00

¼ iδð3ÞðX − X0Þ; ð4:16Þ

thus assuring the covariance of the action (4.14).
Alternatively, it is possible to check the covariance
of the 4D action eliminating the field ζ through the
duality relation (4.13). Remarkably, the resulting
action turns out to coincide with the 4D Maxwell
theory:

Sð1Þ
4D ¼ ðk − 1Þ

a1

Z
d4XFijFij: ð4:17Þ

Eliminating ξ we would obtain again the Maxwell
theory but with ξ → ζ compared to (4.17) and the
coupling constant a1ðk − 1Þ, in accordance with the
electromagneticlike duality (4.15).

(2) The solution imposing T2:

a3 ¼ a1; a4 ¼ −a2; k ¼ −1; ð4:18Þ

with the boundary conditions

Bij ¼ κ1ϵ
ijklBkl þ κ2ϵ

ijklCkl; ð4:19Þ

Cij ¼ −κ2ϵijklBkl − κ1ϵ
ijklCkl; ð4:20Þ

where

κ21 − κ22 ¼ −
1

4
; ð4:21Þ
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and

a1 ¼ 4κ1a2 þ 2κ2; a5 ¼ 8κ2a2 þ 4κ1: ð4:22Þ

The boundary action takes the form

Sð2Þ
4D ¼ 8

Z
d4X

�
ϵαβγ∂0ξα∂βζγ −

1

2
κ2FαβFαβ

−
1

2
κ2GαβGαβ − κ1FαβGαβ

�
; ð4:23Þ

with the same temporal gauge choice of (4.14).
Notice that κ2 must be positive. Otherwise, the
respective Hamiltonian would not be definite
positive.

(3) The solution imposing T1 and T2 together: It is a
special case of point 2 with the further conditions

κ1 ¼ 0 κ2 > 0: ð4:24Þ

The boundary conditions become

Bij ¼ 1

2
ϵijklCkl; ð4:25Þ

Cij ¼ −
1

2
ϵijklBkl; ð4:26Þ

which are consistent with each other, and the
boundary action is

Sð3Þ
4D ¼ 8

Z
d4X

�
ϵαβγ∂0ξα∂βζγ

−
1

4
ðFαβFαβ þ GαβGαβÞ

�
: ð4:27Þ

It is a special case of (4.14) in the limit k ¼ −1 and
a1 ¼ 1, and with the same argument, it is straight-
forward to verify its covariance.

V. CONCLUSIONS

In this paper we discuss, in a common framework, some
of the topological quantum field theories that we have
studied in our previous works, in the presence of a
boundary, introduced by means of a theta term in the
action. We have been able to identify the boundary physics
emerging from bulk theories which otherwise lack of local
observables; in all cases we analyzed, gauge symmetry
plays a crucial role determining which are the boundary
fields and the transformations under which the boundary
actions must be invariant. The bulk contribution to the
boundary actions is therefore uniquely determined by
requiring compatibility with the algebra arising from the
Ward identities and with the boundary conditions. We
obtained that the 2D theory of Luttinger liquid emerges as
boundary theory of the 3D BF theory. For higher dimen-
sions, the Maxwell theory is naturally found on the
boundary of topological field theories. We stress that the
boundary actions depend on the coefficient ai appearing in
the θ terms of the various bulk actions we considered.
These coefficients are not entirely determined by the
symmetries of the bulk theory, as it should, since they
encode nonuniversal information. In addition, for what
concerns the BC model studied in Sec. IV, two possible
boundary dynamics are found, which reflect the two
possible time reversal symmetries displayed by this model.
Moreover, and remarkably, some of the actions display a
strong-weak coupling duality, such as the case for Luttinger
theory in two dimensions and for Maxwell theory in four
dimensions. Finally, despite appearances, we showed that
the boundary actions display the Schwinger criterion for
covariance, based on algebraic considerations on the
energy-momentum tensor.
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