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The traditional idea of the Pomeron/Reggeon description for hadron scattering is now being given
theoretical foundation in gravity dual descriptions, where Pomeron corresponds to an exchange of spin-
J € 27 states in the graviton trajectory. Deeply virtual Compton scattering (DVCS) is essentially a two-to-
two scattering process of a hadron and a photon, and hence one should be able to study nonperturbative
aspects (the generalized parton distribution [GPD]) of this process by the Pomeron/Reggeon process in
gravity dual. We find, however, that even one of the most developed formulations of gravity dual, Pomeron
[Brower-Polchinski-Strassler-Tan (BPST), 2006], is not able to capture skewness dependence of GPD
properly. Therefore, we compute Reggeon wave functions on AdSs so that the formalism of BPST can be
generalized. These wave functions are used to determine the DVCS amplitude, bring it to the form of
conformal operator product expansion/collinear factorization, and extract a holographic model of GPD,
which naturally fits into the framework known as “dual parametrization,” or the “(conformal) collinear

factorization approach.”
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I. INTRODUCTION

Scattering processes of hadrons involve nonperturbative
information of QCD. When it comes to scattering with the
center of mass energy higher than the QCD scale, lattice
computation will not have enough computation power in a
near future, yet perturbative QCD is able to say something
only about the hard components involved in the scattering.
This is where holographic descriptions of strongly coupled
gauge theories may find a role to play. Although we cannot
expect gravitational “dual” descriptions to be both calcu-
lable and perfectly equivalent to the QCD of the real world
at the same time, we still hope to be able to learn
nonperturbative aspects of hadrons at the qualitative level,
using calculable holographic dual descriptions of nearly
conformal strongly coupled gauge theories.

String theory started out as the dual resonance model
describing scattering amplitudes of hadrons. One of its
major problems as a theory of hadrons was a “prediction”
that the amplitude of the elastic scattering of two hadrons
falls off exponentially, e’ in the momentum transfer
squared ¢ for some B > 0, although the amplitude is known
in reality to fall off in a power law in | —¢| for hard
scattering. The prediction, however, is now understood as
that of string theory with a flat background metric; the
amplitude of elastic scattering turns into such a power law
indeed when the target space of string theory has a warped
metric. At the qualitative level, string theory on a warped

“Present address: SmartNews, Inc.

1550-7998,/2014/90(12)/125001(47)

125001-1

PACS numbers: 12.38.Aw, 11.25.Tq, 13.85.-t

spacetime—holographic (gravitational dual) descriptions—
can be a viable theory of hadron scattering [1-3].

The holographic technique can be used to study not just
amplitudes of hadron scattering as a whole, but also to
extract the information of partons within hadrons [2].
Parton distribution functions (PDFs) are defined by the
inverse Mellin transformation of hadron matrix elements of
gauge singlet parton-bilinear operators in QCD, and gravity
dual descriptions can be used to determine matrix elements
of the gauge singlet operators. The PDF extracted in this
way satisfies Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
[(DGLAP), g*-evolution] and Balitsky-Fadin-Kuraev-
Lipatov [(BFKL), In(1/x)-evolution] equations (e.g.,
[4-7]); just like in perturbative QCD [8], these two
evolution equations follow from how the saddle point j*
moves in the complex angular momentum j-plane integral
(the inverse Mellin transform). The holographic description
for the PDF and the generalized parton distribution (GPD)
also shows crossover transition between this DGLAP/
BFKL behavior and the Regge behavior [3] (see also
[7]). Thus, the parton information studied in this way
may be used to understand nonperturbative issues asso-
ciated with partons in a hadron at qualitative level.

In this article, we study two-body—two-body scattering
between a hadron and a photon (that is possibly virtual) in
gravitational dual descriptions; y*(q;) +h(p;) = ") (g,)+
h(p,). A special case of this scattering—the forward
scattering with g; = ¢, and p; = p,—has been studied
extensively in the literature (e.g., [2,4—7]) for the study of
deep inelastic scattering (DIS) and PDF, and some refer-
ences also cover the case of nonforward elastic scattering
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[(¢1)? = (¢2)%, (g1 — q2)* # 0]. This article extends the
analysis so that all kinds of skewed (g7 # ¢3) cases are
covered. In hadron physics, therefore, the kinematics
needed for deeply virtual Compton scattering, hard exclu-
sive vector meson production and timelike Compton
scattering processes [9] is covered in this analysis. With
the full skewness dependence included in this analysis, it is
also possible to use the result of this study to bridge a gap
between data in such scattering processes at nonzero
skewness [10] and the transverse profile of partons in a
hadron, which is encoded by GPD at zero skewness [11].

From a theoretical perspective, the task of this article is
to generalize the formalism of [2,3] (see also [4,6,7]) so that
it can be used for two-body-to-two-body scattering that is
not necessarily elastic. Pomeron/Reggeon propagators have
been treated as if they were for a scalar field in [2,3,7], but
they correspond to an exchange of stringy states with
nonzero (arbitrarily high) spins; for the study of scattering
with nonzero skewness, the polarization of a higher spin
state propagator should also be treated with care (see also
the approach in [12,13]).

It is a notoriously difficult problem to compute scattering
of strings on a curved background geometry. We do not
pretend that the generalization of the formalism in this
article is something derived from string theory without a
flaw. This is rather an attempt at capturing an approx-
imately correct picture of nonperturbative aspects in hadron
scattering that string theory would predict in the distant
future. We are forced to rely sometimes on physics intuition
—and to ignore subtleties or corrections that are not under
our control—when we face situations where not enough
techniques have been developed in string theory at the
moment.

This article is organized as follows. We begin in Sec. II A
with a review of parametrization of GPD in terms of
conformal OPE (operator product expansion) because the
expansion in a series of conformal primary operators
becomes the key concept in using AdS/CFT correspon-
dence (cf. [5]). After plainly stating what needs to be done
in the gravity dual approach in Sec. II B, we proceed to
explain our basic gravity dual setting and an idea of how to
construct a scattering amplitude of our interest by using
string field theory in Secs. III and IV. Section V shows the
results of computing wave functions of spin-j fields on
AdSs, while a more detailed account of the derivation of
wave functions is given in Appendix A. Classification of
eigenmodes that turn out to be relevant for the “twist-2”
operators in later sections is given in Sec. VA, and wave
functions are presented as analytic functions of the complex
spin (angular momentum) variable j in Sec. V B. These
wave functions are organized into irreducible representa-
tions of conformal algebra in Sec. V C; the representation
for spin-j primary operators contain more eigenmode
components than those treated by the Pomeron exchange
amplitude in the formalism of [3], indicating that more

PHYSICAL REVIEW D 90, 125001 (2014)

contributions are needed in the scattering amplitude with
nonvanishing skewness than in the formalism of [3]. These
wave functions (and propagators) are used in Sec. VI in
organizing scattering amplitude on AdSs. The amplitude
obtained in this way can be cast into the form of conformal
OPE, from which one can also extract GPD as a function of
kinematical variables. We are not committed to a particular
form of implementing confining effects in the holographic
description, as discussed in Sec. VD. Some qualitative
aspects of the GPD profile are examined in Sec. VII. This
paper in Phys. Rev. D is based on the preprints [14].

Not surprisingly, holographic models of GPD so
obtained provide a special subclass of GPD models that
have been called dual parametrization or (conformal)
collinear factorization approach in the QCD/hadron com-
munity [15-18]. After all, it is the combination of the dual
resonance model and the AdS/CFT correspondence that are
being used.

We found that interesting preprints [12,13] cover a
subject that is closely related to our study in Secs. V
and VI and in Appendix A. References [12,13] mainly deal
with correlation functions of CFTs as functions of space-
time coordinates, whereas we deal with them in this article
as functions of incoming/outgoing momenta, and confine-
ment effects are also implemented, so that we can study
hadron scattering processes.

II. OUR APPROACH: CONFORMAL OPE AND
GRAVITY DUAL

A. Review: Conformal OPE of DVCS amplitude

1. Notation and conventions

Deeply virtual Compton scattering (DVCS) y* 4+ h —
h+ 7y, hard exclusive vector meson production (VMP)
e+h—e+h+V and timelike Compton scattering
(TCS) processes e +h — e+ h+ete are shown in
Figs. 1(a), 1(c), and 1(d), respectively. As a part of all
these processes, the photon-hadron two-body-to-two-body
scattering amplitude,

M(r*h = y9h) = (€)T,u(€5)", (1)

is involved." This two-body-to-two-body scattering ampli-
tude with this exclusive choice of the final states (Fig. 2) is
truly nonperturbative information, and this is the subject of
this article. Because the “final state” photon is required to
be on-shell g3 = 0 in DVCS and timelike® g3 < 0 in VMP

"There are two contributions from (a)they* + h — y + hvirtual
Compton scattering and (b) the Bethe-Heitler process in the
leptoproduction process of a photon on a target hadron h:
£+ h — ¢+ y+h, and they interfere. They can be separated
experimentally, however, by exploiting kinematical dependence
and polarization [19]. It thus makes sense to focus only on
the amplitude (a).

*We use the (=, + + +) metric throughout this paper.
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(¢c) VMP

FIG. 1.

(d) TCS

Panels (a),(b) are diagrams contributing to the leptoproduction process of photon on a hadron, £ + h — £ 4+ y + h, (c) is the

exclusive vector meson production process, and, finally, (d) is the timelike Compton scattering process.

d1 q2

h P1 P2 [

FIG. 2. Photon-hadron
amplitude.

two-body-to-two-body  scattering

and TCS, we are interested in developing a theoretical
framework to calculate this nonperturbative amplitude in
the case where ¢3 is different from spacelike ¢7 > 0.

Just like in the QCD/hadron literature, we use the
following notation for Lorentz invariant kinematical
variables:

1 1
p"=§(p‘f+p5), Q”Zi(q’HQ’z‘),
A = ph—pl =dq) — 4. (2)
-q° -A-q
X = s ]/I:—’
2p-q 2p-q
s=W2=—(p+q)?  1=-A% (3)

n is called skewness; in the scattering process of our
interest, ¢7 = ¢*> + A’/4+q- A and ¢3=¢*+A*/4—q-
A are not the same; hence, the skewness does not vanish.

We will focus on high-energy scattering; for a typical
energy scale of hadron masses/confinement scale A, we
assume that

A’ < g}, W2, while 7] S O(A). (4)

The photon-hadron scattering amplitude (Fig. 2) in the
real-world QCD (where all charged partons are fermions),
the Compton tensor is given by the hadron matrix element
with the insertion of two QED currents J#,

™= i/ d*xe™ 0 (h(ps) | T{J* (x/2)J*(=x/2) } h(p1)).
(5)

For simplicity, we assume that the target hadron is a scalar

and further pay attention only to the structure function V;

appearing in the gauge-invariant decomposition3 of the
Compton tensor:

T" =V P[q,]""Plgsl, + Va(p - Plg:1))* (p - Plga])”
+ Vi(q2 - Plg1])"(q: - Plga])”
+ Va(p - Plg1])*(q1 - Plga])”
+Vs(qa - Plai])'(p - Plgo])” + A" qy,q5,. (7)

Here, we introduced a convenient notation:

Plgl, = {ﬂ,w - q;?”] : (6)
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These structure functions, Vi, 345(x,7,2,¢*), should be
expressed in terms of the kinematical variables x, 7, and ¢,
and one of the primary purposes of this article is to study
how the structure functions depend on the skewness 7.

2. Light-cone operator product expansion

The light-cone OPE can be applied to the product of
currents T{J*J*} before evaluating it as a hadron matrix
element. Let the expansion be

i / d*xe T {J¥ (x/2)J*(=x/2)}

_ o
Im Py

(@) (0:4%) (8)

for some basis of local operators (’)/ "I renormalized at

= q°. C’,’;l 01 s are the correspondlng Wilson coeffi-
cients renormalized at u? = ¢*. If we were to evaluate these
local operators on the right-hand side with the same state
for both bra and ket, (h(p,)| and |h(p;)), with p5 = pf,
then the Compton tensor and its structure functions do not
receive nonzero contributions from local operators that are
given by the total derivative of some other local operators.
In the case of our interest, however, such operators do
contribute.

Let us take a series of operators in QCD that are called
twist-2 operators in the weak coupling limit. The twist-2
operators in the flavor-nonsinglet sector are labeled by two
integers, j, [,

— gy
(’)7‘1 = [(— OHi+1W i (D)

(D)3, ,), o (0: %), )

i>j+1—18ﬂj+1 ..

with an Nz x N flavor matrix (4%),,. Similarly, in the
flavor-singlet sector, there are two series of twist-2 oper-
ators with the label j, /, given by quark bilinear and gluon
bilinear. Here, these operators are made totally symmetric
and traceless (t.s.t.1) in the j 4- [ Lorentz indices so that they
transform in irreducible representations of the Lorentz
group SO(3,1), D = D-D.

Suppose that the hadron matrix element of the operator
Of, is given by

(h(p2)|OF,[h(p1))
J
= Z AM] oo AP R 'pﬂjJr]]LS.t.].Aj.k(t;qz)(_z)j_k;
=0
(10)
the reduced matrix element A%, () is nonperturbative

information and cannot be determined by perturbative
QCD. If we pay attention only to Wilson coefficients
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v
leam “Hjl

them as”

that are proportional to #** and are to write

qﬂl e qu+l
then the twist-2 flavor-nonsinglet contribution to the
structure function V; becomes

Vi= zcll 1+IZA//€ (# q 7t
=) _Ci(9) ;A?(r/, tq%). (12)
J

where 9 := (n/x), C3(9):=32,Cs, 9, and A%(y,1) =
J

i—oM A% (1). Tf the structure function V, receives
contributions only from even j € Z, then this j summation

is rewritten as
djl+ e ™ 1
- - C*9) =A% n, t; 2
/41’ sin(zj) i )xf jontq”)

(13)

in the form of inverse Mellin transformation; here,
C4(9; ¢*) and A%(n, 1; ¢*) are now meant to be holomorphic
functions on j (possibly with some poles and cuts) that
coincide with the original ones at j € 2Z. Precisely the
same story also holds true for the flavor-singlet sector.

Because the structure function is given by the inverse
Mellin transform of a product of three factors, namely,
(a) the signature factor F[l £ e "V]/sin(xj), (b) the
Wilson coefficients C;?‘, and (c) the hadron matrix elements
A}’, it can be regarded as a convolution of inverse Mellin
transforms of those three factors. The inverse Mellin
transform of the signature factor becomes

Vilx.n, t4%) =

2rix/ 2

i —mij -
dj 1751+ el _1[ 1 0

sin(7) T2 |[1-x+tie 1+x
which corresponds to propagation of the parton in a
perturbative calculation [20], and the inverse Mellin trans-
form of the matrix element is called the generalized parton
distribution:

dj 1

— A% = 1
g At =q?). (1)

H*(x,n. ;0% = ¢*) =

GPD H%(x,n,t; /ﬂ) of a hadron / is nonperturbative
information, just like the ordinary PDF, which is obtained

“In the leading order of QCD perturbation, Clo=—[1+(=1) i
for j =2,4,... and (4%),, = [diag(4/9,1/9, 1/9)]
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by simply setting # = 0 and ¢ = 0. For a phenomenological
fit of the experimental data of DVCS and VMP, some
function form of the GPD needs to be assumed because of
the convolution involved in the scattering amplitude [10].
Setting up a model (and assuming a function form) for the
nonperturbative information in terms of A;(n, 1; ¢*) rather
than the GPD itself [H(x,n,t;¢*)] is called dual para-
metrization [15-18], and some phenomenological Ansitze
have been proposed. In this article, we aim at deriving a
qualitative form of A;(5,¢) by using a gravitational dual
(that is analytic in j), instead of assuming the form of
A;(n, t) by hand.

3. Renormalization and OPE in dilatation eigenbasis

Remembering that the distinction between the y* + h —
y + h scattering amplitude and GPD originates from the
factorization into the Wilson coefficients and local oper-
ators (and their matrix elements), one will notice that the
GPD defined in this way should depend on the choice of the
basis of local operators. Although the choice of operators
(’);” ,» with j> 1 and [/ > 0, in (9) appears to be the most
natural (and intuitive) one for the twist-2 operators in the
flavor-nonsinglet sector, there is nothing wrong with taking
different linear combinations of these operators as a basis
when the corresponding Wilson coefficients also become
linear combinations of what they are for OF,. Given the fact
that the operators OF, mix with one another under
renormalization, it should not be compulsory for us to
stick to the basis OF,.

Under the perturbatlon of QCD, the flavor-nonsinglet
twist-2 operators are renormalized under

0

/’ta [O mm(o H )] [}/U)]mm’[Oj—m’,m’(();ﬂz)]; (16)

because operators can mix only with those with the same
number of Lorentz indices, the anomalous dimension
matrix [y] is block diagonal in the basis of Of,. The j x
j matrix for the operators (9“ =0,....,7—1) 1is
denoted by [y\)]. This matrix is upper triangular in this
basis, and the diagonal entries are given by the anomalous
dimensions of the twist-2 spin-j operators without a total
derivative:

—m.,m (

[7<j)]rnm = 7(] - m) (17)

Therefore the eigenvalue of the anomalous dimension

.....

and the correspondlng operator O m—1m 1S @ hnear

combination of operators O;_, ., Wrth m=m,....j—1
[21]. The corresponding Wilson coefficient f"’ 1 for
such an operator is a linear combination of C”’ ., with

Jj—m'.m

m' =m,...,0. In this operator basis, matrix elements and
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Wilson coefficients renormalize multiplicatively, without
mixing.5

In this new basis of local operators, the structure function
becomes

Vl = ZEZ

Kk
K E :An+1k )

ZC n+1 n+1(77’t H ) (18)
where
Ci(9) = Ca g%, (19)
K=0

and A . (%) is the reduced matrix element of the

operator® 0% (0; 4?). The structure function is therefore
written as yet another inverse Mellin transform,

djl e i_ 1
Vi=- [P0y

Fra R ). (20)

Yet another GPD can also be defined by using A® instead of
Af(n. 1, ¢%):

d]l

— A%, t; 21
g At (21)

He(x,n, t;4°) =

When it comes to the description of the y* +h — y + h
scattering amplitude as a whole, it does not matter which
operator basis is used. In order to talk about the distribution
of partons in the transverse directions in a hadron, we only
need GPD at 5 = 0. The newly defined GPD H does just as
good a job as the H defined in (15); they are the same
atn =0.

Even within the dual parametrization approach, it has
been advantageous to use this operator basis because it
becomes much easier to implement a phenomenological
assumption (a function form) of Z?(n, t;u?) that is con-
sistent with renormalization group flow [15].

’In reality, the anomalous dimension matrix depends on the
coupling constant ay, and a, changes over the scale. Thus, the
eigenoperator of the renormalization/dilatation also changes over
the scale. In scale invariant theories (and in theories with only
slow running in ay), however, this multiplicative renormalization
is exact ora good approxrmanon (cf. [22])

®Just like 0, = (=i0)'0;y, there is a relation Ok =
(=i0)K 0, in the new basis. This is why all the hadron matrix
elements of O, x can be parametrized by A, | 4, just like those of
O, are by A; ;. Here, n corresponds to the conformal spin, which
is sometimes denoted by j in the literature. In this article,
however, we maintain j = n + 1.
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4. Conformal OPE

Although the hadron matrix element is essentially
nonperturbative and is not calculable within perturbative
QCD, more discussion has been made of the Wilson
coefficients C% . They still have to be calculated order
by order in perturbation theory, if one is interested strictly
in the QCD of the real world. If one is interested in
gauge theories that are more or less “similar” to QCD,
however, stronger statements can be made for a system
with higher symmetry: conformal symmetry. One can
think of A =4 super Yang-Mills theory or N =1
supersymmetric SU(N) x SU(N) gauge theory of [23]
as an example of theories with exact (super)conformal
symmetry. The QED probe in the real-world QCD can be
replaced by gauging global symmetries [such as (a part
of) SU(4) R symmetry of N' = 4 super Yang-Mills theory
and SU(2) x SU(2) x U(1) symmetry of [23]]. By apply-
ing the conformal symmetry, one can derive stronger
statements on the Wilson coefficients of primary oper-
ators appearing in the OPE.

Suppose that we are interested in the OPE of two primary
operators, A and B, that are both scalar under SO(3,1). If we
take the basis of local operators for the expansion to be
primary operators O, (with j, Lorentz indices and an [,
scaling dimension) and their descendants 9XO,, (with j, +
K Lorentz indices), then in the OPE,

Ha+g=1,+)n) XPin+K
T{A(x)B(0)} = Z Zwifﬁk

x [0%0,(0)] (22)

P17 Pjn+K "

(22T (5=
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The conformal symmetry determines all the coefficients of
the descendants ¢, g (K > 1) in terms of that of the primary
operator, ¢, =: ¢,. Ignoring the mixture of nontraceless
contributions, one finds that [24]

YlyHlg=1,+j,)
T{A(x)B(0)} = Z( )2 e X xPine,

x F1<lA_lB+ln+]n

> ,l,,—f—jn;x-@)

x [0,(0)] (23)

P1Pjy "

A question of real interest to us is the OPE of conserved
currents J¥ and J#. They are not scalars of SO(3,1), but the
same logic as in [24] can be used also to show that, in the
terms with Wilson coefficients proportional to #**,

‘fn

T WO} =3 () e,

I .
X lFl <%’ln +.]nax a)
X [711(0)]/)]--4/)]-” +oee (24)

where 7, :=1[, — j, is the twist, a mixture of the non-
traceless (and hence higher twist) contributions is ignored,
and terms with Wilson coefficients without #** are all
omitted here. The scaling dimension of conserved currents
[, = lp = 3 has been used. The momentum space version
of the OPE is [25]

( 21)];1 /2)1 e qgj”

; / d*x eI T{J¥(x)J4(0)} :'7"”2

- —c 7 =
42__F(3 -3 (@3)* " (g3)
F( R Ry e ) [N R

or, equivalently [18],
_ . (zﬂ)zr(M) (=2i)ingP - - - gPin
i [ d*(x—y)e  CEIT{I(x)J4(y)} = T C 7 :
/ Z 4T3 -3) (¢*)> " (g*)n

ln+jn_2 ln+jn ln+jn lqa N\~ x+y

Either in the form of (25) or (26), the primary operators O, and the corresponding coefficients ¢, are renormalized
multiplicatively.

B. AdS/CFT approach

In AdS/CFT correspondence, type IIB string theory on AdSs; x W with a five-dimensional Einstein manifold W
corresponds to a gauge theory on R*! with an exact conformal symmetry; theories with an exact conformal symmetry,
however, are qualitatively different from the QCD in the real world. But the type IIB string on a geometry that is close to
AdSs5 x W, except with the confining end in the infrared, may be used to extract a qualitative lesson on strongly coupled
gauge theories with confinement, which are not qualitatively different from the QCD.
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In a dual pair of a conformal field theory (CFT) and a
string theory on a background AdSs x W, primary oper-
ators of the CFT are in one-to-one correspondence with
string states on AdSs, and their correlation functions can be
calculated by using the wave functions of the string states
on AdSs. When the background geometry is changed from
AdSs x W to some warped geometry that is nearly AdSs
with an end in the infrared, then the wave functions might
be used to calculate matrix elements of the corresponding
“primary” operators in an almost conformal theory. The
correspondence between the operators and string states can
be made precise, because they are both classified in terms
of the representation of the conformal algebra, which is
shared by both of the dual theories.

In order to determine GPD H in gravitational dual
descriptions, it is therefore sufficient to determine wave
functions of string states corresponding to the primary
operators of interest. Although there is plenty of literature
discussing the correspondence between the (superconfor-
mal) primary operators and string states at the supergravity
level, it is known that the flavor-singlet twist-2 operators
(labeled by the spin j) correspond to the stringy excitations
with arbitrary high spin j that are in the same trajectory as
the graviton [3,26]. Our task is, therefore, to determine the
wave functions of such string states. Needless to say, one
has to fix all of the gauge degrees of freedom associated
with string component fields (not just the general coor-
dinate invariance associated with the graviton) before
working out the mode decomposition. Furthermore, wave
functions need to be grouped together properly so that they
form an irreducible representation of the conformal group
in order to establish correspondence with a primary
operator of the gauge theory side, which also forms an
irreducible representation of the conformal group, along
with its descendants.

It will be clear by the end of this article that all such
technical work is necessary and essential for the purpose of
extracting skewness dependence of GPD.

There are two different (but equivalent) ways to study the
DVCS y* + h — y*) + h amplitude and GPD in gravita-
tional dual descriptions. One is to determine the hadron
matrix elements of spin-j primary operators by using
appropriate wave functions; GPD H is obtained by the
inverse Mellin transform of the matrix elements. Using the
Wilson coefficients that are governed by the conformal
symmetry [see (26)], the DVCS amplitude will also be
obtained. Conversely, the other way is to calculate disc/
sphere amplitude directly, with the vertex operators given
(approximately) by using the wave functions associated
with the target hadron (see Secs. III and IV). We will
identify the structure of conformal OPE in the expression
for the y* + h — y*) + h scattering amplitude in gravity
dual [see (160), (163), (178)], with the Wilson coefficient
for the twist-2 operators precisely as predicted by con-
formal symmetry (26). That also makes it possible to read

PHYSICAL REVIEW D 90, 125001 (2014)

out hadron matrix elements, and to extract the GPD. In
these approaches, one can hope to work also for higher
twist contributions, in principle, but we are not ambitious
enough to do that in this article. In this article, we will
proceed with the latter approach.

III. GRAVITY DUAL SETTINGS

A number of warped solutions to the type IIB string
theory have been constructed, and they are believed to be
dual to some strongly coupled gauge theories. When the
geometry is close to AdS5 x W with some five-dimensional
Einstein manifold W, with weak running of the anti—de
Sitter (AdS) radius along the holographic radius, the
corresponding gauge theory will also have approximate
conformal symmetry, and the gauge coupling constant runs
slowly. If the AdS5; x W geometry has a smooth end at the
infrared as in [27], then the dual gauge theory will end up
with confinement. Gravitational backgrounds in the type
IIB string theory with the properties we stated above all
provide a decent framework for studying qualitative aspects
of nonperturbative information associated with gluons/
Yang-Mills theory on 3 + 1 dimensions.

In studying the & + y* — h + y scattering process in a
gravitational dual, we need a global symmetry to be gauged
weakly, just like QED for QCD. In type IIB D-brane
constructions of gauge theories that have a gravity dual,
U(1) subgroups of an R symmetry or a flavor symmetry on
D7-branes can be used as the models of the electromagnetic
U(1) symmetry. Therefore, we have in mind gravity dual
models on a background that is approximately AdSs x W
with a nontrivial isometry group on W, or with a D7-brane
configuration on it, as in [2].

Our interest, however, is not so much in writing down an
exact mathematical expression based on a particular gravity
dual model that is equivalent to a particular strongly
coupled gauge theory, but more in extracting qualitative
information of partons in hadrons of confining gauge
theories in general. It is, therefore, more suitable for this
purpose to use a simplified setup that carries common
(and essential) features of the type IIB models that we
described above. Throughout this article, we assume a pure
AdSs x W metric background,

ds* = GyydxMdxN = g,,,dx"dx" + R*(gy) ,,d0°d6",
(27)

Gundx"dx" = ) (g, dxtdx* + dz?), €M) = —;
(28)

that is, we ignore the running effect, and we do not specify
the five-dimensional manifold W. The dilaton vacuum
expectation value is simply assumed to be constant,
e? = g,. A confining effect—the infrared end of this
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geometry—can be introduced, for example, by sharply
cutting off the AdSs space at z = A~! (hard wall models),
or by similar alternatives (soft wall models). We are not
committed to a particular implementation of the infrared
cutoff in this article (see the discussion in Sec. V D), except
in a couple of places where we write down some concrete
expressions for illustrative purposes (Secs. VII A and
VIID). The energy scale A associated with (any form of
implementation of) the infrared cutoff corresponds to the
confining energy scale in the dual gauge theories. When we
consider (a simplified version of the) models with D7-branes
for flavor, we assume that the D7-brane world volume wraps
on a three-cycle on W and extends all the way down to the
infrared end of the holographic radius z; i.e., all of
0 <z <A'. This corresponds to assuming massless
quarks. In this article, we will not pay attention to physics
where spontaneous chiral symmetry breaking is essential.

As we stated earlier, we would like to work out the & +
v — h+y" scattering amplitude by using the gravity
dual models. This is done by summing up sphere/disc
amplitudes, along with those with higher genus world
sheets. We will restrict our attention to kinematical regions
where saturation is not important (i.e., large ¢*> and/or not
too small x, and large N,). That allows us to focus only on
sphere/disc amplitudes, with the insertion of four vertex
operators corresponding to the incoming and outgoing
hadron & and (possibly virtual) photon .

As a string-based model of the target hadron /4 [that is SO
(3,1) scalar], we have in mind either a scalar “glueball”7
that has nontrivial R-charge, or a scalar meson made of
matter fields. The former corresponds to a vertex operator
[in the (—1,—1) picture]

V(p) = e Xy g, ®(Z;m,)Y(©):,  (29)

where Y(©) is a “spherical harmonics” on W, and the
latter to

V(p) = 1 Xy ®(Z;im,):. (30)

where y corresponds to the D7-brane fluctuations in its
transverse directions. ®(Z) is the wave function on AdSs,
with the argument promoted to the field on the world sheet
[3]. The vertex operators above are approximate expressions
in the (a//R?) ~ 1/+/4 expansion (e.g., [28]) in a theory
formulated with a nonlinear 6 model given by (27). If we are
to employ the hard wall implementation of the infrared
boundary, with the AdSs metric in the bulk without
modification, then the wave function ®(Z; m,,) is of the form

Jo. 2y 2 a2z
V(s m,) = 2872 e 2Utpr2nlid)
77 e, 2]

(31)

7By glueball, we only mean a bound state of fields in super
Yang-Mills theory.
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This wave function is that of the nth lightest hadron
corresponding to some scalar operator with conformal
dimension 7; the hadron mass m, = j, (/,—Z,nA is given
by the nth zero of the Bessel function J, -2 We will
comment on the normalization factor /7, in later sections,
though it disappears from the expression for physical
observables.

The “photon” current in the correlation function/matrix
element 7% in the gauge theory description corresponds to
the insertion of vertex operators associated with non-
normalizable wave functions, rather than with the normal-
izable wave functions (31) for the target hadron state. If we
are to employ an R-symmetry current as the string-based
model of the QED current, then the corresponding closed
string vertex operator is

Vig) = e 0,(0)A,(Z: q) (w5 +y™p*):,  (32)

with some Killing vector v,0/06% on W. The vertex
operator in the case of a D7-brane U(1) current is

V(g) = !X A, (Z; q)y™:. (33)

The wave function A,,(Z; ¢) on AdSs is of the form

Au(z:q) = {55 —qg—ﬂ ec(q)(q2)K1(qz)
+q, "KZSQ) (92)*K>(qz). (34)
A (z;q) = —i0, qk;;(zq) (q2)*K>(qz). (35)

Here, g stands for \/?, although it sometimes imply four-
momentum ¢*, depending on the local context in this
article. The rationale for our choice of the terms propor-
tional to (g - €) will be explained later on in Appendix A .4,
but those terms should not be relevant in the final result
because of the gauge invariance of 7%. When the infrared
boundary is implemented by the hard wall, K (gz) should
be replaced by K,(qz) + [Ko(q/A)/Io(q/ M) (gz), and
K>(qz) by an arbitrary linear combination of K,(gz)
and 1,(qz).

It is not as easy to calculate the sphere/disc amplitudes in
practice, however. It has been considered that the parton
contributions to y* + & — y*) 4 h scattering are given by
an amplitude with states in the leading trajectory with
arbitrary high spin being exchanged [3]. These fields are
not scalar on AdSs but come with multiple degrees of
freedom associated with polarizations. Such polarization of
higher spin fields propagating on AdSs needs to be treated
properly—including such issues as covariant derivatives
and kinetic mixing among different polarizations (diago-
nalization of the Virasoro generator Ly)—in gravity dual
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descriptions in order to be able to discuss the skewness
dependence of the GPD/DVCS amplitude. The direct
impact of the curved background geometry can be imple-
mented through the nonlinear ¢ model on the world sheet,
but one has to define the vertex operators as a composite
operator properly in such an interacting theory. The
Ramond-Ramond background is an essential ingredient
in making the warped background metric stable, yet a
nonzero Ramond-Ramond background cannot be imple-
mented in the Neveu-Schwarz-Ramond (NSR) formalism.

Instead of using a world-sheet calculation in the NSR
formalism when implementing the effect of a curved
background (27), we use string field theory action on flat
space in this article and make it covariant. Because the
gravity dual setup of our interest is in type IIB string theory,
we are thus supposed to use superstring field theory for
closed string and open string modes. In order to avoid
technical complications associated with the interacting
superstring field theories, however, we employ a sort of
toy-model approach by using the cubic string field theory
for bosonic string theory.

In our toy-mode approach, we deal with the cubic string
field theory on AdSs (x some internal compact manifold),
and ignore instability of the background geometry. The
probe photon in this toy-model gravity dual setup will be the
massless vector state of bosonic string theory with the wave
function (34), (35). The target hadron can be any scalar
states, (say, the tachyon) with the wave function (31). We are
to construct a toy-model amplitude of the & + y* — h + y*)
scattering by using the two-to-two scattering of the massless
photon and some scalar in bosonic string theory on the AdSs
background. In short, this is to maintain the spirit of the setup
in [2,3] and use the bosonic cubic string field theory to
compute and obtain something concrete, from which quali-
tative lessons are to be extracted for the setup of our interest.

One of the costs of this approach (without the technical
complexity of interacting superstring field theory) is that
we have to restrict our attention to the Reggeon exchange
(flavor-nonsinglet) amplitude because the cubic bosonic
string field theory deals with open strings, not the closed
(i.e., flavor neutral) string. The amplitude constructed in
this way is certainly not faithful to the equations of type IIB
string theory, either. Since our motivation is not in con-
structing yet another exact solution to superstring theory,
however, we still expect that this (flavor-nonsinglet) toy-
mode amplitude in bosonic string still maintains some
fragrance of hadron scattering amplitude to be calculated in
superstring theory. This discussion continues in Sec. VII C.

IV. CUBIC STRING FIELD THEORY

Section IV A summarizes the technical details of cubic
string field theory that we will need in later sections. We then
proceed in Sec. IV B to explain an idea of how to reproduce
disc amplitude only from string field theory #-channel
amplitude, using photon-tachyon scattering on a flat
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spacetime background as an example. This idea of con-
structing amplitude is generalized in Sec. VI for scattering
on a warped spacetime, and we will see that this construction
of the amplitude allows us to cast the amplitude almost
immediately into the form of conformal OPE (25), (26).

A. Action of the cubic SFT on a flat spacetime

The action of the cubic string field theory (SFT) is given
by [29]

1 2
S—_Z_a,/ <<I>>«<QB<I>+§g,,(I>*(I>*<I>>, (36)

| 2
_——<<1>-QB<I>+ go

— (37

D Px @) ,
where ¢, is a coupling constant of mass dimension
(1 —D/2), where D =26 is the spacetime dimensions
of bosonic string theory.8 Qp is the Becchi-Rouet-Stora-
Tyutin (BRST) operator, and * and - are the star product and
inner product of the string fields, respectively; all of the
technical details we need for this article are summarized
below in this section, but more information is found, e.g., in
[29,30]. The string field ® is, as a ket state, expanded in
terms of the Fock states as in

O =[®) =¢(x)|) + (Ay (x)ay + C(x)b_y + C(x)c_1)[})

N

1 .
+ ( MN(x)E(l]XI] ol +igy(x)—=a,

+M@km4+~>N% (38)

with component fields ¢, Ay, C,C, fyn: 9y h, ...; we
have already chosen the Feynman-Siegel gauge here. We
will eventually be interested only in the states with a
vanishing ghost number, Ngh = (0, because states with a
nonzero ghost number do not appear in the tz-channel/s-
channel exchange for the disc amplitude.

The Hilbert space of one string state is spanned by the
Fock states given (in this gauge) by

ha hy h
asi, | ] b, HC—mC 9% (39)

a=1 b=1 c=1
with 1§n1§n2§-~~§nha, 1Sll<l2<"'<lhb,
and 1<m <my<---<my,. Let us use VY:=

{{n.}’s, {lp}’s, {m.}s} as the label distinguishing

The sign of the interaction term is just a matter of convention,
because field redefinition for all of the component fields  — —®
is always possible. Under this redefinition, however, the covariant
derivative can be either 9,, — ip(A,) or 0,, + ip(A,,). The sign
convention above is for 9,, — ip(A,,), following the convention of
Sec. 6.5 of Polchinski’s textbook.
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different Fock states of string on a flat spacetime. The mass
of these Fock states is determined by

h,

Zn -l—Zlb—f—Zm

(40)

a4+ (NY -1

A component field corresponding to a Fock state may
be further decomposed into a multiple irreducible
|

1
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representation of the Lorentz group, but at least the
rank-%, totally symmetric traceless tensor representation
is always contained. The Fock states of particular interest to
us are the ones in the leading trajectory: ¥ = {1N ,0,0}, so
that all the n,’s are 1, hy, = h, =0, and N'¥) = h,. The
totally symmetric traceless tensor component field of these
states is denoted by (N!)~!/ ZA,(‘,I,/I),,, -

The kinetic term—the first term of (36), (37)—is written
down in terms of the component fields as follows:

— 500 = % / Sx tr [qﬁ(x) <32 + $>¢(x) + Ay (x)*AM (x)

L) (= )0+ ) (2 = 7)) - o) (2 = o+ @

The totally symmetric tensor component field of the Fock
states in the leading trajectory ¥ = {1¥,0,0} has a kinetic
term

1 N-1
E/d%xtr[AMl'“Mf <82— o >AM1‘..MJ»:|- (42)

The cubic string field theory action in the Feynman-Siegel
gauge has two nice properties: First, the kinetic terms of
those Fock states do not mix in the flat spacetime back-
ground, and second, the second derivative operators are
simply given by the d’Alembertian operator, without
complicated restrictions or mixing among various polar-
izations in the component fields.

The second term of the action (36), (37) gives rise to
interactions involving three component fields. Interactions
involving Fock states with small excitation level N are [30]

—— [ @0 Bl )

o cinn ")

8 oMo 5 o
_WEU[ mn (0 0 ¢)]—W§tr[fM¢2]
+2 a/tr[(aMgM)rﬁz} —%tr[hd)z]) e (43)

< — =
where Ay = 3/2/26 [31], O™ = (9™ — 9™), and

. 2
E =exp [ —-2d In (33/4> (Ohy + 00 + 0| (44)

|
The &7 1.2.3) designates the taking of derivatives of the first,
second, and third fields.”

Interactlons involving totally symmetric leading trajec-
tory states are also of interest to us. The tachyon-
tachyon-Y = {1",0,0} cubic coupling with N derivatives
is given by

<M
go/lsft/dZG Etr{A,ﬂ/ 1, (D(=i ‘)

=) (S) (45)

in the interaction part of the action. The photon (level-1
state)-photon-Y = {1¥,0,0} coupling in the cubic string
field theory includes

goj's M,
——,f‘/aﬂﬁ Etr{AEW) a, (AL(=i0 )

a

(=0 Y AR) @07‘) \IZV_%? 4 } . (46)

where we kept only the terms that have N derivatives
and are proportional to nXL, as they are necessary in
deriving (61).

9Concretely,

EA(x)B(x)C(x)

() ][ ol [(R) )
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(Va,A%) (Vi A™) (V3 \%) (Vi A™) (Vi A%) (V. A%) (Vo A%2) (V3 %)
(V1 AM) (V. A%)  (Vy, X (Va,A%2)  (Vy, X1 (Va,A%2)  (Vj, X (Vi A)
(a) 1342 (b) 1243 (c) 1234 (d) 1432

FIG. 3. Disc amplitudes with two photon vertex operators (V; and V,) and two tachyon vertex operators (V3 and V) inserted.
Kinematical amplitudes given by the disc amplitudes above are multiplied by the Chan-Paton factors tr[A%1A%A%1%] in (a),
tr[A91 492 2% 2%] in (b), tr[A91 A% 2% 2%] in (c) and tr[A%1 A% 1% 2] in (d), respectively. The two disc amplitudes (a),(b) become My, (s, 1),

while (c),(d) become My, (u, t).

B. Cubic SFT scattering amplitude
and 7-channel expansion

Before proceeding to study the & + y* — h + y*) scat-
tering amplitude by using the cubic string field theory on
the warped spacetime background, let us remind ourselves
how to obtain #-channel operator product expansion from
the amplitude calculation based on string field theory, by
using tachyon-photon scattering on the flat spacetime as an
example.

|

Let us consider the disc amplitude of tachyon-photon
scattering. The vertex operators labeled by i=1,2,
V; = 1ei,0XMekX: are for photon incoming (i = 1)
and outgoing (i =2) states, which come with Chan-
Paton matrices A% . Tachyon incoming (i = 3) and outgoing
(i = 4) states correspond to vertex operators V; = :e'iX:
with Chan-Paton matrices A%. The photon-tachyon scatter-
ing amplitude A+ ¢ — A+ ¢ in bosonic open string
theory (Veneziano amplitude) is given by10

2 / / MN
g\ T(=dt—1)I(=ds—1) uy KUK,
=—(= - 1
MVen(sv t) <a/> F(_a/(s + t) _ 1) €M(k2)€N(kl) n k] K kz (as + )
ky-pl kY ky-p] KV
2 M _ M 22 _*2 N _ N _ t+1 47
(|- g] -5 ([ -wit] 5w}, 7
[
which is to be multiplied by the Chan-Paton factor g o (ds+1)--- (s +N)

Tr[A% 2% 2% 29 + 294392 )41 3% [see Figs. 3(a) and 3(b)]. gza't -1 N - (49

s !

If the Chan-Paton matrices of a pair of incoming and
outgoing Vertex operators, 4“1 and A“2, commute with
each other then the Chan-Paton factors from Figs. 3(c)
and 3(d) are the same, and the total kinematical part of the
amplitude for this Chan-Paton factor becomes
MVen(S’ t) + MVen(u’ t)‘

Let us stay focused on My, (s, ) alone for now. The
amplitude proportional to ¥V can be expanded, as is well
known, as a sum only of 7-channel poleslz:

@AU(=dt—1)(=d's) ¢ [! , i
J0 _ Jo dx x~%172(1 = x)~@ s—l’
a I'(-d(s+1)—1) 0// e (1-x)

(48)

""Here, p := (ks —k;)/2, the averaged momentum of the
tachyon before and after the scattering, just like in (2).

The Veneziano amplitude (47) can also be obtained in
cubic string field theory [32]. In the cubic SFT, the
scattering amplitude consists of two pieces, a collection
of t-channel exchange diagrams and s-channel diagrams
(Fig. 4):

Myen(s.8) =Y MP(s.0) + 3 M (s.1). (50)

Infinitely many one string states (39) with zero ghost
number (4, = h.)—labeled by Y—can be exchanged in the
t channel or the s channel, and the corresponding con-
tributions are in the form of

"Just like in the case where both A% and A% are an N x N M — fgf)(s, 1) M = fg/s) (t,5)
matrix diag(2/3,-1/3,-1/3). Yo A= 1+ N Yo s — 14+ N

It is also possible to expand this as a sum of s-channel poles 51
only; that is the celebrated s-¢ duality of the Veneziano amplitude. (51)
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A(2) $(4) A(2) $(4)

FIG.4. Two types of diagrams contribute to the photon-tachyon
scattering amplitude My, (s, ) in cubic string field theory: the -
channel exchange of one string states labeled by Y (left panel) and
the s-channel exchange (right panel).

where fgf) and f <;) are regular functions at finite s and f;
N is the excitation level (40) of a component field A™Y).

Because both the world-sheet calculation (47), (49) and
the cubic SFT calculation (50), (51) are the same thing,
Myen(s, 1) in both approaches should be exactly the same
functions of (s, 7). Therefore, for an arbitrary given value of
s, the residue of all the poles in the complex 7 plane should
be the same. We also know that the Veneziano amplitude
can be expanded purely in the infinite sum of 7-channel
poles with 7-independent residues. This means that the full
Veneziano amplitude (47) can be reproduced just from the
t-channel cubic SFT amplitude 3, ./\/ly (s, 1) through the
following procedure:

A, —-1)/d)
Z —a’t— 1 +N( )
= Myen(s,1). (52)

To see that this prescription really works, let us take a
look at the amplitudes of #-channel exchange of one string
states with small excitation level N¥) =0, 1, 2. Focusing
on the amplitude of A+ ¢ — A+ ¢ proportional to
nMN, we find that the tachyon exchange in the ¢ channel

[Fig. 5(a)] gives rise to the amplitude [33]

(1) _ Gosti 2 i —201’t—2a’[+4_—1
My (s, 1) = < o ) 3/ —

g(, 27\ @+l 1
, 53
<16> ar+1 (53)

which is obtained simply by using the ¢-¢-¢p vertex rule
(43) and the A-A-¢ vertex rule (45). The prescription (52)
turns this amplitude into

BThe t-channel and s-channel amplitudes of the cubic SFT,
>y ./\/lgf) and ZYMgf), correspond to the integration over

[0,1/2] and [1/2, 1], respectively, in (48) [32]. Thus, Zy./\/l( )
does not contain a pole in .
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A2) ¢(4)  A(2) o(4) A2 $(4)
¢ A Smns gms
A1) (3) A1) #(3) A1) #(3)
(a) (b) (©)
FIG. 5. t-channel exchange diagrams for A+ ¢ - A+ ¢

scattering in cubic string field theory. The tachyon (N = 0),
photon (N = 1), and level-2 states are exchanged in diagrams (a),
(b), and (c), respectively.

)_g% -1

= Myl(s, T ddt+ 1

(54)
which reproduces the N = 0 term of (49).

The t-channel exchange of level N(¥) = 1 excited states
can also be calculated in the cubic string field theory
[Fig. 5(b)]. The amplitude proportional to 7V

M=% (%) A" e

where (s — u) = (k1) — k(2)) - (ki) — k(3)). Using the rela-
tion & (s + ¢t + u) = —2 in the tachyon-photon scattering to
eliminate u in favor of s and 7, and following the
prescription (52)—which is to exploit &'t =0 in the
numerator—this amplitude is replaced by [33]

go—(ds +1)

— My(s,t) = o (56)

a't
Once again, this reproduces the level N = 1 contribution to
the Veneziano amplitude (49).

A similar calculation for level-2 state exchange can be
carried out [Fig. 5(c)]. Using the vertex rule in (43) for the
level-2—¢-¢ couplings, and also the interactions among
level-2-A-A couplings in the literature, the cubic SFT
t-channel amplitude is given by [33]

2 -1
(t) gO 27 _1
at =\ 37
My t) =30 <16> dt—1

(d(s—u))? 5(dt+2) 490
X - + )
8 16-2 1622

(57)

2 adt—1 /

g5 (27\*! -1 36a't
== — —_— | =], 58
o <16> at—1 162 (58)

2 a't—1 2
0 oo (2N -1 | 117
My (s.1) = o <16> adt—11] 16| (59)

After using @’u = —d/(s + t) — 2 to eliminate « in favor of
s and 7, and further following the prescription (52) (&'t — 1

M (s.1)
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in the numerator), one will see that the level NOY) =2
amplitude turns into

- (Mf + Mq + Mh)(s, t)

g5 -1 [(ds)*+3(ds) +2
Cddt—1 2 ’

(60)

Once again, this is precisely the same as the N =2
contribution to the Veneziano amplitude (49).

Contributions from the 7-channel exchange of states in
the leading trajectory can also be examined systematically.
Using the vertex rule (45), (46) involving the states in the
leading trajectory (¥ = {1¥,0,0}), one finds that the
amplitude proportional to MV is

M BTN o1 (@ (s
1Mooy — o \ 16 di—(N-1) N! ’

(61)

where we maintained only the terms with the highest power
of either s or u. After using the kinematical relation
a(s+t+u)+2=0 to eliminate u in favor of s and 1,
and following the prescription (52) [o't — (N — 1) in the
numerator], we obtain the large-(a’s) leading power con-
tribution to the Nth term of (49) with the correct coefficient.

We have, therefore, seen that the prescription (52) allows
us to use the f-channel exchange amplitude in the cubic
string field theory to construct the full disc scattering
amplitude. In Sec. VI, this prescription is extended for
the disc scattering amplitudes on a spacetime with a curved
background metric, which is the situation of real interest in
the context of hadron scattering.

V. MODE DECOMPOSITION ON AdSs

Let us now proceed to work out mode decomposition of
the totally symmetric (traceless) component field on the
warped spacetime. The correspondence between the pri-
mary operators of the conformal field theory on the (UV)
boundary and wave functions on AdSs is made clear in this
section. The Pomeron/Reggeon wave functions are
obtained as a holomorphic function of the spin variable
j since we need to do so for the further inverse Mellin
transformation. The wave functions will then also be used
to construct the scattering amplitude of & + y* — h + y*)
and GPD in Secs. VI and VIL

Let the bilinear (free) part of the (bulk) action of a rank-;
tensor field on AdSs be'

“The dimensionless constant t4y is something like N2 for a
mode obtained by a reduction of closed string component fields
in higher dimensions. More comments on ¢4, for open string
states is found in footnote 27. ”
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B _%%/ a' / dzy/=g(z)g™" - - - g™

[ Tt T8

()
c N ,
n (Rv2 ;[ff)Af{;]).“mjA,(lyl)...nj],

S eff kin

(62)

where we assume that kinetic mixing between different
fields is either absent or sufficiently small. Here, the
dimensionless parameter Ngf) is NO) —1 for an NV
Z, for bosonic open string (j <N (")), which would be
4(NY) —1) for an N e€Z,, for closed string
(j < 2NW)). This field is regarded as a reduction of some
field with spherical harmonics on the internal manifold,"
and hence j < h,, in general. Another dimensionless
coefficient ¢, may contain a contribution from the “mass”
associated with the spherical harmonics over the internal
manifold and may also include the ambiguity (which is
presumably of order unity) associated with making
d’Alembertian of the flat metric background covariant.'®
The combination (c,/R* + Né}f) /d’) is denoted by MZ;.
The equation of motion (in the bulk part)17 then becomes

)
c, N3 ,
—R~‘2 + ;ff>A§;‘l)...n/_ =0. (64)

P, Yy ADL, ) — (

Solutions to this equation of motion can be obtained from
solutions of the following eigenmode equation,'®

£

2 —
VA, = =23 A

my-m;

(65)

The internal manifold would be a five-dimensional one, W, for
closed string modes in type IIB, and athree-cycle one for open string
states on the flavor D7-branes. For sufficiently small x, however,
amplitudes of exchanging modes with nontrivial spherical har-
monics on these internal manifolds are relatively suppressed, and
we are not interested very much.

The ambiguity in ¢,/R? includes insertion of the curvature
tensor,

([VM» VN])g = _FgN.M + IﬂgM,N + F[QMFgN - FIQNFI?M

_ 51%1 9onN — 5}% Jom
= (63)
R

which vanishes in flat space. Depending on details of how it is
inserted, the value of ¢, may not be the same for all the individual
irreducible components of SO(4,1) in a rank-;j tensor field
A

myem; e

"There is also an IR boundary part of the equation motion. We
will come back to this issue in Sec. V D.
"®The differential operator V2 := ¢""V, V, is Hermitian under

the measure d*xdz+/—g(z)g™™ - - - g"i".
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by imposing the on-shell condition

(E+cy)
VA

We will work out the eigenmode decomposition for rank-;
tensor fields in the following, where we have to work only
for a separate j, without referring to the mass parameter."

The eigenmode wave functions are used not just for a
construction of solutions to the equation of motions, but
also in constructing the Reggeon exchange contributions to
the i + y* — h + y*) scattering amplitude. The propagator
is proportional to

+NY =0 (e, E+RM% =0). (66)

—i aR3
E+c,

. (67)
i NO) —ie tay

The mode equation for a rank-;j tensor field A, .., on
AdSs is further decomposed into those of irreducible
representations of SO(4,1). For simplicity of argument,
we deal only with the mode equations for the totally
symmetric (and traceless) rank-j tensor fields. Namely,

Apyom; = Ao,y for Yo e @, (68)

(1)

We call them spin-j fields.

The eigenmode equation (65) for a totally symmetric
spin-j field can be decomposed into j + 1 pieces, labeled
by k=0,...,J:

(RA) — [(2Kk+ 1)j — 2K> + 3k])A,
+ 22k A e

1 Hjk

+ k(k—1)A?

P ppipji
- 2Z(D[Az"“---])m~-ﬂ,-_k + (E[Az"”---])mmu,-_k
=—EA (69)

THL Bk

PHI " Hj—k

Here,

A = A (70)

k
MKk

ZZ IR

k

and can be regarded as a rank-(j — k) totally symmetric
tensor of the SO(3,1) Lorentz group. The SO(3,1) indices
with " in the superscript, such as p in 0P, are raised by the
four-dimensional (4D) Minkowski metric #”° from a sub-
script o, not by the five-dimensional (5D) warped metric
g™. Dla] and E[a| are operations creating totally sym-
metric rank-(r + 1) and rank-(r + 2) tensors of SO(3,1),
respectively, from a totally symmetric rank-r tensor of SO
(3,1), a:

YThere are mau};/ states with the same value of j, but with
different ¢, and Neff).

PHYSICAL REVIEW D 90, 125001 (2014)

r+1

(D[a])ﬂl'“ﬂrAl = Z aﬂiaﬂr“ i e (71)
i=1

(Ela]),, ol T 22”#,;% Ay oty eopty oty (72)
P<q

The differential operator A; in the first term is defined, as in
[31, by

s s [ (sl )

=220+ (2j = 3)z0. + j(j — 4) + 20°. (73)

The eigenmode equation (65), (69) is a generalization of the
“Schrodinger equation” of [3] determining the Pomeron
wave function. As we will see, the single-component
Pomeron wave function discussed in [3], etc. corresponds
to (93)—that of the (n, [, m) = (0,0,0) eigenmode in our
language, and the Schrodinger equation to (90), (A10);
there are other eigenmodes, whose wave functions are to be
determined in the following.

In the following sections, VA and V B, we simply state
the results of the eigenmode decomposition of (65), (69) for
spin-j fields. A more detailed account is given in
Appendix A.

A. Eigenvalues and eigenmodes for A* = (

Because of the (3 4 1)-dimensional translational sym-
metry in V2, solutions to the eigenmode equations can be
classified by the eigenvalues of the generators of trans-
lation, (—id,). Until the end of Sec. V B, we will focus on
eigenmodes in the form of

Aml"'m/(x’ Z) = eiA.xAml'um/'(Z; A) (74)

and study the eigenmode equation (65) separately for
different eigenvalues A*.

The eigenmode equation for A#¥ = 0 and that for A* # 0
are qualitatively different and need separate study. The
eigenmodes for A* # O will be presented in Sec. V B (and
Appendix A.2); we begin in Sec. VA (and Appendix A.1)
with the eigenmode equation for A* = 0, which is also
regarded as an approximation of the eigenmode equation
for A* # 0 in the asymptotic UV boundary region (at the
least, Az << 1 and z may be as small as R).

For now, we relax the traceless condition on the spin-j
field Aml...mj (m; =0,1,...,3, z), and we just assume that
the rank-;j tensor field TS — is totally symmetric.zo

“This only makes the following presentation more far-
reaching; in the end, it is quite easy to identify which eigenmodes
fall into the traceless part within A,, o See (82)—(84) at the end
of Sec. VA.
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Consider the following decomposition of the space of
z-dependent field configuration A, .., (z;A = 0):

Jk)/2]
Ak i (ZA —0

HL Mk

Mj—k; (75)
N=0

here, (a*N)(z; A% = 0)) oy 15 @ rank-(j —k —2N)
totally symmetric tensor of SO(3,1), and it satisfies the
4D-traceless condition

(k.N)
M1 Hj—k-2N

nhiq =0. (76)
Thus, the field configuration can be described by a*V)’s
with 0 <k <j, 0 <N <[(j—k)/2]. These components
form groups labeled by n =0, ..., j, where the nth group
consists of a®*N)’s, with k + 2N = n; they are all rank-
(j — n) totally symmetric tensors of SO(3,1); let us call the
subspace spanned by the components in this nth group the
nth subspace. The eigenmode equation for A¥ =0
becomes block diagonal under the decomposition into
these subspaces labeled by n =0, ..., j [see (A3) in the
appendix]. Therefore, the eigenmode equation for A* =0
can be studied separately for the individual diagonal
blocks.

The nth diagonal block contains [r/2] + 1 components,
and hence there are [n/2]+ 1 eigenmodes. Let &,
(1=0,...,[n/2]) be the eigenvalues in the nth diagonal
block. The corresponding eigenmode wave function is of
the form

(aN)(z; &% = 0)

— (n.l) 2—j—iv
iMoo Ck,l-"(e )Ml'“ﬂj—nz ’

(77)

where €™ is a z-independent, k-independent rank-(j — n)
tensor of SO(3,1) (¢, € R). In the eigenmode equation
for A* =0, the eigenmode wave functions are all in a
simple power of z, and the power is parametrized by iv
(v € R). The eigenvalues &, ; are functions of v; once the
mass-shell condition (66) is imposed, the eigenmodes
turn into solutions of the equation of motion and iv is
determined by the mass parameter.
The eigenmodes with smaller (n, ) are as follows:

. 0,0 —j—iv
Eoo=(j+4+12), a®(z), ., =en 2", (78)
_ (2 2 (1,0) _ (L0) oy
Ero=0Gj+5+v7),  a"ON2)y ., = w2 ,
(79)

Ero=(5j+4+17),

(0.1)
(a (Z)M]...,,”) _ ( 1 )6;(42024 27 (80)
a(z’o> (Z> _4] 1 j—2

HiHj-2
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Exy=(j+2+17),

0,1
(a( )(Z)m“'ﬂj& ) _ ( 1 )6(2’1)
a(2‘0)<z) ) HiHj—2

HiHj-2

2o (81)

Empirically, the j dependence of the eigenvalues in the nth
diagonal block appears to be &,; = (2n+1-41)j+
?+0(1) (1=0,...,[n/2]) [see (A12)~(A27) in the
Appendix for more samples of the eigenvalues], and we
promote this j dependence as a rule of the labeling of the
eigenmodes with /.

The eigenmode with / = 0 is found in any one of the
diagonal blocks (n =0, ..., j). Its eigenvalue is

Eno=(2n+1)j+2n—n*+4+12, (82)

and
——om (jea+ 1)
_ gk M i ’
o = I G B G SE k01
(n=2n,k=0,...,7), (83)
- - 7l (j—mn)!
oz = O GG By
(n=2n+1,k=0,....7). (84)

These (n,1) = (n,0) eigenmodes are characterized by the
SD-traceless condition
gml’"2Aml...mj =0.

Thus, the eigenmodes within the 5D-traceless (and totally
symmetric) component—the spin-j field—for A* = 0 are
labeled simply by n =0, ..., j.

B. Mode decomposition for nonzero A,

1. Diagonal block decomposition for the A* # 0 case

The eigenmode equation (65), (69) is much more
complicated in the case of A* # 0 because of the second
and fourth terms in (69). The eigenmode equation is still
made block diagonal for an appropriate decomposition of
the space of field A,, ..., (z; A¥).

Consider a decomposition

j—k [s/2

Z Z ENDs—2N [a(k,s,N)Dﬂ] o

s=0 N=0

u"
Aoy, (2 A7)

(85)

where a new operation a—E [a] on a totally symmetric
SO(3,1) tensor a,
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0
T ﬂp l‘q
(ElaD) - p,r = 2§ : (”ﬂpﬂq )am oyl

p<q

(86)
is used. a**N)’s are totally symmetric, 4D-traceless [i.e.,
(76)] rank-(j — k — s) tensor fields of SO(3,1) that satisfy
an additional condition, the 4D-transverse condition:

O (aksN)) = iAP(aksN)) =0. (87)

PH2 W jk—s PH2Hj—f—s

The space of field configuration A, ., (z;A") is now
decomposed into a&+N)’s with 0 < k < j,0<s<j—k
0 < N < [s/2]; these components form groups labeled by
m =0, ..., j, where the mth group consists of aksN) g
with k + s = m; they are all rank-(j — m), totally sym-
metric 4D-traceless and 4D-transverse tensors of SO(3,1);
let us call the subspace spanned by the components in this
mth group the mth subspace. The eigenmode equation for
A* £ 0 becomes block diagonal under the decomposition
into these subspaces labeled by m =0, ..., j. The eigen-
mode equation for the mth sector is given by (A39) in
Appendix A.2. The mth subspace should have

m

> (s/21+1) (88)

s=0

eigenmodes.

Eigenvalues £ are determined in terms of the character-
istic exponent in the expansion of the solution in the power
series of z. Let the first term in the expansion be z2~/="*; the
eigenvalues are functions of v then. Because the indicial
equation at the regular singular point z = 0 allows us to
determine the eigenvalues in terms of v, the eigenvalues in
the case of A¥ # 0 cannot be different from the ones
we have already known in the A# =0 case. In the mth
diagonal block, the eigenvalues consist of &, ; with
0<n<m 0<1<[n/2].

To summarize, the eigenmodes in the totally symmetric
rank-j tensor field of SO(4,1) are labeled by (n,/,m) and
A* and v. Their eigenvalues &, ; depend only on n and /
(with 0 <n <jand 0 <1< [n/2]) and v. Corresponding
eigenmodes are denoted by

A (X Z)n.l,m;A,u

Furpig
lA xpAnlm CAHM
Az Fpay - ﬂj—k(z’ A ’y)
) [s/2] » b(j—m) o
— pilx Z ENDS—ZN [e(n,l,m)] ASSJ_VQN \I,EZ?;}N’"(_AZ’ Z)-
N=0

(89)

e is a (z-independent) totally symmetric 4D-traceless

4D-transverse rank-(j — m) tensor of SO(3,1), and all the

PHYSICAL REVIEW D 90, 125001 (2014)

s’s appearing in the expression above are understood as
s =m—k. by is a constant whose definition is given in
(A38) in the Appendlx

2. Single-component Pomeron wave function

The Pomeron wave function that has been discussed in
the literature (e.g., [3]) does not look as awful as (89). To
our knowledge, the Pomeron wave function in the literature
in the context of hadron high-energy scattering has been a
single component one, ¥, (t,z). How is A',L]l’" (2 A%, v)
related to WU;,(—A2;z)?

In the block d1ag0nal decomposition of the eigenmode
equation, there is only one subspace where the diagonal
block is 1 x 1. That is the m = O subspace, which consists
only of a(®%0) The eigenmode equation is

This equation, as well as (A10) in the A* =0 case,
corresponds to the Schrodinger equation in [3] determining
the Pomeron wave function. It should be noted, however,
that we consider that V2 1s the operator relevant to the
eigenmode decomposition rather than Aj; furthermore,
the operator VZ and A; has a simple relation V2 — Aj—
j/R? only on this m = Oth subspace of a totally symmetrlc
rank-;j tensor field of SO(4,1).
The eigenvalue is

Eoo=(j+4+17). ©on

when we define the first term in the power series expansion
of z to be z>7/=, The eigenmode wave function is

a000) (7; A#) — €<0’0’0>‘1’§£)(— A?7),  (92)

My HiHj

j 2 Jusinh(av)
O (A2 )= 2 LeU=2DAK (A
w (A% 2) =y [ e w(Az2),  (93)
where e?4(%) = (R/z)? is the warp factor introduced in (28).

The normahzatlon factor is determined [3]22 so that it

. . . ... 23
satisfies the normalization condition

*'Thus, the propagator (67) uses the eigenvalue of V2, rather
than that of A;. The eigenvalue £ of V2 in the m = Oth subspace
is (j + 4 +¢2) as in (91), instead of (4 + v?). Reference [3] uses
amode h,,, x z72(n,,.5.;) of the spin-2 field to fix the details of
(65), (66) and (90). This h,,, z‘z(nﬂ,,, 5..) mode, however,
corresponds to the (n,1) = (2, 1) mode of the spin-j = 2 field in
(A17), rather than the S5D-traceless S5D-transverse mode
(n,1) = (0,0). The eigenvalue &, ; = (2 + j +1?) with j =2
becomes (4 + ?), though.

*The Pomeron wave function in [7] was of the form (124),
which becomes (93) in the limit of A — 0, while we keep z and
A* fixed.

2 The normalization condition is generalized to (99) later on.
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[ @ [ azv=gie e u a2

x [UY) (A2, 2)e ] = (27)*64(A — A)S(v — V).
(94)

The single component Pomeron/Reggeon wave function
W' (=A2,7) is now understood as ‘l,t(y)OOO( A% 7).

3. 5D-traceless 5D-transverse Modes

The eigenmode equation (65) for a totally symmetric
rank-;j tensor field of SO(4,1) should be closed within its
5D-traceless component. The subspace of SD-traceless
component is characterized by the SD-traceless condition

gmlmzAm],,_mJ_(z; Al‘) =0. (95)

The fact that the Hermitian operator V2 maps this subspace
to itself implies that the eigenmode equation of V? is block
diagonal, when the space of (not-necessarily-5D-traceless)
Am1-~m, is decomposed into the sum of the SD-traceless
subspace and its orthogonal complement. The collection of

PHYSICAL REVIEW D 90, 125001 (2014)

Similarly, one can think of a subspace of field configu-
ration satisfying both the 5SD-traceless condition (95) and
the SD-transverse condition

9"V oAy, = 0. (96)
Obviously this is a subspace of the subspace of the 5D-
traceless modes we discussed above. Since the Hermitian
operator V? on AdSs maps this new subspace also to itself,
the eigenmode equation of V2 should also become block
diagonal when the subspace of S5D-traceless modes is
decomposed into this new subspace and its orthogonal
complement.

As we will see in Appendix A.3, there is only one such
mode satisfying this set of conditions (95), (96) in each one
of the mth diagonal block. Thus, the combination of the
5D-traceless and S5D-transverse conditions allows us to
determine an eigenmode completely. This mode turns out
to be (n,1,m) = (0,0, m) (for 0 < m < j). Put differently,
the eigenmodes with the eigenvalue £, ;=& o= (j+4+1?)
are characterized by the traceless and transverse conditions
on AdSs.

The eigenmode wave functions of the SD-traceless

the eigenmodes with / = 0 corresponds to the subspace of ~ transverse  modes  (n,l,m) = (0,0,m) are (see
5D-traceless field configuration. Appendix A.3)
N 3 =3\ s—2a
j):s.N a < 8<Z m ):0.0
Wi (=870 = ST ) AW a7, 2] X Ny (07)
a=0
N, is a dimensionless normalization constant. We choose it to be**
rGg+1-i rGgj+1+i I'3/2+j- re+2j
N2 - ¢ LUt+1-i) GH1+i) TE/2+j=—m) TQ2+2j) (98)

jm =T Em P4 L=m—i)L(j+ 1 —m+iv) 2"T(3/2+j) T(2+2j-m)’

so that the eigenmode wave functions are normalized as in

/d4 / dz\/—gm'”‘ . gm/"/A"lm Ay( x, Z)AZ/I’.Z./.’,Y,?I;A/’D/ (x’ Z)

= (20)*6* (A + A)S(v = V)8, 81y [P (A)] - [l 1) (A)]. (99)

[

eigenmode, it is convenient to introduce the following
notation:

Here, [e"!)]. [e'0Hbm)] =gl ) pinds ..

nﬁ j—m i)/'—m .
4. Propagator

AnlmAv(x Z) [A11lmAv<x Z)]k <R me’((irl;:)m

,AX[Anlm (Z AF, )]Kl R mg(nlm)

Ky Kjm*

(100)

The propagator of the totally symmetric rank-j tensor
field (respectively, the spin-j field) on AdSs is given by
summing up propagators of the (n,[,m) modes [respec-
tively, the (n, [, m) modes with [ = 0]. For the purpose of
writing down the propagator of a given (n,l,m)

With this notation, the propagator of the (n,, m) mode is

*Note that N;,, = 1, if m = 0. given by

125001-17



RYOICHI NISHIO AND TAIZAN WATARI

Lo oo (ndm)
G(x,z;x',z >m1-~m,-;n|~-nj

= /CZA‘_A/DO du_iPl(’{j'rzz—r:,;al'~~a_,f,n a’R3
(2)* Jo g’:};c + Negr —ie by

X AR (x, )P P AR (0, 2,
(101)

Here, Py

j—m301°0j_m

is a polarization tensor generalizing
Nps — 0,0,/9%; when an orthogonal basis €,(g) - €,(—¢) =
04D, of rank-r 4D-traceless 4D-transverse tensors is given,

1
= Z D_a e(q)a;ylmyye(_q)a;u] Ut

a

P(’)

HUpey vy

(102)

An alternative characterization of this Pf,rl) sy, 18 glven by
a combination of the following two conditions: one is

brd, _

P e =€ (103)

apy oy

and the other is that P,(f]).“,,,;,,] ..v, also be a totally symmetric
4D-transverse 4D-traceless tensor with respect to (p - - - p1,.)
for any choice of (v, - - - v,.). Its explicit form (A74), given in
the Appendix, is useful for practical computations.

C. Representation in the dilatation eigenbasis

It is an essential process in the application of the AdS/
CFT correspondence to classify solutions to the equation of
motions on the gravity dual background (AdSs) into
irreducible representations of the conformal group SO
(4,2) (or possibly its supersymmetric extension). In the
CFT description, primary operators are in one-to-one
correspondence with (highest weight) irreducible represen-
tations of the conformal group, and it is believed that one
can establish a one-to-one correspondence between (i) a
primary operator in the CFT description and (ii) a group of
solutions to the equation of motion forming an irreducible
representation in the gravity dual description. Once this
correspondence is given, hadron matrix elements of the
primary operators in a (nearly conformal) field theory can
be calculated by using the corresponding solutions to the
equations of motion (the wave functions) on AdSs. Note
that the hadron matrix elements of the primary operators are
all that remain unknown in the formulation of conformal
operator product expansion (26).

Let P,, K,, L,,, and D denote the generators of the
unitary operators of the conformal group transformation on
the Hilbert space. They satisfy the following commutation
relations:

[DaPﬂ] = iP;u [PmL;w] = i(’]pﬂpv - ﬂpypﬂ), (104)
[D’Ky]:_in [KWL;w]:i(r/pﬂKb_”puKﬂ)’ (105)

PHYSICAL REVIEW D 90, 125001 (2014)

[PM’KL/] - _2i(77/4uD + L/w)’ (106)

[L;tw L/m] = i(npr;m - nvﬁLW) - UWLW + nyo'va)' (107)

When such a conformal symmetry exists in a conformal
field theory in 3 + 1 dimensions, these generators have a
representation as differential operators on fields on R3!;
these differential operators are denoted by P, IC,, £,,,, and
D. The generators and the differential operators on a CFT
are in the following relation:

[O(x), P,] = P,O(x),
[0(x). D] = DO(x), ...,

0(x). K,] = K,0(x),
(108)

and these differential operators acts on primary operators as
follows:

DO, (x) = —i(x- 9 +1,)0,(x), (109)
L,0,(x) = (i(x,0, = x,8,) + [Su]) O, (x),  (110)
PO, (x) = =id,0,(x). (111)

K,0,(x) = (=i(2x,x-0 = x%9,) — i2l,x, — x*[S,,]) O, (x),
(112)

where [, is the scaling dimension of the operator O, and
[S,.] a finite dimensional representation of SO(3,1) gen-
erators satisfying the same commutation relation as L,,’s.
Thus, for a primary operator O,(x), O, (x = 0) plays the
role of the highest weight state

[0,(0).K,] =0, [0,(0),D] = =il,0,(0); (113)
all other states in the highest weight state representation—
descendants—are generated by applying [, P,] multiple
times; the whole representation, therefore, is spanned by a
collection of

{0,(0),0,0,(0),0,0,0,(0), ...}; (114)

it is also equivalent to a collection of O(x = x;), with
arbitrary x, € R

In the preceding sections, we have worked on solutions
to the eigenmode equation on AdSs; once the mass-shell
condition (66) is imposed, they become solutions to the
equation of motion. They are obtained as an eigenmode
of the spacetime translation in 3+ 1 dimensions,
(—i0*) = A*. Under the conformal group SO(4,2), which
contains Lorentz SO(3,1) symmetry, however, an irreduc-
ible representation has to include solutions with all kinds of
eigenvalues A¥.

In the case of a scalar field on AdSs, one can think of the
following linear combination G(x,z;xy; Ry) (for some
Ry < A7)
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i I(1
G(x,23%0) =— (1) RZ"‘4< <

L
wT(l,=2) " zz+(x—xO)2>
[ dA (AZ)ZKI_(Az)
_/ (2n)*¢

(ARo)*K ), 2(ARy)’
The factor [¢’**(Az)?K; _»(Az)] in the integrand on the
right-hand side is a solution to the equation of motion of a
scalar field on AdSs whose mass square Mgff is given by
l, —2 = iv=/4+ M%;R* The coefficient of the linear
combination, e~A%[(ARy)*K; _»(AR,)]™", is chosen so
that the integrand behaves as

et (x=x) < o
Ry

at 0 < z < A~!. The space of solutions to the equation of
motion G(x,z;x) parametrized by x, € R*! is alterna-
tively spanned by derivatives of G(x, z; x,) with respect to
xg at x = 0. It is easy to see that this basis,

iA-(x—x)

(115)

(116)

{G(x, 20,05 G(x, 2;0), 059 G(x, z;0), ...}, (117)
is an eigenbasis under the action of dilatation,
D :=i(z0. + x - 9), and their weights are —il,,, —i(l, + 1),

—i(l, +2), ..., respectively. Correspondence between sca-
lar field wave functions on AdSs and scalar primary
operators of the dual CFT is established in this way [34].

Let us now generalize the discussion above slightly to
construct an analogue of G(x,z;x,) for a spin-j field
Am,-~m, on AdSs, from which the dilatation eigenbasis is
constructed. To this end, note that all of the (0, 0, m) modes
(m =0, ..., ) have the leading z>~/=" term in the power
series expansion only in the AZ 0y, -, COMpONent, not in any

25
other A, ., components with k > 0. It is possible to

choose €™ (A#) properly so that

J
Z AO 0, m A u )]Kl R ”’6(0 ,0,m) e—idxo
Kjom
m=0

2—j—iv
= eiA'<x_x0) _Z / €
RO HiHj

in the region near the UV boundary 7 << A~!, where Epyop

(118)

is a A#-independent 4D-traceless totally symmetric rank-j
tensor of SO(3,1); the condition on €% (A#) is

Ry\ 2/ 2 [usinh(mv)
€m~--ﬂ,-:<R> Kiu(ARo); TR

NI’ —
XZ J.m (m ] ”/)

[(—j—iv)
["7/2] b(] m)
D= N (EN D2V (O'O’m)])m-~-u,~ (119)
N=0
BUse (97).
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It is possible to invert this relation by using (A37) and
writing down €% (A#) in terms of ¢, ..., , though we will
not present the result here. What really matters to us is that
eOOm(AA) = e@0m (A) ¥, With 0m)°s satisfying the
condition above, one can see that the following linear
combination of solutions to the equation of motion,

Gml...m.(x, Z;X())

/ d*A zjj OOmAv

(A)Kl i, €A, (120)
has a property
Gy, (AX, 225 Axg) = A~ CHTIG,, 0 (x,25x). (121)

iv is determined by the mass parameter on AdSs once the
mass-shell condition (66) is imposed. Therefore,
Gm1~--mj (x,z;0) is an eigenstate of dilatation, and so are

the derivatives of Gml...mj (x,z;x9) with respect to x{ at

xy =0. All of the derivatives combined forms of a
dilatation eigenbasis in the space of solutions with the
equation of motion of a spin-j field.

It is now clear that the eigenmodes with (n,l,m) =
(0,0, m)
that satisfy the SD-traceless and SD-transverse conditions
(95), (96)—form an irreducible representation of the con-
formal group. If one is interested purely in the matrix
element of a spin-j primary operator O,(xy = 0) of an
approximately conformal gauge theory, then the matrix
element can be calculated by using the wave function
Gp,.m;(x,2;0). Note that the m = 0 mode alone—where
the Pomeron/Reggeon wave function has a single compo-
nent, as in [3]—cannot reproduce all of the matrix elements
associated with matrix elements of spin-j primary operators.

D. Confinement effect

1. Top-down approach

QCD in the real world is not a conformal gauge theory,
but it has a mass gap in the hadron spectrum due to
confinement. Confinement of a nearly conformal strongly
coupled gauge theory is realized in its gravitational dual
description in the form of a nearly AdS geometry with a
minimum value in the warp factor.

Klebanov-Strassler geometry of type IIB string theory
[27] will be one of the most popular background geometries
of this kind. The Klebanov-Strassler geometry is not dual to
a confining gauge theory that is asymptotically free,
however; it is dual to a gauge theory that is confining in
the infrared, but its ’t Hooft couplings become stronger and
stronger toward ultraviolet. Such geometries as Klebanov-
Strassler are not truly dual to the QCD of the real world, but
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one will still be able to learn a lot from studying the mode
decomposition on such geometries.

Mode decomposition can be carried out once we know
the background configuration and the action of the bilinear
fluctuations around the background; we do not need
interactions of stringy fields. Thus, it will be a doable task,
at least at the supergravity level. Reduction over the W5 =
T"! geometry has been worked out in the literature, and one
is left to translate the smoothness condition of mode
functions at the tip of the deformed warped conifold into
the language of boundar(?/ conditions on a warped (4 + 1)-
dimensional spacetime.2 The authors do not find a reason
not to work on it, except that it will take extra time to do so.

In this article, however, we set a higher priority in getting
a broader perspective on the subject ranging from string
theory to hadron physics, and we avoid taking too much
time to solve technical problems in string theory. Instead,
we discuss, in the following, two temporary approaches of
implementing the confinement effects; one is an effective-
theory model building approach and the other is a
phenomenological approach. We will proceed with the
phenomenological approach in the following sections,
although we understand that the topdown approach above
will eventually replace/back up/verify the phenomenologi-
cal approach to be adopted in this article. The following
“effective theory model building approach” is not used in
this article, but we present it here because it helps us
understand the physical meaning (the hidden assumptions)
of the phenomenological approach.

2. Effective theory model building approach

The hard wall model and its variations are introduced in
order to mimic the presence of a minimum value of the
warped factor, mass gap, and nearly AdS background
geometry. It remains simple enough so that analytic results
are obtained in a relatively short amount of time, though
we cannot discuss the stability of the geometry or the
theoretical consistency of string theory.

With this philosophy in mind, one could think of
implementing the confining effect in the form of

1/A
S:/d4x/0 dz+/ _g(Z)Ebulk+/d4x\/_g|zl/AEbdrya
(122)

where the background geometry remains AdSs and the
holographic radius z is cut off at z = A~'. Note that

*Such geometries typically are in the form of R>! x W/,
which nearly remains constant around the tip of the throat
r=0, and a shrinking (5—n) cycle with the metric
ds®> = dr* + r*(dQs_,)*>. For simplicity, let n=4 and
dQ, = do. A scalar field ¢(r,0) with smooth configuration in
the coordinate (rcos @, rsin @) is decomposed into >, e™*?¢, (r)
when the mode ¢ (r) needs to be in the form of 7* x fen(r?).
Thus, 9,[r *¢.(r)] =0 at r = 0.
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different choices of Ly4y, lead to a different physics; to
be more precise, different choices of (Lyyic. Lpary) modulo
partial integration should be regarded as different models. It
is reasonable to have such freedom in the choice of
effective-theory models because we know that there is
more than one holographic background of type IIB string
theory that is dual to confining gauge theories. Such
constraints as SO(3,1) symmetry unbroken global sym-
metry of a strongly coupled gauge theory, however, are very
weak in constraining Lygyy-

Once a model is fixed, the Euler-Lagrange equation of
this theory includes not only the equation of motion in the
bulk (64)=(65), (66), but also the boundary conditions at
z = 1/A. Different models (i.e., different Ly4,) predict
different Pomeron/Reggeon wave functions.

We require that SO(3,1) symmetry is preserved even in
Lygry- Boundary conditions might introduce mixing
between the eigenmode decomposition determined in the
bulk, in principle, but the unbroken SO(3,1) symmetry
excludes mixing between SO(3,1)-irreducible tensors of
different ranks. This observation still does not exclude
mixing among (n, [, m) modes of a spin-; totally symmetric
field on AdSs with a common m, but different (n, [)’s.

3. Phenomenological approach

As an alternative approach, one can think of a phenom-
enological approach, which is to start from a small number
of parameters and let the physical consequences constrain
those parameters. When one finds that reasonable physical
consequences cannot be available under a given set of
parameters, then a few more parameters will be introduced
so that more freedom is available.

As one of the simplest trial parametrizations of the
confining effect, we make the following changes in the
mode functions ‘Ilg;)(;)%(’)m (A, 2):

()
T cit/'OOm
K. (A K. (A — = (A7) | = 4K (A7),
iw(Az) = Ky ( Z)+2sin(7riy) iv(Az) iw(Az)

(123)

Cgigo,o,m’& which may depend on A? and A, are the

parameters we introduce. An implicit assumption here is
that the confining effect does not introduce mixing among
modes with different (n,/, m)’s. Under this assumption,
however, the parametrization above does not lose any
generality; once the ratio between the K;,(Az) wave and

I;,(Az) is given for \I/Si?é?‘?m(—A2, z), there is no freedom
left for the other \Ifgi;)(;)‘f{)}jlm(—Az, z) functions ((s,N) #

(0,0)) of the same (n,l,m)=(0,0,m) mode because
the relation among them is completely fixed by the equation
of motion in the bulk. In Sec. VII A, we will carry out a test
of whether this simple parametrization works well or not.

When the infrared boundary is introduced in the holo-
graphic background geometry, the normalization of the
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Pomeron/Reggeon wave function also needs to be changed.
In the case of the (n,l,m)=(0,0,0) mode, with the
Dirichlet boundary condition at the IR boundary
z=1/A, for example, the wave function W//%0 =
\I/E,f) (—A2?,z) was given the following normalization [3,7]:

‘Ij(j)(_Az 2) = e(j‘z)Ag Jusinh(zv) [ 1;,(x)
W ’ T 2R I_w(XO)

K00 = 50 ) 124

with an extra factor /1, (xg)/1_;,(xy), where xo := A/A.
This result is generalized as follows. By repeating the same
argument as in Appendix A.3.a, one finds that the nor-
malization factor N;,, should be replaced by

1

()
1 - Civ:0,0,m

Njm = Njm X

(125)

The Dirichlet boundary condition for the m = 0 mode
above corresponds to (1 — Cgi?o,o,o) = [I_i,(x0)/ 1, (x0)]s
the modified normalization (124) is a special case of
(125). The mode functions are defined, so far, for v > R
since the eigenvalue £,y = 4 + j + 1 depends only on 2.
When the mode function is analytically continued to the
v < 0 region, the mode function for —v should be the same
as +v. From this observation, it follows that

(1= e pom) = (1=cloo)™ (126)

VI. ORGANIZING THE SCATTERING
AMPLITUDE ON AdS;s

A. “Effective” string field action on AdS;

If we are to start from type IIB string theory in ten
dimensions with a background that is approximately
AdSs x W5 (except near the infrared boundary), one can
think of an effective theory on AdSs after carrying out
spherical harmonics mode decomposition on Ws. As we
have already discussed in Sec. V how to construct propa-
gators in such an effective theory, we would now like to
construct the scattering amplitude.

For this purpose, we need interaction among string
fields, and we turn to cubic string field theory, which we
reviewed already in Sec. I'V. This allows us to write down a
concrete expression for the scattering amplitude. Clearly
the biggest drawback of this approach is in the fact that no
stable background geometry AdSs x W,; is known in
bosonic string theory for a 21-dimensional internal mani-
fold W5;. In the following, we will construct an effective
action on AdSs by carrying out dimensional reduction of
the cubic string field theory action, as if there exists an
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AdS5 x W, solution to bosonic string theory. This is not
meant to claim that we obtain such an action as an effective
theory of bosonic string theory, but to use it as a starting
point in constructing a toy-model scattering amplitude of a
hadron and a (virtual) photon that may still carry some
fragrance of interaction structure in superstring theory.

Let us start off by clarifying the relation between the
normalization of string component fields in (38), (41), (42)
and that of the component fields in (62). All of the
component fields in (38) are normalized so that they have
canonically normalized kinetic terms in the action in the
26-dimensional spacetime. Now, we make them dimen-
sionless by the redefinition ¢ — g;'¢h, Ay = g;'Ay, etc.
All of the terms in the cubic string field theory—both the
kinetic terms and the interactions—will then have (1/g2) as
an overall factor. When a mode decomposition of the
following form is assumed for the component in this new
normalization,

P(x.2.0) =Y ¢V (x,2)Y,(6),

SAV(x.2)Y,(0) M=m=0,...3.2
Ay(x,z,0) =< v ’
0 M=5,...,25.
(127)
Similarly decomposition holds for spin-, fields

Ap,.m, (x,2,0); we take spherical harmonics Y, (6)
(labeled by y) to be dimensionless, so that the component
fields on AdSs such as ¢ (x, z), AY (x,2), As,ﬁyl)...mha (x,2)
are also dimensionless.

The overall coefficient of the effective action on AdSs
then becomes a dimension-(+3) parameter

VOI(W21>

2 O

(128)

which is to be identified with the overall coefficient
t,/(2R?) in (62). Reduction of interaction terms (43),
(45), (46) also yields the same overall factor (128), apart
from possibly one order factor coming from the overlap
integration of spherical harmonics over the internal mani-
fold. Because the amplitudes from exchanging states with
higher spherical harmonics are suppressed in small-x DIS
and DVCS (e.g., [7]), we will be interested only in the
interactions involving ¢)-¢)—(intermediate states) and
Af;f)-AEZ)—(intermediate states) cubic couplings, with the
intermediate states having spherical harmonics Y(0) = 1.
The overall factor of the cubic interactions then becomes
precisely the same as that of the kinetic terms of ()
and AV,

For this reason, we write down the following interaction
terms for the effective action on AdSs:
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1 oA “
Seff int = — P Sfl/a"‘xdz\/ —-9(2)E

3dR3

x (3 3] + \/fu[(—mm)(qbﬁmd)y)]

_5
9v/2

Eltr[hqﬁ%]) +ee

8d emen

9\/§tr[ mn(¢vv \Y ('by)]

2V (T -

lf il

+
(129)

Fields without a label y are to be used for the intermediate
states exchanged in the ¢ channel (in the sense that we
explained in Sec. IV B); ¢, are for the incoming and
outgoing states. Partial derivatives have been replaced by
covariant derivatives on AdSs. Similarly, all other inter-
actions, such as (45), (46) in 26 dimensions, also give rise
to their corresponding cubic interactions on AdSs.
Certainly such a choice of effective action on AdSs will
be one of the most likely (and simple) setups that may still
maintain some aspects of scattering amplitude in string
theory, although top-down justification is not given.

We will only sum -channel amplitudes where Y (6) = 1
modes of the stringy states in the leading Reggeon/
Pomeron trajectory are exchanged, because that constitutes
the dominant contribution in small-x scattering. Thus,
three-point interactions of such modes with incoming
and outgoing tachyon states are necessary, which we write
down as follows,

1l .
ASetf g = — " ft/Cl"‘xdz\/ —-9(2)E

R3

M g (3 DY
X Ar[Am /-y (PV \YJ (/5)](27) TN

30)

—

by keeping only the Y, (6) = 1 modes and replacing the
derivatives in (45) by covariant derivatives. The normali-
zation constant 7, for the target hadron kinetic term is now
simply written as #;,, as we will have to pay attention only to
the individual choices of target hadrons [the individual
choices of Y, ()] in the external states. Similarly, we also
need interaction of the same group of modes with the
incoming and outgoing photon states, which we write down
as follows:

v .
ASeft ing = — = ‘ft/d“xdz\/ -9(z)E

R3a/
(—)ml

x Tr {AS,’,VI?..,,,N (A)(=iV )
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following the same procedure by starting from (46). We
have retained only the terms that have N derivatives and
are proportional to 7*/, as they are necessary in determin-
ing the twist-2 contributions to the structure function V.
Since we need the normalization constant z4, of the
kinetic term of the external state only for the spherical
harmonics Y(0) = 1, we no longer need to refer to the
choice of spherical harmonics; 4, is therefore rewritten
as .

B. External states wave function

The vertex operator insertions in the world-sheet calcu-
lation are replaced by appropriate external state wave
functions in amplitude calculations based on string field
theories.

First, the insertions of a vertex operator of the form (33)
for the U(1) currents on flavor D7-branes are replaced by
wave functions for the massless vector field in bosonic
string theory. We use the wave functions for the incoming
state y*(¢,) and the outgoing state y*)(g,):

4
A z) = R [ LD i - G-39/24 (22 q)
m 72 Ly (2”)4 m\<y» 1)s
(132)
Par
AM(x,.2,) = R / 5 7:1)24 e~ GHAA (2 ).
(133)

where A,,(z;¢q) on the right-hand sides are the wave
functions given in (35). A factor R is inserted here because
we adopted a normalization convention, so that

Alin/ou) (x.z) on AdSs is dimensionless.”” The arguments
of the electromagnetic current insertions T{J*(x)J*(y) }—
coordinates in boundary theory x and y € R*!—are now
denoted by ¥ 4 (Ax)/2 and X — (Ax)/2, respectively.

A, (x, ) is often normalized so that it has mass dimension
(+1), and hence this factor R is not then necessary. In a case in
which the gauging of a global symmetry of a strongly coupled
gauge theory is realized in the form of a flavor D7-brane, the
natural reduction of the 7-brane action on a three-cycle leads to
the form of

(134)

N, —
Seff ~ _F/ d4XdZ _g(Z)anan;

the external state wave function (132), (133) without the factor R
can be used in such cases. In the presentation adopted in this
section, where a bosonic string is used and the gauge field is
assigned zero mass dimension (like other higher spin fields), the
factor R is included in (132), (133) and the kinetic term of
F,,, F™" has the coefficient t,/ R? instead. Thus, we can think of
t, as something like N..
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The vertex operators (30) for the target hadron are
replaced by wave functions of the form

¢in(xh’ Zh) = eipl.Xh(I)(Zh; mn>’

¢ (xp, 2) = € PID (g, my,), (135)
where ®(z;m)’s on the right-hand sides are the wave
function given by (31). The first one is for the incoming
state and the second for the outgoing hadron.

C. Leading trajectory contribution
to the Compton tensor

When the target hadron is to be identified with some
Kaluza-Klein state of the tachyon of bosonic string theory,
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then £, —2 = /4 + M%4R* = V4 + ¢ — /2 is not real
valued for 1> 1. We treat this £ — 2 as if it were real
valued, until the last moment. Since our true interest is in
the scattering amplitude in type IIB string theory, or in
hadron scattering in the real world, this problem is absent
in such situations, and we do not bother about this issue.

Let us combine all the pieces together to organize an
amplitude of photon-tachyon scattering given by a 7-

channel exchange of a leading trajectory spin-j state
reduced to AdSs, with Y (@) = 1. Such an amplitude—

. 4(0)
denoted by iM (Nuxmi'])
of all the eigenmodes labeled by (n, [, m). We will further
focus on contributions from (n,l,m) = (0,0,m). It is

given by

—consists of a #-channel exchange

o\ /2
iMEt> (0.0.m) R3 ,/d“x dz,\/=9(z,) T} ... kg7 (gh - g7 (2 )(2> e (&)

B

adt—(j-1
x% <27> t—(j ){ezA(zV)eZA(Z")G(O’O’m>(xy,Zy;xh,Zh)
J!

16

just like in the amplitude calculation in Sec. IV B, this
amplitude is meant to be the coefficient of Tr[A72271 21 1/2].
J7" and J"™ (above) are given by the external state wave
functions as follows:

JZI k; pq( V’Zy) = (_i)j[A([)vakl e vijiqn} (xy’ Z;')’ (137)

Ty (i) = (=YY, -V, 6 (e zy). (138)

Here, ¢™/ % (xh, z;,) are both of mass dimension (—1), and
Al Om( X,.z,) is of mass dimension (43) + dimle,]. From
this expression, one can see that the first line has mass
dimension (46) + 2 x dlm[ 4, the second line (=2), and
the last line 0. Thus, l./\/l( ) .(0.0,m) 18 @ function of pf, p3, X

[Twele | = / B0 EIME 0o

—it ) ) a2 _
s [ st/ gt (2) e

2

(136)

I
and Ax* of mass dimension 4 + 2 x dim[e,].
precisely the property expected for

This is

—(Ax)/2)}|h(p1))eues”
(139)

(i)*(h(p2)|IT{J* (34 (Ax)/2) 7" (=

Its Fourier transform with respect to (Ax)* becomes
(iTH) x e=™(P2=P1),

If we carry out an integration over d“xy, d*x;,, and
d*(Ax) first, then the three integration variables A* in (101)
and g ; in (132), (133) are determined in terms of the input
Ph, and ¢*; we have A = (py — py)*, g5 = (q = A/2)"
and q1 = (g + A/2)*. As a result, it follows that

/— a\I/? o\ /2
/dZ}, Zy JYJ’ RZQPQ kyry .. g/ )<2> R3h//dzh /_ Zh J[ llsl. gf/)<2>

P(J_m)

P17Pj-m>01" O jm [AO ,0,m (

7 =D )PP AR (23 A )P O

I (27) G- R [
X —|— / dv
‘]' 16 t(j,j,]) 0

where

Frr
Tk

Epotey
ﬂ + Neff e

-~pq(Zy) = (_i)'i[Ap(Zy; _QZ)vkl to vij

(140)

rre r

q(Zy;CIl)}’ (141)
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iy (@) = (VD )V, - V), Dz —pa)):
(142)

Although momentum vectors are used in the second
arguments of the external state wave functions A and ®
here, instead of their Lorentz-invariant momentum square,
this is only to remind ourselves of the sign when V’s act on
the wave functions.

The expression (140) is meant to be a part of the 7-
channel contribution to the Compton tensor [T#¢}e2*](),
and we should obtain the full contribution to the Compton
tensor [T*ejel*] after employing the prescription (52).
At least this prescription tells us to set the factor
(27/16)1=G-1] in the fourth line to (27/16)°1/VA =1,
|
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Now, we claim that this is the only necessary change under
this prescription, so far as the amplitude of (0, 0, m)-mode
exchange is concerned.

To see this, remember that, prior to applying the
prescription (52), we need to rewrite the residues of
the t-channel poles in terms only of the Mandelstam
variables s and f, not of u. Let us take the expression

[@,V,,®;]g""[A,V,A,] as an example which captures
the feature of contraction of SO(4,1) indices in (140). In
the scattering ¢(P,) +A(Q;) = ¢(P,) +A(Q,), with
P, and Q;, “momenta” ~ derivatives in five dimensions,
(s—u)~ (P + P,y)-(Q, + 0,) is converted to (2s + 1)
in the following steps:

(P1+Py) - (Q1+ Q2) = 2P, + (P, = Py)) - (O + 02),
=(2P)) - (Q1 4 02) + (01 — ©2) - (Q1 + @2) = (2P1) - (201 + (@2 — Q1)) + (01)* - (@2)%
= (2P))- (201 + (P = Py)) + (Q1)* = (Q2)* = (4P - Q1) 4 (2P - Py) + 2(P)* 4+ (Q1)* — (02)%:

each one of the steps above is regarded as either one of
partial integration in dx,dz,, one in dx,dz, or a rewriting
of (P, —Py) by (Q; — Q,) or vice versa. The last pro-
cedure is to pass a derivative on one side of the propagator
to the other. Because of the SD-transverse condition
characterizing the (0, 0, m) modes, such terms proportional
to V drop out from the amplitudes exchanging the (0, 0, m)
modes. Noting that the prescription (52) modifies the
—2(P; - P,) ~t term above into the propagator mass,
and that this term appeared only after passing a derivative
V through the propagator, we see that the term which
would have been affected by the prescription (52) has
indeed already dropped out.

1. Casting the amplitude into the form of OPE

So far, the (virtual) photon and the target hadron have
been treated equally in the scattering amplitude. We are
interested, however, in the i + y* — h + y*) scattering in
the regime of generalized Bjorken scaling, where

(4%)

(q-p).|(qi- D). (g2 p)| > |A%],m3, A%, (143)

)

while the ratio among (g - p), (¢*), and (g - A)—namely, x
and n—is kept finite. It is, thus, desirable to rewrite the
scattering amplitude (the structure functions) in a form that
fits to the conformal OPE. To do this, we follow a
prescription that has been used in the study of DIS in
holographic models.

Let us focus on the following factors that appear in the
third and fourth lines of (140):

A dv[A(r)l‘(.).’.'Z (z)5=A, v)JPrPim

X (A2 (s A )P P x [ ] (144)
The last factor [---] denotes the remaining v dependence
(denominator) in the integrand; we need to remember only
that £,y = (4 + j +1?), and hence it is even under the
change v — —v.

We begin with the case m = 0. The expression (144) for
the m = 0 case becomes

*© ):0,0 /):0.0
7 it e -a% ) <

= [ ) g (0,
7n°R Jo (1= ciy000)

x [Um2A@I K, (A2, x [ (145)

multiplied by a factor [5’,’1‘ - 5/;]’ 5?1‘ e 6‘;1’ |- Using the fact
that K, (x) = in/2 x (I;,(x) = I_;,(x))/[sinh(zv)], the v
integral above can be rewritten as

1 +o0 . .
— | dwin]el AL, (A K () e
T -0

[+,

where we used the relation (126). This expression is more
convenient than (145); this is because (i) the z, integration
is dominated in the region gz, < 1 because of the photon
external state wave functions containing K;(g,z),
(i) 1;,(Az,) decreases rapidly toward positive iv for gz, <
1 and g > A [a generalized Bjorken scaling (143)], and
(iii) the rapidly decreasing /;,(Az,) in the lower half of the

(146)
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complex v plane allows us to close the v integration contour
through the large-radius lower half complex v plane (see [7]
and the literature therein).

It is straightforward to generalize this treatment for all
other m # 0 modes. Note that the Pomeron/Reggeon wave
function [AS ™" m; (23 A, v)PrPien for m # 0 is obtained

from that of m = 0 by multiplying (Az)” and N, (which
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is even in v), applying differential operators in z and
manipulating Lorentz indices. Obviously the order of such
manipulations on the wave function and the procedure from
(145) to (146) can be exchanged.

Therefore, the contribution to the Compton tensor from
the leading trajectory spin-j state (0,0, m) mode is

P(J_m)

U Pj=m301 O jm

J
11,V7 (o
Ve 1 2* =

Eootey

iv
+ Neff — 1€

FINA (2 =) T

R2 -
X / A2 =gz T iy (P
t _ ) I P
xlgg/dzhmlﬁﬁ..zj(gl'“ "'gl"’)[A?,OYf(Zh,A V)| i

(147)
where A and A are obtained from A by removing the factor (2/z)+/[vsinh(zv)/2R] in (93) first, then replacing K, (Az,,) by
“K;,(Az,)” in A(z,), while replacing K, (Az,) by I,,(Az,) in A(z,). Short distance (stringy) parameters such as AdS radius

R and string length V@ can be eliminated from this expression of the Compton tensor so that it is written purely in terms of
parameters of strongly coupled gauge theory/hadron physics;

; (j=m)
(Tehe?) ;00 1tf< >/WMPWMMme
UIHO0m 1 tme \ov/Z) e D020 | Nogy — i€

dz - i A7 0.0.m ps
X/)Z}/[A[I(Zy;CIZ)( V)k, A28 I [80T- hiT] [eC=DAR) (2, — AL b))
Y

Zh

Each line of this expression has zero mass dimension,
hence 7" is also of zero mass dimension, as expected from
the Fourier transform of the matrix element (139).

The leading twist contribution to the Compton tensor
T# should be obtained by summing up the amplitudes
of exchanging the spin-j field in the leading trajectory,

d (shr ... s18 4
X thA Zh[ (-~ lV)l, 1<I>]Z][5l‘s‘ - 8] [e? ”AA(S)]OT(Z}’;A’y)]”

(148)

I

the literature that, for each spin j, the second line
of (149) becomes something close to the Wilson
coefficient of the OPE, and the third line of (149)
something close to the operator matrix element. We will
elaborate more on it, with a particular emphasis on the
role played by the summation over m. For now, we
define

(2A)iv-i

I(iv + 1)]

U PN _\A=0.,0, Pr=Pj-m (0,0,
x 5Pz [5km ...5’9’/} {6(2 DAR m_(z;—A,y)} " (00

with m =0,...,j also being summed. It is known in
|
0,0,m dz . N, .
= | A B (V) A a) | X |G
and
1/A d o
room ey [
0o zZ :

Ao () s« oo ezl

ryeer;

(0,0,m)

01" Cjm

(149)

separately. The factor [['(iv + 1)(2A)%=//A*] in C%%™ and a similar factor in I'**" are introduced so that C%%" and [0
correspond to the OPE Wilson coefficients and hadron matrix elements, respectively, renormalized at uy ~ A, as we will see

later.
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We will focus on the spin-even contribution to a flavor-
nonsinglet component of the structure function V; in (7).
The V structure function is picked up here, only because it
is computed a little more easily than other structure
functions. We will not touch flavor-singlet components
in this article, apart from a brief discussion in Sec. VII C;
this is because the cubic SFT with a Chan-Paton factor in
Sec. IV is not an adequate tool to study the singlet
components. The coefficient C®%" above is decomposed,
just like T*ejeZ* is; the spin-j (with j € 2Z) contribution
to the structure function VT’a—spin even (+) and flavor
nonsinglet (a)—is denoted by C(\)/?fa

PHYSICAL REVIEW D 90, 125001 (2014)

the closest to what has been studied in the literature (such as
[3,4,6,7]). Indeed, we reproduce the expression known in

the literature, but with a little refinement, in (163).

. =00.m=0
Note first that the Reggeon wave functions A, 'f/ and

Z?;?:’;’fo are nonzero only when all the r;’s and s;’s are in

the 341 Minkowski directions (r---7;) = (py---p;)
and (s;---s;) = (o) ---0;); furthermore, the wave func-
tion is 4D-transverse and 4D-traceless totally symmetric
tensors of SO(3,1).

This makes it much easier to evaluate the matrix element
[0.0m=0_ Because

2. Amplitude Of the (m = 0)'m0de exchange (v/(@)ﬁ]m{;k — aﬂ] e ao_k(I) + [terms proporﬁonal to ’70,,0,7]7
We first study VT’“ from the m = 0-mode exchange. (150)
With the Reggeon wave function given by ‘I’z({;)(;)%(,)o(ﬂ 7) =
\I/l(,f) (2,7) in (93), this m = 0 contribution is expected to be only
|
(25 1) (=iV) B (25 =2y, = D JCLAVY (2 p1)] gy oo [(—IV) D (2, =P2) ],
k=0
= (=1)(P1 4+ P1)g, - (P1 + P2)g, (23 P1)®(2:—2) (151)
contributes to I'007=0:
r00m=0 — [l (=1)i(py + pa)* -+ (py + pa)* 300 iv, ), (152)
_ . /A dz . {“K;,(Az)"}
0.0,0 . 2 iv .
g0 v, A) = / — (M) 1,((zm))* =53 (153)
o z [(R) T (iv)]

note here that the confinement effect has been included in the form of (i) introducing a cut in the holographic radius

zp < 1/A and (ii) K;,(Az,) is modified to K;,(Az,) in (123). The expression of g*% here, or that of %" in (149),

implicitly ignores the possibility of L4y # 0. For practical purposes, though, this may not be a big deal, since Ref. [6]

reports that such confinement effects do not play a significant role quantitatively for most of the kinematical region.
Let us also evaluate the Wilson coefficient C*%"=C, The expression

o J
Az =) () A a1y, 31 = 3 GV A =gl [TV AG Gy gt (154)
=0
appearing in C%%"=0 can be evaluated by using the fact that
k
’7;,,:< 3 n K 3 3
(va>p1---pu< = (8,,1 o '8pkAK> - Z ; (8/’1 o '8pa T aﬂkAZ> - Z pz (8,,1 o '8pa e apb T 8pkAﬂb)’ (155)
a=1 1<a<b<k
1< .
(VkA)m-~pkz = (aﬂ] o 'aﬂkAz) + gz(apn o 'a/)a e a/)kA/)u) (156)
a=1

modulo terms proportional to 77, , . As we will focus only on the structure function V%, we can further drop the terms with
A, in (155), (156). Then the expression above becomes

i ener (a1 + a2),, -+ (a1 + a2),,

2
+ —225(—612);7“6(611)% (@ +92)p, pp, (@1 + C]z)pj (157)

a#b

multiplied by [(¢,2)K,(q:2)][(g22)K/1(g22)]-
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There are two remaining tasks in evaluating the (m = 0)-
mode contribution to the Vf’“ structure function: (a) one is
to carry out the z, integral and (b) the other is to sum
0001000 for different polarizations of €(*%) As for the
z, integral, the integrand sharply falls off* at 7, ~ g
because of the photon wave functions of the form
[(¢:2)K;,(g;z)]. The z, integral in C®*™ over the holo-
graphic radius z, € [0, A~'] therefore comes mainly from a
very small fraction of it, A/g < 1, in the regime of
generalized Bjorken scaling (143). It is then all right to
make an approximation that

laz) ~ i (50) 1+ 0w /a)

when (Az,) SA/qg <1, (158)

and also to replace the range of integral z, € [0, A1 to
[0,+00), as in the literature; the error caused by this
approximation is only in the higher order in (A/g), and
the twist-(2 + y(j)) contribution is still obtained properly.
The integral is then cast into the form of (B1) with 6 =
J + iv for the first line of (157) [respectively 6 = j + iv — 2
for the second line of (157)] and & = n/x; thus we can use
the analytic expression (B3), (B5) in the Appendix.

The other task, (b) tensor computations, is carried out in
Appendix A.6. Using the results of (A77) and (A81), one
finds that the contribution to (C(\]/’?;Q,a)m:() from the second
line of (157) is roughly

q2A2

(g-A)(p-q) <!

(159)

times smaller than the contribution from the first line of
(157) in the generalized Bjorken scaling regime (143), and
hence it is ignored, when only the twist-[2 + y(j)] con-
tributions are retained.

Combining all of the above, the spin-j € 2Z contribu-
tion is

BIn DVCS, VMP, and TCS, the incoming photon has space-
like momentum ¢, although the outgoing photon may be either
on shell or timelike. The sharp cutoff in the z, integral comes
from the wave function of the incoming photon. Since the wave
function of the outgoing photon remains a Hankel function even
for VMP and TCS, rather than 7,,(qz,), the approximation of
replacing the integration interval z, € [0, A~'] by z, € [0, o)
remains valid. In such applications, 9 > 1, and the expressions
(B1) and (B5) should be understood through analytic continu-
ation. The authors thank the Physical Review D referee for
bringing this issue to our attention.
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o N NG 1, [+e 1
(Vl )j.m:O ~ . dl/4 2
T(j+rty ) %—l—j—l—ie

A\ iv—j
x Cy(j + iv.9) <—>
q

XQ%ﬂWMWA%m»

where C is given in (B5) and d ;is a polynomial of degree j
in the argument

“ap?  [amd 1+ A2
7] ==r/><\/ e —77\/ N

and is given in terms of Legendre polynomial, as in (A79).

Now that all of the factors of the spin-j contribution to
V| “ are given as analytic functions of j, it is possible to
convert the sum over the (spin-j € 2N) string states in the
leading trajectory to a contour integral in the complex
angular momentum plane:

djl+ e
V+,a = V+,DC S
( 1 )m70 /41 Sin(ﬂj)( 1 )J.mfo

(160)

(161)

(162)

with the contour in the j plane moving just below the real
positive axis toward the left, and then just above the real
positive axis toward the right. The integration contour in the
v plane is deformed so that it picks up the residue of the
pole in the lower complex v plane coming from the #-
channel propagation of strings. Thus,

+.a djl + em’j ty/ty A
(Vl ' )m:O R - .. . . .
4i sin(zj) T'(j+ 1) iv;

J
. . n A 7(j)
x C ]—i-u/j,; 5

() 300 0,0, (163
\/ZX J J
where y(j) =iv;—j and iv; >0 is a function of j
determined by the on-shell condition
4+j+17+¢
-1+ ———F——=0. 164
J 7 (164)

This is the result known in [2-7], etc.; under an
assumption that g*%°(j, iv;, A) does not grow too rapidly
for a large Re(jj) to cancel the large factor I'(j + 1) in the
denominator, the integration contour in the j plane can be
deformed toward the left in the j plane, as in the classical
Watson-Sommerfeld transformation; this is how the non-
converging j € 2N sum of the OPE is rendered well
defined for physical kinematics x < 1. The integrand forms

a saddle point due to the two factors (1/x)/ and (A/q)"V);
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let j, in the complex j plane be where the saddle point is.”
The integrand also has poles in the j plane. The hadron

—0.,0,0 (

matrix element g contains ci,f) 0.0 10 its definition, and
0.0,

cgi;)o’oyo may have a pole in the j plane [3].”° The saddle
point value j, has a larger real part than any one of the
poles, where In(g/A) is large relatively to In(1/x); the j
integral is well approximated by the saddle point value of
the integrand and yields the DGLAP regime. When In(1/x)
is large relatively to In(g/A), however, one of the poles
may have a real part larger than Re(j, ). Then the integral is
approximated by the residue at such a leading pole. In this
way, the string-theory result (V| **),,_, goes back and forth
between the DGLAP phase and Regge phase, depending on
the kinematical variables x, (¢°/A?) and t = —A? [3,7].

The derivation of (163) was not just a review of
preceding works, however. First, the integration over z,
yields a function C,(j + iv;,n/x), which has precisely the
same form as the one expected from the conformal OPE;
comparing (25), (26) and (B3), (BS), one finds that they
agree, under the identification

(L + jn = 2) = 2ju + (2, = 2] [ + iv;) = 2 +r(j)]-
(165)

The expression (163) is indeed regarded as conformal OPE
contributions from twist-z, = (2 + y(j)) operators.

Second, the 1 dependence of the m = 0 contribution is
now worked out. As we will see later in Sec. VII, it comes
in a form that fits very well with what has been known as
dual parametrization of GPD [15]. One will also notice that
the argument of the degree-j polynomial d ([n]) is [n] in
(161), rather than 5. This means that the coefficients of the
1 term and higher diverge in the t = —A? — 0 limit. This
indicates that it is essential to sum the m # 0 modes to
obtain results that are physically sensible. We will address
this issue in Sec. VI A.

We have considered amplitudes from a ¢-channel
exchange of states that (a) are in the leading trajectory
and (b) have SD-traceless and 5D-transverse polarizations,
and that have used the prescription (52), so that we obtained
the contributions that correspond to the twist-[2 + y(j)]
operators in the conformal OPE. When the amplitudes with
a t-channel exchange of other modes are included, can-
cellation due to BRST symmetry is at work among some of
them, but other physical contributions remain.
Computation of those contributions will shed a light on

“The saddle point value j, is determined by
15/40)) | _ In(1/x)
9j lj=j. — In(g/A)

a0 () _
For  example, imagine a case (1=civo00) =

[I_i(A/AN) /I, (A/A)]); the factor 052;0,0,0 has poles j=
ap,(f) (n=1,2,...) in the j plane given by the condition
j,-l,,,n = Vt/A; Jun's are the nth zero of the Bessel function J,.
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the higher twist contributions to the DVCS amplitudes. To
do this, however, we need wave functions of modes other
than the (n,1,m) = (0,0, m) modes, and detailed knowl-
edge on the interaction terms in the string field theory more
than (130), (131); furthermore, the prescription (52)—the
process carried out just before Sec. VI C 1—becomes more
complicated for modes other than the (0,0,m) modes.
After all of this, one then has to work out which operators in
QCD correspond to which group of modes in the #-channel
exchange in the gravity dual calculation. Although this is an
interesting question, we do not address that problem in this
article.

3. Preparation

Let us move on to the amplitudes of m > 1-mode
exchange. We begin with deriving a few general properties
of those amplitudes, which makes the subsequent compu-
tations less tedious.

First, we observe that the hadron matrix element %0
vanishes for any odd value of m. To see that this statement
is true, we use the following property of Jf‘l’?,,l/_:

®(z, Pl)v{l1 . -Vlj}qD(Z, -p2)

= (-1)/@(z, -p2)Vy, --‘Vz_/}@(Z’Pl)Q (166)
this is true in a process where the initial state hadron A(p;)
continues to be the same hadron 4(p,) in the final state, so
that —(p;)* = —(p,)? = m3. This property is used below

g, ) .
to study when J# ATA04 vanishes for vari-
e

ous k=0,...,m.
For an even j, the SO(3,1) indices of J"

K14
provided by an even number of (p; + p,),’s and even
(respectively odd) number of A,’s when £ is even (respec-
tively odd). The hadron matrix element "% receives a

are

L 0 < d
nonvanishing contribution from J//, ~ A®*+"% (no sum
k+1"""4)

in k) only when the D operator (71) is used for an even
(respectively odd) number of times in the Reggeon wave
function (89). This means that s is even (respectively odd),
and hence I'%% can be nonzero only when m =k + s
is even.

For an odd j, the SO(3,1) indices of J" are

102,
provided by an odd number of (p; + p,),’s and an even
(respectively odd) number of A;’s when k is even (respec-
tively odd). Thus, the matrix element %" receives a
nonzero contribution only when an even (respectively odd)
number of the D operator is used in (89). This means, once
again, that s is even (respectively odd), and hence I'**" can
be nonzero only when m = k + s is even. This statement
for an odd j is not more than a side remark, though, since
we focus on the spin-even contribution « [1 + e™*/]/
sin(zj) in this article.
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Second, I'*% can always be written in the form of

PO = [(2) 7 (p - pn) €]

x g*0m(j, iv, A%), (167)

and g*%™ is an SO(3,1) scalar of mass dimension m; we
have encountered a special case of this statement in (152),
(153). This statement itself is understood as follows. When

we write down the covariant derivatives in 7% 3
Ly

explicitly, the SO(3,1) indices—there are (j — k) of them
—are one of either p;, A;, and 7,,; i,y can be further
rewritten as 77, — A;A, /A and A, A, . Suppose that there
are N, of the SO(3,1) indices from {p, }’s, N indices from
{A;}s, and Ny from 7°s ina  given term;
N, + Ny +2N; = (j — k). When such an SO(3,1) tensor

is contracted with ST 7H/A EN pm—k=2N[c(00m)] in the

Reggeon wave function ZS;(;"” o
1Ak

when (m —k—2N) =N, and N > N; because of the
relation (A37). It is not hard now to see that all of the
remaining terms are proportional to the prefactor of %0 i
(167); the mass dimension of the remaining scalar factor
(the reduced matrix element) g%*” follows from the fact
that %% is defined to be of mass dimension j.

Finally, we note that the twist-[2 + y(j)] contribution to
the coefficient C%%" arises only from the contraction
I AT with k= 0. We have already seen an
example of this in the m = 0 amplitude; the first term of
(157) contributes to (163), while the second term does not
because of (159), and the first term came from the k = 0
contraction.

In order to verify the claim above, note first that both an
extra 0, and an extra power of 1/z virtually change the
integral of C%%™ by about an extra power of
q~q,~q,> A A. Explicitly writing down covariant
derivatives in 72”’}( and evaluating the integrals only
by the order of magmtudes one can see that

it remains nonzero only

[f—k] Jj—k—2M

m A\ iv=i qk+2M ——
(C(\)/’l();.+,a)k Z( ) ; [ : M}
M
%

X [zl(qﬁl e qﬁj) . ENDm_zN[é‘(O‘O’m)]
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The M = 0 contribution above is further evaluated by using
the definition of E and D operators. Details of computation
are found partially in (A82); we find that

i_‘FH(OOHl) s
(COOm ) é D](qk"'QK)e ” (qA) Aqk
Vi+.a/ kM= 0"~ q (qz)j A .

(169)

Keeping the relation m = k 4 s and also the result (167) in
mind, we obtain

Cg’gjn() .70.0.m <A> v (q p)] " ((q . A))qu X EOVO,m
o q

Rt

Therefore, this is regarded as a twist-[2 + y(j) + k/2]
contribution in the generalized Bjorken scaling regime.
Thus, only the k=0 term remains a twist-[2 + y(j)]
contribution, and the terms with k£ > O are irrelevant
to GPD.

The analysis becomes a little more complicated when
M > 0 terms are also included, but not in an essential way.
Contributions with some (k, M) correspond to twist-
(24+y+ M+ k/2), and only the k = M = 0 terms con-
tribute to GPD. This means that C®%" can be evaluated
under the following approximation:

Ed

A, (2 =q2) (=iV) A, (2 gy)]™

= [Au(25=¢2) (=i0) A, (23 q1) [ S Ay -

i SPAA
SPTA,,

(171)

4. Wilson coefficients, conformal OPE and
hadron matrix elements

The twist-[2 + y(j)] contribution to C?,'?;’fﬂ can be

determined completely, using the approximations above.

= (B) D [ ok K @0

b(j—m)

m,N — J)im
pl-u/)_,-] Am_zN [ @ j>A\I’w00m]

(172)

The product of rank-; SO(3,1) tensors in_the second line is reduced to a product of rank-(j — m) tensors by the computation

in (A82). The Reggeon wave function U is also rewritten by using the small (Az,) <

(A/q) approximation (158):
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N

[ (ZJA\IIWOOm Z

a=0

4‘J+1 8'” —2a [C_ —j+m (C/Z)w] >§—>(AZ)
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Nj,m

T (173)

The a = 0 term in this expression has the lowest dimension in { = Az, < (A/q), and hence we only need to retain the
a =0 term for a given N for the twist-[2 + y(j)] contribution. Thus,

D"T(j+ 1 —iv)

(2-paglm 5 (= iv__Jm 174
[ tl/OOm] F(]—l—l—ll/— ) ( ) (lv+1) ( )
Using this expression and (A82) in (172), we obtain
00 A=l [m/2] (q- A)z N . (q- A)m—ZN b(j"") ©.0m)
Vita qiu+j (] _ m)! Nz:;) |: A2 i| (_l) Am—2N m.N [(‘];4, e 'quj_m> € ]
dz o (C)TG 1 = i)
i K K Jtiv X 17
« [ LlaoKiaaliak @alle s SIS =N, (173)
A\ iv—=i (OOm) A
Y [(qﬂl q:ujzlrl)' ] (q ) C] ]+ il/,ﬂ
q (a*) A™ x
. . . [m/2]
! I(+1-iv) (j-m)
m N; b , 176
X1 (] — m)' J.m F(j + 1—iv— m) Nz:;) m,N ( )
A\ iv—j g, . ¢(0.0.m) N
q (¢%) A x
'G+1+iv-—
w1+ iv=m) (177)

N J(+1+i)’

where (B1), (BS) is used for the equality in the middle,
while (A67) is used for the last one.
Repeating the same argument as in Sec. VI C 2, we thus

arrive at
o A\ 7U)
Ci(j+iv)) | —
q
1 j R g0.0,m imn
[ —— "
() )

C(j+1+iv—m)
T(+1+iv)

(Vi) =- [Pl

4i sin(zj) T(j+1)iv;

(178)

the computation in (A77), (A79) for an even j and m was
used once again. Similar to the case of the m =0
amplitude, this expression is in the form of the conformal
OPE and inverse Mellin transformation in (20). It should be
noted that the integrand can be defined as a holomorphic
function of j (apart from poles and cuts), using the
definition of C; in (B1) and that of d —m in (A79), not
just for an integer-valued j; at the same tlme n d (1)
becomes a polynomial of # of degree j for j € 2N, Wthh is
one of the important properties expected for the hadron
matrix element [9].

The integration contour of (178) is chosen so that it
circles around the pole at j = m after running just below
the real positive axis in the j plane and before running just
above the real positive axis. Only spin-j stringy states with
m < j contribute then. It is not obvious whether the contour
can be deformed so that it encircles j = 0, 2, ..., m without
changing (V|),,, and we leave it an open question. d;_,,
in (178) is given by a Legendre polynomial of degree
(j—m) when j—m is an even positive integer, but
otherwise it is defined by the hypergeometric function,
as in (A79), and it may or may not have a zero at negative
even integer (j—m) so that the pole from sin(zj) is
canceled. Similarly, g*%"(j,iv;,A)/N;,, may or may
not have a zero at negative integer (j — m). The authors
have not found a reason to believe that they have a zero, but
we may be wrong.

The twist-[2 + y(j)] contribution to the structure func-

tion Vi is obtained by summing (V{%),, from the
(n,1,m) = (0,0,m) modes with m = 0,2, ...:
Vie= 3 (Vi (179)
m=0,2,...
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Combining (163), (178) with (179), a holographic version
of (20) is obtained. It is not obvious, though, whether or not
the integration variable j in (178) for all the different m’s
should be identified. If we are to define j' := (j — m) and
use it as a new variable of integration, then the integration
contour of (178) would be the same for all different m’s; the
cost of doing so, however, is this:

o AN T
Cl(]+lvj,19) (E) ;l’] dj—m

A\ rG'+m) 1 .
(4 m iy 8) x 9] (;)

(180)

Certainly d ' still remains to be a polynomial of degree at
most j/, but the expression no longer fits into the form of
conformal OPE. For this reason, we identify the integration
variable j in (178) for all m = 0,2, ... with that (complex
angular momentum) of the inverse Mellin transformation
(20). This implies that the reduced hadron matrix element
of the spin-j primary operator is given a holographic
expression

A+” (.t Z m/2 ?]00’"( iv; , A?)
’ ﬂjr ]+ N],mAm
F(]+1+ll/<—m) .
! xn"di_y(n]).  (181)

5. The (m = 2)-mode hadron matrix element

Most aspects of the expression (178) are dictated by
basic principles of field theory, such as (conformal) OPE.
Additional information from the holographic setup is found
primarily in the hadron matrix element g%%"(j,iv, A),
apart from the anomalous dimension y(j) = iv; —j of

§2022 J(] - 1) /I/A dZ( ) {ZzuKW(AZ)”}

N,ATT 2 2 (BT (iv)]

" [2{—@(8%@) (0.0 -
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the twist-[2 + y(j)] operators. Now we have seen that
g*90(j,iv;, A) is not the only hadron matrix element
contrlbutlng to the nonperturbative information of
h+y* = h+y"; let us take a moment here to have a
closer look at one of the new hadron matrix elements we
encounter, §%%2(j, iv, A).
The hadron matrix element "% receives contributions
from J"! et Azk‘k“""f’s, with k=0,1, ...,
k17"
tribution from each k can be written in the form of (167),
and hence ("% (j,iv, A)), is defined (k < m). We com-
pute (g**2), explicitly for k =0, 1,2.
For this purpose, we need the following technical results:

m. The con-

(V') .,
= (03, -+ 0,9)

I—a-1
— Z Mia (011 0y <8z +L> q))
Z a’b Z
1<a<b<l

(182)

modulo terms proportional to 1; ; 1, 4, instead of (150),
and

i 9,,®.
modulo terms proportional to 7, .

It is now a straightforward computation to use the
relations above as well as the explicit Reggeon wave
functions A determined in Sec. V to derive the following:

(0,9) — 74(21—2% @2] :

[y _j(j—l)/l/Adz
0

N2~ 2 2o (&) T (iv)]

O K8 [0 ]

Z

J,ZAZ_
e
G < u[zeee +

These results are used in the study below.

[ . /N dz {[/71 922" = (z8)*]“K;, (A2)"}
jG=1) / — (Az) < [(A)—ivr(w)]

2

p 2

X s thq) :|
{(J —3)A?

(184)
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VII. A HOLOGRAPHIC MODEL OF GPD

The differential cross section of the DVCS process
involves an integral of GPD; GPD needs to be parametrized
first, and then the parameters are determined by fitting the
data [10]. The idea of dual parametrization of GPD [15]—
also known as collinear factorization approach [17,18]—is
to expand the reduced hadron matrix element A; (1, 1) as

J

E +a

=0

A+a 1’], "X [ﬂj_mdj—m(l/n)]v (185)

where d,(cosf)’s are polynomials of degree £ in the
argument (cos #); Legendre polynomials, Gegenbauer poly-
nomials, or Jacobi polynomials are used, depending on the
helicity change of the target hadron % in the scattering
process [9]. When the target hadron is a scalar, as in the study
of this article, a Legendre polynomial is chosen for d, [15].
With no ambiguity introduced in the polynomials d;_,,(x),
[;i%(j,t)’s are the fully general, yet nonredundant para-
metrization for the reduced hadron matrix element for GPD.

At the end of the study in the preceding sections, we
arrived at a holographic model of GPD, with the reduced
hadron matrix element given by (181) for the flavor-
nonsinglet sector. String theory—the descendant of the
dual resonance model—yields a result that fits straightfor-
wardly with the format of the dual parametrization (185);
this should not be a surprise, but rather must be something
the authors of [15] have anticipated. With the string-theory
implementation provided, one can now move forward; now

F0m(j, iv;, A)

il g
L) ~ (=) o (186)
N, A

can be computed using holographic backgrounds, inde-
pendently from experimental data. Certainly the matrix
elements [g"*"/A™] will depend on holographic back-
grounds to be used for computation, and predictions from
individual holographic backgrounds should not be taken
seriously at the quantitative level. But it is still worth
looking closely into qualitative features of the holographic
hadron matrix elements g**” /A™ to learn nonperturbative
aspects of [,;%(j, 1).

A. A? - 0 limit

As we have already remarked earlier in this article, the
holographic result (181) is not precisely in the same form of
parametrization as in (185); the argument of the polynomial
d;_,, is [n] as defined in (161), rather than . This difference
itself does not raise an issue immediately; [n] is the same as
n in the hard scattering regime, A% > m?.

Let us study how the hadron matrix element behaves in
the t = —A2 — 0 limit, however. The matrix element
g*99(j,iv;, A) has already been studied in the literature
and is known not to diverge or vanish in the A> — 0 limit.
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The polynomial d;([7]) to be multiplied with this
g0 (j, iv; A) however, has diverging coefficients in all
of the terms >, n*, ... except the #° term. Therefore, the
m = 0 contribution (163) alone does not have a physically
reasonable behavior in the A — 0 limit. A natural expect-
ation will be that the hadron matrix element A “(n. )
still has a reasonable behavior after summing up
m=20,2,...,]

To get started, we focus on the #> term. It is generated
from the (m = 0)-mode exchange, and also from the
(m = 2)-mode exchange. There is a ( 2)/A? factor both
in §°°°x2lj([;1])|£z and g*02/A2% x ?, and hence both
diverge in the A< — 0 limit. When they are summed,
however, the divergence may cancel, as we see in the
following. Let us study the coefficient of the 7* term

/dj1+e—m‘f AP (LN (o
4i sin(zj) \q Vax 1\ wx

A/t o,
X — X 187

iv;I(j+1) (187)
in the A? — 0 limit, picking up a contribution to the
integral g% and g*%? from the /_;,(Az;,) component in
K, (Azy,) first®' Then in that limit, the coefficient of the
expression (187) becomes

P2 JG=1)_ 9"%(iv;.A)/(p?)
& [ G T G ) eV
o) (189)

The two terms in lim,2_,[- - -] cancel each other, as one can
see by using the approximation in footnote 31. Thus,
the »? term in A*“(n, t) also has a finite limit value in
the A2 — 0 limit.

It is quite likely, however, that the ;,(Az) component in

K;,(Az) has just as important a contribution as the I_;, (Az)
component does in the A> — 0 limit to the hadron matrix
elements g% and g%%2; the coefficient (1 — Cfu)o o) MAY
behave as (A/A)72¥ in the A2 — 0 limit. Because we have
seen above that the divergence (p?/A?) cancels when only
the 7_;,(Az) component is taken into account, the con-
tributions from the 7,,(Az) should also have some cancel-
lation mechanism. Using an approximation for the 7;,(Az)
components in K;,(Az) similar to the one in footnote 31,
one finds that the (p?/A?) divergence cancels in the 7>
coefficient, if and only if

' The leading divergence in the A? — 0 limit comes from

K, (A7) ~ (%) ;_n((ﬂA,j)) = (g) sin(ﬂ(if)zif(zz: 1)

_ F(zly) (Az/z)—iu

(188)
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) A\ 2iv ; .
AZ}K&J(%) {(1 - Cl('g;o,o,o) - (1= Cz('g;o,o,z)

(j—l—ivj)(j—ivj)}] Y

(j=1+iv)(j+iv))

(190)

The coefficients Cz(‘i?o,o,m are functions of A/A, rather than
complex numbers. The discussion above shows that physi-
cally sensible implementations of the confining effect

require one of the conditions above between the two

. () ()
functions ¢; 00 and ¢

The n”" term with M = 2, ..., instead of the 5> term
in (187), also receives divergent contributions from
amplitudes of the (m =0,2,...,2M)-mode exchange.
There will be an apparent divergence of order (p?/A%)M,
(p?/AM=1 . (p?/A?). The cancellation of divergence
in the A? — 0 limit will set M conditions on the A%/A? —
0 limit of (1 — Cgij)-;o.o,zM)'

In a phenomenological approach of implementing the
confining effect, that is all we can say for now. With a little
more of a model building mind-set, however, we can find
some solutions to the conditions above. It is not hard to
verify that the combination of

):0.0
[@(‘I’Ei;)o,o.o(tv oz =0,

[0.(W s (1. 2],y =0 (191)

results in Cz('i;)O,O.O and 651{30.0,2 satisfying the condition (190).
It is tempting to generalize this and impose the boundary

\Iffj>02(’)‘42§’4] = 0 to determine cEi?OyO’ZM, though

condition 0, |
we do not know whether all of the m3/A? divergences
above are removed under this boundary condition. The top-
down approach is much more authentic and well motivated
than such a hand-waving and wishful approach, and we do
not try to speculate beyond that; we use this implementa-
tion of the confining effect, (191), only to “get the feeling”
in the numerical presentation in Sec. VIID.

B. Large A2 behavior

Certainly the holographic model of GPD yields a result
of the reduced hadron matrix element that fits perfectly
with the dual parametrization. The holographic result,
however, turns out to be a little more complicated than
the models that have often been explored for the purpose of
phenomenological fit of the DVCS data. An example of a
model for phenomenological fit (see, e.g., [18]) was to
introduce an ansatz that

FrJrn’a(jv t) = fj,mzj—m(t>7 (192)
where only one (1 = —A?)-dependent function is involved
in the form of a “form factor” X;_,(7) for some spin
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(j = m), and all the remaining nonperturbative information
is reduced to some numbers f;,, € R. The function Z,(t)
may also be parametrized by an ansatz like

1 1
J = ag = ajgt [1 = =]’

(1) =

in order to implement both the Regge behavior and the
power-law form factor in the hard regime 1 < —#/A2. To fit
the data in practice, it is certainly unavoidable to reduce the
unknown information into a finite set of real numbers.

A theoretical picture based on the holographic model, on
the other hand, suggests that the r = —A? dependence is
more complicated than this. If we strictly stick to the
expansion (185), then individual T',},%(j, t)’s may diverge at
t = —A% = 0, as we have seen above, and are not like form
factors. The T;%(j,t) would not depend only on the
difference (j —m), as in (192), either; we have already
seen that 0%, (j, 1) o g*0m=2 /A2 diverges at t = —A? —
0 for an arbitrary j, but there is no such divergence in
%3, 1) «g*%0 for example. Therefore, holographic
models of GPD might be used as a theoretical guide to
think of parametrization (for fitting) that is different
from (192).

The holographic model provided by the calculation in
the previous section involves infinitely many spin-depen-
dent form factors, g% (j, iv;, A)/A™. We can still find
that they share a common behavior at large A? = —¢. To see
this, note that K, (Az,) in the Reggeon wave function
effectively cuts off the integral over the holographic radius
7, at 7, S 1/A in the regime

A om < A < |g?

J(p-q)lg-A).  (194)

The explicit form of \I’l(i)owm(z A) in (97) is not more than
a modification of K, (Az) by a function of Az, and hence
they still play just the role of cutting off the integral at

7z3A < 1. The “current” J"! provides extra mth

K14
powers of either 1/z or 0, and (j — m)-momenta p,, in
addition to [®]?, which behaves like

[®] ~ z(Az)?0! (195)

in the region z < 1/A < 1/A; £, is the conformal dimen-
sion of an operator in a strongly coupled gauge theory dual
to the holographic model, which is a property of the target
hadron A. The EN D*=2N[¢]/ A2=2N operation on the SO(3,1)
tensor in (89) does not introduce any power of (A/A) or
(Az). Therefore, we find in the hard scattering regime (194)
that
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y0,0.m A\ v .
A ~ (K) X (A/A)/—FZ(f,/,—l) X Am/Am

1
RrINZ== (196)

Interestingly, the reduced hadron matrix elements
"0/ A™ for (j, m) have the large A? power-law behavior
that is independent of m; 2A, reflects a property of the
target hadron A, and —(2 + y(j)) = —7,, is j dependent, but
the power does not depend on m.” Holographic models
suggest this j-dependent p = const—y(j)/2 scaling
behavior as an alternative to the fixed-power p = const.
scaling of (193).

We have chosen a factorization into the Wilson coef-
ficient and the matrix element that corresponds to renorm-
alization at y = A; this choice was made implicitly when
we chose a factor [A%/A*=/]*! at the time the amplitude
was factorized into C%%” and %% in (149). When we
keep the renormalization scale p arbitrary (e.g., taking u
higher than A when A > A), the Wilson coefficient
contains a factor (u/q)’V) instead of (A/q)"/), and the
reduced matrix element also has the following large A”
behavior,

g0,0,m 1 1

AN Ay O

(197)

C. Pomeron and superstring

We have so far talked about Reggeon and the flavor-
nonsinglet sector in Secs. VI and VII, instead of Pomeron.
Since the flavor-singlet sector (x gluon) dominates in
small-x physics, that was not a desired choice.

This is due to technical limitations in string theory at this
moment. In order to deal with the propagation of string
states on a curved spacetime, vertex operators and L (the
Virasoro generator) need to be defined properly as
composite operators; the nonlinear ¢ model for AdSs x
Ws on the world sheet becomes conformal and the
renormalization of the composite operators well defined,
however, only after the Ramond-Ramond background is
also implemented (e.g., [35]). Presumably an option in the
future will be to implement the Klebanov-Strassler model
and its variations in the Green-Schwarz formalism. One
then computes the spectrum of stringy excited states, and
further works out the world-sheet OPE, in the form of

V) (Ve (—2) ~ 3 "Ci(2)0,(0),  (198)

using operators O, (0) at the middle point, where V) and
V(=22) are the vertex operators corresponding to the

*This scaling was known already for 5% [7].
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incoming and outgoing photons (32). In this way, we
would not have to use string field theory.

It may also be possible to use bosonic string field theory
for closed string theory, instead of the bosonic open string
field theory we used in Sec. IV of this article. Bosonic
closed string field theory is also well understood already
[36]. Certainly the bosonic closed string field theory is not
for type IIB superstring theory, but it will still allow us to
get the feeling of how much open string (flavor-nonsinglet
sector) and closed string (flavor-singlet sector) theories are
different, from theoretical perspectives, as well as in
phenomenological consequences. At least it is known that
the Virasoro-Shapiro amplitude is generated, not just by the
one string exchange in the ¢ channel, the s channel, and the
u channel, but also a four-point contact interaction vertex in
string field theory [37]. The Virasoro-Shapiro amplitude
does not have a simple s-f duality of the Veneziano
amplitude, either. Certainly it is possible to write it down
in the form of “s-channel” expansion only (cf. [3] and [7]),
but we also need to be aware that the discussion in these
two references did not use the OPE at the middle point
as in (198), but instead used an OPE of the form
V(z)V(0) ~>>,C;(2)O;(0). To get the skewness depend-
ence right, this difference really matters. Thus, an analogue
of the prescription (52) needs to be worked out separately
for the closed string amplitude.

Orthodox approaches such as those above are way
beyond the scope of this article. One can hardly overesti-
mate the importance of such a solid approach, but at the
same time, very few would find the following guess terribly
wrong. For practical purposes, therefore, one can live with
that for the time being. First of all, the on-shell relation for
the bosonic open string in (164) will be replaced by

j 44+ j+17+c¢
A A e ) (199)
2 4/
with the constraint c¢;_; = —4 for the bosonic open string
replaced by ¢;_, = —2. Interaction vertices should also be

different; looking at the difference between the Veneziano
amplitude and the Virasoro-Shapiro amplitude, one finds
that the following replacements should be made:

t,/t,
FG+1)

~wrr () - @n)
(200)

The overall normalization ¢, /1, is like N./Nz? ~ N;! now,
when the Pomeron (closed string) contribution is used in
the 7 channel, and the source field for the “QED current” is
implemented in the form of the D7-brane gauge field; the
1/N. scaling (see footnotes 14 and 27) is also the natural
expectation in the large N, argument.
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D. Numerical results

At the end of this article, we leave a few plots of
numerical evaluation of various results that have been
obtained. We do not intend to provide a quantitative
(precise) prediction from holography, as we have repeat-
edly emphasized our perspective on this issue in this article;
the holographic approach to GPD will provide at best a
qualitatively new way to think of how to parametrize the
matrix elements for GPD. Having said that, it is still
desirable to grasp various expressions in a more intuitive
form and bring them down to more practical situations.
This section serves this purpose.

There are a couple of parameters that need to be specified
in order to obtain numerical outputs in a few summary
plots. We used the on-shell relation (164), which means that
we should understand the numerical results to be that of the
Reggeon contribution. We adopted c¢; +4 = 0 for all j,
although there is no rationale to specify the j dependence in
this way (see [12,38] and the literature therein for how to
work out the j dependence of c;). The confining effect was
implemented in the form of the boundary condition (191)
for the Reggeon wave function. As for the target hadron, we
set the mass term of the scalar field to be 5/R?
(.e., ¢y = 5), just like the lowest nontrivial spherical
harmonics on Ws = S$° for the type IIB dilaton field
[39]. The operator dimension in the dual CFT becomes
ly=2+ A+ RMy =2+ /F+¢c, =5.

Figure 6 shows the reduced matrix element
g*90(j, iv;, A) for the (m = 0)-mode exchange; the results
for different values of spin j = 1, 1.5, 2, 2.5 are shown in
the figure. Lattice computation can be used to determine
matrix elements at integer-valued spins, but the analytic
expression (153) allows us to determine the matrix element
even for noninteger spin, so that the inverse Mellin trans-
formation is possible, and we can also talk of the matrix
elements evaluated at the saddle point value of spin j = j*.
Panel (b) in Fig. 6 is essentially the same as that of Fig. 5 in

[7], while panel (a) shows g**° without normalizing the

o o o o
N B O 0O KON
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matrix element by its value at t = —A? = 0. Since they
are not the matrix element of a “conserved current” for
Jj # 1, the matrix element does not necessarily approach 1
in the A% — 0 limit. Panel (b) has a property such that
799 is soft (g**0 gets smaller slowly in A?) for a larger j;
this is consistent with the observation in (196) because
Iy(j)/9j > 0. _

A numerical result for the > term in A;“", which is
proportional to '

g2 iv;. A)

N j,zAz

2 . .

000 prjG-1
90,0~0(],lyj,A) X {P j—% } +
-1
X : — > 201

(J+iv)(j—1+iv;) (201)

is shown in Fig. 7, using j = 2. The first and second terms
of (201) both diverge at the A% — 0 limit, as we saw in
Sec. VII A, but their sum has a finite value at A2 = 0, as
one can see in the figure. It is worth mentioning that this
finite limit value ~ —700 is much larger than that of g0,
This is likely due, at least partially, to the hadron mass m,,
value in this case; for the value of parameters we chose,
my = je,21M, jz1 =064, and m;/A* ~40. An extra
derivative 0, in the matrix elements §2’0‘2 is more like
my, than A, and hence the second term can be larger than the
first term by about (m,/A)%. The factor (m,/A)? ~ 40
does not explain all of the moderately large value —700,
however. The ¢t = —A? dependence of the #° term [i.e.,
g*90(j,iv;, A)] is quite different from that of the coef-
ficient of the 57, at least at small A2,

In the DGLAP phase, a crude approximation of the GPD

is given by
_ 1N\ /AN 70
H Y (x,n,t¢*) ~ | - — AL, 1),  (202)
X q

where j* is the saddle point value of j depending primarily
onln(1/x),1n(g/A), and t = —A2. Apart from applications

5 10 15 20 25 30

(b)

FIG. 6. Panel (a) shows g“"’f)( Jsivj, A) as a function of A? / A2, The curve at the bottom is for Jj =1, while the one at the top is for
j = 2.5; the two in the middle correspond to j = 1.5 and j = 2. Panel (b) shows g*%%(A)/g*%%(A = 0), i.e., g"%°(j, iv;, A) normalized
at the value of A> = 0. The curve at the bottom is for j = 1, and the curve goes up for j = 1.5, 2, and 2.5; this softer behavior for larger j

is consistent with (196).
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(d)

FIG. 7. The first and second term of (201) are plotted in (a) and (b), respectively, as functions of A%/A?; parameters are set to the
values described in the text, and we used j = 2 in these figures. Although both (a) and (b) diverge at A?> — 0, they add up to be (c),
where the A — 0 limit is finite. The large A% behavior is seen better in panel (d).

to the timelike Compton scattering with very large (pos-
itive) lepton invariant mass square, the relevant range of |7|
is not much more than x in such processes as TCS, DVCS,
and VMP. Suppose, in the power series expansion of A}
in 7, that all of the terms with a different power of 7 have a
(-dependent) coefficient at most of O(1). Then the GPD
[or A[“(p,7)] in the small-x regime would not have
skewness dependence very much in the range of interest,
In| < x, because 5 and higher-order terms are small relative
to the 7° term. The coefficient of the 7> term, however, turns
out to be of O(=700) for A? ~ 0, which at least contains a
factor m%l /A?. Thus, for the range of moderately small x’s,
such as x ~ 107" and || < x, the #* term in A“(, 1) can
be just as important as the 5’ term for small AZ.
Consequently the prediction/fit of the slope parameter

-10

-20

-30

-40

-50

FIG. 8. The ratio of the coefficient of the 7> term of A7“(n, t) to
that of the 7° term, as a function of —¢/A> = A?/A”. We used
j = 2 and other parameters described in the text. This is the ratio
of Fig. 7(d) to Fig. 6(a).

(the ¢ dependence) may also be affected since the 7> term
with a steeper t dependence is involved. Toward higher A2,
however, the ratio of the coefficient of the #> term to that of
the 7° term changes as in a numerical computation shown in
Fig. 8. Since the 5*-term coefficient becomes not more than
10 times the #° term for 5A? < (A? = —t) at j = 2 in this
numerical computation, the n° term alone will become a
good enough approximation in this range of ¢, even for the
moderately small || < x ~ O(107!); for an even smaller x,
the #*> term can be negligible for a broader range of
t = —A”. We have nothing more to say about the #* term
and higher at this moment, or whether this moderately
large value =~ 700 is an artifact of a specific implementation
of confining effects we adopted for the numerical presen-
tation in this section. If this relatively large coefficient of
the 5” term (and also higher-order terms) turns out to be a
robust consequence of holographic models, that may be
regarded as an unexpected lesson from holography to
phenomenology.
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APPENDIX A: MORE ON THE MODE
DECOMPOSITION ON AdS;s

For convenience, let us copy here the eigenmode
equation (65) for a totally symmetric rank-;j tensor field
on AdSs; the equation consists of the following equations
labeled by k =0, ..., j:

((R2A;) = [(2k + 1)) — 2K + 3K]) A

TRk
22k Ak, KR~ I)Agk’zpm-"ﬂj—k
- ZZ(D[AZ]‘“-~])ﬂ1-~/t_,-,k + (E[AZ"”-“Dm'-‘ﬂ_,-,k
= —EA - (A1)

1. Eigenvalues and eigenmodes for 4* = (
a. Block diagonal decomposition

In the main text, we considered a decomposition of the
rank-j totally symmetric tensor field with (-id,)=4,=0
in the form of

[(i=k)/2]
Ay (z; A% =0) = (EN[a(kW)])m...,,jfk,
N=0
where a*V)’s are z-dependent rank-(j — k — 2N) totally

symmetric tensor fields of SO(3, 1), satisfying the 4D-
traceless condition (76). This is indeed a decomposition, in
that all of the degrees of freedom in A, ., _¢(z; A" = 0)
are described by a*M(z), ., . with 0<N<
[(j — k)/2] without redundancy. To see this, one needs
only to note that there is a relation® that, for a totally
symmetric 4D-traceless rank-r SO(3, 1) tensor a,

ﬂﬁ&EN [a}/)ﬂﬂl”'ﬂHZN—z = 4N(r + N + l)EN_l [a]lll"'ﬂr+2N—2'
(A2)
. . . (k.N) .
Using this relation, auu,_,, can be retrieved from
Ay, .y ,» Progressing from ones with a larger N to ones
4 j—k

with a smaller N.

Let us now see that the eigenmode equation (65), (69),
(A1) can be made block diagonal by using this decom-
position. The eigenmode equation (A1) with the label k for
A* =0 can be rewritten by using this relation (A2) as
follows:

SUIR2A; = [(2k + 1)) — 262 + 3K] + €) EV[aleV)]
N

+ k(k — 1)[4(N + 1)(] —k—N+ 2)]EN[a(k_2*N+l)]
+ EN[a(k+2,N—1)H —0.

33, . . . . .
This relation can be verified recursively in N.
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Although this equation has to hold only after the summation
in N, it actually has to be satisfied separately for different
N’s. To see this, let us first multiply #”¢ for [(j — k) /2] times
and contract indices just like in (A2); we obtain an equation
that involves only a®U=K/2)  q(*k=-2[G-K)/2+1)  and
ak+21U=k)/21=1) Next, multiply 7% for [(j — k)/2] — 1 times
to obtain another equation involving a(*(i=0)/2=1)
a®=2l0=072)) "and a*+21(=K/21=2) In this way, we obtain

(R2A; — [(2k + 1)) — 2k* + 3k] 4 £)akV)
+ k(k=1)[4(N + 1)(j — k = N + 2)]ak=2N+1)

+a®*2N=1) =0 (for Yk, N). (A3)
Fields a*V)’s with the same k + 2N = n form a system of
coupled equations, but those with different n = k + 2N do
not mix. Thus, the eigenmode equation for A*¥ =0 is
decomposed into sectors labeled by n. The nth sector
consists of z-dependent fields that are all in the (j —n) =
(j — k —2N) totally symmetric tensor of SO(3, 1).

b. Classification of eigenmodes for A# = 0

Let us now study the eigenmode equations in more
detail for the separate diagonal blocks we have seen.
Simultaneous treatment is possible for all of the nth sectors
with an even n and for all of the sectors with an odd n.

Let us first look at the nth sector of the eigenmode
problem for an n = 271 < j. In the eigenmode equation of
A* = 0, we can assume”" the same z dependence for all of
the fields in this diagonal block:

_(k,N)

kN — 2—j—iv
Ll( )(Z)ﬂ]mm_n - aﬂl"'ﬂj—nz ! ’

k+2N =n, (A4)

where a®N)’s are (x,z)-independent 4D-traceless rank-
(j — n) tensors of SO(3, 1). The eigenmode equations with
the label (k,N) = (2k,7n — k), with k =0, ..., 7, are rel-
evant to the n = 27 sector and are now written in a matrix
form:

3 Dy @™ ) = (4427 - £)a*TH, (aS)
=0

where
(i) diagonal  (k, k') = (2k,2k)
—[(2k + 1)j — 24 + 3],
(i) diagonal®; (k.k')=(2k,2k+2) entry: Dy oz, = 1,
(i) diagonal™; (k,k') = (2k,2k —2) entry: Dy, =
k(k=1)x4@—k+1)(j—7—k+2).

entry:  Dyrp=

*This is because, in the absence of z20? term, the operator A j
becomes a constant multiplication when it acts on a simple power
of z. Upon z7/~, for example, R*A; returns —(4 + 7).
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There must be (7 + 1) independent eigenmodes in this
(m+1)x(m+1) matrix equation. Let &,; denote
the collection of eigenvalues in this n = 2nth diagonal
block, and [ =0,...,7n = n/2 label distinct eigenmodes.
The corresponding eigenmode wave function for the
(n =2m, 1) mode is in the form of

a &) (Z; AF =0) = g (2ki—k) (n.d) z2=j=iv (A6)

= c2z,l.n€

where €/ is an (x,z)-independent 4D-traceless totally
symmetric rank-(j — n) = (j — 27) tensor of SO(3, 1), and
Cy7.p @re (x,z)-independent constants determined as the
eigenvector corresponding to the eigenvalue &, ;.

Similarly, in the n = 21 + 1 < jth sector of the eigen-
mode problem, with an odd n, we can assume a simple
power law for all of the component fields involved in this
sector;

_(kN) i
a(k'N> (Z)Hl"'/‘jfn = afal"'lzjﬂwzz / ”-/’ k + 2N =n, <A7)
where @®V) are (x,z)-independent 4D-traceless totally

symmetric tensors of SO(3, 1). The eigenmode equation
with the label (k,N) = (2k+ 1,7 — k), with k =0, ..., 7,
are relevant to this sector, and in the matrix form, the

eigenmode equation now looks like

Z D2E+1,2E’+15(2P+1ﬁ_%) = ((4+12) = E)a@+1i—h),
x=0

(A8)
where 3 B
(i) diagonal (k,k')=(2k+1,2k+1)entry: Dyr |5z, =
—[(2k + 1)j + (=282 +3K)],
(i) diagonal® (k, k') = (2k + 1,2k + 3) entry:
Dotz = 1 _ _
(iii) diagonal™ (k,K') = (2k+1,2k—1)  entry:
Doy g =k(k=1)xd(A—k+1)(j——k+1).

From here, 77 + 1 independent modes arise; their eigenval-
ues are denoted by &, and [ = {0,...,n} is the label
distinguishing different modes. The eigenmode labeled by
(n=27n+ 1,1) has a wave function

akN) (z;A% = 0) = a(2E+1,ﬁ—E) (n.0) 2-i-iv,

= Coky1.0n€
(A9)

where €!) is an (x,z)-independent 4D-traceless rank-
(j — n) totally symmetric tensor of SO(3, 1), and c; Lin is
the eigenvector for the (n, /) eigenmode determined in the
matrix equation above.
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c. Explicit examples

Let us take a moment to see how the general theory
above works in practice.

The easiest of all is the n = 0 sector, which contains
only one rank-j 4D-traceless field, a(*?). The eigenmode
equation is

: 2
{A 12k + 1) =22 1+ 3K]

J R2
= {Aj —Rlz] a0 = —%a(om. (A10)
The eigenmode wave function has the form
a(o.o)@m_nﬂj — 6;3?’-934, (2-i-iv, (A1)
and the eigenvalue &, is
Eoo=(+4+17). (A12)

Also to the n =1 sector, only one rank-(j— 1) 4D-
traceless tensor field contributes. That is a"?). The
eigenmode equation becomes

[R2A; = [(2k +1)j — 2k + 3k]| 4=y ]a ™)

= [R?A; - (3j + 1)]a1 = =&, a0 (A13)

The solution is

(1.0)  _2—j—iv
9

a<1’0)(z)ﬂl"'ﬂ_/71 = € p; 2 51.0 = (3] + 5+ y2>.

(A14)
In the n = 2 sector, two rank-(j — 2) 4D-traceless fields
are involved. They are a(®!) and a®*?). After introducing

the z dependence « z>~/=", the eigenmode equation (A5)
in the n = 2 sector becomes

[ o] (aon) = +-9(Ga0)

(A15)
One of the two eigenmodes is
0.1)
a )y
52’0:(44'5]'4—1/2),( Hi lh‘—z)
a®(2), s
1 2,0 —i—iv
= (i )esthre (16

and the other is
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a®V(z)

& =2+ j+17), (a(z,o)(z)mmﬂj2 >

HiHj-2
_ (1) ey
~(2)e

HiHj-2 2—j—i1/' <A17)
In the n = 3 sector, two rank-(j — 3) 4D-traceless tensor
fields are involved: a(") and a®". The eigenmode

equations (A8) become

Brrat )

atn
a
= ((4 +12) _5)<a(3’0))' (A18)
So, one of the two eigenmodes is
(03
a <
£ —(7j+1+v2),( ”""""‘")
3,0 a(3,0) (Z),M]"'ll,'_3
1 3,0 —j—iv
(Lo )i a9
and the other one is
(1)
a <
> G ) (0(3’0)(@#1'"#13
= <é>e,ﬁfa?.Lj_3 2y, (A20)

Finally, in the n = 4 sector, the eigenmode equation (A5)
is given by

—j 1 0 a2
oy sy 1 ()
0 48(j—2) —(9j—20)] \ g
(0.2)

@ |, (A21)
4.0)

al

Q

a
a

=<<4+u2>—5><

There are three solutions. First,

Eao= (9] —4+17), (A22)
(a02), g1 q40)
= (1,=8(j = 1),32(j = 1)(j = 2))e* 0z~ (A23)
second,
Ea1=(5j—-6+17), (A24)
(@02, g1 q40)
= (1,—(4j — 10), —48(j — 2))e*Dz2=i=v  (A25)

and, finally,
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Esp = (j+17), (A26)

(a®2),a®D a*0)) = (1,4,24)e®D 2w (A27)
An empirical relation is observed in the j dependence of
the eigenvalues we have worked out so far. The eigenvalues

in the nth sector are in the form of £, ; = v+ 2n+1-
41)j+ O(1) for 0 <1 < [n/2].

d. 5D-traceless modes: the [ = 0 modes

Although the precise expressions for the eigenvalues
&, and the eigenvectors ¢y, are not given for all of
the eigenmodes, there is a class of eigenmodes whose
eigenvalues and eigenvectors (wave functions) are fully
understood.

As we discussed in Sec. V B 3, it is possible to require
both that a field is an eigenmode and that it satisfies the
5D-traceless condition (95) at the same time. In the
n = (k + 2N)th sector, the SD-traceless condition becomes

0= (EN[a<k*N)])’;m...ﬂj_n

+ (BN k2N,
_ EN_1[4N(j —n+ N+ l)a(k,N) + a(k+2,N—1)]
{k =0,2,....2(n—1)
X

k=1,3,....2n-1

(evenn),

(odd n). (A28)

Thus, the 5D-traceless condition uniquely determines one
eigenmode in each one of the nth sectors.

Exo=(2n+1)j+2n-n>+4+172  (A29)
and
uE ! -7+ 1)!
(kg (J n—_f—
C2k,0,2n ( ) (ﬁ—k)'(]—ﬁ—k—f—l)"
§ g (=)
Corsr02ms1 = (7)'4 G-R)(—T— R (A30)

2. MODE DECOMPOSITION FOR NONZERO 4,
a. Diagonal block decomposition for the A* # 0 case

Let us now turn our attention to the eigenmode
equations (65), (69) with A# # (. Because of the second
and fourth terms in (69), the eigenmode problem becomes
much more complicated. We begin by finding a diagonal
block decomposition suitable for the case with A* # 0.

In the main text, we introduced a decomposition of a
totally symmetric rank-j tensor field A,, .., of SO(4, 1)
into a collection of totally symmetric 4D-traceless 4D-
transverse tensor fields of SO(3, 1). Instead of (75), a new
decomposition is given by (85), (A31):
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Jj=k [s/2]
Ay () =N (VDN [aksV)]) -
s=0 N=0
(A31)
where a®N) are totally symmetric 4D-traceless 4D-

transverse rank-(j — k — s) tensor fields of SO(3, 1). An
operation ar>E|[a] on a totally symmetric SO(3, 1) tensor a
is given by (86).

In order to see that the parametrization of A, . . by

(alksN) ’s above is indeed a decomposition, one

(k,s,N)>

HiHj—k—s
needs to see that a s can be retrieved from A «

ke
so that the degrees of freedom a**") are independent. For

this purpose, it is convenient to derive some relations
analogous to (A2). First of all, note that E[D|a]] = D[E|a]]
and® E[D[a]] = D|E|a]] for a totally symmetric SO(3, 1)
tensor a. If the rank-r tensor a is also 4D transverse and 4D
traceless, one can then derive the following relations:

|
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PED () o,
= —A*(s = 20)E'D* " [a] + (2t) E"' DS ],

(A33)
nﬁ‘%(EtDS_ZI[a} )paﬂ3"'ﬂr+s
= —A%(s = 2t)(s — 2t — 1) E'D*"*2[q]
+4t(r4s—t+ 1)E~'D¥[d], (A3
af’ (ENDS_ZN [a] )p/tz"'llr+.v
- E DN, (a3
LAY
(7]”" T ) (END*=?Nq] ozt
=4N(r+ N+ 1/2)EN'D"N[a].  (A36)

With the relations above, it is now possible to compute

Ofap+a

<r]ﬁ1f42 — aﬂ(;?M) - <;7ﬁ2p—1ﬁ217 — 0 0%

62
") =N
e DN la))

s.N

0

where we assume that a is a totally symmetric 4D-
traceless 4D-transverse rank-r tensor of SO(3, 1). In the
last line,

1 I'(r+3/2)
ANNI(s —2N)IT(r + N +3/2)°

bU) = (A38)

It is now clear how to retrieve a**¥) from the Ak,
given by (85), (A31). First, one has to multiply 0o —
9° /9% and §°/0* by A, as many times as possible

HiHj—k

R2A; —

_zza(k-ﬁ-l‘s—l,N) _|_a(k+2,s—2~N 1) (82)

35

E' DS~ 2t

Zr’”m”lz '

90 L PR

(A32)

. 9  ...0
n”m—l Hpyr " Hparss t

where the sum is taken over all possible ordered choices of
P1:P2s - Py € {1, ..., j} such that p; # p; for i # j.

aﬁ21)+]
)2

Hoprq+1 - Hrss

82 (ENDS_2N {a] )”l U Hrts

if p<N d <s—2N,
if p< and ¢g<s (A37)

otherwise,

in order to obtain a**") with a larger N and (s —2N).
Then a**N)’s with smaller N or (s —2N) can be deter-
mined by multiplying #°?—390°/9* and 0°/0?
fewer times.

Let us now return to the eigenmode equation for the
cases with A* # 0. Following precisely the same argument
asin Sec. A. 1, one can see that the eigenmode equation can
be separated into the following independent equations
labeled by k, s, and N:

[(2k + 1) = 2k + 3k] + EJa®sN) 4 2zk(s + 1 = 2N)(0?)a k=1 s+1N)
+k(k—1)(s +2=2N)(s + 1 = 2N)(0*)a*2542N)  dk(k - 1)(N

(k+25-2N) — (0 for Yk, s, N.

1)(] —m+ N+ 3/2)a(k—2,s+2,N+1)
(A39)

|
The relations (A33), (A34) were used to evaluate the
second—fourth terms of (A1). One can see that a*s:V)’g
with a common value of m := k + s form coupled eigen-
mode equations, but those with different m’s do not. Thus,
a®sN)(z; A®)’s with k 4 s = m form the mth subspace of
Ap,..m, (23 A¥), and the eigenmode equation becomes block
d1ag0nal in the decomposition into the subspaces labeled
by m=0,...,j
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The eigenmode equation on the mth subspace is given by
the equation above, with 0 <k=(m—s)<m and
0 < N < [s/2]. Thus, the total number of equations is

S (/2] ).

s=0

(A40)

and the same number of eigenvalues should be obtained
from the mth sector.

b. Examples

The sector m = 0.—There is only one field a(%%9) in this

sector, and the eigenmode equation is

B

Assuming a power series expansion for the solution to this
equation, beginning with some power z>~/=%, the eigen-
value is determined as a function of (iv):

_152] a(O’O*O)(z;N‘) - _%a(o,o,o)(z;y). (A41)

Eoo=(j+4+17%),

and the wave function can be chosen as

j
R2A; + &)1y +
( J )44 4Z82

40?

8j—4

The indicial equation relating the exponent (2 — j — iv) at
z=0 and the eigenvalues split into two parts; three
eigenvalues of this matrix,

—j 1
—j 1 , (A47)
4 (8j-4) =(5j-2)

determine —& — (4 + 1?) for the three eigenmodes, and
—(E—=(4+1%)=—-3j+1) for the last eigenmode.
Therefore, the four eigenvalues in the m = 2 sector are

Eoo=(j+4+17),
52’0 = (5] +4 +l/2),

61'0 = (3j+5 +l/2),

Ey=(j+2+17). (A48)

In all of the examples above, the mth sector consists of
eigenmodes with eigenvalues &,;, for 0<n<m,
0 <1< [n/2]. The number of eigenmodes is, of course,
the same as in (A40).
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a0 (z; A), = et (A2 z),  (A42)
4 2 inh ;
T(A2, ) = - %R(””)e“—”AKW(AZ)- (A43)

The sector m = 1.—The eigenmode equation in this sector

it ()

4(0:1.0)
1,0.0)

RPA; —j -27
—2zA*  RPA; - (3j+1)

(0.1.0)

a

== ( (1.00) |-
410

Assuming the power series expansion in z, beginning with

7>~/ terms, we obtain two eigenvalues depending on iv.

They are given by evaluating R?A;—j and R?A; — (3j + 1)
on Zz_j_iV:

al

(A44)

Eoo=(+4+1v*) and & o= Bj+5+1%). (A45)

The sector m = 2.—The eigenmode equation becomes

2; 10 4020

1 q02.1)
Git1) - 0 | =0 (A46)
420 —(5j-2) q(2:0.0)

|
3. Wave functions of SD-traceless SD-transverse modes

As we discussed toward the end of Sec. VB, it is
possible to require for a rank-j totally symmetric tensor
field configuration A, ., (z; A*) to be an eigenmode and
to be 5D traceless and 5D transverse (95), (96) at the same
time. We will see in the following that these two extra
conditions (95), (96) leave precisely one eigenmode in each
one of the block diagonal sectors labeled by m =0, ..., j.
We will further determine the wave function profile of such
eigenmodes.

Let us first rewrite the 5D-traceless condition (95) in a
more convenient form:

WA oo +A =0, (A49)

POHL-Hj Fpayeepig

which, in the mth sector, means

a®sN) = (542 = 2N)(s + 1 — 2N)A2qk=25+2.N)
+4(N + 1)(j —m + N + 3/2)alk-2s+2N+1)
(A50)
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for N=0,...,[s/2]; k + s = m is understood. Under the
5D-traceless condition, the SD-transverse condition

(k - l)ni)&Az/ﬁz P + z@i’AzH

POHY PHLHjk
+ (20, + (k- 4))Azkm.__ﬂj_k =0 (A51)
becomes
Z0PA i PR (20, — 3)Azk#|“_”j_k =0. (A52)

In the mth sector (k 4+ s = m), therefore,

(s + 1 =2N) A2k HIN) = 39 2 =3gks V) (A53)
for N =0, ..., [s/2]. Hereafter, we use a simplified notation
D :=730,z7>. One can see that all of the al**N)’s with
k+s=m and N < [s/2] can be determined from a("--0)
by using the relations (A50), (A53). This observation
already implies that there can be at most one eigenmode
in a given mth sector that satisfies both the SD-traceless and
the SD-transverse conditions.

For now, let us assume that there is one, and proceed to
determine the wave function. The wave function—z
dependence—of a"%9)(z; A#*) can be determined from
the eigenmode equation (A39), with k =m, s =N = 0.
Using (A50) and (A53), we can rewrite the equation as

[R*A; —{(2m +1)j = m? + 2m} — 2m(20, — 3) + €]

x am00)(z;A) = 0. (AS54)
For this equation,
(alm00)(z; ).
z\*/ . ,
= eﬂ]"'ﬂj—m E (AZ)mKiD(AZ)’ E= (] +4+v ),
(A55)

is a solution, where ¢, .., is a z-independent 4D-traceless
4D-transverse totally symmetric rank-(j — m) tensor of SO
(3, 1). From the value of the eigenvalue, it turns out that the
5D-traceless SD-transverse mode in the mth sector corre-
sponds to the (n, I, m) = (0,0, m) mode. The z dependence

we determined above implies that

):0.0 e (7):0.0
‘I’l(i;)o,o.m(—sz z7) «x (Az) ‘I’(]?O,o,()(—Az’ z).

iv <A56)
This result corresponds to the (s, N) = (0,0) case of (97).
The normalization constant N, is determined later in this
section. .

Let us now proceed to determine other \Iifi)OSONm, not just
for (s,N)=(0,0). Using the 5D-transverse condition,
(A53), a™110(z;A) can be determined from
am00)(z; A).
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glrto _D

(m—1,1,0) E—
iv;0,00m A

_ ,0.0
= — a(m ) ,

1);0,0
A2 \IJEIJ/,)(), m* (A57)

a

In order to determine the s = 2 components a"~22N)
(N =0, 1)of the (n, 1) = (0,0) mode in the mth sector, one
has to use both the 5D-transverse condition and the 5D-
traceless condition:

2A2q(m=220) — Pglm=1.1.0) (A58)

202qm=220) _4(j—m+3/2)alm"221) = am00)  (A59)

[herefore,
1 [D\2
m=2,2,0) _ m,0,0
Cl( ) = F (—> Cl( )7

2
am22n — L [PV L oo,
4(j—-m+3/2) L \A

(A60)

After factoring out the normalization factor (bE] )/ AS=2N)

and the common 4D-tensor (%% we obtain
2
20 _ (D 5()00
\Ilizz;().O,m - (Z) \Ilizz;O.O,m’

(A61)

);2,1 D\ 2 ):0.0
‘I’ng;)o,o,m = {(A) -1 \I’t('lj/;)O.O,m‘

The 5D-transverse conditions (A53) determine the s = 3
components a"=33N)(z; A) (N =0,1) from the s =2
components:

1 (D\3
a(m—3.3,0) - <_> a(m,0.0)’

6A3 \ A
3
a(m—3,3~1): 1 2 _ 2 a(m,O,O)7
4(j—m+3/2)A | \A A
(A62)
and after factoring out the normalization factor

(BY5™ / A2V and €©0m) a5 before, we obtain
. D\ 3
v = (2] w
iv;0,0,m A
):3.1 D\’ _(D :0.0
\Ilz(z]/;)O,O,m - {(Z) - X \Ijz(z]/;)().o,m'

The s = 3 components determined purely by the conditions
(A53) satisfy the SD-traceless condition (A50) with the s =
1 component:

(/)00
iv;0,0,m>

(A63)

6A2a(m—3.3,0) _ 4(] —m 3/2)a(m—3,3.1)

(m,0,0) — (m=1,1,0)

a . (A64)

:pa
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In this way, the wave functions \IIEVO om(—A%, 2) for all
(s, N) are determined, and the result is

(—Az,z)] XN

D s—2a ” 1:0.0
(Z) [(ZA) ‘I’Si;)o,o,o
(A65)

The only remaining concern was that there are more
conditions from (A50), (A53) than number of components
a®sN) in the mth sector; there can be at most one
eigenmode satisfying these S5D-traceless SD-transverse
conditions, as we stated earlier, but there may be no
|

[6.61]5(1/_1/)NNimAdZ\/%e—sz

[m/2]
% (Z ENDm—ZN [e(0.0,m)]

N=0

[m/2]
X <Z EMDm—ZM [G(O,O,m)]

M=0

b 2
Am—2N

b 2

A= Am—=2M A
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eigenmode left if the conditions are overdetermining. We
have confirmed, however, that the wave functions (97),
(A65) satisfy all of the relations given by (A50), (AS53).

a. Normalization

We have yet to determine the normalization factor N; ,,;
as in the main text, we choose (99) to be the normalization
condition. Orthogonal nature among the eigenmodes is
guaranteed because of the Hermitian nature of the operator
o' (V? —M?). Tt is thus sufficient to focus only on the
divergent part of the integral in the normalization condition
in order to determine N; ,,

The divergent part of the integral in (99) comes only
from terms with s =m, k=0, (0 <N <[m/2]), and
a = 0. For a given m,

3amz—3
AM

m 1):0,0
A, (272

Hiepj

%am =3

N HiHj
(ZA)"I\I/EQ(;%?,”(—AZ,Z)> . (A66)

The divergent part of the integral in this expression comes from

<2> 2y Sinlzl(m/)

m

FrG+1-iv)l'(j+1+iv)

/dxxzj_S[x33§1x_1_j+mKw(x)][x38§1x_1_j+mKiu’(xﬂ

=P+ 1)+ -v) =

p=1

Noting that

)
<Z ENDm—ZN [G(O,O,m)}

s

[m/2]
Zb/ m

(0,0,m)
"‘l Hj—m

)e

we find that (A66) implies

P F(j+1—iu)F(j+1+iu)

rGj+1-m

S(v—v).

w)(j+1-m+iv)

i

b(] Nm) [m/2]
m, M ym—2 0,0,m >
Am—2N> </|;) ETD M[e/( )] Am—ZM) B

. 0.0.m)fyfijy, ,

[m/2]

Jim -

rG+1-m

rG+1-iv) rG+1+iv)

w)r(j+1-m+iv)(j

S (3545

(3/2+]—m)

?)

2 +2j)

:F(j—l—l—m

)T(j+1—m+iv)! ™ 2"T(3/2+j) T(2+2j—m)’

(A67)

4. A note on the wave function of the
massless vector field

For arank-1 tensor (vector) field on AdSs, we can determine the wave function of the (n, [, m)
(0,0, m) modes with m = 0, 1. With the eigenvalue £, o = (3j + 5 +1?)|,_;,

just for the (n,l,m) =

125001

= (1,0, 1) eigenmode, not
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4(0.1.0) — €<1’0'1)Z2K,-U(AZ),

a100) = 1019 (22K, (Az)) (A68)
is the eigenvector solution to (A44).

The (n,l,m)=(0,0,1) mode and the (n,l,m)=
(1,0,1) mode are independent, even after the mass-shell
condition (66) for generic vector fields in bosonic string
theory. However, for the massless vector field A,, obtained
by the s1mp1e dimensional reduction of the massless vector
field Az(u) with ¥ = {1,0,0}, these two modes become
degenerate. To see this, note that ¢, = —4 for this mode, so
that the mass-shell condition (66)¥ implies,

(J+4+24¢))m
(Bj+5+12+ ¢l

=0 (0,0, 1
=0 (10,1

) mode,

) mode, (A69)
or, equivalently, iv =1 and iv =2, respectively, for
these two modes. It is now obvious that the terms propor-
tional to (e - ¢) in (35) are in the form of this (n,l,m) =
(1,0,1) mode. With the relations x*0,[x3"2K,(x)] =
—x3[x7'K,(x)] and O, [x*K,(x)] = —x*K,(x), one can also
see that the wave function for the (n, [, m) = (0,0, 1) mode
is also proportional to the form given in (35) when the on-
shell condition is imposed.

5. Projection operator of SO(3, 1) tensors
Note first that

r [S 2]
END\ 2N )}
s=0 N=0

(A70)

is an orthogonal decomposition of a totally symmetric SO
(3, 1) tensor a of rank r into totally symmetric 4D-traceless
4D-transverse SO(3, 1) tensors V) of rank (r — s). Here,
the metric is given by

byl [aw)] = [ba)l,,., (@i a)l,,.o 077,
(AT1)
as in the main text. To see that the decomposition is

orthogonal under this metric, one needs to use only (A37)
to verify that

(B DM [0 - [EY DV )]

A2(3—2N)
= OMNOraM.s—2N — (o
b
s,N

M. [aN)] (AT72)

Using the fact that (A70) is an orthogonal decomposi-
tion, let us construct projection operators PUN) that
extract various components a*) from a totally symmetric
SO(3, 1) tensor a of rank r. We introduced an operator P
in (102) which acts on rank-r SO(3, 1) tensors. From what
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we have seen above, it can be used to extract the a(5-¥)=(0.0)
component from a rank-r tensor a. That is, P00 = P() Tt
is straightforward to see that the projection operator for
other components a'*V) with general (s,N) is given by

(r=s)
b 1 -
ris,N s.N N 1ys—2N
PrsN) = E AN D, (E"DY [60])/)1“%

x (EVD2Ne,))

610, (A73)
where €,’s are an orthogonal basis of totally symmetric 4D-
traceless 4D-transverse SO(3, 1) tensors of rank (r —s).

It is also useful to have a concrete form of the projection
operator P"), not just its abstract definition in (102). We
find that it is given by

L (=MD (r 41— m)

P g =
. 4MM!F(r +1)

[EMDkOP =] - a (A74)

where OP, ) is the operator given in (A37). A totally
symmetric rank-r tensor a is converted once into rank-(r —
2M — k) tensors, and then they are converted back to a
rank-r tensor under the operator P"). To see that all of the
ENDs2N[q(5:N)] components are projected out by P("), one
needs to use only the following formula [40]:

N
|
p]
~
|
=
_|_

I(r—N+3-M)

= 2 , (A75)
which vanishes for an integer N > 0.

6. Some tensor computations

Let us derive a more concrete expression for the product
(g" q”) : [P(”]Z'I'.j.’;;: : (!’vl ...p,,) by using the explicit
expression for the projection operator P") to the SO(3, 1)-
transverse SO(3, 1)-traceless rank-r tensor:

(q"1...q) - [POL - (pyyeeop,)
_RENITG =)
= AMMr(j+1) (r—2M)!

CANV2TM
x [qz - (quA) } (P)M(q-p)—M,  (A76)

where we made p-A =0. Within the regime of
q*.(p-q),(q-A)> A% A%, p? that we have been interested
in this article, (¢ - A)?/A? > ¢*. Thus, after ignoring g2,
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(g"...q") - [P(r)]llilli:;r . (le .Py) When r is even, this polynomial of # can also be
/2] ' rewritten by using a Legendre polynomial, P,(x), which
L(r+i-M) 7! Kq . A)ZP_Z]M is defined by ([41], page 82)
L= AMMIT(r+4) (r=2M)! [\q-p) A?

= (p-q)" xd,(n,A%). (A77)

~(p-q)
1—x
P,(x) = ,F, <—f,f+ 1,1;T>

2¢ — 1)!! £ 1-¢ 1 1
B %xszl (—E,T,E— lxﬂ,—2> (A78)
R ! X
This introduces d,, which is a polynomial of skewness
(g-A)/(p-q)=—2n of degree 2[r/2]. For an even r,

(= Du(F (497 5\ M 1—r 1 2 4 A2y
N P r r (4mj; + A%)p
2 =3 St (i) (5t
=0 "2 7y

r! [Am? + A? ' A? 1 ~
= n| P —— | =d , A79
2r-n l a? T\ am2 a7y oAlnl) (A79)
where we used the kinematical relation 4p* = —(4m? + A?).

Similarly, it is also necessary to compute the following expression in order to study the m = 0 exchange amplitude in
Sec. VIC2:

{Zefem SR q} (PO [p7 - pi), (A80)
a#b

which is also evaluated as above. The term proportional to r]f“’e,%*e,ll (the contribution to the structure function V) is

[i/2] My 1 . _—
(-DMT(j+5—-M) ! (g-A)2M-1 o
22; 4MM!IJ“(ji%) (j—;M)!2l{2_ qu } (P )M (q - p)~
N A? ].U/Z] rG+i-M) ! g-A\2 p2]M

This expression is once again a polynomial of n of degree 2[j/2] —2 and is roughly of order A?/(q- p)? times the
expression (A77).
We will also need the following computation in Secs. VIC 3 and VIC 4:

(J:_k)! [ 2_(Q'A)2

(G~ ) - (EV D2V [el00m s —

N
o S (RS R Rt

APPENDIX B: CONFORMAL OPE COEFFICIENTS FROM AdS INTEGRALS

Let us introduce an integral,

C1(6,9) = (1 — 92)1/2 A“’ dyy K, (T L 9K, (yW1=9), (B1)

which we encounter as the photon-photon— Pomeron/Reggeon vertex on AdSs. 8 =#/x and § = j+ iv in that
context.
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It is known ([42], page 101), if Re(e + ) > 0 and Re(1 v + u —p) > 0, that

0

7 direk (a1 =202 p (- )

XF(1+v+ﬂ—p>r(1+u—ﬂ—p

2 2

1 —p l4v—p—
x2F1< tvtpu—p l+v—p—p

2 ' 2

Jr= ()

2
1—p;1—'§2>. (B2)

Substitutinginp=—-1-6, u=1L,v=-1,a=+v1-39, and f =1+ 9, we obtain

FE)TE+1))rE+2) s 5 6+2 29
C(5,8) = —*—2 2 2711 =9) % F (5, —=—:6+ 25— |. B3
An equivalent, but slightly different expression is also obtained by using the following relation ([41], page 60):
u a a+1 1 7 \2
JFy(a..26:22) = (1 - 2) 2F1<§’T’ﬁ+§;<1——z> >; (B4)
namely,
5+2([TE+1))* 56 16 3
C(5.9) =2%"! = Fil=.-+-i2+2:87). B5
1(6.9) 5 Te+2 »\aat22ts (B5)

As a function of § = 5/x, (B3) and (B5) are precisely of the form (25) and (26), respectively, required in the conformal OPE

coefficients.
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