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The traditional idea of the Pomeron/Reggeon description for hadron scattering is now being given
theoretical foundation in gravity dual descriptions, where Pomeron corresponds to an exchange of spin-
j ∈ 2Z states in the graviton trajectory. Deeply virtual Compton scattering (DVCS) is essentially a two-to-
two scattering process of a hadron and a photon, and hence one should be able to study nonperturbative
aspects (the generalized parton distribution [GPD]) of this process by the Pomeron/Reggeon process in
gravity dual. We find, however, that even one of the most developed formulations of gravity dual, Pomeron
[Brower-Polchinski-Strassler-Tan (BPST), 2006], is not able to capture skewness dependence of GPD
properly. Therefore, we compute Reggeon wave functions on AdS5 so that the formalism of BPST can be
generalized. These wave functions are used to determine the DVCS amplitude, bring it to the form of
conformal operator product expansion/collinear factorization, and extract a holographic model of GPD,
which naturally fits into the framework known as “dual parametrization,” or the “(conformal) collinear
factorization approach.”
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I. INTRODUCTION

Scattering processes of hadrons involve nonperturbative
information of QCD. When it comes to scattering with the
center of mass energy higher than the QCD scale, lattice
computation will not have enough computation power in a
near future, yet perturbative QCD is able to say something
only about the hard components involved in the scattering.
This is where holographic descriptions of strongly coupled
gauge theories may find a role to play. Although we cannot
expect gravitational “dual” descriptions to be both calcu-
lable and perfectly equivalent to the QCD of the real world
at the same time, we still hope to be able to learn
nonperturbative aspects of hadrons at the qualitative level,
using calculable holographic dual descriptions of nearly
conformal strongly coupled gauge theories.
String theory started out as the dual resonance model

describing scattering amplitudes of hadrons. One of its
major problems as a theory of hadrons was a “prediction”
that the amplitude of the elastic scattering of two hadrons
falls off exponentially, eBt in the momentum transfer
squared t for some B > 0, although the amplitude is known
in reality to fall off in a power law in j − tj for hard
scattering. The prediction, however, is now understood as
that of string theory with a flat background metric; the
amplitude of elastic scattering turns into such a power law
indeed when the target space of string theory has a warped
metric. At the qualitative level, string theory on a warped

spacetime—holographic (gravitational dual) descriptions—
can be a viable theory of hadron scattering [1–3].
The holographic technique can be used to study not just

amplitudes of hadron scattering as a whole, but also to
extract the information of partons within hadrons [2].
Parton distribution functions (PDFs) are defined by the
inverse Mellin transformation of hadron matrix elements of
gauge singlet parton-bilinear operators in QCD, and gravity
dual descriptions can be used to determine matrix elements
of the gauge singlet operators. The PDF extracted in this
way satisfies Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
[(DGLAP), q2-evolution] and Balitsky-Fadin-Kuraev-
Lipatov [(BFKL), lnð1=xÞ-evolution] equations (e.g.,
[4–7]); just like in perturbative QCD [8], these two
evolution equations follow from how the saddle point j�
moves in the complex angular momentum j-plane integral
(the inverse Mellin transform). The holographic description
for the PDF and the generalized parton distribution (GPD)
also shows crossover transition between this DGLAP/
BFKL behavior and the Regge behavior [3] (see also
[7]). Thus, the parton information studied in this way
may be used to understand nonperturbative issues asso-
ciated with partons in a hadron at qualitative level.
In this article, we study two-body–two-body scattering

between a hadron and a photon (that is possibly virtual) in
gravitational dual descriptions; γ�ðq1Þþhðp1Þ→ γð�Þðq2Þþ
hðp2Þ. A special case of this scattering—the forward
scattering with q1 ¼ q2 and p1 ¼ p2—has been studied
extensively in the literature (e.g., [2,4–7]) for the study of
deep inelastic scattering (DIS) and PDF, and some refer-
ences also cover the case of nonforward elastic scattering*Present address: SmartNews, Inc.
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[ðq1Þ2 ¼ ðq2Þ2, ðq1 − q2Þ2 ≠ 0]. This article extends the
analysis so that all kinds of skewed (q21 ≠ q22) cases are
covered. In hadron physics, therefore, the kinematics
needed for deeply virtual Compton scattering, hard exclu-
sive vector meson production and timelike Compton
scattering processes [9] is covered in this analysis. With
the full skewness dependence included in this analysis, it is
also possible to use the result of this study to bridge a gap
between data in such scattering processes at nonzero
skewness [10] and the transverse profile of partons in a
hadron, which is encoded by GPD at zero skewness [11].
From a theoretical perspective, the task of this article is

to generalize the formalism of [2,3] (see also [4,6,7]) so that
it can be used for two-body-to-two-body scattering that is
not necessarily elastic. Pomeron/Reggeon propagators have
been treated as if they were for a scalar field in [2,3,7], but
they correspond to an exchange of stringy states with
nonzero (arbitrarily high) spins; for the study of scattering
with nonzero skewness, the polarization of a higher spin
state propagator should also be treated with care (see also
the approach in [12,13]).
It is a notoriously difficult problem to compute scattering

of strings on a curved background geometry. We do not
pretend that the generalization of the formalism in this
article is something derived from string theory without a
flaw. This is rather an attempt at capturing an approx-
imately correct picture of nonperturbative aspects in hadron
scattering that string theory would predict in the distant
future. We are forced to rely sometimes on physics intuition
—and to ignore subtleties or corrections that are not under
our control—when we face situations where not enough
techniques have been developed in string theory at the
moment.
This article is organized as follows. We begin in Sec. II A

with a review of parametrization of GPD in terms of
conformal OPE (operator product expansion) because the
expansion in a series of conformal primary operators
becomes the key concept in using AdS/CFT correspon-
dence (cf. [5]). After plainly stating what needs to be done
in the gravity dual approach in Sec. II B, we proceed to
explain our basic gravity dual setting and an idea of how to
construct a scattering amplitude of our interest by using
string field theory in Secs. III and IV. Section V shows the
results of computing wave functions of spin-j fields on
AdS5, while a more detailed account of the derivation of
wave functions is given in Appendix A. Classification of
eigenmodes that turn out to be relevant for the “twist-2”
operators in later sections is given in Sec. VA, and wave
functions are presented as analytic functions of the complex
spin (angular momentum) variable j in Sec. V B. These
wave functions are organized into irreducible representa-
tions of conformal algebra in Sec. V C; the representation
for spin-j primary operators contain more eigenmode
components than those treated by the Pomeron exchange
amplitude in the formalism of [3], indicating that more

contributions are needed in the scattering amplitude with
nonvanishing skewness than in the formalism of [3]. These
wave functions (and propagators) are used in Sec. VI in
organizing scattering amplitude on AdS5. The amplitude
obtained in this way can be cast into the form of conformal
OPE, from which one can also extract GPD as a function of
kinematical variables. We are not committed to a particular
form of implementing confining effects in the holographic
description, as discussed in Sec. V D. Some qualitative
aspects of the GPD profile are examined in Sec. VII. This
paper in Phys. Rev. D is based on the preprints [14].
Not surprisingly, holographic models of GPD so

obtained provide a special subclass of GPD models that
have been called dual parametrization or (conformal)
collinear factorization approach in the QCD/hadron com-
munity [15–18]. After all, it is the combination of the dual
resonance model and the AdS/CFT correspondence that are
being used.
We found that interesting preprints [12,13] cover a

subject that is closely related to our study in Secs. V
and VI and in Appendix A. References [12,13] mainly deal
with correlation functions of CFTs as functions of space-
time coordinates, whereas we deal with them in this article
as functions of incoming/outgoing momenta, and confine-
ment effects are also implemented, so that we can study
hadron scattering processes.

II. OUR APPROACH: CONFORMAL OPE AND
GRAVITY DUAL

A. Review: Conformal OPE of DVCS amplitude

1. Notation and conventions

Deeply virtual Compton scattering (DVCS) γ� þ h →
hþ γ, hard exclusive vector meson production (VMP)
eþ h → eþ hþ V and timelike Compton scattering
(TCS) processes eþ h → eþ hþ eþe− are shown in
Figs. 1(a), 1(c), and 1(d), respectively. As a part of all
these processes, the photon-hadron two-body-to-two-body
scattering amplitude,

Mðγ�h → γð�ÞhÞ ¼ ðϵμ1ÞTμνðϵν2Þ�; ð1Þ
is involved.1 This two-body-to-two-body scattering ampli-
tude with this exclusive choice of the final states (Fig. 2) is
truly nonperturbative information, and this is the subject of
this article. Because the “final state” photon is required to
be on-shell q22 ¼ 0 in DVCS and timelike2 q22 < 0 in VMP

1There are twocontributions from (a) the γ� þ h → γ þ hvirtual
Compton scattering and (b) the Bethe-Heitler process in the
leptoproduction process of a photon on a target hadron h:
lþ h → lþ γ þ h, and they interfere. They can be separated
experimentally, however, by exploiting kinematical dependence
and polarization [19]. It thus makes sense to focus only on
the amplitude (a).

2We use the ð−;þþþÞ metric throughout this paper.
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and TCS, we are interested in developing a theoretical
framework to calculate this nonperturbative amplitude in
the case where q22 is different from spacelike q21 > 0.
Just like in the QCD/hadron literature, we use the

following notation for Lorentz invariant kinematical
variables:

pμ ¼ 1

2
ðpμ

1 þ pμ
2Þ; qμ ¼ 1

2
ðqμ1 þ qμ2Þ;

Δμ ¼ pμ
2 − pμ

1 ¼ qμ1 − qμ2; ð2Þ

x ¼ −q2

2p · q
; η ¼ −Δ · q

2p · q
;

s ¼ W2 ¼ −ðpþ qÞ2; t ¼ −Δ2: ð3Þ

η is called skewness; in the scattering process of our
interest, q21 ¼ q2 þ Δ2=4þ q · Δ and q22¼q2þΔ2=4−q ·
Δ are not the same; hence, the skewness does not vanish.

We will focus on high-energy scattering; for a typical
energy scale of hadron masses/confinement scale Λ, we
assume that

Λ2 ≪ q21;W
2; while jtj≲OðΛÞ: ð4Þ

The photon-hadron scattering amplitude (Fig. 2) in the
real-world QCD (where all charged partons are fermions),
the Compton tensor is given by the hadron matrix element
with the insertion of two QED currents Jμ,

Tμν ¼ i
Z

d4xe−iq·xhhðp2ÞjTfJνðx=2ÞJμð−x=2Þgjhðp1Þi:

ð5Þ

For simplicity, we assume that the target hadron is a scalar
and further pay attention only to the structure function V1

appearing in the gauge-invariant decomposition3 of the
Compton tensor:

Tμν ¼ V1P½q1�μρP½q2�νρ þ V2ðp · P½q1�Þμðp · P½q2�Þν
þ V3ðq2 · P½q1�Þμðq1 · P½q2�Þν
þ V4ðp · P½q1�Þμðq1 · P½q2�Þν
þ V5ðq2 · P½q1�Þμðp · P½q2�Þν þ Aϵμνρσq1ρq2σ: ð7Þ

FIG. 1. Panels (a),(b) are diagrams contributing to the leptoproduction process of photon on a hadron, lþ h → lþ γ þ h, (c) is the
exclusive vector meson production process, and, finally, (d) is the timelike Compton scattering process.

FIG. 2. Photon-hadron two-body-to-two-body scattering
amplitude.

3Here, we introduced a convenient notation:

P½q�μν ¼
�
ημν −

qμqν
q2

�
: ð6Þ
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These structure functions, V1;2;3;4;5ðx; η; t; q2Þ, should be
expressed in terms of the kinematical variables x; η, and t,
and one of the primary purposes of this article is to study
how the structure functions depend on the skewness η.

2. Light-cone operator product expansion

The light-cone OPE can be applied to the product of
currents TfJνJμg before evaluating it as a hadron matrix
element. Let the expansion be

i
Z

d4xe−iq·xTfJνðx=2ÞJμð−x=2Þg

¼
X
I

CμνIρ1…ρjI
ðqÞOρ1…ρjI

I ð0; q2Þ ð8Þ

for some basis of local operators O
ρ1���ρjI
I renormalized at

μ2 ¼ q2. Cμν
Iρ1���ρjI ’s are the corresponding Wilson coeffi-

cients renormalized at μ2 ¼ q2. If we were to evaluate these
local operators on the right-hand side with the same state
for both bra and ket, hhðp2Þj and jhðp1Þi, with pμ

2 ¼ pμ
1,

then the Compton tensor and its structure functions do not
receive nonzero contributions from local operators that are
given by the total derivative of some other local operators.
In the case of our interest, however, such operators do
contribute.
Let us take a series of operators in QCD that are called

twist-2 operators in the weak coupling limit. The twist-2
operators in the flavor-nonsinglet sector are labeled by two
integers, j; l,

Oα
j;l ≔ ½ð−iÞjþl−1∂μjþ1 � � � ∂μjþlΨaγ

μ1ðD↔Þμ2

� � � ðD↔ÞμjλαabΨb�t:s:t:l:ð0; q2Þ; ð9Þ

with an NF × NF flavor matrix ðλαÞab. Similarly, in the
flavor-singlet sector, there are two series of twist-2 oper-
ators with the label j; l, given by quark bilinear and gluon
bilinear. Here, these operators are made totally symmetric
and traceless (t.s.t.l) in the jþ l Lorentz indices so that they
transform in irreducible representations of the Lorentz

group SOð3; 1Þ, D↔ ≔ ~D − D
 
.

Suppose that the hadron matrix element of the operator
Oα

j;l is given by

hhðp2ÞjOα
j;ljhðp1Þi

¼
Xj
k¼0
½Δμ1 � � �Δμkþlpμkþlþ1 � � �pμjþl �t:s:t:l:Aj;kðt;q2Þð−2Þj−k;

ð10Þ

the reduced matrix element Aα
j;kðtÞ is nonperturbative

information and cannot be determined by perturbative
QCD. If we pay attention only to Wilson coefficients

Cμν
j;l;α;μ1���μjþl that are proportional to ημν and are to write

them as4

ημνCαj;l
qρ1 � � � qρjþl
ðq2Þjþl ; ð11Þ

then the twist-2 flavor-nonsinglet contribution to the
structure function V1 becomes

V1 ≃
X
j;l

Cαj;l
1

xjþl
Xj
k¼1

Aα
j;kðt; q2Þηkþl

≕
X
j

Cαj ðϑÞ
1

xj
Aα
j ðη; t; q2Þ; ð12Þ

where ϑ ≔ ðη=xÞ, Cαj ðϑÞ ≔
P∞

l¼0 C
α
j;lϑ

l, and Aα
j ðη; tÞ ≔Pj

k¼0 η
kAα

j;kðtÞ. If the structure function V1 receives
contributions only from even j ∈ Z, then this j summation
is rewritten as

V1ðx; η; t; q2Þ≃ −
Z

dj
4i

1þ e−πij

sinðπjÞ Cαj ðϑÞ
1

xj
Aα
j ðη; t; q2Þ

ð13Þ

in the form of inverse Mellin transformation; here,
Cαj ðϑ; q2Þ and Aα

j ðη; t; q2Þ are now meant to be holomorphic
functions on j (possibly with some poles and cuts) that
coincide with the original ones at j ∈ 2Z. Precisely the
same story also holds true for the flavor-singlet sector.
Because the structure function is given by the inverse

Mellin transform of a product of three factors, namely,
(a) the signature factor ∓½1� e−πij�= sinðπjÞ, (b) the
Wilson coefficients Cαj , and (c) the hadron matrix elements
Aα
j , it can be regarded as a convolution of inverse Mellin

transforms of those three factors. The inverse Mellin
transform of the signature factor becomesZ

dj
2πi

1

xj
π

2

∓½1� e−πij�
sinðπjÞ ¼ −1

2

�
1

1 − xþ iϵ
� 1

1þ x

�
; ð14Þ

which corresponds to propagation of the parton in a
perturbative calculation [20], and the inverse Mellin trans-
form of the matrix element is called the generalized parton
distribution:

Hαðx; η; t; μ2 ¼ q2Þ ¼
Z

dj
2πi

1

xj
Aα
j ðη; t; μ2 ¼ q2Þ: ð15Þ

GPD Hαðx; η; t; μ2Þ of a hadron h is nonperturbative
information, just like the ordinary PDF, which is obtained

4In the leading order of QCD perturbation, Cαj;0¼−½1þð−1Þj�
for j ¼ 2; 4;… and ðλαÞab ¼ ½diagð4=9; 1=9; 1=9Þ�t:l:.
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by simply setting η ¼ 0 and t ¼ 0. For a phenomenological
fit of the experimental data of DVCS and VMP, some
function form of the GPD needs to be assumed because of
the convolution involved in the scattering amplitude [10].
Setting up a model (and assuming a function form) for the
nonperturbative information in terms of Ajðη; t; q2Þ rather
than the GPD itself [Hðx; η; t; q2Þ] is called dual para-
metrization [15–18], and some phenomenological Ansätze
have been proposed. In this article, we aim at deriving a
qualitative form of Ajðη; tÞ by using a gravitational dual
(that is analytic in j), instead of assuming the form of
Ajðη; tÞ by hand.

3. Renormalization and OPE in dilatation eigenbasis

Remembering that the distinction between the γ� þ h →
γ þ h scattering amplitude and GPD originates from the
factorization into the Wilson coefficients and local oper-
ators (and their matrix elements), one will notice that the
GPD defined in this way should depend on the choice of the
basis of local operators. Although the choice of operators
Oα

j;l, with j ≥ 1 and l ≥ 0, in (9) appears to be the most
natural (and intuitive) one for the twist-2 operators in the
flavor-nonsinglet sector, there is nothing wrong with taking
different linear combinations of these operators as a basis
when the corresponding Wilson coefficients also become
linear combinations of what they are forOα

j;l. Given the fact
that the operators Oα

j;l mix with one another under
renormalization, it should not be compulsory for us to
stick to the basis Oα

j;l.
Under the perturbation of QCD, the flavor-nonsinglet

twist-2 operators are renormalized under

μ
∂
∂μ ½Oj−m;mð0; μ2Þ� ¼ −½γðjÞ�mm0 ½Oj−m0;m0 ð0; μ2Þ�; ð16Þ

because operators can mix only with those with the same
number of Lorentz indices, the anomalous dimension
matrix ½γ� is block diagonal in the basis of Oα

j;l. The j ×
j matrix for the operators Oα

j−m;m (m ¼ 0;…; j − 1) is

denoted by ½γðjÞ�. This matrix is upper triangular in this
basis, and the diagonal entries are given by the anomalous
dimensions of the twist-2 spin-j operators without a total
derivative:

½γðjÞ�mm ¼ γðj −mÞ: ð17Þ

Therefore, the eigenvalue of the anomalous dimension
matrix is fγðj −mÞgm¼0;…;j−1 in this diagonal block,

and the corresponding operator Oα
j−m−1;m is a linear

combination of operators Oj−m0;m0 , with m0¼m;…;j−1
[21]. The corresponding Wilson coefficient Cα

j−m−1;m for
such an operator is a linear combination of Cαj−m0;m0 , with
m0 ¼ m;…; 0. In this operator basis, matrix elements and

Wilson coefficients renormalize multiplicatively, without
mixing.5

In this new basis of local operators, the structure function
becomes

V1 ≃
X
n;K

Cαn;K
1

xnþ1þK
X
k

Aα
nþ1;kðt; μ2ÞηKþk

≕
X
n

Cα
nðϑÞ

1

xnþ1
Aα
nþ1ðη; t; μ2Þ; ð18Þ

where

Cα
nðϑÞ ¼

X∞
K¼0

Cα
n;Kϑ

K; ð19Þ

and Aα
nþ1;kðt; μ2Þ is the reduced matrix element of the

operator6 Oα
n;0ð0; μ2Þ. The structure function is therefore

written as yet another inverse Mellin transform,

V1 ≃ −
Z

dj
4i

1þ e−πij

sinðπjÞ Cα
j−1ðϑÞ

1

xj
Aα
j ðη; t; μ2Þ: ð20Þ

Yet another GPD can also be defined by using Aα instead of
Aα
j ðη; t; q2Þ:

Hαðx; η; t; μ2Þ ¼
Z

dj
2πi

1

xj
Aα
j ðη; t; μ2Þ: ð21Þ

When it comes to the description of the γ� þ h → γ þ h
scattering amplitude as a whole, it does not matter which
operator basis is used. In order to talk about the distribution
of partons in the transverse directions in a hadron, we only
need GPD at η ¼ 0. The newly defined GPDH does just as
good a job as the H defined in (15); they are the same
at η ¼ 0.
Even within the dual parametrization approach, it has

been advantageous to use this operator basis because it
becomes much easier to implement a phenomenological
assumption (a function form) of Aα

j ðη; t; μ2Þ that is con-
sistent with renormalization group flow [15].

5In reality, the anomalous dimension matrix depends on the
coupling constant αs, and αs changes over the scale. Thus, the
eigenoperator of the renormalization/dilatation also changes over
the scale. In scale invariant theories (and in theories with only
slow running in αs), however, this multiplicative renormalization
is exact or a good approximation (cf. [22]).

6Just like Oj;l ¼ ð−i∂ÞlOj;0, there is a relation Ōn;K ¼
ð−i∂ÞKŌn;0 in the new basis. This is why all the hadron matrix
elements of Ōn;K can be parametrized by Ānþ1;k, just like those of
Oj;l are by Aj;k. Here, n corresponds to the conformal spin, which
is sometimes denoted by j in the literature. In this article,
however, we maintain j ¼ nþ 1.
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4. Conformal OPE

Although the hadron matrix element is essentially
nonperturbative and is not calculable within perturbative
QCD, more discussion has been made of the Wilson
coefficients Cα

n;K . They still have to be calculated order
by order in perturbation theory, if one is interested strictly
in the QCD of the real world. If one is interested in
gauge theories that are more or less “similar” to QCD,
however, stronger statements can be made for a system
with higher symmetry: conformal symmetry. One can
think of N ¼ 4 super Yang-Mills theory or N ¼ 1
supersymmetric SUðNÞ × SUðNÞ gauge theory of [23]
as an example of theories with exact (super)conformal
symmetry. The QED probe in the real-world QCD can be
replaced by gauging global symmetries [such as (a part
of) SU(4) R symmetry of N ¼ 4 super Yang-Mills theory
and SUð2Þ × SUð2Þ × Uð1Þ symmetry of [23]]. By apply-
ing the conformal symmetry, one can derive stronger
statements on the Wilson coefficients of primary oper-
ators appearing in the OPE.
Suppose that we are interested in the OPE of two primary

operators, A and B, that are both scalar under SO(3,1). If we
take the basis of local operators for the expansion to be
primary operators On (with jn Lorentz indices and an ln
scaling dimension) and their descendants ∂KOn (with jn þ
K Lorentz indices), then in the OPE,

TfAðxÞBð0Þg ¼
X
n

�
1

x2

�1
2
ðlAþlB−lnþjnÞX∞

K¼0
cn;K

xρ1 � � �xρjnþK
ðx2ÞjnþK

× ½∂KOnð0Þ�ρ1���ρjnþK : ð22Þ

The conformal symmetry determines all the coefficients of
the descendants cn;K (K ≥ 1) in terms of that of the primary
operator, cn;0 ≕ cn. Ignoring the mixture of nontraceless
contributions, one finds that [24]

TfAðxÞBð0Þg≃X
n

�
1

x2

�1
2
ðlAþlB−lnþjnÞ

xρ1 � � � xρjn cn

× 1F1

�
lA − lB þ ln þ jn

2
; ln þ jn; x · ∂

�
× ½Onð0Þ�ρ1���ρjn : ð23Þ

A question of real interest to us is the OPE of conserved
currents Jν and Jμ. They are not scalars of SO(3,1), but the
same logic as in [24] can be used also to show that, in the
terms with Wilson coefficients proportional to ημν,

TfJνðxÞJμð0Þg≃ ημν
X
n

�
1

x2

�
xρ1
3−τn

2 � � � xρjn cn

× 1F1

�
ln þ jn

2
; ln þ jn; x · ∂

�
× ½Onð0Þ�ρ1���ρjn þ � � � ; ð24Þ

where τn ≔ ln − jn is the twist, a mixture of the non-
traceless (and hence higher twist) contributions is ignored,
and terms with Wilson coefficients without ημν are all
omitted here. The scaling dimension of conserved currents
lA ¼ lB ¼ 3 has been used. The momentum space version
of the OPE is [25]

i
Z

d4x e−iq2·xTfJνðxÞJμð0Þg≃ ημν
X
n

ð2πÞ2Γðlnþjn−2
2
Þ

42−
τn
2 Γð3 − τn

2
Þ cn
ð−2iÞjnqρ12 � � � qρjn2

ðq22Þ
τn
2
−1ðq22Þjn

× 2F1

�
ln þ jn

2
;
ln þ jn

2
− 1; ln þ jn;

−2iq2 · ∂
q22

�
Onð0Þ þ � � � ; ð25Þ

or, equivalently [18],

i
Z

d4ðx − yÞe−iq·ðx−yÞTfJνðxÞJμðyÞg≃ ημν
X
n

ð2πÞ2Γðlnþjn−2
2
Þ

42−
τn
2 Γð3 − τn

2
Þ cn
ð−2iÞjnqρ1 � � � qρjn
ðq2Þτn2−1ðq2Þjn

× 2F1

�
ln þ jn − 2

4
;
ln þ jn

4
;
ln þ jn

2
;

�
iq · ∂
q2

�
2
�
On

�
xþ y
2

�
þ � � � : ð26Þ

Either in the form of (25) or (26), the primary operators On and the corresponding coefficients cn are renormalized
multiplicatively.

B. AdS/CFT approach

In AdS/CFT correspondence, type IIB string theory on AdS5 ×W with a five-dimensional Einstein manifold W
corresponds to a gauge theory on R3;1 with an exact conformal symmetry; theories with an exact conformal symmetry,
however, are qualitatively different from the QCD in the real world. But the type IIB string on a geometry that is close to
AdS5 ×W, except with the confining end in the infrared, may be used to extract a qualitative lesson on strongly coupled
gauge theories with confinement, which are not qualitatively different from the QCD.
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In a dual pair of a conformal field theory (CFT) and a
string theory on a background AdS5 ×W, primary oper-
ators of the CFT are in one-to-one correspondence with
string states on AdS5, and their correlation functions can be
calculated by using the wave functions of the string states
on AdS5. When the background geometry is changed from
AdS5 ×W to some warped geometry that is nearly AdS5
with an end in the infrared, then the wave functions might
be used to calculate matrix elements of the corresponding
“primary” operators in an almost conformal theory. The
correspondence between the operators and string states can
be made precise, because they are both classified in terms
of the representation of the conformal algebra, which is
shared by both of the dual theories.
In order to determine GPD H in gravitational dual

descriptions, it is therefore sufficient to determine wave
functions of string states corresponding to the primary
operators of interest. Although there is plenty of literature
discussing the correspondence between the (superconfor-
mal) primary operators and string states at the supergravity
level, it is known that the flavor-singlet twist-2 operators
(labeled by the spin j) correspond to the stringy excitations
with arbitrary high spin j that are in the same trajectory as
the graviton [3,26]. Our task is, therefore, to determine the
wave functions of such string states. Needless to say, one
has to fix all of the gauge degrees of freedom associated
with string component fields (not just the general coor-
dinate invariance associated with the graviton) before
working out the mode decomposition. Furthermore, wave
functions need to be grouped together properly so that they
form an irreducible representation of the conformal group
in order to establish correspondence with a primary
operator of the gauge theory side, which also forms an
irreducible representation of the conformal group, along
with its descendants.
It will be clear by the end of this article that all such

technical work is necessary and essential for the purpose of
extracting skewness dependence of GPD.
There are two different (but equivalent) ways to study the

DVCS γ� þ h → γð�Þ þ h amplitude and GPD in gravita-
tional dual descriptions. One is to determine the hadron
matrix elements of spin-j primary operators by using
appropriate wave functions; GPD H is obtained by the
inverse Mellin transform of the matrix elements. Using the
Wilson coefficients that are governed by the conformal
symmetry [see (26)], the DVCS amplitude will also be
obtained. Conversely, the other way is to calculate disc/
sphere amplitude directly, with the vertex operators given
(approximately) by using the wave functions associated
with the target hadron (see Secs. III and IV). We will
identify the structure of conformal OPE in the expression
for the γ� þ h → γð�Þ þ h scattering amplitude in gravity
dual [see (160), (163), (178)], with the Wilson coefficient
for the twist-2 operators precisely as predicted by con-
formal symmetry (26). That also makes it possible to read

out hadron matrix elements, and to extract the GPD. In
these approaches, one can hope to work also for higher
twist contributions, in principle, but we are not ambitious
enough to do that in this article. In this article, we will
proceed with the latter approach.

III. GRAVITY DUAL SETTINGS

A number of warped solutions to the type IIB string
theory have been constructed, and they are believed to be
dual to some strongly coupled gauge theories. When the
geometry is close to AdS5 ×W with some five-dimensional
Einstein manifold W, with weak running of the anti–de
Sitter (AdS) radius along the holographic radius, the
corresponding gauge theory will also have approximate
conformal symmetry, and the gauge coupling constant runs
slowly. If the AdS5 ×W geometry has a smooth end at the
infrared as in [27], then the dual gauge theory will end up
with confinement. Gravitational backgrounds in the type
IIB string theory with the properties we stated above all
provide a decent framework for studying qualitative aspects
of nonperturbative information associated with gluons/
Yang-Mills theory on 3þ 1 dimensions.
In studying the hþ γ� → hþ γ scattering process in a

gravitational dual, we need a global symmetry to be gauged
weakly, just like QED for QCD. In type IIB D-brane
constructions of gauge theories that have a gravity dual,
U(1) subgroups of an R symmetry or a flavor symmetry on
D7-branes can be used as the models of the electromagnetic
U(1) symmetry. Therefore, we have in mind gravity dual
models on a background that is approximately AdS5 ×W
with a nontrivial isometry group on W, or with a D7-brane
configuration on it, as in [2].
Our interest, however, is not so much in writing down an

exact mathematical expression based on a particular gravity
dual model that is equivalent to a particular strongly
coupled gauge theory, but more in extracting qualitative
information of partons in hadrons of confining gauge
theories in general. It is, therefore, more suitable for this
purpose to use a simplified setup that carries common
(and essential) features of the type IIB models that we
described above. Throughout this article, we assume a pure
AdS5 ×W metric background,

ds2 ¼ GMNdxMdxN ¼ gmndxmdxn þ R2ðgWÞabdθadθb;
ð27Þ

gmndxmdxn ¼ e2AðzÞðημνdxμdxν þ dz2Þ; e2AðzÞ ¼ R2

z2
;

ð28Þ

that is, we ignore the running effect, and we do not specify
the five-dimensional manifold W. The dilaton vacuum
expectation value is simply assumed to be constant,
eϕ ¼ gs. A confining effect—the infrared end of this
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geometry—can be introduced, for example, by sharply
cutting off the AdS5 space at z ¼ Λ−1 (hard wall models),
or by similar alternatives (soft wall models). We are not
committed to a particular implementation of the infrared
cutoff in this article (see the discussion in Sec. V D), except
in a couple of places where we write down some concrete
expressions for illustrative purposes (Secs. VII A and
VII D). The energy scale Λ associated with (any form of
implementation of) the infrared cutoff corresponds to the
confining energy scale in the dual gauge theories. When we
consider (a simplified version of the)modelswithD7-branes
for flavor, we assume that theD7-braneworld volumewraps
on a three-cycle on W and extends all the way down to the
infrared end of the holographic radius z; i.e., all of
0 ≤ z ≤ Λ−1. This corresponds to assuming massless
quarks. In this article, we will not pay attention to physics
where spontaneous chiral symmetry breaking is essential.
As we stated earlier, we would like to work out the hþ

γ� → hþ γð�Þ scattering amplitude by using the gravity
dual models. This is done by summing up sphere/disc
amplitudes, along with those with higher genus world
sheets. We will restrict our attention to kinematical regions
where saturation is not important (i.e., large q2 and/or not
too small x, and large Nc). That allows us to focus only on
sphere/disc amplitudes, with the insertion of four vertex
operators corresponding to the incoming and outgoing
hadron h and (possibly virtual) photon γ.
As a string-based model of the target hadron h [that is SO

(3,1) scalar], we have in mind either a scalar “glueball”7

that has nontrivial R-charge, or a scalar meson made of
matter fields. The former corresponds to a vertex operator
[in the ð−1;−1Þ picture]

VðpÞ ¼ ∶eipμ·Xμ̂
ψm ~ψngmnΦðZ;mnÞYðΘÞ∶; ð29Þ

where YðΘÞ is a “spherical harmonics” on W, and the
latter to

VðpÞ ¼ ∶eipμ·Xμ̂
ψΦðZ;mnÞ∶; ð30Þ

where ψ corresponds to the D7-brane fluctuations in its
transverse directions. ΦðZÞ is the wave function on AdS5,
with the argument promoted to the field on the world sheet
[3]. The vertex operators above are approximate expressions
in the ðα0=R2Þ ∼ 1=

ffiffiffi
λ
p

expansion (e.g., [28]) in a theory
formulated with a nonlinear σmodel given by (27). If we are
to employ the hard wall implementation of the infrared
boundary, with the AdS5 metric in the bulk without
modification, then thewave functionΦðZ;mnÞ is of the form

ffiffiffiffi
th
p

Φðz;mnÞ ¼ 2Λz2
Jlϕ−2ðjlϕ−2;nΛzÞ
jJ0lϕ−2ðjlϕ−2;nÞj

: ð31Þ

This wave function is that of the nth lightest hadron
corresponding to some scalar operator with conformal
dimension lϕ; the hadron mass mn ¼ jlϕ−2;nΛ is given
by the nth zero of the Bessel function Jlϕ−2. We will
comment on the normalization factor

ffiffiffiffi
th
p

in later sections,
though it disappears from the expression for physical
observables.
The “photon” current in the correlation function/matrix

element Tνμ in the gauge theory description corresponds to
the insertion of vertex operators associated with non-
normalizable wave functions, rather than with the normal-
izable wave functions (31) for the target hadron state. If we
are to employ an R-symmetry current as the string-based
model of the QED current, then the corresponding closed
string vertex operator is

VðqÞ ¼ ∶eiqμ·Xμ̂
vaðΘÞAmðZ; qÞðψa ~ψm þ ψm ~ψaÞ∶; ð32Þ

with some Killing vector va∂=∂θa on W. The vertex
operator in the case of a D7-brane U(1) current is

VðqÞ ¼ ∶eiqμ·Xμ̂
AmðZ; qÞψm∶: ð33Þ

The wave function AmðZ; qÞ on AdS5 is of the form

Aμðz; qÞ ¼
�
δκ̂μ −

qμqκ̂

q2

�
ϵκðqÞðqzÞK1ðqzÞ

þ qμ
qκ̂ϵκðqÞ
2q2

ðqzÞ2K2ðqzÞ; ð34Þ

Azðz; qÞ ¼ −i∂z
qκ̂ϵκðqÞ
2q2

ðqzÞ2K2ðqzÞ: ð35Þ

Here, q stands for
ffiffiffiffiffi
q2

p
, although it sometimes imply four-

momentum qμ, depending on the local context in this
article. The rationale for our choice of the terms propor-
tional to ðq · ϵÞ will be explained later on in Appendix A.4,
but those terms should not be relevant in the final result
because of the gauge invariance of Tνμ. When the infrared
boundary is implemented by the hard wall, K1ðqzÞ should
be replaced by K1ðqzÞ þ ½K0ðq=ΛÞ=I0ðq=ΛÞ�I1ðqzÞ, and
K2ðqzÞ by an arbitrary linear combination of K2ðqzÞ
and I2ðqzÞ.
It is not as easy to calculate the sphere/disc amplitudes in

practice, however. It has been considered that the parton
contributions to γ� þ h → γð�Þ þ h scattering are given by
an amplitude with states in the leading trajectory with
arbitrary high spin being exchanged [3]. These fields are
not scalar on AdS5 but come with multiple degrees of
freedom associated with polarizations. Such polarization of
higher spin fields propagating on AdS5 needs to be treated
properly—including such issues as covariant derivatives
and kinetic mixing among different polarizations (diago-
nalization of the Virasoro generator L0)—in gravity dual

7By glueball, we only mean a bound state of fields in super
Yang-Mills theory.

RYOICHI NISHIO AND TAIZAN WATARI PHYSICAL REVIEW D 90, 125001 (2014)

125001-8



descriptions in order to be able to discuss the skewness
dependence of the GPD/DVCS amplitude. The direct
impact of the curved background geometry can be imple-
mented through the nonlinear σ model on the world sheet,
but one has to define the vertex operators as a composite
operator properly in such an interacting theory. The
Ramond-Ramond background is an essential ingredient
in making the warped background metric stable, yet a
nonzero Ramond-Ramond background cannot be imple-
mented in the Neveu-Schwarz-Ramond (NSR) formalism.
Instead of using a world-sheet calculation in the NSR

formalism when implementing the effect of a curved
background (27), we use string field theory action on flat
space in this article and make it covariant. Because the
gravity dual setup of our interest is in type IIB string theory,
we are thus supposed to use superstring field theory for
closed string and open string modes. In order to avoid
technical complications associated with the interacting
superstring field theories, however, we employ a sort of
toy-model approach by using the cubic string field theory
for bosonic string theory.
In our toy-mode approach, we deal with the cubic string

field theory on AdS5 (× some internal compact manifold),
and ignore instability of the background geometry. The
probe photon in this toy-model gravity dual setup will be the
massless vector state of bosonic string theory with the wave
function (34), (35). The target hadron can be any scalar
states, (say, the tachyon)with thewave function (31).We are
to construct a toy-model amplitude of the hþ γ� → hþ γð�Þ
scattering by using the two-to-two scattering of the massless
photon and some scalar in bosonic string theory on the AdS5
background. In short, this is tomaintain the spirit of the setup
in [2,3] and use the bosonic cubic string field theory to
compute and obtain something concrete, from which quali-
tative lessons are to be extracted for the setup of our interest.
One of the costs of this approach (without the technical

complexity of interacting superstring field theory) is that
we have to restrict our attention to the Reggeon exchange
(flavor-nonsinglet) amplitude because the cubic bosonic
string field theory deals with open strings, not the closed
(i.e., flavor neutral) string. The amplitude constructed in
this way is certainly not faithful to the equations of type IIB
string theory, either. Since our motivation is not in con-
structing yet another exact solution to superstring theory,
however, we still expect that this (flavor-nonsinglet) toy-
mode amplitude in bosonic string still maintains some
fragrance of hadron scattering amplitude to be calculated in
superstring theory. This discussion continues in Sec. VII C.

IV. CUBIC STRING FIELD THEORY

Section IVA summarizes the technical details of cubic
string field theory that wewill need in later sections.We then
proceed in Sec. IV B to explain an idea of how to reproduce
disc amplitude only from string field theory t-channel
amplitude, using photon-tachyon scattering on a flat

spacetime background as an example. This idea of con-
structing amplitude is generalized in Sec. VI for scattering
on awarped spacetime, andwewill see that this construction
of the amplitude allows us to cast the amplitude almost
immediately into the form of conformal OPE (25), (26).

A. Action of the cubic SFT on a flat spacetime

The action of the cubic string field theory (SFT) is given
by [29]

S ¼ −
1

2α0

Z �
Φ �QBΦþ

2

3
goΦ � Φ � Φ

�
; ð36Þ

¼ −
1

2α0

�
Φ ·QBΦþ

2go
3

Φ · Φ � Φ
�
; ð37Þ

where go is a coupling constant of mass dimension
(1 −D=2), where D ¼ 26 is the spacetime dimensions
of bosonic string theory.8 QB is the Becchi-Rouet-Stora-
Tyutin (BRST) operator, and � and · are the star product and
inner product of the string fields, respectively; all of the
technical details we need for this article are summarized
below in this section, but more information is found, e.g., in
[29,30]. The string field Φ is, as a ket state, expanded in
terms of the Fock states as in

Φ¼jΦi¼ϕðxÞj↓iþðAMðxÞαM−1þCðxÞb−1þCðxÞc−1Þj↓i

þ
�
fMNðxÞ

1ffiffiffi
2
p αM−1α

N
−1þ igMðxÞ

1ffiffiffi
2
p αM−2

þhðxÞb−1c−1þ���
�
j↓i; ð38Þ

with component fields ϕ; AM; C; C; fMN; gM; h;…; we
have already chosen the Feynman-Siegel gauge here. We
will eventually be interested only in the states with a
vanishing ghost number, Ngh ¼ 0, because states with a
nonzero ghost number do not appear in the t-channel/s-
channel exchange for the disc amplitude.
The Hilbert space of one string state is spanned by the

Fock states given (in this gauge) by

Yha
a¼1

αMa
−na

Yhb
b¼1

b−lb
Yhc
c¼1

c−mc
j↓i; ð39Þ

with 1 ≤ n1 ≤ n2 ≤ � � � ≤ nha , 1 ≤ l1 < l2 < � � � < lhb ,
and 1 ≤ m1 < m2 < � � � < mhc . Let us use Y ≔
ffnag’s; flbg’s; fmcg0sg as the label distinguishing

8The sign of the interaction term is just a matter of convention,
because field redefinition for all of the component fieldsΦ → −Φ
is always possible. Under this redefinition, however, the covariant
derivative can be either ∂m − iρðAμÞ or ∂m þ iρðAmÞ. The sign
convention above is for ∂m − iρðAmÞ, following the convention of
Sec. 6.5 of Polchinski’s textbook.
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different Fock states of string on a flat spacetime. The mass
of these Fock states is determined by

α0k2þðNðYÞ−1Þ¼0; NðYÞ ¼
Xha
a¼1

naþ
Xhb
b¼1

lbþ
Xhc
c¼1

mc:

ð40Þ

A component field corresponding to a Fock state may
be further decomposed into a multiple irreducible

representation of the Lorentz group, but at least the
rank-ha totally symmetric traceless tensor representation
is always contained. The Fock states of particular interest to
us are the ones in the leading trajectory: Y ¼ f1N; 0; 0g, so
that all the na’s are 1, hb ¼ hc ¼ 0, and NðYÞ ¼ ha. The
totally symmetric traceless tensor component field of these

states is denoted by ðN!Þ−1=2AðYÞM1���Mha
.

The kinetic term—the first term of (36), (37)—is written
down in terms of the component fields as follows:

−
1

2α0
Φ ·QBΦ ¼

1

2

Z
d26x tr

�
ϕðxÞ

�
∂2 þ 1

α0

�
ϕðxÞ þ AMðxÞ∂2AMðxÞ

þ fMNðxÞ
�
∂2 −

1

α0

�
fMNðxÞ þ gMðxÞ

�
∂2 −

1

α0

�
gMðxÞ − hðxÞ

�
∂2 −

1

α0

�
hðxÞ þ � � �

�
: ð41Þ

The totally symmetric tensor component field of the Fock
states in the leading trajectory Y ¼ f1N; 0; 0g has a kinetic
term

1

2

Z
d26x tr

�
AM1…Mj

�
∂2 −

N − 1

α0

�
AM1…Mj

�
: ð42Þ

The cubic string field theory action in the Feynman-Siegel
gauge has two nice properties: First, the kinetic terms of
those Fock states do not mix in the flat spacetime back-
ground, and second, the second derivative operators are
simply given by the d’Alembertian operator, without
complicated restrictions or mixing among various polar-
izations in the component fields.
The second term of the action (36), (37) gives rise to

interactions involving three component fields. Interactions
involving Fock states with small excitation level N are [30]

−
1

2α0
2go
3

Φ · Φ � Φ

¼ −
Z

d26x
goλsft
3α0

Êðtr½ϕ3ðxÞ�

þ
ffiffiffiffiffiffiffi
8α0

3

r
tr
h
ð−iAMÞðϕ∂

↔M
ϕÞ
i

−
8α0

9
ffiffiffi
2
p tr½fMNðϕ∂

↔M∂↔N
ϕÞ� − 5

9
ffiffiffi
2
p tr½fMMϕ2�

þ 2
ffiffiffiffi
α0
p

3
tr½ð∂MgMÞϕ2� − 11

9
tr½hϕ2�Þ þ � � � ; ð43Þ

where λsft ¼ 39=2=26 [31], ∂M
↔

¼ ð∂M
 �

− ∂M
�!Þ, and

Ê ¼ exp

�
−2α0 ln

�
2

33=4

�
ð∂2
ð1Þ þ ∂2

ð2Þ þ ∂2
ð3ÞÞ
�
: ð44Þ

The ∂2
ð1;2;3Þ designates the taking of derivatives of the first,

second, and third fields.9

Interactions involving totally symmetric leading trajec-
tory states are also of interest to us. The tachyon-
tachyon–Y ¼ f1N; 0; 0g cubic coupling with N derivatives
is given by

−
goλsft
α0

Z
d26 x Ê tr

�
AðYÞM1���MN

ðϕð−i∂↔M1Þ

� � � ð−i∂↔MN ÞϕÞ
��

8α0

27

�N
2 1ffiffiffiffiffiffi

N!
p ð45Þ

in the interaction part of the action. The photon (level-1
state)-photon–Y ¼ f1N; 0; 0g coupling in the cubic string
field theory includes

−
goλsft
α0

Z
d26 x Ê tr

�
AðNÞM1���MN

ðALð−i∂
↔M1Þ

� � � ð−i∂↔MN ÞAKÞ
�
8α0

27

�N
2 ηKL 16

27ffiffiffiffiffiffi
N!
p þ � � �

�
; ð46Þ

where we kept only the terms that have N derivatives
and are proportional to ηKL, as they are necessary in
deriving (61).

9Concretely,

ÊAðxÞBðxÞCðxÞ

¼
��

27

16

�α0
2
∂2
AðxÞ

���
27

16

�α0
2
∂2
BðxÞ

���
27

16

�α0
2
∂2
CðxÞ

�
:
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B. Cubic SFT scattering amplitude
and t-channel expansion

Before proceeding to study the hþ γ� → hþ γð�Þ scat-
tering amplitude by using the cubic string field theory on
the warped spacetime background, let us remind ourselves
how to obtain t-channel operator product expansion from
the amplitude calculation based on string field theory, by
using tachyon-photon scattering on the flat spacetime as an
example.

Let us consider the disc amplitude of tachyon-photon
scattering. The vertex operators labeled by i ¼ 1; 2,
Vi ¼ ∶ϵiM∂XMeiki·X∶ are for photon incoming (i ¼ 1)
and outgoing (i ¼ 2) states, which come with Chan-
Paton matrices λai . Tachyon incoming (i ¼ 3) and outgoing
(i ¼ 4) states correspond to vertex operators Vi ¼ ∶eiki·X∶
with Chan-Paton matrices λai . The photon-tachyon scatter-
ing amplitude Aþ ϕ → Aþ ϕ in bosonic open string
theory (Veneziano amplitude) is given by10

MVenðs; tÞ ¼ −
�
g2o
α0

�
Γð−α0t − 1ÞΓð−α0s − 1Þ

Γð−α0ðsþ tÞ − 1Þ ϵMðk2ÞϵNðk1Þ
��

ηMN −
kM1 k

N
2

k1 · k2

�
ðα0sþ 1Þ

þ2α0
��

pM − kM1
k2 · p
k1 · k2

�
−
kM2
2

���
pN − kN2

k1 · p
k2 · k1

�
−
kN1
2

�
ðα0tþ 1Þ

	
; ð47Þ

which is to be multiplied by the Chan-Paton factor
Tr½λa2λa4λa3λa1 þ λa4λa2λa1λa3 � [see Figs. 3(a) and 3(b)].
If the Chan-Paton matrices of a pair of incoming and
outgoing vertex operators, λa1 and λa2 , commute with
each other,11 then the Chan-Paton factors from Figs. 3(c)
and 3(d) are the same, and the total kinematical part of the
amplitude for this Chan-Paton factor becomes
MVenðs; tÞ þMVenðu; tÞ.
Let us stay focused on MVenðs; tÞ alone for now. The

amplitude proportional to ηMN can be expanded, as is well
known, as a sum only of t-channel poles12:

g2o
α0
Γð−α0t − 1ÞΓð−α0sÞ
Γð−α0ðsþ tÞ − 1Þ ¼

g2o
α0

Z
1

0

dx x−α
0t−2ð1 − xÞ−α0s−1;

ð48Þ

¼ g2o
α0
X∞
N¼0

−1
α0t − ðN − 1Þ

ðα0sþ 1Þ � � � ðα0sþ NÞ
N!

: ð49Þ

The Veneziano amplitude (47) can also be obtained in
cubic string field theory [32]. In the cubic SFT, the
scattering amplitude consists of two pieces, a collection
of t-channel exchange diagrams and s-channel diagrams
(Fig. 4):

MVenðs; tÞ ¼
X
Y

MðtÞ
Y ðs; tÞ þ

X
Y

MðsÞ
Y ðs; tÞ: ð50Þ

Infinitely many one string states (39) with zero ghost
number (hb ¼ hc)—labeled by Y—can be exchanged in the
t channel or the s channel, and the corresponding con-
tributions are in the form of

MðtÞ
Y ¼

fðtÞY ðs; tÞ
−α0t − 1þ NðYÞ

; MðsÞ
Y ¼

fðsÞY ðt; sÞ
−α0s − 1þ NðYÞ

;

ð51Þ

FIG. 3. Disc amplitudes with two photon vertex operators (V1 and V2) and two tachyon vertex operators (V3 and V4) inserted.
Kinematical amplitudes given by the disc amplitudes above are multiplied by the Chan-Paton factors tr½λa1λa3λa4λa2 � in (a),
tr½λa1λa2λa4λa3 � in (b), tr½λa1λa2λa3λa4 � in (c) and tr½λa1λa4λa3λa2 � in (d), respectively. The two disc amplitudes (a),(b) becomeMVenðs; tÞ,
while (c),(d) become MVenðu; tÞ.

12It is also possible to expand this as a sum of s-channel poles
only; that is the celebrated s-t duality of the Veneziano amplitude.

11Just like in the case where both λa1 and λa2 are an NF × NF
matrix diagð2=3;−1=3;−1=3Þ.

10Here, p ≔ ðk3 − k4Þ=2, the averaged momentum of the
tachyon before and after the scattering, just like in (2).
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where fðtÞY and fðsÞY are regular functions at finite s and t;
NðYÞ is the excitation level (40) of a component field AðYÞ.
Because both the world-sheet calculation (47), (49) and

the cubic SFT calculation (50), (51) are the same thing,
MVenðs; tÞ in both approaches should be exactly the same
functions of ðs; tÞ. Therefore, for an arbitrary given value of
s, the residue of all the poles in the complex t plane should
be the same. We also know that the Veneziano amplitude
can be expanded purely in the infinite sum of t-channel
poles with t-independent residues. This means that the full
Veneziano amplitude (47) can be reproduced just from the
t-channel cubic SFTamplitude13

P
Y M

ðtÞ
Y ðs; tÞ through the

following procedure:

X
Y

fðtÞY ðs; tÞ
−α0t − 1þ NðYÞ

→
X
Y

fðtÞY ðs; ðNðYÞ − 1Þ=α0Þ
−α0t − 1þ NðYÞ

¼MVenðs; tÞ: ð52Þ

To see that this prescription really works, let us take a
look at the amplitudes of t-channel exchange of one string
states with small excitation level NðYÞ ¼ 0; 1; 2. Focusing
on the amplitude of Aþ ϕ → Aþ ϕ proportional to
ηMN , we find that the tachyon exchange in the t channel
[Fig. 5(a)] gives rise to the amplitude [33]

MðtÞ
ϕ ðs; tÞ ¼

�
goλsft
α0

�
2
�

2

33=4

�
−2α0t−2α0tþ4 −1

tþ 1=α0

¼ g2o
α0

�
27

16

�
α0tþ1 −1

α0tþ 1
; ð53Þ

which is obtained simply by using the ϕ-ϕ-ϕ vertex rule
(43) and the A-A-ϕ vertex rule (45). The prescription (52)
turns this amplitude into

→ Mϕðs; tÞ ¼
g2o
α0

−1
α0tþ 1

; ð54Þ

which reproduces the N ¼ 0 term of (49).
The t-channel exchange of level NðYÞ ¼ 1 excited states

can also be calculated in the cubic string field theory
[Fig. 5(b)]. The amplitude proportional to ηMN is

MðtÞ
A ðs; tÞ ¼

g2o
α0

�
27

16

�
α0t −1

α0t

�
α0ðs − uÞ

2

�
; ð55Þ

where ðs − uÞ ¼ ðkð1Þ − kð2ÞÞ · ðkð4Þ − kð3ÞÞ. Using the rela-
tion α0ðsþ tþ uÞ ¼ −2 in the tachyon-photon scattering to
eliminate u in favor of s and t, and following the
prescription (52)—which is to exploit α0t ¼ 0 in the
numerator—this amplitude is replaced by [33]

⟶ MAðs; tÞ ¼
g2o
α0
−ðα0sþ 1Þ

α0t
: ð56Þ

Once again, this reproduces the level N ¼ 1 contribution to
the Veneziano amplitude (49).
A similar calculation for level-2 state exchange can be

carried out [Fig. 5(c)]. Using the vertex rule in (43) for the
level-2–ϕ-ϕ couplings, and also the interactions among
level-2–A-A couplings in the literature, the cubic SFT
t-channel amplitude is given by [33]

MðtÞ
f ðs; tÞ ¼

g2o
α0

�
27

16

�
α0t−1 −1

α0t − 1

×

�ðα0ðs − uÞÞ2
8

−
5ðα0tþ 2Þ
16 · 2

þ 490

162 · 2

�
;

ð57Þ

MðtÞ
g ðs; tÞ ¼ g2o

α0

�
27

16

�
α0t−1 −1

α0t − 1

�
−
36α0t
162

�
; ð58Þ

MðtÞ
h ðs; tÞ ¼

g2o
α0

�
27

16

�
α0t−1 −1

α0t − 1

�
−
112

162

�
: ð59Þ

After using α0u ¼ −α0ðsþ tÞ − 2 to eliminate u in favor of
s and t, and further following the prescription (52) (α0t → 1

FIG. 4. Two types of diagrams contribute to the photon-tachyon
scattering amplitudeMVenðs; tÞ in cubic string field theory: the t-
channel exchange of one string states labeled by Y (left panel) and
the s-channel exchange (right panel).

FIG. 5. t-channel exchange diagrams for Aþ ϕ → Aþ ϕ
scattering in cubic string field theory. The tachyon (N ¼ 0),
photon (N ¼ 1), and level-2 states are exchanged in diagrams (a),
(b), and (c), respectively.

13The t-channel and s-channel amplitudes of the cubic SFT,P
Y M

ðtÞ
Y and

P
Y M

ðsÞ
Y , correspond to the integration over

½0; 1=2� and ½1=2; 1�, respectively, in (48) [32]. Thus,
P

Y M
ðsÞ
Y

does not contain a pole in t.
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in the numerator), one will see that the level NðYÞ ¼ 2
amplitude turns into

→ ðMf þMg þMhÞðs; tÞ

¼ g2o
α0

−1
α0t − 1

�ðα0sÞ2 þ 3ðα0sÞ þ 2

2

�
: ð60Þ

Once again, this is precisely the same as the N ¼ 2
contribution to the Veneziano amplitude (49).
Contributions from the t-channel exchange of states in

the leading trajectory can also be examined systematically.
Using the vertex rule (45), (46) involving the states in the
leading trajectory (Y ¼ f1N; 0; 0g), one finds that the
amplitude proportional to ηMN is

MðtÞ
f1N;0;0g≃

g2o
α0

�
27

16

�
α0t−ðN−1Þ −1

α0t− ðN − 1Þ
ðα0ðs− uÞ=2ÞN

N!
;

ð61Þ

where we maintained only the terms with the highest power
of either s or u. After using the kinematical relation
α0ðsþ tþ uÞ þ 2 ¼ 0 to eliminate u in favor of s and t,
and following the prescription (52) [α0t → ðN − 1Þ in the
numerator], we obtain the large-(α’s) leading power con-
tribution to theNth term of (49) with the correct coefficient.
We have, therefore, seen that the prescription (52) allows

us to use the t-channel exchange amplitude in the cubic
string field theory to construct the full disc scattering
amplitude. In Sec. VI, this prescription is extended for
the disc scattering amplitudes on a spacetime with a curved
background metric, which is the situation of real interest in
the context of hadron scattering.

V. MODE DECOMPOSITION ON AdS5

Let us now proceed to work out mode decomposition of
the totally symmetric (traceless) component field on the
warped spacetime. The correspondence between the pri-
mary operators of the conformal field theory on the (UV)
boundary and wave functions on AdS5 is made clear in this
section. The Pomeron/Reggeon wave functions are
obtained as a holomorphic function of the spin variable
j since we need to do so for the further inverse Mellin
transformation. The wave functions will then also be used
to construct the scattering amplitude of hþ γ� → hþ γð�Þ
and GPD in Secs. VI and VII.
Let the bilinear (free) part of the (bulk) action of a rank-j

tensor field on AdS5 be14

Seff kin ¼ −
1

2

tAy
R3

Z
d4x

Z
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞ

p
gm1n1 � � � gmjnj

×

�
gm0n0ð∇m0

AðyÞm1���mjÞð∇n0A
ðyÞ
n1���njÞ

þ
�
cy
R2
þ NðyÞeff

α0

�
AðyÞm1���mjA

ðyÞ
n1���nj

�
; ð62Þ

where we assume that kinetic mixing between different
fields is either absent or sufficiently small. Here, the

dimensionless parameter NðyÞeff is NðYÞ − 1 for an NðYÞ ∈
Z≥0 for bosonic open string (j ≤ NðYÞ), which would be
4ðNðYÞ − 1Þ for an NðYÞ ∈ Z≥1 for closed string
(j ≤ 2NðYÞ). This field is regarded as a reduction of some
field with spherical harmonics on the internal manifold,15

and hence j ≤ ha, in general. Another dimensionless
coefficient cy may contain a contribution from the “mass”
associated with the spherical harmonics over the internal
manifold and may also include the ambiguity (which is
presumably of order unity) associated with making
d’Alembertian of the flat metric background covariant.16

The combination ðcy=R2 þ NðyÞeff =α
0Þ is denoted by M2

eff.
The equation of motion (in the bulk part)17 then becomes

gm1m2ð∇m1
∇m2

AðyÞn1���njÞ −
�
cy
R2
þ NðyÞeff

α0

�
AðyÞn1���nj ¼ 0: ð64Þ

Solutions to this equation of motion can be obtained from
solutions of the following eigenmode equation,18

∇2Am1���mj
¼ −

E
R2

Am1���mj
; ð65Þ

14The dimensionless constant tAy is something like N2
c for a

mode obtained by a reduction of closed string component fields
in higher dimensions. More comments on tAy for open string
states is found in footnote 27.

15The internalmanifoldwould be a five-dimensional one,W, for
closedstringmodes in typeIIB,andathree-cycleoneforopenstring
states on the flavor D7-branes. For sufficiently small x, however,
amplitudes of exchanging modes with nontrivial spherical har-
monics on these internal manifolds are relatively suppressed, and
we are not interested very much.

16The ambiguity in cy=R2 includes insertion of the curvature
tensor,

ð½∇M;∇N �ÞQ
0

Q ¼ −ΓQ0
QN;M þ ΓQ0

QM;N þ ΓL
QMΓ

Q0
LN − ΓL

QNΓ
Q0
LM

¼ δQ
0

M gQN − δQ
0

N gQM

R2
; ð63Þ

which vanishes in flat space. Depending on details of how it is
inserted, the value of cy may not be the same for all the individual
irreducible components of SO(4,1) in a rank-j tensor field
Am1���mj

.
17There is also an IR boundary part of the equation motion. We

will come back to this issue in Sec. V D.
18The differential operator ∇2 ≔ gmn∇m∇n is Hermitian under

the measure d4xdz
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞp

gm1n1 � � � gmjnj .
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by imposing the on-shell condition

ðE þ cyÞffiffiffi
λ
p þ NðyÞeff ¼ 0 ði:e:; E þ R2M2

eff ¼ 0Þ: ð66Þ

We will work out the eigenmode decomposition for rank-j
tensor fields in the following, where we have to work only
for a separate j, without referring to the mass parameter.19

The eigenmode wave functions are used not just for a
construction of solutions to the equation of motions, but
also in constructing the Reggeon exchange contributions to
the hþ γ� → hþ γð�Þ scattering amplitude. The propagator
is proportional to

−i
Eþcyffiffi

λ
p þ NðyÞeff − iϵ

α0R3

tAy
: ð67Þ

The mode equation for a rank-j tensor field Am1���mj
on

AdS5 is further decomposed into those of irreducible
representations of SO(4,1). For simplicity of argument,
we deal only with the mode equations for the totally
symmetric (and traceless) rank-j tensor fields. Namely,

Am1���mj
¼ Amσð1Þ���mσðjÞ for ∀σ ∈ Sj: ð68Þ

We call them spin-j fields.
The eigenmode equation (65) for a totally symmetric

spin-j field can be decomposed into jþ 1 pieces, labeled
by k ¼ 0;…; j:

ððR2ΔjÞ − ½ð2kþ 1Þj − 2k2 þ 3k�ÞAzkμ1���μj−k

þ 2zk∂ ρ̂Azk−1ρμ1���μj−k þ kðk − 1ÞAρ̂
zk−2ρμ1���μj−k

− 2zðD½Azkþ1����Þμ1���μj−k þ ðE½Azkþ2����Þμ1���μj−k
¼ −EAzkμ1���μj−k : ð69Þ

Here,

Azkμ1���μj−k ≔ Az � � � z|fflffl{zfflffl}
k

μ1���μj−k ð70Þ

and can be regarded as a rank-ðj − kÞ totally symmetric
tensor of the SO(3,1) Lorentz group. The SO(3,1) indices
with ^ in the superscript, such as ρ̂ in ∂ ρ̂, are raised by the
four-dimensional (4D) Minkowski metric ηρσ from a sub-
script σ, not by the five-dimensional (5D) warped metric
gmn. D½a� and E½a� are operations creating totally sym-
metric rank-ðrþ 1Þ and rank-ðrþ 2Þ tensors of SO(3,1),
respectively, from a totally symmetric rank-r tensor of SO
(3,1), a:

ðD½a�Þμ1���μrþ1 ≔
Xrþ1
i¼1

∂μiaμ1���μi
̬ ���μrþ1 ; ð71Þ

ðE½a�Þμ1���μrþ2 ≔ 2
X
p<q

ημpμqaμ1���μp
̬ ���μq

̬ ���μrþ2 : ð72Þ

The differential operatorΔj in the first term is defined, as in
[3], by

R2Δj ≔ R2z−j
��

z
R

�
5∂z

��
R
z

�
3∂z

��
zj þ R2

�
z
R

�
2∂2;

¼ z2∂2
z þ ð2j − 3Þz∂z þ jðj − 4Þ þ z2∂2: ð73Þ

The eigenmode equation (65), (69) is a generalization of the
“Schrödinger equation” of [3] determining the Pomeron
wave function. As we will see, the single-component
Pomeron wave function discussed in [3], etc. corresponds
to (93)—that of the ðn; l; mÞ ¼ ð0; 0; 0Þ eigenmode in our
language, and the Schrödinger equation to (90), (A10);
there are other eigenmodes, whose wave functions are to be
determined in the following.
In the following sections, VA and V B, we simply state

the results of the eigenmode decomposition of (65), (69) for
spin-j fields. A more detailed account is given in
Appendix A.

A. Eigenvalues and eigenmodes for Δμ ¼ 0

Because of the (3þ 1)-dimensional translational sym-
metry in ∇2, solutions to the eigenmode equations can be
classified by the eigenvalues of the generators of trans-
lation, ð−i∂μÞ. Until the end of Sec. V B, we will focus on
eigenmodes in the form of

Am1���mj
ðx; zÞ ¼ eiΔ·xAm1���mj

ðz;ΔÞ ð74Þ

and study the eigenmode equation (65) separately for
different eigenvalues Δμ.
The eigenmode equation for Δμ ¼ 0 and that for Δμ ≠ 0

are qualitatively different and need separate study. The
eigenmodes for Δμ ≠ 0 will be presented in Sec. V B (and
Appendix A.2); we begin in Sec. VA (and Appendix A.1)
with the eigenmode equation for Δμ ¼ 0, which is also
regarded as an approximation of the eigenmode equation
for Δμ ≠ 0 in the asymptotic UV boundary region (at the
least, Δz ≪ 1 and z may be as small as R).
For now, we relax the traceless condition on the spin-j

field Am1���mj
(mi ¼ 0; 1;…; 3; z), and we just assume that

the rank-j tensor field Am1���mj
is totally symmetric.20

19There are many states with the same value of j, but with
different cy and NðyÞeff .

20This only makes the following presentation more far-
reaching; in the end, it is quite easy to identify which eigenmodes
fall into the traceless part within Am1���mj

. See (82)–(84) at the end
of Sec. VA.
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Consider the following decomposition of the space of
z-dependent field configuration Am1���mj

ðz;Δ ¼ 0Þ:

Azkμ1���μj−kðz;Δμ ¼ 0Þ ¼
X½ðj−kÞ=2�
N¼0

ðEN ½aðk;NÞ�Þμ1���μj−k ; ð75Þ

here, ðaðk;NÞðz;Δμ ¼ 0ÞÞμ1���μj−k−2N is a rank-ðj − k − 2NÞ
totally symmetric tensor of SO(3,1), and it satisfies the
4D-traceless condition

ημ̂1μ̂2aðk;NÞμ1���μj−k−2N ¼ 0: ð76Þ

Thus, the field configuration can be described by aðk;NÞ’s
with 0 ≤ k ≤ j, 0 ≤ N ≤ ½ðj − kÞ=2�. These components
form groups labeled by n ¼ 0;…; j, where the nth group
consists of aðk;NÞ ’s, with kþ 2N ¼ n; they are all rank-
ðj − nÞ totally symmetric tensors of SO(3,1); let us call the
subspace spanned by the components in this nth group the
nth subspace. The eigenmode equation for Δμ ¼ 0
becomes block diagonal under the decomposition into
these subspaces labeled by n ¼ 0;…; j [see (A3) in the
appendix]. Therefore, the eigenmode equation for Δμ ¼ 0
can be studied separately for the individual diagonal
blocks.
The nth diagonal block contains ½n=2� þ 1 components,

and hence there are ½n=2� þ 1 eigenmodes. Let En;l
(l ¼ 0;…; ½n=2�) be the eigenvalues in the nth diagonal
block. The corresponding eigenmode wave function is of
the form

ðaðk;NÞðz;Δμ ¼ 0ÞÞμ1���μj−n ¼ ck;l;nðϵðn;lÞÞμ1���μj−nz2−j−iν;
ð77Þ

where ϵðn;lÞ is a z-independent, k-independent rank-ðj − nÞ
tensor of SO(3,1) (ck;l;n ∈ R). In the eigenmode equation
for Δμ ¼ 0, the eigenmode wave functions are all in a
simple power of z, and the power is parametrized by iν
(ν ∈ R). The eigenvalues En;l are functions of ν; once the
mass-shell condition (66) is imposed, the eigenmodes
turn into solutions of the equation of motion and iν is
determined by the mass parameter.
The eigenmodes with smaller ðn; lÞ are as follows:

E0;0¼ðjþ4þν2Þ; að0;0ÞðzÞμ1���μj ¼ ϵð0;0Þμ1���μjz2−j−iν; ð78Þ

E1;0 ¼ ð3jþ 5þ ν2Þ; að1;0ÞðzÞμ1���μj−1 ¼ ϵð1;0Þμ1���μj−1z2−j−iν;

ð79Þ

E2;0 ¼ ð5jþ 4þ ν2Þ;� að0;1ÞðzÞμ1���μj−2
að2;0ÞðzÞμ1���μj−2

�
¼
�

1

−4j

�
ϵð2;0Þμ1���μj−2z2−j−iν; ð80Þ

E2;1 ¼ ðjþ 2þ ν2Þ;�að0;1ÞðzÞμ1���μj−2
að2;0ÞðzÞμ1���μj−2

�
¼
�
1

2

�
ϵð2;1Þμ1���μj−2z2−j−iν: ð81Þ

Empirically, the j dependence of the eigenvalues in the nth
diagonal block appears to be En;l ¼ ðð2nþ 1 − 4lÞjþ
ν2 þOð1ÞÞ (l ¼ 0;…; ½n=2�) [see (A12)–(A27) in the
Appendix for more samples of the eigenvalues], and we
promote this j dependence as a rule of the labeling of the
eigenmodes with l.
The eigenmode with l ¼ 0 is found in any one of the

diagonal blocks (n ¼ 0;…; j). Its eigenvalue is

En;0 ¼ ð2nþ 1Þjþ 2n − n2 þ 4þ ν2; ð82Þ

and

c
2k;0;2n ¼ ð−Þk4k

n!

ðn − kÞ!
ðj − nþ 1Þ!
ðj − n − kþ 1Þ! ;

ðn ¼ 2n; k ¼ 0;…; nÞ; ð83Þ

c
2kþ1;0;2nþ1 ¼ ð−Þk4k

n!

ðn − kÞ!
ðj − nÞ!
ðj − n − kÞ! ;

ðn ¼ 2nþ 1; k ¼ 0;…; nÞ: ð84Þ

These ðn; lÞ ¼ ðn; 0Þ eigenmodes are characterized by the
5D-traceless condition

gm1m2Am1���mj
¼ 0:

Thus, the eigenmodes within the 5D-traceless (and totally
symmetric) component—the spin-j field—for Δμ ¼ 0 are
labeled simply by n ¼ 0;…; j.

B. Mode decomposition for nonzero Δμ

1. Diagonal block decomposition for the Δμ ≠ 0 case

The eigenmode equation (65), (69) is much more
complicated in the case of Δμ ≠ 0 because of the second
and fourth terms in (69). The eigenmode equation is still
made block diagonal for an appropriate decomposition of
the space of field Am1���mj

ðz;ΔμÞ.
Consider a decomposition

Azkμ1���μj−kðz;ΔμÞ ¼
Xj−k
s¼0

X½s=2�
N¼0
ð ~ENDs−2N ½aðk;s;NÞ�Þμ1���μj−k ;

ð85Þ

where a new operation a↦ ~E½a� on a totally symmetric
SO(3,1) tensor a,
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ð ~E½a�Þμ1���μrþ2 ≔ 2
X
p<q

�
ημpμq −

∂μp∂μq

∂2

�
aμ1���μp

̬ ���μq
̬ ���μrþ2 ;

ð86Þ

is used. aðk;s;NÞ’s are totally symmetric, 4D-traceless [i.e.,
(76)] rank-ðj − k − sÞ tensor fields of SO(3,1) that satisfy
an additional condition, the 4D-transverse condition:

∂ ρ̂ðaðk;s;NÞÞρμ2���μj−k−s ¼ iΔρ̂ðaðk;s;NÞÞρμ2���μj−k−s ¼ 0: ð87Þ

The space of field configuration Am1���mj
ðz;ΔμÞ is now

decomposed into aðk;s;NÞ’s, with 0 ≤ k ≤ j, 0 ≤ s ≤ j − k,
0 ≤ N ≤ ½s=2�; these components form groups labeled by
m ¼ 0;…; j, where the mth group consists of aðk;s;NÞ ’s,
with kþ s ¼ m; they are all rank-ðj −mÞ, totally sym-
metric 4D-traceless and 4D-transverse tensors of SO(3,1);
let us call the subspace spanned by the components in this
mth group the mth subspace. The eigenmode equation for
Δμ ≠ 0 becomes block diagonal under the decomposition
into these subspaces labeled by m ¼ 0;…; j. The eigen-
mode equation for the mth sector is given by (A39) in
Appendix A.2. The mth subspace should have

Xm
s¼0
ð½s=2� þ 1Þ ð88Þ

eigenmodes.
Eigenvalues E are determined in terms of the character-

istic exponent in the expansion of the solution in the power
series of z. Let the first term in the expansion be z2−j−iν; the
eigenvalues are functions of ν then. Because the indicial
equation at the regular singular point z≃ 0 allows us to
determine the eigenvalues in terms of ν, the eigenvalues in
the case of Δμ ≠ 0 cannot be different from the ones
we have already known in the Δμ ¼ 0 case. In the mth
diagonal block, the eigenvalues consist of En;l, with
0 ≤ n ≤ m, 0 ≤ l ≤ ½n=2�.
To summarize, the eigenmodes in the totally symmetric

rank-j tensor field of SO(4,1) are labeled by ðn; l; mÞ and
Δμ and ν. Their eigenvalues En;l depend only on n and l
(with 0 ≤ n ≤ j and 0 ≤ l ≤ ½n=2�) and ν. Corresponding
eigenmodes are denoted by

Aðx; zÞn;l;m;Δ;ν
zkμ1���μj−k

¼ eiΔ·xAn;l;m
zkμ1���μj−kðz;Δ

μ; νÞ

¼ eiΔ·x
X½s=2�
N¼0

~ENDs−2N ½ϵðn;l;mÞ� b
ðj−mÞ
s;N

Δs−2N ΨðjÞ;s;Niν;n;l;mð−Δ2; zÞ:

ð89Þ

ϵðn;l;mÞ is a (z-independent) totally symmetric 4D-traceless
4D-transverse rank-ðj −mÞ tensor of SO(3,1), and all the

s’s appearing in the expression above are understood as
s ¼ m − k. bðrÞs;N is a constant whose definition is given in
(A38) in the Appendix.

2. Single-component Pomeron wave function

The Pomeron wave function that has been discussed in
the literature (e.g., [3]) does not look as awful as (89). To
our knowledge, the Pomeron wave function in the literature
in the context of hadron high-energy scattering has been a
single component one, Ψiνðt; zÞ. How is An;l;m

m1���mjðz;Δμ; νÞ
related to Ψiνð−Δ2; zÞ?
In the block diagonal decomposition of the eigenmode

equation, there is only one subspace where the diagonal
block is 1 × 1. That is the m ¼ 0 subspace, which consists
only of að0;0;0Þ. The eigenmode equation is�

Δj −
j
R2

�
að0;0;0Þðz;ΔμÞ ¼ −

E
R2

að0;0;0Þðz;ΔμÞ: ð90Þ

This equation, as well as (A10) in the Δμ ¼ 0 case,
corresponds to the Schrödinger equation in [3] determining
the Pomeron wave function. It should be noted, however,
that we consider that ∇2 is the operator relevant to the
eigenmode decomposition21 rather than Δj; furthermore,
the operator ∇2 and Δj has a simple relation ∇2 ¼ Δj −
j=R2 only on this m ¼ 0th subspace of a totally symmetric
rank-j tensor field of SO(4,1).
The eigenvalue is

E0;0 ¼ ðjþ 4þ ν2Þ; ð91Þ

when we define the first term in the power series expansion
of z to be z2−j−iν. The eigenmode wave function is

að0;0;0Þðz;ΔμÞμ1���μj ¼ ϵð0;0;0Þμ1���μj Ψ
ðjÞ
iν ð−Δ2; zÞ; ð92Þ

ΨðjÞiν ð−Δ2; zÞ ≔ 2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν sinhðπνÞ

2R

r
eðj−2ÞAKiνðΔzÞ; ð93Þ

where e2AðzÞ ¼ ðR=zÞ2 is the warp factor introduced in (28).
The normalization factor is determined [3]22 so that it
satisfies the normalization condition23

21Thus, the propagator (67) uses the eigenvalue of ∇2, rather
than that of Δj. The eigenvalue E of ∇2 in the m ¼ 0th subspace
is ðjþ 4þ ν2Þ as in (91), instead of ð4þ ν2Þ. Reference [3] uses
a mode hmn ∝ z−2ðημν; δzzÞ of the spin-2 field to fix the details of
(65), (66) and (90). This hmn ∝ z−2ðημν; δzzÞ mode, however,
corresponds to the ðn; lÞ ¼ ð2; 1Þ mode of the spin-j ¼ 2 field in
(A17), rather than the 5D-traceless 5D-transverse mode
ðn; lÞ ¼ ð0; 0Þ. The eigenvalue E2;1 ¼ ð2þ jþ ν2Þ with j ¼ 2
becomes ð4þ ν2Þ, though.

22The Pomeron wave function in [7] was of the form (124),
which becomes (93) in the limit of Λ → 0, while we keep z and
Δμ fixed.

23The normalization condition is generalized to (99) later on.
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Z
d4x

Z
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞ

p
e−2jA½eiΔ·xΨðjÞiν ð−Δ2; zÞ�

× ½ΨðjÞiν0 ð−Δ02; zÞe−iΔ
0·x� ¼ ð2πÞ4δ4ðΔ − Δ0Þδðν − ν0Þ:

ð94Þ

The single component Pomeron/Reggeon wave function

ΨðjÞiν ð−Δ2; zÞ is now understood as ΨðjÞ;0;0iν;0;0;0ð−Δ2; zÞ.

3. 5D-traceless 5D-transverse Modes

The eigenmode equation (65) for a totally symmetric
rank-j tensor field of SO(4,1) should be closed within its
5D-traceless component. The subspace of 5D-traceless
component is characterized by the 5D-traceless condition

gm1m2Am1���mj
ðz;ΔμÞ ¼ 0: ð95Þ

The fact that the Hermitian operator ∇2 maps this subspace
to itself implies that the eigenmode equation of ∇2 is block
diagonal, when the space of (not-necessarily-5D-traceless)
Am1���mj

is decomposed into the sum of the 5D-traceless
subspace and its orthogonal complement. The collection of
the eigenmodes with l ¼ 0 corresponds to the subspace of
5D-traceless field configuration.

Similarly, one can think of a subspace of field configu-
ration satisfying both the 5D-traceless condition (95) and
the 5D-transverse condition

gnm1∇nAm1m2���mj
¼ 0: ð96Þ

Obviously this is a subspace of the subspace of the 5D-
traceless modes we discussed above. Since the Hermitian
operator ∇2 on AdS5 maps this new subspace also to itself,
the eigenmode equation of ∇2 should also become block
diagonal when the subspace of 5D-traceless modes is
decomposed into this new subspace and its orthogonal
complement.
As we will see in Appendix A.3, there is only one such

mode satisfying this set of conditions (95), (96) in each one
of the mth diagonal block. Thus, the combination of the
5D-traceless and 5D-transverse conditions allows us to
determine an eigenmode completely. This mode turns out
to be ðn; l; mÞ ¼ ð0; 0; mÞ (for 0 ≤ m ≤ j). Put differently,
the eigenmodes with the eigenvalue En;l¼E0;0¼ðjþ4þν2Þ
are characterized by the traceless and transverse conditions
on AdS5.
The eigenmode wave functions of the 5D-traceless

transverse modes ðn; l; mÞ ¼ ð0; 0; mÞ are (see
Appendix A.3)

ΨðjÞ;s;Niν;0;0;mð−Δ2; zÞ ¼
XN
a¼0
ð−ÞaNCa

�
z3∂zz−3

Δ

�
s−2a
½ðzΔÞmΨðjÞ;0;0iν;0;0;0ð−Δ2; zÞ� × Nj;m: ð97Þ

Nj;m is a dimensionless normalization constant. We choose it to be24

N−2
j;m ¼ jCm

Γðjþ 1 − iνÞ
Γðjþ 1 −m − iνÞ

Γðjþ 1þ iνÞ
Γðjþ 1 −mþ iνÞ

Γð3=2þ j −mÞ
2mΓð3=2þ jÞ

Γð2þ 2jÞ
Γð2þ 2j −mÞ ; ð98Þ

so that the eigenmode wave functions are normalized as in

Z
d4x

Z
0

dz
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞ

p
gm1n1 � � � gmjnjAn;l;m;Δ;ν

m1���mj ðx; zÞAn0;l0;m0;Δ0;ν0
n1���nj ðx; zÞ

¼ ð2πÞ4δ4ðΔþ Δ0Þδðν − ν0Þδn;n0δl;l0δm;m0 ½ϵðn;l;mÞðΔÞ� · ½ϵðn0;l0;m0ÞðΔ0Þ�: ð99Þ

Here, ½ϵðn;l;mÞ� · ½ϵ0ðn;l;mÞ�≔ ϵðn;l;mÞμ1���μj−mϵ
0ðn;l;mÞ
ν1���νj−mη

μ̂1ν̂1 ���ημ̂j−mν̂j−m .

4. Propagator

The propagator of the totally symmetric rank-j tensor
field (respectively, the spin-j field) on AdS5 is given by
summing up propagators of the ðn; l; mÞ modes [respec-
tively, the ðn; l; mÞ modes with l ¼ 0]. For the purpose of
writing down the propagator of a given ðn; l; mÞ

eigenmode, it is convenient to introduce the following
notation:

An;l;m;Δ;ν
m1���mj ðx; zÞ ¼ ½An;l;m;Δ;ν

m1���mj ðx; zÞ�κ̂1���κ̂j−mϵðn;l;mÞκ1���κj−m

¼ eiΔ·x½An;l;m
m1���mjðz;Δμ; νÞ�κ̂1���κ̂j−mϵðn;l;mÞκ1���κj−m:

ð100Þ

With this notation, the propagator of the ðn; l; mÞ mode is
given by24Note that Nj;m ¼ 1, if m ¼ 0.
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Gðx; z; x0; z0Þðn;l;mÞm1���mj;n1���nj

¼
Z

d4Δ
ð2πÞ4

Z
∞

0

dν
−iPðj−mÞρ1���ρj−m;σ1���σj−m
En;lþcffiffi

λ
p þ Neff − iϵ

α0R3

ty

× ½An;l;m;Δ;ν
m1���mj ðx; zÞ�ρ̂1���ρ̂j−m ½An;l;m;−Δ;ν

n1���nj ðx0; z0Þ�σ̂1���σ̂j−m:
ð101Þ

Here, Pðj−mÞρ1���ρj−m;σ1���σj−m is a polarization tensor generalizing
ηρσ − ∂ρ∂σ=∂2; when an orthogonal basis ϵaðqÞ · ϵbð−qÞ ¼
δa;bDa of rank-r 4D-traceless 4D-transverse tensors is given,

PðrÞμ1���μr;ν1���νr ≔
X
a

1

Da
ϵðqÞa;μ1���μrϵð−qÞa;ν1���νr : ð102Þ

Analternative characterization of thisPðrÞμ1���μr;ν1���νr is given by
a combination of the following two conditions: one is

PðrÞμ1���μr;ν1���νrϵ
ν̂1���ν̂r
a ¼ ϵa;μ1���μr ; ð103Þ

and the other is that PðrÞμ1���μr;ν1���νr also be a totally symmetric
4D-transverse 4D-traceless tensor with respect to ðμ1 � � � μrÞ
for any choice of ðν1 � � � νrÞ. Its explicit form (A74), given in
the Appendix, is useful for practical computations.

C. Representation in the dilatation eigenbasis

It is an essential process in the application of the AdS/
CFT correspondence to classify solutions to the equation of
motions on the gravity dual background (AdS5) into
irreducible representations of the conformal group SO
(4,2) (or possibly its supersymmetric extension). In the
CFT description, primary operators are in one-to-one
correspondence with (highest weight) irreducible represen-
tations of the conformal group, and it is believed that one
can establish a one-to-one correspondence between (i) a
primary operator in the CFT description and (ii) a group of
solutions to the equation of motion forming an irreducible
representation in the gravity dual description. Once this
correspondence is given, hadron matrix elements of the
primary operators in a (nearly conformal) field theory can
be calculated by using the corresponding solutions to the
equations of motion (the wave functions) on AdS5. Note
that the hadron matrix elements of the primary operators are
all that remain unknown in the formulation of conformal
operator product expansion (26).
Let Pμ, Kμ, Lμν, and D denote the generators of the

unitary operators of the conformal group transformation on
the Hilbert space. They satisfy the following commutation
relations:

½D;Pμ� ¼ iPμ; ½Pρ; Lμν� ¼ iðηρμPν − ηρνPμÞ; ð104Þ
½D;Kμ�¼−iKμ; ½Kρ;Lμν�¼ iðηρμKν−ηρνKμÞ; ð105Þ

½Pμ; Kν� ¼ −2iðημνDþ LμνÞ; ð106Þ

½Lμν; Lρσ� ¼ iðηνρLμσ − ηνσLμρ − ημρLνσ þ ημσLνρÞ: ð107Þ

When such a conformal symmetry exists in a conformal
field theory in 3þ 1 dimensions, these generators have a
representation as differential operators on fields on R3;1;
these differential operators are denoted by Pμ, Kμ, Lμν, and
D. The generators and the differential operators on a CFT
are in the following relation:

½OðxÞ; Pμ� ¼ PμOðxÞ; ½OðxÞ; Kμ� ¼ KμOðxÞ;
½OðxÞ; D� ¼ DOðxÞ;…; ð108Þ
and these differential operators acts on primary operators as
follows:

DOnðxÞ ¼ −iðx · ∂ þ lnÞOnðxÞ; ð109Þ

LμνOnðxÞ ¼ ðiðxμ∂ν − xν∂μÞ þ ½Sμν�ÞOnðxÞ; ð110Þ

PμOnðxÞ ¼ −i∂μOnðxÞ; ð111Þ

KμOnðxÞ ¼ ð−ið2xμx · ∂ − x2∂μÞ− i2lnxμ − xν½Sμν�ÞOnðxÞ;
ð112Þ

where ln is the scaling dimension of the operator On and
½Sμν� a finite dimensional representation of SO(3,1) gen-
erators satisfying the same commutation relation as Lμν’s.
Thus, for a primary operator OnðxÞ, Onðx ¼ 0Þ plays the
role of the highest weight state

½Onð0Þ; Kμ� ¼ 0; ½Onð0Þ; D� ¼ −ilnOnð0Þ; ð113Þ
all other states in the highest weight state representation—
descendants—are generated by applying ½•; Pμ� multiple
times; the whole representation, therefore, is spanned by a
collection of

fOnð0Þ; ∂μOnð0Þ; ∂μ∂νOnð0Þ;…g; ð114Þ

it is also equivalent to a collection of Oðx ¼ x0Þ, with
arbitrary x0 ∈ R3;1.
In the preceding sections, we have worked on solutions

to the eigenmode equation on AdS5; once the mass-shell
condition (66) is imposed, they become solutions to the
equation of motion. They are obtained as an eigenmode
of the spacetime translation in 3þ 1 dimensions,
ð−i∂μÞ ¼ Δμ. Under the conformal group SO(4,2), which
contains Lorentz SO(3,1) symmetry, however, an irreduc-
ible representation has to include solutions with all kinds of
eigenvalues Δμ.
In the case of a scalar field on AdS5, one can think of the

following linear combination Gðx; z; x0;R0Þ (for some
R0 ≪ Δ−1):
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Gðx;z;x0Þ¼
i
π2

ΓðlnÞ
Γðln−2ÞR

ln−4
0

�
z

z2þðx−x0Þ2
�

ln

¼
Z

d4Δ
ð2πÞ4e

iΔ·ðx−x0Þ ðΔzÞ
2Kln−2ðΔzÞ

ðΔR0Þ2Kln−2ðΔR0Þ
: ð115Þ

The factor ½eiΔ·xðΔzÞ2Kln−2ðΔzÞ� in the integrand on the
right-hand side is a solution to the equation of motion of a
scalar field on AdS5 whose mass square M2

eff is given by
ln − 2 ¼ iν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þM2
effR

2
p

. The coefficient of the linear
combination, e−iΔ·x0 ½ðΔR0Þ2Kln−2ðΔR0Þ�−1, is chosen so
that the integrand behaves as

eiΔ·ðx−x0Þ
�

z
R0

�
4−ln ð116Þ

at 0 ≤ z ≪ Δ−1. The space of solutions to the equation of
motion Gðx; z; x0Þ parametrized by x0 ∈ R3;1 is alterna-
tively spanned by derivatives of Gðx; z; x0Þ with respect to
xμ0 at xμ0 ¼ 0. It is easy to see that this basis,

fGðx; z; 0Þ; ∂ðx0Þμ Gðx; z; 0Þ; ∂ðx0Þμ ∂ðx0Þν Gðx; z; 0Þ;…g; ð117Þ
is an eigenbasis under the action of dilatation,
D ≔ iðz∂z þ x · ∂Þ, and their weights are −iln;−iðln þ 1Þ;
−iðln þ 2Þ;…, respectively. Correspondence between sca-
lar field wave functions on AdS5 and scalar primary
operators of the dual CFT is established in this way [34].
Let us now generalize the discussion above slightly to

construct an analogue of Gðx; z; x0Þ for a spin-j field
Am1���mj

on AdS5, from which the dilatation eigenbasis is
constructed. To this end, note that all of the ð0; 0; mÞmodes
(m ¼ 0;…; j) have the leading z2−j−iν term in the power
series expansion only in the Az0μ1���μj component, not in any
other Azkμ1���μj−k components25 with k > 0. It is possible to

choose ϵð0;0;mÞðΔμÞ properly so thatXj
m¼0
½A0;0;m;Δ;ν

μ1���μj ðx; zÞ�κ̂1���κ̂j−mϵð0;0;mÞκ1���κj−me
−iΔ·x0

≃ eiΔ·ðx−x0Þ
�

z
R0

�
2−j−iν

ϵμ1���μj ð118Þ
in the region near the UV boundary z ≪ Δ−1, where ϵμ1���μj
is a Δμ-independent 4D-traceless totally symmetric rank-j
tensor of SO(3,1); the condition on ϵð0;0;mÞðΔμÞ is

ϵμ1���μj ¼
�
R0

R

�
2−j

KiνðΔR0Þ
2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν sinhðπνÞ

2R

r

×
Xj
m¼0

Nj;mΓðm − j − iνÞ
Γð−j − iνÞ

×
X½m=2�

N¼0

bðj−mÞm;N

Δm−2N ð ~ENDm−2N ½ϵð0;0;mÞ�Þμ1���μj : ð119Þ

It is possible to invert this relation by using (A37) and
writing down ϵð0;0;mÞðΔμÞ in terms of ϵμ1���μj , though we will
not present the result here. What really matters to us is that
ϵð0;0;mÞðλΔÞ ¼ ϵð0;0;mÞðΔÞλiν. With ϵð0;0;mÞ’s satisfying the
condition above, one can see that the following linear
combination of solutions to the equation of motion,

Gm1���mj
ðx; z; x0Þ

≔
Z

d4Δ
ð2πÞ4

Xj
m¼0
½A0;0;m;Δ;ν

m1���mj ðx; zÞ�κ̂1���κ̂j−mϵð0;0;mÞ

× ðΔÞκ1���κj−me−iΔ·x0 ; ð120Þ

has a property

Gm1���mj
ðλx; λz; λx0Þ ¼ λ−ð2þjþiνÞGm1���mj

ðx; z; x0Þ: ð121Þ

iν is determined by the mass parameter on AdS5 once the
mass-shell condition (66) is imposed. Therefore,
Gm1���mj

ðx; z; 0Þ is an eigenstate of dilatation, and so are
the derivatives of Gm1���mj

ðx; z; x0Þ with respect to xμ0 at
xμ0 ¼ 0. All of the derivatives combined forms of a
dilatation eigenbasis in the space of solutions with the
equation of motion of a spin-j field.
It is now clear that the eigenmodes with ðn; l; mÞ ¼
ð0; 0; mÞ (0 ≤ m ≤ j) and arbitrary Δμ as a whole—modes
that satisfy the 5D-traceless and 5D-transverse conditions
(95), (96)—form an irreducible representation of the con-
formal group. If one is interested purely in the matrix
element of a spin-j primary operator Onðx0 ¼ 0Þ of an
approximately conformal gauge theory, then the matrix
element can be calculated by using the wave function
Gm1���mj

ðx; z; 0Þ. Note that the m ¼ 0 mode alone—where
the Pomeron/Reggeon wave function has a single compo-
nent, as in [3]—cannot reproduce all of the matrix elements
associated with matrix elements of spin-j primary operators.

D. Confinement effect

1. Top-down approach

QCD in the real world is not a conformal gauge theory,
but it has a mass gap in the hadron spectrum due to
confinement. Confinement of a nearly conformal strongly
coupled gauge theory is realized in its gravitational dual
description in the form of a nearly AdS geometry with a
minimum value in the warp factor.
Klebanov-Strassler geometry of type IIB string theory

[27] will be one of the most popular background geometries
of this kind. The Klebanov-Strassler geometry is not dual to
a confining gauge theory that is asymptotically free,
however; it is dual to a gauge theory that is confining in
the infrared, but its ’t Hooft couplings become stronger and
stronger toward ultraviolet. Such geometries as Klebanov-
Strassler are not truly dual to the QCD of the real world, but25Use (97).
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one will still be able to learn a lot from studying the mode
decomposition on such geometries.
Mode decomposition can be carried out once we know

the background configuration and the action of the bilinear
fluctuations around the background; we do not need
interactions of stringy fields. Thus, it will be a doable task,
at least at the supergravity level. Reduction over the W5 ¼
T1;1 geometry has been worked out in the literature, and one
is left to translate the smoothness condition of mode
functions at the tip of the deformed warped conifold into
the language of boundary conditions on a warped (4þ 1)-
dimensional spacetime.26 The authors do not find a reason
not to work on it, except that it will take extra time to do so.
In this article, however, we set a higher priority in getting

a broader perspective on the subject ranging from string
theory to hadron physics, and we avoid taking too much
time to solve technical problems in string theory. Instead,
we discuss, in the following, two temporary approaches of
implementing the confinement effects; one is an effective-
theory model building approach and the other is a
phenomenological approach. We will proceed with the
phenomenological approach in the following sections,
although we understand that the topdown approach above
will eventually replace/back up/verify the phenomenologi-
cal approach to be adopted in this article. The following
“effective theory model building approach” is not used in
this article, but we present it here because it helps us
understand the physical meaning (the hidden assumptions)
of the phenomenological approach.

2. Effective theory model building approach

The hard wall model and its variations are introduced in
order to mimic the presence of a minimum value of the
warped factor, mass gap, and nearly AdS background
geometry. It remains simple enough so that analytic results
are obtained in a relatively short amount of time, though
we cannot discuss the stability of the geometry or the
theoretical consistency of string theory.
With this philosophy in mind, one could think of

implementing the confining effect in the form of

S¼
Z

d4x
Z

1=Λ

0

dz
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞ

p
Lbulkþ

Z
d4x

ffiffiffiffiffiffi
−g
p jz¼1=ΛLbdry;

ð122Þ

where the background geometry remains AdS5 and the
holographic radius z is cut off at z ¼ Λ−1. Note that

different choices of Lbdry lead to a different physics; to
be more precise, different choices of ðLbulk;LbdryÞ modulo
partial integration should be regarded as different models. It
is reasonable to have such freedom in the choice of
effective-theory models because we know that there is
more than one holographic background of type IIB string
theory that is dual to confining gauge theories. Such
constraints as SO(3,1) symmetry unbroken global sym-
metry of a strongly coupled gauge theory, however, are very
weak in constraining Lbdry.
Once a model is fixed, the Euler-Lagrange equation of

this theory includes not only the equation of motion in the
bulk (64)¼(65), (66), but also the boundary conditions at
z ¼ 1=Λ. Different models (i.e., different Lbdry) predict
different Pomeron/Reggeon wave functions.
We require that SO(3,1) symmetry is preserved even in

Lbdry. Boundary conditions might introduce mixing
between the eigenmode decomposition determined in the
bulk, in principle, but the unbroken SO(3,1) symmetry
excludes mixing between SO(3,1)-irreducible tensors of
different ranks. This observation still does not exclude
mixing among ðn; l; mÞmodes of a spin-j totally symmetric
field on AdS5 with a common m, but different ðn; lÞ’s.

3. Phenomenological approach

As an alternative approach, one can think of a phenom-
enological approach, which is to start from a small number
of parameters and let the physical consequences constrain
those parameters. When one finds that reasonable physical
consequences cannot be available under a given set of
parameters, then a few more parameters will be introduced
so that more freedom is available.
As one of the simplest trial parametrizations of the

confining effect, we make the following changes in the
mode functions ΨðjÞ;0;0iν;0;0;mðΔ; zÞ:

KiνðΔzÞ →
�
KiνðΔzÞ þ

π

2

cðjÞiν;0;0;m
sinðπiνÞ IiνðΔzÞ

�
≕ “KiνðΔzÞ”:

ð123Þ
cðjÞiν;0;0;m’s, which may depend on Δ2 and Λ, are the
parameters we introduce. An implicit assumption here is
that the confining effect does not introduce mixing among
modes with different ðn; l; mÞ’s. Under this assumption,
however, the parametrization above does not lose any
generality; once the ratio between the KiνðΔzÞ wave and

IiνðΔzÞ is given for ΨðjÞ;0;0iν;0;0;mð−Δ2; zÞ, there is no freedom

left for the other ΨðjÞ;s;Niν;0;0;mð−Δ2; zÞ functions (ðs; NÞ ≠
ð0; 0Þ) of the same ðn; l; mÞ ¼ ð0; 0; mÞ mode because
the relation among them is completely fixed by the equation
of motion in the bulk. In Sec. VII A, we will carry out a test
of whether this simple parametrization works well or not.
When the infrared boundary is introduced in the holo-

graphic background geometry, the normalization of the

26Such geometries typically are in the form of R3;1 ×W0n,
which nearly remains constant around the tip of the throat
r ¼ 0, and a shrinking ð5 − nÞ cycle with the metric
ds2 ¼ dr2 þ r2ðdΩ5−nÞ2. For simplicity, let n ¼ 4 and
dΩ1 ¼ dθ. A scalar field ϕðr; θÞ with smooth configuration in
the coordinate ðr cos θ; r sin θÞ is decomposed into

P
k e

ikθϕkðrÞ
when the mode ϕkðrÞ needs to be in the form of rk × fcnðr2Þ.
Thus, ∂r½r−kϕkðrÞ� ¼ 0 at r ¼ 0.
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Pomeron/Reggeon wave function also needs to be changed.
In the case of the ðn; l; mÞ ¼ ð0; 0; 0Þ mode, with the
Dirichlet boundary condition at the IR boundary
z ¼ 1=Λ, for example, the wave function ΨðjÞ;0;0iν;0;0;0 ¼
ΨðjÞiν ð−Δ2; zÞ was given the following normalization [3,7]:

ΨðjÞiν ð−Δ2; zÞ ¼ eðj−2ÞA
2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν sinhðπνÞ

2R

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iiνðx0Þ
I−iνðx0Þ

s

×

�
KiνðΔzÞ −

Kiνðx0Þ
Iiνðx0Þ

IiνðΔzÞ
�
; ð124Þ

with an extra factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iiνðx0Þ=I−iνðx0Þ

p
, where x0 ≔ Δ=Λ.

This result is generalized as follows. By repeating the same
argument as in Appendix A.3.a, one finds that the nor-
malization factor Nj;m should be replaced by

Nj;m → Nj;m ×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − cðjÞiν;0;0;m
q : ð125Þ

The Dirichlet boundary condition for the m ¼ 0 mode

above corresponds to ð1 − cðjÞiν;0;0;0Þ ¼ ½I−iνðx0Þ=Iiνðx0Þ�;
the modified normalization (124) is a special case of
(125). The mode functions are defined, so far, for ν ≥ R
since the eigenvalue E0;0 ¼ 4þ jþ ν2 depends only on ν2.
When the mode function is analytically continued to the
ν < 0 region, the mode function for −ν should be the same
as þν. From this observation, it follows that

ð1 − cðjÞ−iν;0;0;mÞ ¼ ð1 − cðjÞiν;0;0;mÞ−1: ð126Þ

VI. ORGANIZING THE SCATTERING
AMPLITUDE ON AdS5

A. “Effective” string field action on AdS5

If we are to start from type IIB string theory in ten
dimensions with a background that is approximately
AdS5 ×W5 (except near the infrared boundary), one can
think of an effective theory on AdS5 after carrying out
spherical harmonics mode decomposition on W5. As we
have already discussed in Sec. V how to construct propa-
gators in such an effective theory, we would now like to
construct the scattering amplitude.
For this purpose, we need interaction among string

fields, and we turn to cubic string field theory, which we
reviewed already in Sec. IV. This allows us to write down a
concrete expression for the scattering amplitude. Clearly
the biggest drawback of this approach is in the fact that no
stable background geometry AdS5 ×W21 is known in
bosonic string theory for a 21-dimensional internal mani-
fold W21. In the following, we will construct an effective
action on AdS5 by carrying out dimensional reduction of
the cubic string field theory action, as if there exists an

AdS5 ×W21 solution to bosonic string theory. This is not
meant to claim that we obtain such an action as an effective
theory of bosonic string theory, but to use it as a starting
point in constructing a toy-model scattering amplitude of a
hadron and a (virtual) photon that may still carry some
fragrance of interaction structure in superstring theory.
Let us start off by clarifying the relation between the

normalization of string component fields in (38), (41), (42)
and that of the component fields in (62). All of the
component fields in (38) are normalized so that they have
canonically normalized kinetic terms in the action in the
26-dimensional spacetime. Now, we make them dimen-
sionless by the redefinition ϕ → g−1o ϕ, AM → g−1o AM, etc.
All of the terms in the cubic string field theory—both the
kinetic terms and the interactions—will then have ð1=g2oÞ as
an overall factor. When a mode decomposition of the
following form is assumed for the component in this new
normalization,

ϕðx; z; θÞ ¼
X
y

ϕðyÞðx; zÞYyðθÞ;

AMðx; z; θÞ ¼
(P

y
AðyÞm ðx; zÞYyðθÞ M ¼ m ¼ 0;…; 3; z

0 M ¼ 5;…; 25:

ð127Þ

Similarly decomposition holds for spin-ha fields
AM1���Mha

ðx; z; θÞ; we take spherical harmonics YyðθÞ
(labeled by y) to be dimensionless, so that the component

fields on AdS5 such as ϕðyÞðx; zÞ, AðyÞm ðx; zÞ, AðyÞm1���mha
ðx; zÞ

are also dimensionless.
The overall coefficient of the effective action on AdS5

then becomes a dimension-ðþ3Þ parameter

volðW21Þ
2ðgoÞ2

×Oð1Þ; ð128Þ

which is to be identified with the overall coefficient
ty=ð2R3Þ in (62). Reduction of interaction terms (43),
(45), (46) also yields the same overall factor (128), apart
from possibly one order factor coming from the overlap
integration of spherical harmonics over the internal mani-
fold. Because the amplitudes from exchanging states with
higher spherical harmonics are suppressed in small-x DIS
and DVCS (e.g., [7]), we will be interested only in the
interactions involving ϕðyÞ-ϕðyÞ–(intermediate states) and
AðyÞm -AðyÞm –(intermediate states) cubic couplings, with the
intermediate states having spherical harmonics YðθÞ ¼ 1.
The overall factor of the cubic interactions then becomes
precisely the same as that of the kinetic terms of ϕðyÞ

and AðyÞm .
For this reason, we write down the following interaction

terms for the effective action on AdS5:
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Seff int ¼ −
tϕyλsft
3α0R3

Z
d4xdz

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞ

p
Ê

×

�
3 tr½ϕ2

yϕ� þ
ffiffiffiffiffiffiffi
8α0

3

r
tr½ð−iAmÞðϕy∇

↔m
ϕyÞ�

−
8α0

9
ffiffiffi
2
p tr½fmnðϕy∇

↔m∇↔n
ϕyÞ� −

5

9
ffiffiffi
2
p tr½fmmϕ2

y�

þ 2
ffiffiffiffi
α0
p

3
tr½ð∇mgmÞϕ2

y� −
11

9
tr½hϕ2

y�
�
þ � � � :

ð129Þ

Fields without a label y are to be used for the intermediate
states exchanged in the t channel (in the sense that we
explained in Sec. IV B); ϕy are for the incoming and
outgoing states. Partial derivatives have been replaced by
covariant derivatives on AdS5. Similarly, all other inter-
actions, such as (45), (46) in 26 dimensions, also give rise
to their corresponding cubic interactions on AdS5.
Certainly such a choice of effective action on AdS5 will
be one of the most likely (and simple) setups that may still
maintain some aspects of scattering amplitude in string
theory, although top-down justification is not given.
We will only sum t-channel amplitudes where YyðθÞ ¼ 1

modes of the stringy states in the leading Reggeon/
Pomeron trajectory are exchanged, because that constitutes
the dominant contribution in small-x scattering. Thus,
three-point interactions of such modes with incoming
and outgoing tachyon states are necessary, which we write
down as follows,

ΔSeff int ¼ −
thλsft
R3α0

Z
d4xdz

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞ

p
Ê

× tr½AðYÞm1���mN ðϕ∇
↔m1 � � �∇↔mN

ϕÞ�
�
8α0

27

�N
2 ð−iÞNffiffiffiffiffiffi

N!
p ;

ð130Þ

by keeping only the YyðθÞ ¼ 1 modes and replacing the
derivatives in (45) by covariant derivatives. The normali-
zation constant tϕy for the target hadron kinetic term is now
simply written as th, as we will have to pay attention only to
the individual choices of target hadrons [the individual
choices of YyðθÞ] in the external states. Similarly, we also
need interaction of the same group of modes with the
incoming and outgoing photon states, which wewrite down
as follows:

ΔSeff int ¼ −
tγλsft
R3α0

Z
d4xdz

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞ

p
Ê

× Tr

�
AðNÞm1���mN ðAlð−i∇

↔m1Þ

� � � ð−i∇↔mN ÞAkÞ
�
8α0

27

�N
2 gkl 1627ffiffiffiffiffiffi

N!
p þ � � �

�
; ð131Þ

following the same procedure by starting from (46). We
have retained only the terms that have N derivatives and
are proportional to ηkl, as they are necessary in determin-
ing the twist-2 contributions to the structure function V1.
Since we need the normalization constant tAy of the
kinetic term of the external state only for the spherical
harmonics YðθÞ ¼ 1, we no longer need to refer to the
choice of spherical harmonics; tAy is therefore rewritten
as tγ .

B. External states wave function

The vertex operator insertions in the world-sheet calcu-
lation are replaced by appropriate external state wave
functions in amplitude calculations based on string field
theories.
First, the insertions of a vertex operator of the form (33)

for the U(1) currents on flavor D7-branes are replaced by
wave functions for the massless vector field in bosonic
string theory. We use the wave functions for the incoming
state γ�ðq1Þ and the outgoing state γð�Þðq2Þ:

Ain
mðxγ; zγÞ ¼ R

Z
d4q1
ð2πÞ4 e

iq1·ðxγ−ðx−ðΔxÞ=2ÞAmðzγ; q1Þ;

ð132Þ

Aout
m ðxγ; zγÞ ¼ R

Z
d4q2
ð2πÞ4 e

−iq2·ðxγ−ðxþðΔxÞ=2ÞÞAmðzγ; q2Þ;

ð133Þ

where Amðz; qÞ on the right-hand sides are the wave
functions given in (35). A factor R is inserted here because
we adopted a normalization convention, so that

Aðin=outÞm ðx; zÞ on AdS5 is dimensionless.27 The arguments
of the electromagnetic current insertions TfJνðxÞJμðyÞg—
coordinates in boundary theory x and y ∈ R3;1—are now
denoted by xþ ðΔxÞ=2 and x − ðΔxÞ=2, respectively.

27Amðx; zÞ is often normalized so that it has mass dimension
ðþ1Þ, and hence this factor R is not then necessary. In a case in
which the gauging of a global symmetry of a strongly coupled
gauge theory is realized in the form of a flavor D7-brane, the
natural reduction of the 7-brane action on a three-cycle leads to
the form of

Seff ∼ −
Nc

R

Z
d4xdz

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞ

p
FmnFmn; ð134Þ

the external state wave function (132), (133) without the factor R
can be used in such cases. In the presentation adopted in this
section, where a bosonic string is used and the gauge field is
assigned zero mass dimension (like other higher spin fields), the
factor R is included in (132), (133) and the kinetic term of
FmnFmn has the coefficient tγ=R3 instead. Thus, we can think of
tγ as something like Nc.
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The vertex operators (30) for the target hadron are
replaced by wave functions of the form

ϕinðxh; zhÞ ¼ eip1·xhΦðzh;mnÞ;
ϕoutðxh; zhÞ ¼ e−ip2·xhΦðzh;mnÞ; ð135Þ

where Φðz;mÞ’s on the right-hand sides are the wave
function given by (31). The first one is for the incoming
state and the second for the outgoing hadron.

C. Leading trajectory contribution
to the Compton tensor

When the target hadron is to be identified with some
Kaluza-Klein state of the tachyon of bosonic string theory,

then lϕ − 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þM2

effR
2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ c −

ffiffiffi
λ
pp

is not real
valued for λ ≫ 1. We treat this lϕ − 2 as if it were real
valued, until the last moment. Since our true interest is in
the scattering amplitude in type IIB string theory, or in
hadron scattering in the real world, this problem is absent
in such situations, and we do not bother about this issue.
Let us combine all the pieces together to organize an

amplitude of photon-tachyon scattering given by a t-
channel exchange of a leading trajectory spin-j state
reduced to AdS5, with YyðθÞ ¼ 1. Such an amplitude—

denoted by iMðtÞ
ðNeff¼j;jÞ—consists of a t-channel exchange

of all the eigenmodes labeled by ðn; l; mÞ. We will further
focus on contributions from ðn; l; mÞ ¼ ð0; 0; mÞ. It is
given by

iMðtÞ
ðj;jÞ;ð0;0;mÞ ≃

−itγ
R3α0

Z
d4xγdzγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðzγÞ

q
Jγγk1���kj;pqg

pqðgk1r1 � � � gkjrjÞðzγÞ
�
α0

2

�
j=2

e−2AðzγÞ

×
−ith
R3α0

Z
d4xhdzh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðzhÞ

p
Jhhl1���ljðgl1s1 � � � gljsjÞðzhÞ

�
α0

2

�
j=2

e−2AðzhÞ

×
1

j!

�
27

16

�
α0t−ðj−1Þ

½e2AðzγÞe2AðzhÞGð0;0;mÞðxγ; zγ; xh; zhÞr1���rj;s1���sj �; ð136Þ

just like in the amplitude calculation in Sec. IV B, this
amplitude is meant to be the coefficient of Tr½λγ2λγ1λh1λh2�.
Jγγ and Jhh (above) are given by the external state wave
functions as follows:

Jγγk1���kj;pqðxγ; zγÞ ¼ ð−iÞj½Aout
p ∇↔k1 � � �∇

↔

kjA
in
q �ðxγ; zγÞ; ð137Þ

Jhhl1���ljðxh; zhÞ ¼ ð−iÞj½ϕin∇↔l1 � � �∇
↔

ljϕ
out�ðxh; zhÞ: ð138Þ

Here, ϕin=outðxh; zhÞ are both of mass dimension (−1), and
Ain=out
m ðxγ; zγÞ is of mass dimension ðþ3Þ þ dim½ϵμ�. From

this expression, one can see that the first line has mass
dimension ðþ6Þ þ 2 × dim½ϵμ�, the second line (−2), and
the last line 0. Thus, iMðtÞ

ðj;jÞ;ð0;0;mÞ is a function of p
κ
1, p

κ
2, x

κ

and Δxκ of mass dimension 4þ 2 × dim½ϵμ�. This is
precisely the property expected for

ðiÞ2hhðp2ÞjTfJνðxþðΔxÞ=2ÞJμðx−ðΔxÞ=2Þgjhðp1Þiϵ1μϵ2�ν :

ð139Þ

Its Fourier transform with respect to ðΔxÞμ becomes
ðiTμνÞ × e−ix·ðp2−p1Þ.
If we carry out an integration over d4xγ, d4xh, and

d4ðΔxÞ first, then the three integration variablesΔμ in (101)
and q1;2 in (132), (133) are determined in terms of the input
pμ
1;2 and qμ; we have Δμ ≔ ðp2 − p1Þμ, qμ2 ¼ ðq − Δ=2Þμ

and q1 ≔ ðqþ Δ=2Þμ. As a result, it follows that

½Tμνϵ1μϵ
2�
ν �ðtÞ ¼

Z
d4ðΔxÞe−iq·ðΔxÞMðtÞ

ðj;jÞ;ð0;0;mÞjx¼0

≃ tγ
R3α0

Z
dzγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðzγÞ

q
Jγγk1���kj;pqR

2gpqðgk1r1 � � � gkjrjÞ
�
α0

2

�
j=2 th

R3α0

Z
dzh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðzhÞ

p
Jhhl1���ljðgl1s1 � � � gljsjÞ

�
α0

2

�
j=2

×
1

j!

�
27

16

�
α0t−ðj−1Þ R3α0

tðj;j;1Þ

Z
∞

0

dν
Pðj−mÞρ1���ρj−m;σ1���σj−m

E0;0þcyffiffi
λ
p þ Neff − iϵ

½A0;0;m
r1���rjðzγ;−Δ; νÞ�ρ̂1���ρ̂j−m ½A0;0;m

s1���sjðzh;Δ; νÞ�σ̂1���σ̂j−m; ð140Þ

where

Jγγk1���kj;pqðzγÞ ¼ ð−iÞj½Apðzγ;−q2Þ∇
↔

k1 � � �∇
↔

kjAqðzγ; q1Þ�; ð141Þ
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Jhhl1���ljðzhÞ ¼ ð−iÞj½Φðzh;p1Þ∇
↔

l1 � � �∇
↔

ljΦðzh;−p2Þ�:
ð142Þ

Although momentum vectors are used in the second
arguments of the external state wave functions A and Φ
here, instead of their Lorentz-invariant momentum square,
this is only to remind ourselves of the sign when ∇’s act on
the wave functions.
The expression (140) is meant to be a part of the t-

channel contribution to the Compton tensor ½Tμνϵ1μϵ
2�
ν �ðtÞ,

and we should obtain the full contribution to the Compton
tensor ½Tμνϵ1μϵ

2�
ν � after employing the prescription (52).

At least this prescription tells us to set the factor
ð27=16Þ½α0t−ðj−1Þ� in the fourth line to ð27=16ÞOð1=

ffiffi
λ
p Þ≃1.

Now, we claim that this is the only necessary change under
this prescription, so far as the amplitude of ð0; 0; mÞ-mode
exchange is concerned.
To see this, remember that, prior to applying the

prescription (52), we need to rewrite the residues of
the t-channel poles in terms only of the Mandelstam
variables s and t, not of u. Let us take the expression

½Φh∇
↔

mΦh�gmn½Aγ∇
↔

nAγ� as an example which captures
the feature of contraction of SO(4,1) indices in (140). In
the scattering ϕðP1Þ þ AðQ1Þ → ϕðP2Þ þ AðQ2Þ, with
P1;2 and Q1;2 “momenta” ∼ derivatives in five dimensions,
ðs − uÞ ∼ ðP1 þ P2Þ · ðQ1 þQ2Þ is converted to ð2sþ tÞ
in the following steps:

ðP1 þ P2Þ · ðQ1 þQ2Þ ¼ ð2P1 þ ðP2 − P1ÞÞ · ðQ1 þQ2Þ;
¼ ð2P1Þ · ðQ1 þQ2Þ þ ðQ1 −Q2Þ · ðQ1 þQ2Þ ¼ ð2P1Þ · ð2Q1 þ ðQ2 −Q1ÞÞ þ ðQ1Þ2 − ðQ2Þ2;
¼ ð2P1Þ · ð2Q1 þ ðP1 − P2ÞÞ þ ðQ1Þ2 − ðQ2Þ2 ¼ ð4P1 ·Q1Þ þ ð−2P1 · P2Þ þ 2ðP1Þ2 þ ðQ1Þ2 − ðQ2Þ2;

each one of the steps above is regarded as either one of
partial integration in dxγdzγ , one in dxhdzh, or a rewriting
of ðP2 − P1Þ by ðQ1 −Q2Þ or vice versa. The last pro-
cedure is to pass a derivative on one side of the propagator
to the other. Because of the 5D-transverse condition
characterizing the ð0; 0; mÞ modes, such terms proportional
to ∇ drop out from the amplitudes exchanging the ð0; 0; mÞ
modes. Noting that the prescription (52) modifies the
−2ðP1 · P2Þ ∼ t term above into the propagator mass,
and that this term appeared only after passing a derivative
∇ through the propagator, we see that the term which
would have been affected by the prescription (52) has
indeed already dropped out.

1. Casting the amplitude into the form of OPE

So far, the (virtual) photon and the target hadron have
been treated equally in the scattering amplitude. We are
interested, however, in the hþ γ� → hþ γð�Þ scattering in
the regime of generalized Bjorken scaling, where

jðq2Þj; ðq · pÞ; jðq1 · ΔÞj; jðq2 · pÞj≫ jΔ2j; m2
h;Λ

2; ð143Þ

while the ratio among ðq · pÞ, (q2), and ðq · ΔÞ—namely, x
and η—is kept finite. It is, thus, desirable to rewrite the
scattering amplitude (the structure functions) in a form that
fits to the conformal OPE. To do this, we follow a
prescription that has been used in the study of DIS in
holographic models.
Let us focus on the following factors that appear in the

third and fourth lines of (140):

Z
∞

0

dν½A0;0;m
r1���rjðzγ;−Δ; νÞ�ρ̂1���ρ̂j−m

× ½A0;0;m
s1���sjðzh;Δ; νÞ�σ̂1���σ̂j−m × ½� � ��: ð144Þ

The last factor ½� � �� denotes the remaining ν dependence
(denominator) in the integrand; we need to remember only
that E0;0 ¼ ð4þ jþ ν2Þ, and hence it is even under the
change ν → −ν.
We begin with the case m ¼ 0. The expression (144) for

the m ¼ 0 case becomesZ
∞

0

dν½ΨðjÞ;0;0iν;0;0;0ð−Δ2; zγÞ�½ΨðjÞ;0;0iν;0;0;0ð−Δ2; zhÞ� × ½� � ��;

¼ 2

π2R

Z
∞

0

dν
ν sinhðπνÞ
ð1 − cðjÞiν;0;0;0Þ

½eðj−2ÞAðzγÞ“KiνðΔzγÞ”�

× ½eðj−2ÞAðzhÞ“KiνðΔzhÞ”� × ½� � �� ð145Þ
multiplied by a factor ½δρ̂1r1 � � � δρ̂jrj δσ̂1s1 � � � δσ̂jsj �. Using the fact
that KiνðxÞ ¼ iπ=2 × ðIiνðxÞ − I−iνðxÞÞ=½sinhðπνÞ�, the ν
integral above can be rewritten as

1

πR

Z þ∞
−∞

dνiν½eðj−2ÞAðzγÞIiνðΔzγÞ�½“KiνðΔzhÞ”eðj−2ÞAðzhÞ�

× ½� � ��; ð146Þ

where we used the relation (126). This expression is more
convenient than (145); this is because (i) the zγ integration
is dominated in the region qzγ ≲ 1 because of the photon
external state wave functions containing K1ðq1;2zÞ,
(ii) IiνðΔzγÞ decreases rapidly toward positive iν for qzγ ≲
1 and q ≫ Δ [a generalized Bjorken scaling (143)], and
(iii) the rapidly decreasing IiνðΔzγÞ in the lower half of the

RYOICHI NISHIO AND TAIZAN WATARI PHYSICAL REVIEW D 90, 125001 (2014)

125001-24



complex ν plane allows us to close the ν integration contour
through the large-radius lower half complex ν plane (see [7]
and the literature therein).
It is straightforward to generalize this treatment for all

other m ≠ 0 modes. Note that the Pomeron/Reggeon wave
function ½A0;0;m

m1���mjðz;Δ; νÞ�ρ̂1���ρ̂j−m for m ≠ 0 is obtained
from that of m ¼ 0 by multiplying ðΔzÞm and Nj;m (which

is even in ν), applying differential operators in z and
manipulating Lorentz indices. Obviously the order of such
manipulations on the wave function and the procedure from
(145) to (146) can be exchanged.
Therefore, the contribution to the Compton tensor from

the leading trajectory spin-j state ð0; 0; mÞ mode is

ðTμνϵ1μϵ
2�
ν Þðj;jÞ;ð0;0;mÞ ≃ 1

j!

tγ
ffiffiffi
λ
p

tyπ

�
α0

2

�
j
Z þ∞
−∞

dν
Pðj−mÞρ1���ρj−m;σ1���σj−m

E0;0þcyffiffi
λ
p þ Neff − iϵ

iν

×
R2

R3

Z
dzγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðzγÞ

q
Jγγk1���kj;pqg

pqðgk1r1 � � � gkjrjÞ½A0;0;m
r1���rjðzγ;−Δ; νÞ�

ρ̂1���ρ̂j−m

×
th
R3

Z
dzh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðzhÞ

p
Jhhl1���ljðgl1s1 � � � gljsjÞ½A0;0;m

s1���sjðzh;Δ; νÞ�σ̂1���σ̂j−m; ð147Þ

where A and A are obtained from A by removing the factor ð2=πÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ν sinhðπνÞ=2R�p
in (93) first, then replacingKiνðΔzhÞ by

“KiνðΔzhÞ” in AðzhÞ, while replacingKiνðΔzγÞ by IiνðΔzγÞ in AðzγÞ. Short distance (stringy) parameters such as AdS radius

R and string length
ffiffiffiffi
α0
p

can be eliminated from this expression of the Compton tensor so that it is written purely in terms of
parameters of strongly coupled gauge theory/hadron physics;

ðTμνϵ1μϵ
2�
ν Þðj;jÞ;ð0;0;mÞ ≃ 1

j!

tγ
ffiffiffi
λ
p

tyπ

�
1

2
ffiffiffi
λ
p
�

j
Z þ∞
−∞

dν
Pðj−mÞρ1���ρj−m;σ1���σj−m

E0;0þcyffiffi
λ
p þ Neff − iϵ

iν

×
Z
0

dzγ
zγ
½Apðzγ; q2Þð−i∇

↔
Þjk1���kjAqðzγ; q1Þ�δp̂ q̂zj½δk̂1 r̂1 � � � δk̂jr̂j �½eð2−jÞAA0;0;m

r1���rjðzγ;−Δ; νÞ�ρ̂
0s

× th

Z
0

dzh
z3h
½Φð−i∇↔Þjl1���ljΦ�zj½δl̂1 ŝ1 � � � δl̂jŝj �½eð2−jÞAA0;0;m

s1���sjðzh;Δ; νÞ�σ̂
0s: ð148Þ

Each line of this expression has zero mass dimension,
hence Tμν is also of zero mass dimension, as expected from
the Fourier transform of the matrix element (139).
The leading twist contribution to the Compton tensor

Tμν should be obtained by summing up the amplitudes
of exchanging the spin-j field in the leading trajectory,
with m ¼ 0;…; j also being summed. It is known in

the literature that, for each spin j, the second line
of (149) becomes something close to the Wilson
coefficient of the OPE, and the third line of (149)
something close to the operator matrix element. We will
elaborate more on it, with a particular emphasis on the
role played by the summation over m. For now, we
define

C0;0;m ≔
Z
0

dz
z

�
Apðz;−q2Þð−i∇

↔
Þjk1���kjAqðz;q1Þ

�
×

�ð2ΛÞiν−j
Δiν Γðiνþ 1Þ

�
× δp̂ q̂zj

h
δk̂1 r̂1 � � � δk̂jr̂j

ih
eð2−jÞAA0;0;m

r1���rjðz;−Δ; νÞ
i
ρ̂1���ρ̂j−mϵð0;0;mÞρ1���ρj−m

and

Γ0;0;m ≔ th

Z
1=Λ

0

dz
z3

h
Φð−i∇↔Þjl1���ljΦ

i
zj ×

��
Δ
2Λ

�
iν Λj

ΓðiνÞ
�
×
h
δl̂1 ŝ1 � � � δl̂j ŝj

ih
eð2−jÞAA0;0;m

s1���sjðz;Δ; νÞ
i
σ̂1���σ̂j−mϵð0;0;mÞσ1���σj−m ð149Þ

separately. The factor ½Γðiνþ 1Þð2ΛÞiν−j=Δiν� in C0;0;m and a similar factor in Γ0;0;m are introduced so that C0;0;m and Γ0;0;m

correspond to the OPEWilson coefficients and hadron matrix elements, respectively, renormalized at μF ∼ Λ, as we will see
later.

SKEWNESS DEPENDENCE OF GENERALIZED PARTON … PHYSICAL REVIEW D 90, 125001 (2014)

125001-25



We will focus on the spin-even contribution to a flavor-
nonsinglet component of the structure function V1 in (7).
The V1 structure function is picked up here, only because it
is computed a little more easily than other structure
functions. We will not touch flavor-singlet components
in this article, apart from a brief discussion in Sec. VII C;
this is because the cubic SFT with a Chan-Paton factor in
Sec. IV is not an adequate tool to study the singlet
components. The coefficient C0;0;m above is decomposed,
just like Tμνϵ1μϵ

2�
ν is; the spin-j (with j ∈ 2Z) contribution

to the structure function Vþ;α1 —spin even (þ) and flavor
nonsinglet (α)—is denoted by C0;0;m

V1;þ;α.

2. Amplitude of the (m ¼ 0)-mode exchange

We first study Vþ;α1 from the m ¼ 0-mode exchange.

With the Reggeon wave function given by ΨðjÞ;0;0iν;0;0;0ðt; zÞ ¼
ΨðjÞiν ðt; zÞ in (93), this m ¼ 0 contribution is expected to be

the closest to what has been studied in the literature (such as
[3,4,6,7]). Indeed, we reproduce the expression known in
the literature, but with a little refinement, in (163).

Note first that the Reggeon wave functions A
0;0;m¼0
r1���rj and

A0;0;m¼0
s1���sj are nonzero only when all the ri’s and si’s are in

the 3þ 1 Minkowski directions ðr1 � � � rjÞ ¼ ðρ1 � � � ρjÞ
and ðs1 � � � sjÞ ¼ ðσ1 � � � σjÞ; furthermore, the wave func-
tion is 4D-transverse and 4D-traceless totally symmetric
tensors of SO(3,1).
This makes it much easier to evaluate the matrix element

Γ0;0;m¼0. Because

ð∇kΦÞσ1���σk ¼ ∂σ1 � � � ∂σkΦþ ½terms proportional to ησaσb �;
ð150Þ

only

½Φðz;p1Þð−i∇
↔
ÞjΦðz;−p2Þ�σ1���σj ≔

Xj
k¼0

jCk
½ði∇Þj−kΦðz;p1Þ�σkþ1���σj ½ð−i∇ÞkΦðz;−p2Þ�σ1���σk

→ ð−1Þjðp1 þ p1Þσ1 � � � ðp1 þ p2ÞσjΦðz;p1ÞΦðz;−p2Þ ð151Þ
contributes to Γ0;0;m¼0:

Γ0;0;m¼0 ¼
h
ϵð0;0;0Þσ1���σj ð−1Þjðp1 þ p2Þσ̂1 � � � ðp1 þ p2Þσ̂j

i
g0;0;0ðj; iν;ΔÞ; ð152Þ

g0;0;0ðj; iν;ΔÞ ≔
Z

1=Λ

0

dz
z3
ðΛzÞjthðΦðz;mhÞÞ2

f“KiνðΔzÞ”g
½ð Δ
2ΛÞ−iνΓðiνÞ�

; ð153Þ

note here that the confinement effect has been included in the form of (i) introducing a cut in the holographic radius
zh ≤ 1=Λ and (ii) KiνðΔzhÞ is modified to KiνðΔzhÞ in (123). The expression of g0;0;0 here, or that of Γ0;0;m in (149),
implicitly ignores the possibility of Lbdry ≠ 0. For practical purposes, though, this may not be a big deal, since Ref. [6]
reports that such confinement effects do not play a significant role quantitatively for most of the kinematical region.
Let us also evaluate the Wilson coefficient C0;0;m¼0. The expression

½Apðz;−q2Þð−i∇
↔
ÞjAqðz; q1Þq�ρ1���ρjδ

p̂ q̂ ≔
Xj
k¼0

jCk
½ði∇Þj−kAðz;−q2Þ�ρkþ1���ρjp½ð−i∇ÞkAðz; q1Þ�ρ1���ρkqδp̂ q̂ ð154Þ

appearing in C0;0;m¼0 can be evaluated by using the fact that

ð∇kAÞρ1���ρkκ ≡ ð∂ρ1 � � � ∂ρkAκÞ −
Xk
a¼1

ημaκ
z
ð∂ρ1 � � � ∂

̬

ρa � � � ∂ρkAzÞ −
X

1≤a<b≤k

ηρaκ
z2
ð∂ρ1 � � � ∂

̬

ρa � � � ∂
̬

ρb � � � ∂ρkAρbÞ; ð155Þ

ð∇kAÞρ1���ρkz ≡ ð∂ρ1 � � � ∂ρkAzÞ þ
1

z

Xk
a¼1
ð∂ρ1 � � � ∂

̬

ρa � � � ∂ρkAρaÞ ð156Þ

modulo terms proportional to ηρcρd . As we will focus only on the structure function V
þ;α
1 , we can further drop the terms with

Az in (155), (156). Then the expression above becomes

½ημνϵ1μϵ2�ν �ðq1 þ q2Þρ1 � � � ðq1 þ q2Þρj
þ 2

z2
X
a≠b

ϵð−q2Þρaϵðq1Þρbðq1 þ q2Þρ1 � � �ρ̬ aρ̬ b � � � ðq1 þ q2Þρj ð157Þ

multiplied by ½ðq1zÞK1ðq1zÞ�½ðq2zÞK1ðq2zÞ�.
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There are two remaining tasks in evaluating the ðm ¼ 0Þ-
mode contribution to the Vþ;α1 structure function: (a) one is
to carry out the zγ integral and (b) the other is to sum
C0;0;0Γ0;0;0 for different polarizations of ϵð0;0;0Þ. As for the
zγ integral, the integrand sharply falls off28 at zγ ≈ q−1

because of the photon wave functions of the form
½ðqizÞKiνðqizÞ�. The zγ integral in C0;0;m over the holo-
graphic radius zγ ∈ ½0;Λ−1� therefore comes mainly from a
very small fraction of it, Λ=q ≪ 1, in the regime of
generalized Bjorken scaling (143). It is then all right to
make an approximation that

IiνðΔzγÞ ≈
1

Γðiνþ 1Þ
�
Δzγ
2

�
iν
½1þOðΔ=qÞ�

when ðΔzγÞ≲ Δ=q ≪ 1; ð158Þ

and also to replace the range of integral zγ ∈ ½0;Λ−1� to
½0;þ∞Þ, as in the literature; the error caused by this
approximation is only in the higher order in (Δ=q), and
the twist-ð2þ γðjÞÞ contribution is still obtained properly.
The integral is then cast into the form of (B1) with δ ¼
jþ iν for the first line of (157) [respectively δ ¼ jþ iν − 2
for the second line of (157)] and ϑ ¼ η=x; thus we can use
the analytic expression (B3), (B5) in the Appendix.
The other task, (b) tensor computations, is carried out in

Appendix A.6. Using the results of (A77) and (A81), one
finds that the contribution to ðC0;0;0

V1;þ;αÞm¼0 from the second
line of (157) is roughly

q2Δ2

ðq · ΔÞðp · qÞ ≪ 1 ð159Þ

times smaller than the contribution from the first line of
(157) in the generalized Bjorken scaling regime (143), and
hence it is ignored, when only the twist-[2þ γðjÞ] con-
tributions are retained.
Combining all of the above, the spin-j ∈ 2Z contribu-

tion is

ðVþ;α1 Þj;m¼0 ≈
ffiffiffi
λ
p

Γðjþ 1Þπ
tγ
ty

Z þ∞
−∞

dν
1

4þjþν2þcjffiffi
λ
p þ j − 1 − iϵ

× C1ðjþ iν; ϑÞ
�
Λ
q

�
iν−j

×

�
1ffiffiffi
λ
p

x

�
j
g0;0;0ðj; iν;ΔÞd̂jð½η�Þ; ð160Þ

whereC1 is given in (B5) and d̂j is a polynomial of degree j
in the argument

½η� ≔ η ×

ffiffiffiffiffiffiffiffiffiffiffi
−4p2

Δ2

r
¼ η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

h þ Δ2

Δ2

r
ð161Þ

and is given in terms of Legendre polynomial, as in (A79).
Now that all of the factors of the spin-j contribution to

Vþ;α1 are given as analytic functions of j, it is possible to
convert the sum over the (spin-j ∈ 2N) string states in the
leading trajectory to a contour integral in the complex
angular momentum plane:

ðVþ;α1 Þm¼0 ¼ −
Z

dj
4i

1þ eπij

sinðπjÞ ðV
þ;α
1 Þj;m¼0; ð162Þ

with the contour in the j plane moving just below the real
positive axis toward the left, and then just above the real
positive axis toward the right. The integration contour in the
ν plane is deformed so that it picks up the residue of the
pole in the lower complex ν plane coming from the t-
channel propagation of strings. Thus,

ðVþ;α1 Þm¼0 ≈ −
Z

dj
4i

1þ eπij

sinðπjÞ
tγ=ty

Γðjþ 1Þ
λ

iνj

× C1

�
jþ iνj;

η

x

��
Λ
q

�
γðjÞ

×

�
1ffiffiffi
λ
p

x

�
j
g0;0;0ðj; iνj;ΔÞd̂jð½η�Þ; ð163Þ

where γðjÞ ¼ iνj − j and iνj ≥ 0 is a function of j
determined by the on-shell condition

j − 1þ 4þ jþ ν2 þ cjffiffiffi
λ
p ¼ 0: ð164Þ

This is the result known in [2–7], etc.; under an
assumption that g0;0;0ðj; iνj;ΔÞ does not grow too rapidly
for a large ReðjÞ to cancel the large factor Γðjþ 1Þ in the
denominator, the integration contour in the j plane can be
deformed toward the left in the j plane, as in the classical
Watson-Sommerfeld transformation; this is how the non-
converging j ∈ 2N sum of the OPE is rendered well
defined for physical kinematics x < 1. The integrand forms
a saddle point due to the two factors ð1=xÞj and ðΛ=qÞγðjÞ;

28In DVCS, VMP, and TCS, the incoming photon has space-
like momentum q1, although the outgoing photon may be either
on shell or timelike. The sharp cutoff in the zγ integral comes
from the wave function of the incoming photon. Since the wave
function of the outgoing photon remains a Hankel function even
for VMP and TCS, rather than IiνðqzγÞ, the approximation of
replacing the integration interval zγ ∈ ½0;Λ−1� by zγ ∈ ½0;∞Þ
remains valid. In such applications, ϑ > 1, and the expressions
(B1) and (B5) should be understood through analytic continu-
ation. The authors thank the Physical Review D referee for
bringing this issue to our attention.
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let j� in the complex j plane be where the saddle point is.29

The integrand also has poles in the j plane. The hadron

matrix element g0;0;0 contains cðjÞiνj;0;0;0 in its definition, and

cðjÞiν;0;0;0 may have a pole in the j plane [3].30 The saddle
point value j� has a larger real part than any one of the
poles, where lnðq=ΛÞ is large relatively to lnð1=xÞ; the j
integral is well approximated by the saddle point value of
the integrand and yields the DGLAP regime. When lnð1=xÞ
is large relatively to lnðq=ΛÞ, however, one of the poles
may have a real part larger than Reðj�Þ. Then the integral is
approximated by the residue at such a leading pole. In this
way, the string-theory result ðVþ;α1 Þm¼0 goes back and forth
between the DGLAP phase and Regge phase, depending on
the kinematical variables x; ðq2=Λ2Þ and t ¼ −Δ2 [3,7].
The derivation of (163) was not just a review of

preceding works, however. First, the integration over zγ
yields a function C1ðjþ iνj; η=xÞ, which has precisely the
same form as the one expected from the conformal OPE;
comparing (25), (26) and (B3), (B5), one finds that they
agree, under the identification

½ðln þ jn − 2Þ ¼ 2jn þ ðτn − 2Þ�⇔½ðjþ iνjÞ ¼ 2jþ γðjÞ�:
ð165Þ

The expression (163) is indeed regarded as conformal OPE
contributions from twist-τn ¼ ð2þ γðjÞÞ operators.
Second, the η dependence of the m ¼ 0 contribution is

now worked out. As we will see later in Sec. VII, it comes
in a form that fits very well with what has been known as
dual parametrization of GPD [15]. One will also notice that
the argument of the degree-j polynomial d̂jð½η�Þ is ½η� in
(161), rather than η. This means that the coefficients of the
η2 term and higher diverge in the t ¼ −Δ2 → 0 limit. This
indicates that it is essential to sum the m ≠ 0 modes to
obtain results that are physically sensible. We will address
this issue in Sec. VII A.
We have considered amplitudes from a t-channel

exchange of states that (a) are in the leading trajectory
and (b) have 5D-traceless and 5D-transverse polarizations,
and that have used the prescription (52), so that we obtained
the contributions that correspond to the twist-[2þ γðjÞ]
operators in the conformal OPE. When the amplitudes with
a t-channel exchange of other modes are included, can-
cellation due to BRST symmetry is at work among some of
them, but other physical contributions remain.
Computation of those contributions will shed a light on

the higher twist contributions to the DVCS amplitudes. To
do this, however, we need wave functions of modes other
than the ðn; l; mÞ ¼ ð0; 0; mÞ modes, and detailed knowl-
edge on the interaction terms in the string field theory more
than (130), (131); furthermore, the prescription (52)—the
process carried out just before Sec. VI C 1—becomes more
complicated for modes other than the ð0; 0; mÞ modes.
After all of this, one then has to work out which operators in
QCD correspond to which group of modes in the t-channel
exchange in the gravity dual calculation. Although this is an
interesting question, we do not address that problem in this
article.

3. Preparation

Let us move on to the amplitudes of m ≥ 1-mode
exchange. We begin with deriving a few general properties
of those amplitudes, which makes the subsequent compu-
tations less tedious.
First, we observe that the hadron matrix element Γ0;0;m

vanishes for any odd value of m. To see that this statement
is true, we use the following property of Jhhl1���lj :

Φðz; p1Þ∇
↔

fl1…∇↔ljgΦðz;−p2Þ

¼ ð−1ÞjΦðz;−p2Þ∇
↔

fl1…∇↔ljgΦðz; p1Þ; ð166Þ

this is true in a process where the initial state hadron hðp1Þ
continues to be the same hadron hðp2Þ in the final state, so
that −ðp1Þ2 ¼ −ðp2Þ2 ¼ m2

h. This property is used below
to study when Jhh

zkλkþ1���λjA
zkλkþ1���λj vanishes for vari-

ous k ¼ 0;…; m.
For an even j, the SO(3,1) indices of Jhh

zkλkþ1���λj are

provided by an even number of ðp1 þ p2Þλ ’s and even
(respectively odd) number of Δλ ’s when k is even (respec-
tively odd). The hadron matrix element Γ0;0;m receives a

nonvanishing contribution from Jhh
zkλkþ1���λjA

zk λ̂kþ1���λ̂j (no sum

in k) only when the D operator (71) is used for an even
(respectively odd) number of times in the Reggeon wave
function (89). This means that s is even (respectively odd),
and hence Γ0;0;m can be nonzero only when m ¼ kþ s
is even.
For an odd j, the SO(3,1) indices of Jhh

zkλkþ1���λj are

provided by an odd number of ðp1 þ p2Þλ ’s and an even
(respectively odd) number of Δλ ’s when k is even (respec-
tively odd). Thus, the matrix element Γ0;0;m receives a
nonzero contribution only when an even (respectively odd)
number of the D operator is used in (89). This means, once
again, that s is even (respectively odd), and hence Γ0;0;m can
be nonzero only when m ¼ kþ s is even. This statement
for an odd j is not more than a side remark, though, since
we focus on the spin-even contribution ∝ ½1þ e−πij�=
sinðπjÞ in this article.

29The saddle point value j� is determined by
∂γðjÞ
∂j jj¼j� ¼

lnð1=xÞ
lnðq=ΛÞ.

30For example, imagine a case ð1 − cðjÞiν;0;0;0Þ ¼
½I−iνðΔ=ΛÞ=IiνðΔ=ΛÞ�); the factor cðjÞiνj;0;0;0 has poles j ¼
αR;nðtÞ (n ¼ 1; 2;…) in the j plane given by the condition
jiνj;n ¼

ffiffi
t
p

=Λ; jμ;n’s are the nth zero of the Bessel function Jμ.
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Second, Γ0;0;m can always be written in the form of

Γ0;0;m ¼ ½ð−2Þj−mðpσ̂1 � � �pσ̂j−mÞ · ϵð0;0;mÞσ1���σj−m �
× g0;0;mðj; iν;Δ2Þ; ð167Þ

and g0;0;m is an SO(3,1) scalar of mass dimension m; we
have encountered a special case of this statement in (152),
(153). This statement itself is understood as follows. When
we write down the covariant derivatives in Jhhzkλ1���λj−k
explicitly, the SO(3,1) indices—there are (j − k) of them
—are one of either pλ, Δλ, and ηλλ0 ; ηλλ0 can be further
rewritten as ηλλ0 − ΔλΔλ0=Δ2 and ΔλΔλ0 . Suppose that there
areNp of the SO(3,1) indices from fpλg’s,NΔ indices from
fΔλg’s, and N ~η from ~ηλλ0 ’s in a given term;
Np þ NΔ þ 2N ~η ¼ ðj − kÞ. When such an SO(3,1) tensor

is contracted with
P½ðm−kÞ=2�

N
~ENDm−k−2N ½ϵð0;0;mÞ� in the

Reggeon wave function A0;0;m
zkλ1���λj−k , it remains nonzero only

when ðm − k − 2NÞ ¼ NΔ and N ≥ N ~η because of the
relation (A37). It is not hard now to see that all of the
remaining terms are proportional to the prefactor of g0;0;m in
(167); the mass dimension of the remaining scalar factor
(the reduced matrix element) g0;0;m follows from the fact
that Γ0;0;m is defined to be of mass dimension j.
Finally, we note that the twist-[2þ γðjÞ] contribution to

the coefficient C0;0;m arises only from the contraction
Jγγ
zkκkþ1���κjA

ẑk κ̂kþ1���κ̂j , with k ¼ 0. We have already seen an
example of this in the m ¼ 0 amplitude; the first term of
(157) contributes to (163), while the second term does not
because of (159), and the first term came from the k ¼ 0
contraction.
In order to verify the claim above, note first that both an

extra ∂z and an extra power of 1=z virtually change the
integral of C0;0;m by about an extra power of
q ∼ q1 ∼ q2 ≫ Λ;Δ. Explicitly writing down covariant
derivatives in Jγγ

zkκ1���κj−k and evaluating the integrals only
by the order of magnitudes, one can see that

ðC0;0;m
V1;þ;αÞk ∼

X½j−k2 �
M

�
Λ
q

�
iν−j qkþ2M

ðq2Þj
�
ðqκ � � � qκÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{j−k−2M

ðηκκq2ÞM
�

·
X½s2�
N

1

Δs−2N
~ENDs−2N ½ϵð0;0;mÞ�: ð168Þ

TheM ¼ 0 contribution above is further evaluated by using
the definition of ~E and D operators. Details of computation
are found partially in (A82); we find that

ðC0;0;m
V1;þ;αÞk;M¼0 ∼

�
Λ
q

�
iν−j ðqκ � � � qκÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{j−m

ϵð0;0;mÞ

ðq2Þj
�ðq · ΔÞ

Δ

�
s
qk:

ð169Þ

Keeping the relation m ¼ kþ s and also the result (167) in
mind, we obtain

C0;0;m
k;M¼0 · Γ0;0;m ∼

�
Λ
q

�
iν−j ðq · pÞj−m

ðq2Þj
�ðq · ΔÞ

Δ

�
s
qk × g0;0;m

∼
�
Λ
q

�
iν−j
�
1

x

�
j
ηm−k

�ðq2ÞðΔ2Þ
ðq · pÞ2

�k
2 g0;0;m

Δm :

ð170Þ

Therefore, this is regarded as a twist-[2þ γðjÞ þ k=2]
contribution in the generalized Bjorken scaling regime.
Thus, only the k ¼ 0 term remains a twist-[2þ γðjÞ]
contribution, and the terms with k > 0 are irrelevant
to GPD.
The analysis becomes a little more complicated when

M > 0 terms are also included, but not in an essential way.
Contributions with some ðk;MÞ correspond to twist-
ð2þ γ þM þ k=2Þ, and only the k ¼ M ¼ 0 terms con-
tribute to GPD. This means that C0;0;m can be evaluated
under the following approximation:

½Apðz;−q2Þð−i∇
↔
ÞjAqðz; q1Þ�m̂1���m̂jδp̂ q̂Am1���mj

→ ½Aμðz;−q2Þð−i∂
↔
ÞjAνðz; q1Þ�κ̂1���κ̂jημνAκ1���κj : ð171Þ

4. Wilson coefficients, conformal OPE and
hadron matrix elements

The twist-[2þ γðjÞ] contribution to C0;0;m
V1;þ;α can be

determined completely, using the approximations above.

C0;0;m
V1;þ;α ≃

�
2Λ
Δ

�
iν Γðiνþ 1Þ
ð2ΛÞj

Z
dz
z
½ðq1zÞK1ðq1zÞ�½ðq2zÞK1ðq2zÞ�zj

×
X½m2 �
N¼0
½2jðqρ̂1 � � � qρ̂jÞ · ~ENDm−2N ½ϵð0;0;mÞ�ρ1���ρj �

bðj−mÞm;N

Δm−2N ½eð2−jÞAΨ
ðjÞ;m;N
iν;0;0;m�: ð172Þ

The product of rank-j SO(3,1) tensors in the second line is reduced to a product of rank-ðj −mÞ tensors by the computation
in (A82). The Reggeon wave function Ψ is also rewritten by using the small ðΔzγÞ≲ ðΔ=qÞ approximation (158):
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½eð2−jÞAΨðjÞ;m;N
iν;0;0;m�≃

XN
a¼0
ð−1ÞaNCaðζjþ1∂m−2a

ζ ½ζ−1−jþmðζ=2Þiν�Þ
ζ→ðΔzÞ

Nj;m

Γðiνþ 1Þ : ð173Þ

The a ¼ 0 term in this expression has the lowest dimension in ζ ¼ Δzγ ≲ ðΔ=qÞ, and hence we only need to retain the
a ¼ 0 term for a given N for the twist-[2þ γðjÞ] contribution. Thus,

½eð2−jÞAΨðjÞ;m;N
iν;0;0;m�≃ 2−iν

ð−1ÞmΓðjþ 1 − iνÞ
Γðjþ 1 − iν −mÞ ðΔzγÞ

iν Nj;m

Γðiνþ 1Þ : ð174Þ

Using this expression and (A82) in (172), we obtain

C0;0;m
V1;þ;α ≃

Λiν−j

qiνþj
j!

ðj −mÞ!
X½m=2�

N¼0

�ðq · ΔÞ2
Δ2

�
N

ð−iÞm ðq · ΔÞm−2N

Δm−2N bðj−mÞm;N ½ðqμ1 � � � qμj−mÞ · ϵð0;0;mÞ�

×
Z

dz
z
½ðq1zÞK1ðq1zÞ�½ðq2zÞK1ðq2zÞ�ðqzÞjþiν

ð−1ÞmΓðjþ 1 − iνÞ
Γðjþ 1 − iν −mÞ Nj;m; ð175Þ

¼
�
Λ
q

�
iν−j ½ðqμ1 � � � qμj−mÞ · ϵð0;0;mÞ�

ðq2Þj
ðq · ΔÞm

Δm C1

�
jþ iν;

η

x

�

× im
j!

ðj −mÞ!Nj;m
Γðjþ 1 − iνÞ

Γðjþ 1 − iν −mÞ
�X½m=2�

N¼0
bðj−mÞm;N

�
; ð176Þ

¼
�
Λ
q

�
iν−j ½ðqμ1 � � � qμj−mÞ · ϵð0;0;mÞ�

ðq2Þj
ðq · ΔÞm

Δm C1

�
jþ iν;

η

x

�

× im
Γðjþ 1þ iν −mÞ
Nj;mΓðjþ 1þ iνÞ ; ð177Þ

where (B1), (B5) is used for the equality in the middle,
while (A67) is used for the last one.
Repeating the same argument as in Sec. VI C 2, we thus

arrive at

ðVþ;α1 Þm≃−
Z

dj
4i
1þe−πij

sinðπjÞ
tγ=ty

Γðjþ1Þ
λ

iνj
C1ðjþ iνjÞ

�
Λ
q

�
γðjÞ

×

�
1ffiffiffi
λ
p

x

�
j
ηmd̂j−mð½η�Þ

g0;0;m

Δm

im

Nj;m

×
Γðjþ1þ iν−mÞ
Γðjþ1þ iνÞ ; ð178Þ

the computation in (A77), (A79) for an even j and m was
used once again. Similar to the case of the m ¼ 0
amplitude, this expression is in the form of the conformal
OPE and inverse Mellin transformation in (20). It should be
noted that the integrand can be defined as a holomorphic
function of j (apart from poles and cuts), using the
definition of C1 in (B1) and that of d̂j−m in (A79), not
just for an integer-valued j; at the same time, ηmd̂j−mð½η�Þ
becomes a polynomial of η of degree j for j ∈ 2N, which is
one of the important properties expected for the hadron
matrix element [9].

The integration contour of (178) is chosen so that it
circles around the pole at j ¼ m after running just below
the real positive axis in the j plane and before running just
above the real positive axis. Only spin-j stringy states with
m ≤ j contribute then. It is not obvious whether the contour
can be deformed so that it encircles j ¼ 0; 2;…; m without
changing ðVþ;α1 Þm, and we leave it an open question. d̂j−m
in (178) is given by a Legendre polynomial of degree
(j −m) when j −m is an even positive integer, but
otherwise it is defined by the hypergeometric function,
as in (A79), and it may or may not have a zero at negative
even integer ðj −mÞ so that the pole from sinðπjÞ is
canceled. Similarly, g0;0;mðj; iνj;ΔÞ=Nj;m may or may
not have a zero at negative integer ðj −mÞ. The authors
have not found a reason to believe that they have a zero, but
we may be wrong.
The twist-[2þ γðjÞ] contribution to the structure func-

tion Vþ;α1 is obtained by summing ðVþ;α1 Þm from the
ðn; l; mÞ ¼ ð0; 0; mÞ modes with m ¼ 0; 2;…:

Vþ;α1 ¼
X∞

m¼0;2;…
ðVþ;α1 Þm: ð179Þ
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Combining (163), (178) with (179), a holographic version
of (20) is obtained. It is not obvious, though, whether or not
the integration variable j in (178) for all the different m’s
should be identified. If we are to define j0 ≔ ðj −mÞ and
use it as a new variable of integration, then the integration
contour of (178) would be the same for all differentm’s; the
cost of doing so, however, is this:

C1ðjþ iνj; ϑÞ
�
Λ
q

�
γðjÞ 1

xj
ηmd̂j−m

¼ ½C1ðj0 þmþ iνj0þm; ϑÞ × ϑm�
�
Λ
q

�
γðj0þmÞ 1

xj
0 d̂j0 :

ð180Þ

Certainly d̂j0 still remains to be a polynomial of degree at
most j0, but the expression no longer fits into the form of
conformal OPE. For this reason, we identify the integration
variable j in (178) for all m ¼ 0; 2;… with that (complex
angular momentum) of the inverse Mellin transformation
(20). This implies that the reduced hadron matrix element
of the spin-j primary operator is given a holographic
expression

Aþ;αj ðη; tÞ ∝
Xj
m¼0

ð−1Þm=2ffiffiffi
λ
p

jΓðjþ 1Þ
g0;0;mðj; iνj;Δ2Þ

Nj;mΔm

×
Γðjþ 1þ iνj −mÞ
Γðjþ 1þ iνjÞ

× ηmd̂j−mð½η�Þ: ð181Þ

5. The ðm ¼ 2Þ-mode hadron matrix element

Most aspects of the expression (178) are dictated by
basic principles of field theory, such as (conformal) OPE.
Additional information from the holographic setup is found
primarily in the hadron matrix element g0;0;mðj; iν;ΔÞ,
apart from the anomalous dimension γðjÞ ¼ iνj − j of

the twist-[2þ γðjÞ] operators. Now we have seen that
g0;0;0ðj; iνj;ΔÞ is not the only hadron matrix element
contributing to the nonperturbative information of
hþ γ� → hþ γð�Þ; let us take a moment here to have a
closer look at one of the new hadron matrix elements we
encounter, g0;0;2ðj; iν;ΔÞ.
The hadron matrix element Γ0;0;m receives contributions

from Jhhzkλkþ1���λjA
ẑk λ̂kþ1���λ̂j’s, with k ¼ 0; 1;…; m. The con-

tribution from each k can be written in the form of (167),
and hence ðg0;0;mðj; iν;ΔÞÞk is defined (k ≤ m). We com-
pute ðg0;0;2Þk explicitly for k ¼ 0; 1; 2.
For this purpose, we need the following technical results:

ð∇lΦÞλ1���λl
≡ ð∂λ1 � � � ∂λlΦÞ

−
X

1≤a<b≤l

ηλaλb
z

�
∂λ1 � � �λa̬ λ̬ b � � � ∂λl

�
∂z þ

l − a − 1

z

�
Φ

�
ð182Þ

modulo terms proportional to ηλaλbηλcλd instead of (150),
and

ð∇lΦÞλ1���z���λl ≡
�
∂z þ

l − 1

z

�
∂λ1 � � �λ̬ a � � � ∂λlΦ;

ð∇lΦÞλ1���z���z���λl ≡
��

∂z þ
l − 1

z

��
∂z þ

l − 2

z

�
þ a − 1

z2

�
× ∂λ1 � � �λ̬ aλ̬ b � � � ∂λlΦ; ð183Þ

modulo terms proportional to ηλcλd .
It is now a straightforward computation to use the

relations above as well as the explicit Reggeon wave
functions A determined in Sec. V to derive the following:

g0;0;2k¼2
Nj;2Δ2

¼ jðj − 1Þ
2

Z
1=Λ

0

dz
z3
ðΛzÞj fz

2“KiνðΔzÞ”g
½ð Δ
2ΛÞ−iνΓðiνÞ�

th

�
2f−Φð∂2

zΦÞ þ ð∂zΦÞ2g −
2

z
Φð∂zΦÞ −

4ðj − 2Þ
3z2

Φ2

�
;

g0;0;2k¼1
Nj;2Δ2

¼ jðj − 1Þ
2

Z
1=Λ

0

dz
z3
ðΛzÞj fz

jþ1∂zðz1−j“KiνðΔzÞ”Þg
½ð Δ
2ΛÞ−iνΓðiνÞ�

�
−2th
z

Φ2

�
;

g0;0;2k¼0
Nj;2Δ2

¼ jðj − 1Þ
Z

1=Λ

0

dz
z3
ðΛzÞj

�f½zjþ1∂2
zz1−j − ðzΔÞ2�“KiνðΔzÞ”g
½ð Δ
2ΛÞ−iνΓðiνÞ�

×

�
p2

ðj − 1
2
ÞΔ2

thΦ2

�

þf−z
2“KiνðΔzÞ”g
½ð Δ
2ΛÞ−iνΓðiνÞ�

× th

�
1

z
Φð∂zΦÞ þ

j − 2

3z2
Φ2

��
: ð184Þ

These results are used in the study below.
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VII. A HOLOGRAPHIC MODEL OF GPD

The differential cross section of the DVCS process
involves an integral of GPD; GPD needs to be parametrized
first, and then the parameters are determined by fitting the
data [10]. The idea of dual parametrization of GPD [15]—
also known as collinear factorization approach [17,18]—is
to expand the reduced hadron matrix element Aþ;αj ðη; tÞ as

Aþ;αj ðη; tÞ ¼
Xj
m¼0

Γþ;αm ðj; tÞηm × ½ηj−mdj−mð1=ηÞ�; ð185Þ

where dlðcos θÞ’s are polynomials of degree l in the
argument (cos θ); Legendre polynomials, Gegenbauer poly-
nomials, or Jacobi polynomials are used, depending on the
helicity change of the target hadron h in the scattering
process [9].When the target hadron is a scalar, as in the study
of this article, a Legendre polynomial is chosen for dl [15].
With no ambiguity introduced in the polynomials dj−mðxÞ,
Γþ;αm ðj; tÞ’s are the fully general, yet nonredundant para-
metrization for the reduced hadron matrix element for GPD.
At the end of the study in the preceding sections, we

arrived at a holographic model of GPD, with the reduced
hadron matrix element given by (181) for the flavor-
nonsinglet sector. String theory—the descendant of the
dual resonance model—yields a result that fits straightfor-
wardly with the format of the dual parametrization (185);
this should not be a surprise, but rather must be something
the authors of [15] have anticipated. With the string-theory
implementation provided, one can now move forward; now

Γþ;αm ðj; tÞ ∼ ð−1Þm=2 g
0;0;mðj; iνj;ΔÞ
Nj;mΔm ð186Þ

can be computed using holographic backgrounds, inde-
pendently from experimental data. Certainly the matrix
elements ½g0;0;m=Δm� will depend on holographic back-
grounds to be used for computation, and predictions from
individual holographic backgrounds should not be taken
seriously at the quantitative level. But it is still worth
looking closely into qualitative features of the holographic
hadron matrix elements g0;0;m=Δm to learn nonperturbative
aspects of Γþ;αm ðj; tÞ.

A. Δ2 → 0 limit

As we have already remarked earlier in this article, the
holographic result (181) is not precisely in the same form of
parametrization as in (185); the argument of the polynomial
d̂j−m is ½η� as defined in (161), rather than η. This difference
itself does not raise an issue immediately; ½η� is the same as
η in the hard scattering regime, Δ2 ≫ m2

h.
Let us study how the hadron matrix element behaves in

the t ¼ −Δ2 → 0 limit, however. The matrix element
g0;0;0ðj; iνj;ΔÞ has already been studied in the literature
and is known not to diverge or vanish in the Δ2 → 0 limit.

The polynomial d̂jð½η�Þ to be multiplied with this
g0;0;0ðj; iνj;ΔÞ, however, has diverging coefficients in all
of the terms η2; η4;… except the η0 term. Therefore, the
m ¼ 0 contribution (163) alone does not have a physically
reasonable behavior in the Δ2 → 0 limit. A natural expect-
ation will be that the hadron matrix element Aþ;αj ðη; tÞ
still has a reasonable behavior after summing up
m ¼ 0; 2;…; j.
To get started, we focus on the η2 term. It is generated

from the (m ¼ 0)-mode exchange, and also from the
(m ¼ 2)-mode exchange. There is a ðp2Þ=Δ2 factor both
in g0;0;0 × d̂jð½η�Þjη2 and g0;0;2=Δ2 × η2, and hence both
diverge in the Δ2 → 0 limit. When they are summed,
however, the divergence may cancel, as we see in the
following. Let us study the coefficient of the η2 term

−
Z

dj
4i

1þ e−πij

sinðπjÞ
�
Λ
q

�
iν−j
�

1ffiffiffi
λ
p

x

�
j
C1

�
jþ iν;

η

x

�

×
λ

iνj

tγ=ty
Γðjþ 1Þ × η2 ð187Þ

in the Δ2 → 0 limit, picking up a contribution to the
integral g0;0;0 and g0;0;2 from the I−iνðΔzhÞ component in
KiνðΔzhÞ first.31 Then in that limit, the coefficient of the
expression (187) becomes

p2

Δ2
lim
Δ2→0

�
g0;0;0ðj;iνj;ΔÞ

jðj−1Þ
ðj− 1

2
Þ −

g0;0;2ðj;iνj;ΔÞ=ðp2Þ
ðj−1þ iνjÞðjþ iνjÞNj;2

�
þOðΔ0Þ: ð189Þ

The two terms in limΔ2→0½� � �� cancel each other, as one can
see by using the approximation in footnote 31. Thus,
the η2 term in Aþ;αj ðη; tÞ also has a finite limit value in
the Δ2 → 0 limit.
It is quite likely, however, that the IiνðΔzÞ component in

KiνðΔzÞ has just as important a contribution as the I−iνðΔzÞ
component does in the Δ2 → 0 limit to the hadron matrix
elements g0;0;0 and g0;0;2; the coefficient ð1 − cðjÞiν;0;0;mÞ may
behave as ðΔ=ΛÞ−2iν in the Δ2 → 0 limit. Because we have
seen above that the divergence ðp2=Δ2Þ cancels when only
the I−iνðΔzÞ component is taken into account, the con-
tributions from the IiνðΔzÞ should also have some cancel-
lation mechanism. Using an approximation for the IiνðΔzÞ
components in KiνðΔzÞ similar to the one in footnote 31,
one finds that the ðp2=Δ2Þ divergence cancels in the η2

coefficient, if and only if

31The leading divergence in the Δ2 → 0 limit comes from

KiνðΔzÞ ∼
�
π

2

�
I−iνðΔzÞ
sinðπiνÞ ≃

�
π

2

� ðΔz=2Þ−iν
sinðπiνÞΓð−iνþ 1Þ

¼ ΓðiνÞ
2
ðΔz=2Þ−iν: ð188Þ
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lim
Δ2=Λ2→0

��
Δ
2Λ

�
2iν
�
ð1 − cðjÞiνj;0;0;0Þ − ð1 − cðjÞiνj;0;0;2Þ

×
ðj − 1 − iνjÞðj − iνjÞ
ðj − 1þ iνjÞðjþ iνjÞ

	�
¼ 0: ð190Þ

The coefficients cðjÞiν;0;0;m are functions of Δ=Λ, rather than
complex numbers. The discussion above shows that physi-
cally sensible implementations of the confining effect
require one of the conditions above between the two

functions cðjÞiν;0;0;0 and cðjÞiν;0;0;2.
The η2M term with M ¼ 2;…, instead of the η2 term

in (187), also receives divergent contributions from
amplitudes of the (m ¼ 0; 2;…; 2M)-mode exchange.
There will be an apparent divergence of order ðp2=Δ2ÞM;
ðp2=Δ2ÞM−1;…; ðp2=Δ2Þ. The cancellation of divergence
in the Δ2 → 0 limit will set M conditions on the Δ2=Λ2 →

0 limit of ð1 − cðjÞiνj;0;0;2MÞ.
In a phenomenological approach of implementing the

confining effect, that is all we can say for now. With a little
more of a model building mind-set, however, we can find
some solutions to the conditions above. It is not hard to
verify that the combination of

½∂zðΨðjÞ;0;0iν;0;0;0ðt; zÞÞ�jzΛ¼1 ¼ 0;

½∂zðΨðjÞ;2;0iν;0;0;2ðt; zÞÞ�jzΛ¼1 ¼ 0 ð191Þ

results in cðjÞiν;0;0;0 and c
ðjÞ
iν;0;0;2 satisfying the condition (190).

It is tempting to generalize this and impose the boundary

condition ∂z½ΨðjÞ;2M;0
iν;0;0;2M� ¼ 0 to determine cðjÞiν;0;0;2M, though

we do not know whether all of the m2
h=Δ2 divergences

above are removed under this boundary condition. The top-
down approach is much more authentic and well motivated
than such a hand-waving and wishful approach, and we do
not try to speculate beyond that; we use this implementa-
tion of the confining effect, (191), only to “get the feeling”
in the numerical presentation in Sec. VII D.

B. Large Δ2 behavior

Certainly the holographic model of GPD yields a result
of the reduced hadron matrix element that fits perfectly
with the dual parametrization. The holographic result,
however, turns out to be a little more complicated than
the models that have often been explored for the purpose of
phenomenological fit of the DVCS data. An example of a
model for phenomenological fit (see, e.g., [18]) was to
introduce an ansatz that

Γþ;αm ðj; tÞ ¼ fj;mΣj−mðtÞ; ð192Þ

where only one ðt ¼ −Δ2Þ-dependent function is involved
in the form of a “form factor” Σj−mðtÞ for some spin

ðj −mÞ, and all the remaining nonperturbative information
is reduced to some numbers fj;m ∈ R. The function ΣJðtÞ
may also be parametrized by an ansatz like

ΣJðtÞ ¼
1

J − α0 − α0efft
1

½1 − t
m2ðJÞ�p

; ð193Þ

in order to implement both the Regge behavior and the
power-law form factor in the hard regime 1 ≪ −t=Λ2. To fit
the data in practice, it is certainly unavoidable to reduce the
unknown information into a finite set of real numbers.
A theoretical picture based on the holographic model, on

the other hand, suggests that the t ¼ −Δ2 dependence is
more complicated than this. If we strictly stick to the
expansion (185), then individual Γþ;αm ðj; tÞ’s may diverge at
t ¼ −Δ2 ¼ 0, as we have seen above, and are not like form
factors. The Γþ;αm ðj; tÞ would not depend only on the
difference ðj −mÞ, as in (192), either; we have already
seen that Γþ;αm¼2ðj; tÞ ∝ g0;0;m¼2=Δ2 diverges at t ¼ −Δ2 →
0 for an arbitrary j, but there is no such divergence in
Γþ;αm¼0ðj; tÞ ∝ g0;0;0, for example. Therefore, holographic
models of GPD might be used as a theoretical guide to
think of parametrization (for fitting) that is different
from (192).
The holographic model provided by the calculation in

the previous section involves infinitely many spin-depen-
dent form factors, g0;0;mðj; iνj;ΔÞ=Δm. We can still find
that they share a common behavior at largeΔ2 ¼ −t. To see
this, note that KiνðΔzhÞ in the Reggeon wave function
effectively cuts off the integral over the holographic radius
zh at zh ≲ 1=Δ in the regime

Λ2; m2
h ≪ Δ2 ≪ jq2j; ðp · qÞ; jðq · ΔÞj: ð194Þ

The explicit form of ΨðjÞ;s;Niν;0;0;mðz;ΔÞ in (97) is not more than
a modification of KiνðΔzÞ by a function of Δzh, and hence
they still play just the role of cutting off the integral at
zhΔ≲ 1. The “current” Jhhzkλkþ1���λj provides extra mth

powers of either 1=z or ∂z and ðj −mÞ-momenta pλ, in
addition to ½Φ�2, which behaves like

½Φ� ∼ zðΛzÞlϕ−1 ð195Þ

in the region z≲ 1=Δ ≪ 1=Λ; lϕ is the conformal dimen-
sion of an operator in a strongly coupled gauge theory dual
to the holographic model, which is a property of the target
hadron h. The ~ENDs−2N ½ϵ�=Δ2−2N operation on the SO(3,1)
tensor in (89) does not introduce any power of ðΔ=ΛÞ or
ðΛzÞ. Therefore, we find in the hard scattering regime (194)
that
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g0;0;m

Δm ∼
�
Δ
Λ

�
iν
× ðΛ=ΔÞjþ2ðlϕ−1Þ × Δm=Δm

∼
1

ðΔ=ΛÞ2lϕ−2−γðjÞ : ð196Þ

Interestingly, the reduced hadron matrix elements
g0;0;m=Δm for ðj; mÞ have the large Δ2 power-law behavior
that is independent of m; 2Δϕ reflects a property of the
target hadron h, and −ð2þ γðjÞÞ ¼ −τn is j dependent, but
the power does not depend on m.32 Holographic models
suggest this j-dependent p ¼ const − γðjÞ=2 scaling
behavior as an alternative to the fixed-power p ¼ const.
scaling of (193).
We have chosen a factorization into the Wilson coef-

ficient and the matrix element that corresponds to renorm-
alization at μ ¼ Λ; this choice was made implicitly when
we chose a factor ½Δiν=Λiν−j��1 at the time the amplitude
was factorized into C0;0;m and Γ0;0;m in (149). When we
keep the renormalization scale μ arbitrary (e.g., taking μ
higher than Δ when Δ ≫ Λ), the Wilson coefficient
contains a factor ðμ=qÞγðjÞ instead of ðΛ=qÞγðjÞ, and the
reduced matrix element also has the following large Δ2

behavior,

g0;0;m

Δm ∼
1

ðΔ=ΛÞ2lϕ−2 ×
1

ðμ=ΔÞγðjÞ : ð197Þ

C. Pomeron and superstring

We have so far talked about Reggeon and the flavor-
nonsinglet sector in Secs. VI and VII, instead of Pomeron.
Since the flavor-singlet sector (≈ gluon) dominates in
small-x physics, that was not a desired choice.
This is due to technical limitations in string theory at this

moment. In order to deal with the propagation of string
states on a curved spacetime, vertex operators and L0 (the
Virasoro generator) need to be defined properly as
composite operators; the nonlinear σ model for AdS5 ×
W5 on the world sheet becomes conformal and the
renormalization of the composite operators well defined,
however, only after the Ramond-Ramond background is
also implemented (e.g., [35]). Presumably an option in the
future will be to implement the Klebanov-Strassler model
and its variations in the Green-Schwarz formalism. One
then computes the spectrum of stringy excited states, and
further works out the world-sheet OPE, in the form of

Vðq1ÞðzÞVð−q2Þð−zÞ ∼
X
I

CIðzÞOIð0Þ; ð198Þ

using operators OIð0Þ at the middle point, where Vðq1Þ and
Vð−q2Þ are the vertex operators corresponding to the

incoming and outgoing photons (32). In this way, we
would not have to use string field theory.
It may also be possible to use bosonic string field theory

for closed string theory, instead of the bosonic open string
field theory we used in Sec. IV of this article. Bosonic
closed string field theory is also well understood already
[36]. Certainly the bosonic closed string field theory is not
for type IIB superstring theory, but it will still allow us to
get the feeling of how much open string (flavor-nonsinglet
sector) and closed string (flavor-singlet sector) theories are
different, from theoretical perspectives, as well as in
phenomenological consequences. At least it is known that
the Virasoro-Shapiro amplitude is generated, not just by the
one string exchange in the t channel, the s channel, and the
u channel, but also a four-point contact interaction vertex in
string field theory [37]. The Virasoro-Shapiro amplitude
does not have a simple s-t duality of the Veneziano
amplitude, either. Certainly it is possible to write it down
in the form of “t-channel” expansion only (cf. [3] and [7]),
but we also need to be aware that the discussion in these
two references did not use the OPE at the middle point
as in (198), but instead used an OPE of the form
VðzÞVð0Þ ∼PICIðzÞOIð0Þ. To get the skewness depend-
ence right, this difference really matters. Thus, an analogue
of the prescription (52) needs to be worked out separately
for the closed string amplitude.
Orthodox approaches such as those above are way

beyond the scope of this article. One can hardly overesti-
mate the importance of such a solid approach, but at the
same time, very few would find the following guess terribly
wrong. For practical purposes, therefore, one can live with
that for the time being. First of all, the on-shell relation for
the bosonic open string in (164) will be replaced by

j
2
− 1þ 4þ jþ ν2 þ cj

4
ffiffiffi
λ
p ¼ 0; ð199Þ

with the constraint cj¼1 ¼ −4 for the bosonic open string
replaced by cj¼2 ¼ −2. Interaction vertices should also be
different; looking at the difference between the Veneziano
amplitude and the Virasoro-Shapiro amplitude, one finds
that the following replacements should be made:

tγ=ty
Γðjþ 1Þ →

tγ=ty
½Γðj=2Þ�2 ;

�
1ffiffiffi
λ
p

x

�
j
→

�
1

4
ffiffiffi
λ
p

x

�
j
:

ð200Þ

The overall normalization tγ=ty is like Nc=N−2
c ∼ N−1

c now,
when the Pomeron (closed string) contribution is used in
the t channel, and the source field for the “QED current” is
implemented in the form of the D7-brane gauge field; the
1=Nc scaling (see footnotes 14 and 27) is also the natural
expectation in the large Nc argument.32This scaling was known already for ḡ0;0;0 [7].
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D. Numerical results

At the end of this article, we leave a few plots of
numerical evaluation of various results that have been
obtained. We do not intend to provide a quantitative
(precise) prediction from holography, as we have repeat-
edly emphasized our perspective on this issue in this article;
the holographic approach to GPD will provide at best a
qualitatively new way to think of how to parametrize the
matrix elements for GPD. Having said that, it is still
desirable to grasp various expressions in a more intuitive
form and bring them down to more practical situations.
This section serves this purpose.
There are a couple of parameters that need to be specified

in order to obtain numerical outputs in a few summary
plots. We used the on-shell relation (164), which means that
we should understand the numerical results to be that of the
Reggeon contribution. We adopted cj þ 4 ¼ 0 for all j,
although there is no rationale to specify the j dependence in
this way (see [12,38] and the literature therein for how to
work out the j dependence of cj). The confining effect was
implemented in the form of the boundary condition (191)
for the Reggeon wave function. As for the target hadron, we
set the mass term of the scalar field to be 5=R2

(i.e., cy ¼ 5), just like the lowest nontrivial spherical
harmonics on W5 ¼ S5 for the type IIB dilaton field
[39]. The operator dimension in the dual CFT becomes
lϕ ¼ 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ R2M2

eff

p
¼ 2þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ cy
p ¼ 5.

Figure 6 shows the reduced matrix element
g0;0;0ðj; iνj;ΔÞ for the (m ¼ 0)-mode exchange; the results
for different values of spin j ¼ 1, 1.5, 2, 2.5 are shown in
the figure. Lattice computation can be used to determine
matrix elements at integer-valued spins, but the analytic
expression (153) allows us to determine the matrix element
even for noninteger spin, so that the inverse Mellin trans-
formation is possible, and we can also talk of the matrix
elements evaluated at the saddle point value of spin j ¼ j�.
Panel (b) in Fig. 6 is essentially the same as that of Fig. 5 in
[7], while panel (a) shows g0;0;0 without normalizing the

matrix element by its value at t ¼ −Δ2 ¼ 0. Since they
are not the matrix element of a “conserved current” for
j ≠ 1, the matrix element does not necessarily approach 1
in the Δ2 → 0 limit. Panel (b) has a property such that
g0;0;0 is soft (g0;0;0 gets smaller slowly in Δ2) for a larger j;
this is consistent with the observation in (196) because
∂γðjÞ=∂j > 0.
A numerical result for the η2 term in Aþ;αj , which is

proportional to

g0;0;0ðj; iνj;ΔÞ ×
�
p2

Δ2

jðj − 1Þ
j − 1

2

�
þ g0;0;2ðj; iνj;ΔÞ

Nj;2Δ2

×
−1

ðjþ iνjÞðj − 1þ iνjÞ
; ð201Þ

is shown in Fig. 7, using j ¼ 2. The first and second terms
of (201) both diverge at the Δ2 → 0 limit, as we saw in
Sec. VII A, but their sum has a finite value at Δ2 ¼ 0, as
one can see in the figure. It is worth mentioning that this
finite limit value ≈ −700 is much larger than that of g0;0;0.
This is likely due, at least partially, to the hadron mass mh
value in this case; for the value of parameters we chose,
mh ¼ jlϕ−2;1Λ, j3;1 ≃ 6.4, and m2

h=Λ
2 ≈ 40. An extra

derivative ∂z in the matrix elements g0;0;2k is more like
mh than Λ, and hence the second term can be larger than the
first term by about ðmh=ΛÞ2. The factor ðmh=ΛÞ2 ≈ 40
does not explain all of the moderately large value −700,
however. The t ¼ −Λ2 dependence of the η0 term [i.e.,
g0;0;0ðj; iνj;ΔÞ] is quite different from that of the coef-
ficient of the η2, at least at small Δ2.
In the DGLAP phase, a crude approximation of the GPD

is given by

Hþ;αðx; η; t; q2Þ ≈
�
1

x

�
j�
�
Λ
q

�
γðj�Þ

Aþ;αj� ðη; tÞ; ð202Þ

where j� is the saddle point value of j depending primarily
on lnð1=xÞ, lnðq=ΛÞ, and t ¼ −Λ2. Apart from applications

FIG. 6. Panel (a) shows ḡ0;0;0ðj; iνj;ΔÞ as a function of Δ2=Λ2. The curve at the bottom is for j ¼ 1, while the one at the top is for
j ¼ 2.5; the two in the middle correspond to j ¼ 1.5 and j ¼ 2. Panel (b) shows ḡ0;0;0ðΔÞ=ḡ0;0;0ðΔ ¼ 0Þ, i.e., ḡ0;0;0ðj; iνj;ΔÞ normalized
at the value ofΔ2 ¼ 0. The curve at the bottom is for j ¼ 1, and the curve goes up for j ¼ 1.5, 2, and 2.5; this softer behavior for larger j
is consistent with (196).
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to the timelike Compton scattering with very large (pos-
itive) lepton invariant mass square, the relevant range of jηj
is not much more than x in such processes as TCS, DVCS,
and VMP. Suppose, in the power series expansion of Aþ;αj�
in η, that all of the terms with a different power of η have a
(t-dependent) coefficient at most of Oð1Þ. Then the GPD
[or Aþ;αj� ðη; tÞ] in the small-x regime would not have
skewness dependence very much in the range of interest,
jηj ≲ x, because η2 and higher-order terms are small relative
to the η0 term. The coefficient of the η2 term, however, turns
out to be of Oð−700Þ for Δ2 ≈ 0, which at least contains a
factor m2

h=Λ
2. Thus, for the range of moderately small x’s,

such as x ∼ 10−1 and jηj≲ x, the η2 term in Aþ;αj� ðη; tÞ can
be just as important as the η0 term for small Δ2.
Consequently the prediction/fit of the slope parameter

(the t dependence) may also be affected since the η2 term
with a steeper t dependence is involved. Toward higher Δ2,
however, the ratio of the coefficient of the η2 term to that of
the η0 term changes as in a numerical computation shown in
Fig. 8. Since the η2-term coefficient becomes not more than
10 times the η0 term for 5Λ2 ≲ ðΔ2 ¼ −tÞ at j ¼ 2 in this
numerical computation, the η0 term alone will become a
good enough approximation in this range of t, even for the
moderately small jηj ≲ x ≈ Oð10−1Þ; for an even smaller x,
the η2 term can be negligible for a broader range of
t ¼ −Λ2. We have nothing more to say about the η4 term
and higher at this moment, or whether this moderately
large value ≈ 700 is an artifact of a specific implementation
of confining effects we adopted for the numerical presen-
tation in this section. If this relatively large coefficient of
the η2 term (and also higher-order terms) turns out to be a
robust consequence of holographic models, that may be
regarded as an unexpected lesson from holography to
phenomenology.
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FIG. 7. The first and second term of (201) are plotted in (a) and (b), respectively, as functions of Δ2=Λ2; parameters are set to the
values described in the text, and we used j ¼ 2 in these figures. Although both (a) and (b) diverge at Δ2 → 0, they add up to be (c),
where the Δ → 0 limit is finite. The large Δ2 behavior is seen better in panel (d).

FIG. 8. The ratio of the coefficient of the η2 term of Āþ;αj ðη; tÞ to
that of the η0 term, as a function of −t=Λ2 ¼ Δ2=Λ2. We used
j ¼ 2 and other parameters described in the text. This is the ratio
of Fig. 7(d) to Fig. 6(a).
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APPENDIX A: MORE ON THE MODE
DECOMPOSITION ON AdS5

For convenience, let us copy here the eigenmode
equation (65) for a totally symmetric rank-j tensor field
on AdS5; the equation consists of the following equations
labeled by k ¼ 0;…; j:

ððR2ΔjÞ − ½ð2kþ 1Þj − 2k2 þ 3k�ÞAzkμ1���μj−k

þ 2zk∂ ρ̂Azk−1ρμ1���μj−k þ kðk − 1ÞAρ̂
zk−2ρμ1���μj−k

− 2zðD½Azkþ1����Þμ1���μj−k þ ðE½Azkþ2����Þμ1���μj−k
¼ −EAzkμ1���μj−k : ðA1Þ

1. Eigenvalues and eigenmodes for Δμ ¼ 0

a. Block diagonal decomposition

In the main text, we considered a decomposition of the
rank-j totally symmetric tensor field with ð−i∂μÞ¼Δμ¼0
in the form of

Azkμ1���μj−kðz;Δμ ¼ 0Þ ¼
X½ðj−kÞ=2�
N¼0

ðEN ½aðk;NÞ�Þμ1���μj−k ;

where aðk;NÞ’s are z-dependent rank-ðj − k − 2NÞ totally
symmetric tensor fields of SO(3, 1), satisfying the 4D-
traceless condition (76). This is indeed a decomposition, in
that all of the degrees of freedom in Azkμ1���μj−kðz;Δμ ¼ 0Þ
are described by aðk;NÞðzÞμ1���μj−k−2N, with 0 ≤ N ≤
½ðj − kÞ=2� without redundancy. To see this, one needs
only to note that there is a relation33 that, for a totally
symmetric 4D-traceless rank-r SO(3, 1) tensor a,

ηρ̂ σ̂EN ½a�ρσμ1���μrþ2N−2
¼ 4Nðrþ N þ 1ÞEN−1½a�μ1���μrþ2N−2

:

ðA2Þ

Using this relation, aðk;NÞμ1���μj−k−2N can be retrieved from
Azkμ1���μj−k , progressing from ones with a larger N to ones
with a smaller N.
Let us now see that the eigenmode equation (65), (69),

(A1) can be made block diagonal by using this decom-
position. The eigenmode equation (A1) with the label k for
Δμ ¼ 0 can be rewritten by using this relation (A2) as
follows:X
N

½ðR2Δj − ½ð2kþ 1Þj − 2k2 þ 3k� þ EÞEN ½aðk;NÞ�

þ kðk − 1Þ½4ðN þ 1Þðj − k − N þ 2Þ�EN ½aðk−2;Nþ1Þ�
þ EN ½aðkþ2;N−1Þ�� ¼ 0:

Although this equation has to hold only after the summation
in N, it actually has to be satisfied separately for different
N’s. To see this, let us first multiply ηρ̂ σ̂ for ½ðj − kÞ=2� times
and contract indices just like in (A2); we obtain an equation
that involves only aðk;½ðj−kÞ=2�Þ, aðk−2;½ðj−kÞ=2�þ1Þ, and
aðkþ2;½ðj−kÞ=2�−1Þ. Next,multiply ηρ̂ σ̂ for ½ðj − kÞ=2� − 1 times
to obtain another equation involving aðk;½ðj−kÞ=2�−1Þ,
aðk−2;½ðj−kÞ=2�Þ, and aðkþ2;½ðj−kÞ=2�−2Þ. In this way, we obtain

ðR2Δj − ½ð2kþ 1Þj − 2k2 þ 3k� þ EÞaðk;NÞ
þ kðk − 1Þ½4ðN þ 1Þðj − k − N þ 2Þ�aðk−2;Nþ1Þ
þ aðkþ2;N−1Þ ¼ 0 ðfor ∀k; NÞ: ðA3Þ

Fields aðk;NÞ’s with the same kþ 2N ¼ n form a system of
coupled equations, but those with different n ¼ kþ 2N do
not mix. Thus, the eigenmode equation for Δμ ¼ 0 is
decomposed into sectors labeled by n. The nth sector
consists of z-dependent fields that are all in the ðj − nÞ ¼
ðj − k − 2NÞ totally symmetric tensor of SO(3, 1).

b. Classification of eigenmodes for Δμ ¼ 0

Let us now study the eigenmode equations in more
detail for the separate diagonal blocks we have seen.
Simultaneous treatment is possible for all of the nth sectors
with an even n and for all of the sectors with an odd n.
Let us first look at the nth sector of the eigenmode

problem for an n ¼ 2n ≤ j. In the eigenmode equation of
Δμ ¼ 0, we can assume34 the same z dependence for all of
the fields in this diagonal block:

aðk;NÞðzÞμ1���μj−n ¼ aðk;NÞμ1���μj−nz2−j−iν; kþ 2N ¼ n; ðA4Þ

where aðk;NÞ’s are ðx; zÞ-independent 4D-traceless rank-
ðj − nÞ tensors of SO(3, 1). The eigenmode equations with
the label ðk; NÞ ¼ ð2k; n − kÞ, with k ¼ 0;…; n, are rel-
evant to the n ¼ 2n sector and are now written in a matrix
form:

Xn
k0¼0

D
2k;2k0a

ð2k0;n−k0Þ ¼ ðð4þ ν2Þ − EÞað2k;n−kÞ; ðA5Þ

where
(i) diagonal ðk; k0Þ ¼ ð2k; 2kÞ entry: D2k;2k ¼

−½ð2kþ 1Þj − 2k2 þ 3k�,
(ii) diagonalþ; ðk;k0Þ¼ð2k;2kþ2Þ entry: D

2k;2kþ2 ¼ 1,
(iii) diagonal−; ðk; k0Þ ¼ ð2k; 2k − 2Þ entry: D2k;2k−2 ¼

kðk − 1Þ × 4ðn − kþ 1Þðj − n − kþ 2Þ.

33This relation can be verified recursively in N.

34This is because, in the absence of z2∂2 term, the operator Δj
becomes a constant multiplication when it acts on a simple power
of z. Upon z2−j−iν, for example, R2Δj returns −ð4þ ν2Þ.
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There must be ðnþ 1Þ independent eigenmodes in this
ðnþ 1Þ × ðnþ 1Þ matrix equation. Let En;l denote
the collection of eigenvalues in this n ¼ 2nth diagonal
block, and l ¼ 0;…; n ¼ n=2 label distinct eigenmodes.
The corresponding eigenmode wave function for the
ðn ¼ 2n; lÞ mode is in the form of

aðk;NÞðz;Δμ ¼ 0Þ ¼ að2k;n−kÞ ¼ c2k;l;nϵ
ðn;lÞz2−j−iν; ðA6Þ

where ϵðn;lÞ is an ðx; zÞ-independent 4D-traceless totally
symmetric rank-ðj − nÞ ¼ ðj − 2nÞ tensor of SO(3, 1), and
c
2k;l;n are ðx; zÞ-independent constants determined as the
eigenvector corresponding to the eigenvalue En;l.
Similarly, in the n ¼ 2nþ 1 ≤ jth sector of the eigen-

mode problem, with an odd n, we can assume a simple
power law for all of the component fields involved in this
sector;

aðk;NÞðzÞμ1���μj−n ¼ aðk;NÞμ1���μj−nz2−j−iν; kþ 2N ¼ n; ðA7Þ

where aðk;NÞ are ðx; zÞ-independent 4D-traceless totally
symmetric tensors of SO(3, 1). The eigenmode equation
with the label ðk; NÞ ¼ ð2kþ 1; n − kÞ, with k ¼ 0;…; n,
are relevant to this sector, and in the matrix form, the
eigenmode equation now looks like

Xn
k0¼0

D2kþ1;2k0þ1a
ð2k0þ1;n−kÞ ¼ ðð4þ ν2Þ − EÞað2kþ1;n−kÞ;

ðA8Þ

where
(i) diagonal ðk;k0Þ¼ð2kþ1;2kþ1Þ entry:D

2kþ1;2kþ1 ¼
−½ð2kþ 1Þjþ ð−2k2 þ 3kÞ�,

(ii) diagonalþ ðk; k0Þ ¼ ð2kþ 1; 2kþ 3Þ entry:
D

2kþ1;2kþ3 ¼ 1,
(iii) diagonal− ðk; k0Þ ¼ ð2kþ 1; 2k − 1Þ entry:

D
2kþ1;2k−1¼kðk−1Þ×4ðn−kþ1Þðj−n−kþ1Þ.

From here, nþ 1 independent modes arise; their eigenval-
ues are denoted by En;l, and l ¼ f0;…; ng is the label
distinguishing different modes. The eigenmode labeled by
ðn ¼ 2nþ 1; lÞ has a wave function

aðk;NÞðz;Δμ ¼ 0Þ ¼ að2kþ1;n−kÞ ¼ c
2kþ1;l;nϵ

ðn;lÞz2−j−iν;

ðA9Þ

where ϵðn;lÞ is an ðx; zÞ-independent 4D-traceless rank-
ðj − nÞ totally symmetric tensor of SO(3, 1), and c

2kþ1;l;n is
the eigenvector for the ðn; lÞ eigenmode determined in the
matrix equation above.

c. Explicit examples

Let us take a moment to see how the general theory
above works in practice.
The easiest of all is the n ¼ 0 sector, which contains

only one rank-j 4D-traceless field, að0;0Þ. The eigenmode
equation is

�
Δj −

½ð2kþ 1Þj − 2k2 þ 3k�k¼0
R2

�
að0;0Þ

¼
�
Δj −

j
R2

�
að0;0Þ ¼ −

E0;0

R2
að0;0Þ: ðA10Þ

The eigenmode wave function has the form

að0;0ÞðzÞμ1���μj ¼ ϵð0;0Þμ1���μjz2−j−iν; ðA11Þ

and the eigenvalue En;l is

E0;0 ¼ ðjþ 4þ ν2Þ: ðA12Þ

Also to the n ¼ 1 sector, only one rank-ðj − 1Þ 4D-
traceless tensor field contributes. That is að1;0Þ. The
eigenmode equation becomes

½R2Δj − ½ð2kþ 1Þj − 2k2 þ 3k�jk¼1�að1;0Þ
¼ ½R2Δj − ð3jþ 1Þ�að1;0Þ ¼ −E1;0að1;0Þ: ðA13Þ

The solution is

að1;0ÞðzÞμ1���μj−1 ¼ ϵð1;0Þμ1���μj−1z2−j−iν; E1;0 ¼ ð3jþ 5þ ν2Þ:
ðA14Þ

In the n ¼ 2 sector, two rank-ðj − 2Þ 4D-traceless fields
are involved. They are að0;1Þ and að2;0Þ. After introducing
the z dependence ∝ z2−j−iν, the eigenmode equation (A5)
in the n ¼ 2 sector becomes

�−j 1

8j −ð5j − 2Þ

��
að0;1Þ

að2;0Þ

�
¼ ðð4þ ν2Þ − EÞ

�
að0;1Þ

að2;0Þ

�
:

ðA15Þ

One of the two eigenmodes is

E2;0 ¼ ð4þ 5jþ ν2Þ;
�
að0;1ÞðzÞμ1���μj−2
að2;0ÞðzÞμ1���μj−2

�

¼
�

1

−4j

�
ϵð2;0Þμ1���μj−2z2−j−iν; ðA16Þ

and the other is
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E2;1 ¼ ð2þ jþ ν2Þ;
�
að0;1ÞðzÞμ1���μj−2
að2;0ÞðzÞμ1���μj−2

�

¼
�
1

2

�
ϵð2;1Þμ1���μj−2z2−j−iν: ðA17Þ

In the n ¼ 3 sector, two rank-ðj − 3Þ 4D-traceless tensor
fields are involved: að1;1Þ and að3;0Þ. The eigenmode
equations (A8) become�

−ð3jþ 1Þ 1

24ðj − 1Þ −ð7j − 9Þ
��

að1;1Þ

að3;0Þ

�

¼ ðð4þ ν2Þ − EÞ
�
að1;1Þ

að3;0Þ

�
: ðA18Þ

So, one of the two eigenmodes is

E3;0 ¼ ð7jþ 1þ ν2Þ;
�
að1;1ÞðzÞμ1���μj−3
að3;0ÞðzÞμ1���μj−3

�

¼
�

1

−4ðj − 1Þ
�
ϵð3;0Þμ1���μj−3z2−j−iν; ðA19Þ

and the other one is

E3;1 ¼ ð3j − 1þ ν2Þ;
�
að1;1ÞðzÞμ1���μj−3
að3;0ÞðzÞμ1���μj−3

�

¼
�
1

6

�
ϵð3;1Þμ1���μj−3z2−j−iν: ðA20Þ

Finally, in the n ¼ 4 sector, the eigenmode equation (A5)
is given by" −j 1 0

16ðj − 1Þ −ð5j − 2Þ 1

0 48ðj − 2Þ −ð9j − 20Þ

# 
að0;2Þ

að2;1Þ

að4;0Þ

!

¼ ðð4þ ν2Þ − EÞ
 
að0;2Þ

að2;1Þ

að4;0Þ

!
: ðA21Þ

There are three solutions. First,

E4;0 ¼ ð9j − 4þ ν2Þ; ðA22Þ

ðað0;2Þ; að2;1Þ; að4;0ÞÞ
¼ ð1;−8ðj − 1Þ; 32ðj − 1Þðj − 2ÞÞϵð4;0Þz2−j−iν; ðA23Þ

second,

E4;1 ¼ ð5j − 6þ ν2Þ; ðA24Þ
ðað0;2Þ; að2;1Þ; að4;0ÞÞ
¼ ð1;−ð4j − 10Þ;−48ðj − 2ÞÞϵð4;1Þz2−j−iν; ðA25Þ

and, finally,

E4;2 ¼ ðjþ ν2Þ; ðA26Þ

ðað0;2Þ; að2;1Þ; að4;0ÞÞ ¼ ð1; 4; 24Þϵð4;2Þz2−j−iν: ðA27Þ

An empirical relation is observed in the j dependence of
the eigenvalues we have worked out so far. The eigenvalues
in the nth sector are in the form of En;l ¼ ν2 þ ð2nþ 1 −
4lÞjþOð1Þ for 0 ≤ l ≤ ½n=2�.

d. 5D-traceless modes: the l ¼ 0 modes

Although the precise expressions for the eigenvalues
En;l and the eigenvectors ck;l;n are not given for all of
the eigenmodes, there is a class of eigenmodes whose
eigenvalues and eigenvectors (wave functions) are fully
understood.
As we discussed in Sec. V B 3, it is possible to require

both that a field is an eigenmode and that it satisfies the
5D-traceless condition (95) at the same time. In the
n ¼ ðkþ 2NÞth sector, the 5D-traceless condition becomes

0 ¼ ðEN ½aðk;NÞ�Þρ̂ρμ3���μj−n þ ðEN−1½aðkþ2;N−1Þ�Þμ3���μj−n ;
¼ EN−1½4Nðj − nþ N þ 1Þaðk;NÞ þ aðkþ2;N−1Þ�

×

�
k ¼ 0; 2;…; 2ðn − 1Þ ðevennÞ;
k ¼ 1; 3;…; 2n − 1 ðodd nÞ: ðA28Þ

Thus, the 5D-traceless condition uniquely determines one
eigenmode in each one of the nth sectors.

En;0 ¼ ð2nþ 1Þjþ 2n − n2 þ 4þ ν2 ðA29Þ

and

c2k;0;2n ¼ ð−Þk4k
n!

ðn − kÞ!
ðj − nþ 1Þ!
ðj − n − kþ 1Þ! ;

c
2kþ1;0;2nþ1 ¼ ð−Þk4k

n!

ðn − kÞ!
ðj − nÞ!
ðj − n − kÞ! : ðA30Þ

2. MODE DECOMPOSITION FOR NONZERO Δμ

a. Diagonal block decomposition for the Δμ ≠ 0 case

Let us now turn our attention to the eigenmode
equations (65), (69) with Δμ ≠ 0. Because of the second
and fourth terms in (69), the eigenmode problem becomes
much more complicated. We begin by finding a diagonal
block decomposition suitable for the case with Δμ ≠ 0.
In the main text, we introduced a decomposition of a

totally symmetric rank-j tensor field Am1���mj
of SO(4, 1)

into a collection of totally symmetric 4D-traceless 4D-
transverse tensor fields of SO(3, 1). Instead of (75), a new
decomposition is given by (85), (A31):
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Azkμ1���μj−kðz;ΔμÞ ¼
Xj−k
s¼0

X½s=2�
N¼0
ð ~ENDs−2N ½aðk;s;NÞ�Þμ1���μj−k ;

ðA31Þ

where aðk;s;NÞ are totally symmetric 4D-traceless 4D-
transverse rank-ðj − k − sÞ tensor fields of SO(3, 1). An
operation a↦ ~E½a� on a totally symmetric SO(3, 1) tensor a
is given by (86).
In order to see that the parametrization of Azkμ1���μj−k by
ðaðk;s;NÞÞμ1���μj−k−s’s above is indeed a decomposition, one

needs to see that aðk;s;NÞ’s can be retrieved from Azkμ1���μj−k
so that the degrees of freedom aðk;s;NÞ are independent. For
this purpose, it is convenient to derive some relations
analogous to (A2). First of all, note that E½D½a�� ¼ D½E½a��
and35 ~E½D½a�� ¼ D½ ~E½a�� for a totally symmetric SO(3, 1)
tensor a. If the rank-r tensor a is also 4D transverse and 4D
traceless, one can then derive the following relations:

∂ ρ̂ðEtDs−2t½a�Þρμ2���μrþs
¼ −Δ2ðs − 2tÞEtDs−2t−1½a� þ ð2tÞEt−1Ds−2tþ1½a�;

ðA33Þ
ηρ̂ σ̂ðEtDs−2t½a�Þρσμ3���μrþs
¼ −Δ2ðs − 2tÞðs − 2t − 1ÞEtDs−2t−2½a�
þ 4tðrþ s − tþ 1ÞEt−1Ds−2t½a�; ðA34Þ

∂ ρ̂ð ~ENDs−2N ½a�Þρμ2���μrþs
¼ −ðs − 2NÞΔ2 ~ENDs−2N−1½a�; ðA35Þ

�
ηρ̂ σ̂ −

∂ ρ̂∂ σ̂

∂2

�
ð ~ENDs−2N ½a�Þρσμ3���μrþs

¼ 4Nðrþ N þ 1=2Þ ~EN−1Ds−2N ½a�: ðA36Þ

With the relations above, it is now possible to compute

�
ημ̂1μ̂2 −

∂ μ̂1∂ μ̂2

∂2

�
� � �
�
ημ̂2p−1μ̂2p −

∂ μ̂2p−1∂ μ̂2p

∂2

� ∂ μ̂2pþ1

∂2
� � � ∂

μ̂2pþq

∂2
ð ~ENDs−2N ½a�Þμ1���μrþs

¼
� bðrÞs−2p−q;N−p

bðrÞs;N
ð ~EN−pDs−2N−q½a�Þμ2pþqþ1���μrþs if p ≤ N and q ≤ s − 2N;

0 otherwise;
ðA37Þ

where we assume that a is a totally symmetric 4D-
traceless 4D-transverse rank-r tensor of SO(3, 1). In the
last line,

bðrÞs;N ≔
1

4NN!ðs − 2NÞ!
Γðrþ 3=2Þ

Γðrþ N þ 3=2Þ : ðA38Þ

It is now clear how to retrieve aðk;s;NÞ from the Azkμ1���μj−k
given by (85), (A31). First, one has to multiply ηρ̂ σ̂ −
∂ ρ̂∂ σ̂=∂2 and ∂ σ̂=∂2 by Azkμ1���μj−k as many times as possible

in order to obtain aðk;s;NÞ with a larger N and ðs − 2NÞ.
Then aðk;s;NÞ’s with smaller N or ðs − 2NÞ can be deter-
mined by multiplying ηρ̂ σ̂ − ∂ ρ̂∂ σ̂=∂2 and ∂ σ̂=∂2

fewer times.
Let us now return to the eigenmode equation for the

cases with Δμ ≠ 0. Following precisely the same argument
as in Sec. A. 1, one can see that the eigenmode equation can
be separated into the following independent equations
labeled by k; s, and N:

½R2Δj − ½ð2kþ 1Þj − 2k2 þ 3k� þ E�aðk;s;NÞ þ 2zkðsþ 1 − 2NÞð∂2Þaðk−1;sþ1;NÞ
þ kðk − 1Þðsþ 2 − 2NÞðsþ 1 − 2NÞð∂2Þaðk−2;sþ2;NÞ þ 4kðk − 1ÞðN þ 1Þðj −mþ N þ 3=2Þaðk−2;sþ2;Nþ1Þ
− 2zaðkþ1;s−1;NÞ þ aðkþ2;s−2;N−1Þ þ ð∂2Þ−1aðkþ2;s−2;NÞ ¼ 0 for ∀k; s; N: ðA39Þ

The relations (A33), (A34) were used to evaluate the
second–fourth terms of (A1). One can see that aðk;s;NÞ’s
with a common value of m ≔ kþ s form coupled eigen-
mode equations, but those with different m’s do not. Thus,
aðk;s;NÞðz;ΔμÞ’s with kþ s ¼ m form the mth subspace of
Am1���mj

ðz;ΔμÞ, and the eigenmode equation becomes block
diagonal in the decomposition into the subspaces labeled
by m ¼ 0;…; j.

35

EtDs−2t½a� ¼
X

ημp1μp2 � � � ημp2t−1μp2t ∂μp2tþ1
� � � ∂μps

½a�μ1……̬μrþs ;

ðA32Þ

where the sum is taken over all possible ordered choices of
p1; p2;…; ps ∈ f1;…; jg such that pi ≠ pj for i ≠ j.

RYOICHI NISHIO AND TAIZAN WATARI PHYSICAL REVIEW D 90, 125001 (2014)

125001-40



The eigenmode equation on themth subspace is given by
the equation above, with 0 ≤ k ¼ ðm − sÞ ≤ m and
0 ≤ N ≤ ½s=2�. Thus, the total number of equations isXm

s¼0
ð½s=2� þ 1Þ; ðA40Þ

and the same number of eigenvalues should be obtained
from the mth sector.

b. Examples

The sector m ¼ 0.—There is only one field að0;0;0Þ in this
sector, and the eigenmode equation is�

Δj −
j
R2

�
að0;0;0Þðz;ΔμÞ ¼ −

E
R2

að0;0;0Þðz;ΔμÞ: ðA41Þ

Assuming a power series expansion for the solution to this
equation, beginning with some power z2−j−iν, the eigen-
value is determined as a function of ðiνÞ:

E0;0 ¼ ðjþ 4þ ν2Þ;

and the wave function can be chosen as

að0;0;0Þðz;ΔμÞμ1���μj ¼ ϵð0;0;0Þμ1���μj Ψ
ðjÞ
iν ð−Δ2; zÞ; ðA42Þ

ΨðjÞiν ðΔ2; zÞ ≔ 2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν sinhðπνÞ

2R

r
eðj−2ÞAKiνðΔzÞ: ðA43Þ

The sector m ¼ 1.—The eigenmode equation in this sector
becomes�

R2Δj − j −2z
−2zΔ2 R2Δj − ð3jþ 1Þ

��
að0;1;0Þ

að1;0;0Þ

�

¼ −E
�
að0;1;0Þ

að1;0;0Þ

�
: ðA44Þ

Assuming the power series expansion in z, beginning with
z2−j−iν terms, we obtain two eigenvalues depending on iν.
They are given by evaluating R2Δj−j and R2Δj − ð3jþ 1Þ
on z2−j−iν:

E0;0 ¼ ðjþ 4þ ν2Þ and E1;0 ¼ ð3jþ 5þ ν2Þ: ðA45Þ

The sector m ¼ 2.—The eigenmode equation becomes

0
BBB@ðR2Δj þ EÞ14×4 þ

2
6664

−j −2z 1=∂2

−j 1

4z∂2 −ð3jþ 1Þ −2z
4∂2 8j − 4 4z∂2 −ð5j − 2Þ

3
7775
1
CCCA
0
BBB@

að0;2;0Þ

að0;2;1Þ

að1;1;0Þ

að2;0;0Þ

1
CCCA ¼ 0: ðA46Þ

The indicial equation relating the exponent ð2 − j − iνÞ at
z ¼ 0 and the eigenvalues split into two parts; three
eigenvalues of this matrix,

0
B@−j 1

−j 1

4 ð8j − 4Þ −ð5j − 2Þ

1
CA; ðA47Þ

determine −E − ð4þ ν2Þ for the three eigenmodes, and
−ðE − ð4þ ν2ÞÞ ¼ −ð3jþ 1Þ for the last eigenmode.
Therefore, the four eigenvalues in the m ¼ 2 sector are

E0;0 ¼ ðjþ 4þ ν2Þ; E1;0 ¼ ð3jþ 5þ ν2Þ;
E2;0 ¼ ð5jþ 4þ ν2Þ; E2;1 ¼ ðjþ 2þ ν2Þ: ðA48Þ

In all of the examples above, the mth sector consists of
eigenmodes with eigenvalues En;l for 0 ≤ n ≤ m,
0 ≤ l ≤ ½n=2�. The number of eigenmodes is, of course,
the same as in (A40).

3. Wave functions of 5D-traceless 5D-transverse modes

As we discussed toward the end of Sec. V B, it is
possible to require for a rank-j totally symmetric tensor
field configuration Am1���mj

ðz;ΔμÞ to be an eigenmode and
to be 5D traceless and 5D transverse (95), (96) at the same
time. We will see in the following that these two extra
conditions (95), (96) leave precisely one eigenmode in each
one of the block diagonal sectors labeled by m ¼ 0;…; j.
We will further determine the wave function profile of such
eigenmodes.
Let us first rewrite the 5D-traceless condition (95) in a

more convenient form:

ηρ̂ σ̂Azk−2ρσμ1���μj−k þ Azkμ1���μj−k ¼ 0; ðA49Þ

which, in the mth sector, means

aðk;s;NÞ ¼ ðsþ 2 − 2NÞðsþ 1 − 2NÞΔ2aðk−2;sþ2;NÞ

þ 4ðN þ 1Þðj −mþ N þ 3=2Þaðk−2;sþ2;Nþ1Þ
ðA50Þ
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for N ¼ 0;…; ½s=2�; kþ s ¼ m is understood. Under the
5D-traceless condition, the 5D-transverse condition

ðk − 1Þηρ̂ σ̂Azk−2ρσμ1���μj−k þ z∂ ρ̂Azk−1ρμ1���μj−k
þ ðz∂z þ ðk − 4ÞÞAzkμ1���μj−k ¼ 0 ðA51Þ

becomes

z∂ ρ̂Azk−1ρμ1���μj−k þ ðz∂z − 3ÞAzkμ1���μj−k ¼ 0: ðA52Þ

In the mth sector (kþ s ¼ m), therefore,

ðsþ 1 − 2NÞΔ2aðk−1;sþ1;NÞ ¼ z3∂zz−3aðk;s;NÞ ðA53Þ

for N ¼ 0;…; ½s=2�. Hereafter, we use a simplified notation
D ≔ z3∂zz−3. One can see that all of the aðk;s;NÞ’s with
kþ s ¼ m and N ≤ ½s=2� can be determined from aðm;0;0Þ
by using the relations (A50), (A53). This observation
already implies that there can be at most one eigenmode
in a givenmth sector that satisfies both the 5D-traceless and
the 5D-transverse conditions.
For now, let us assume that there is one, and proceed to

determine the wave function. The wave function—z
dependence—of aðm:0.0Þðz;ΔμÞ can be determined from
the eigenmode equation (A39), with k ¼ m, s ¼ N ¼ 0.
Using (A50) and (A53), we can rewrite the equation as

½R2Δj − fð2mþ 1Þj −m2 þ 2mg − 2mðz∂z − 3Þ þ E�
× aðm;0;0Þðz;ΔÞ ¼ 0: ðA54Þ

For this equation,

ðaðm;0;0Þðz;ΔÞÞμ1���μj−m
¼ ϵμ1���μj−m

�
z
R

�
2−j
ðΔzÞmKiνðΔzÞ; E ¼ ðjþ 4þ ν2Þ;

ðA55Þ

is a solution, where ϵμ1���μj−m is a z-independent 4D-traceless
4D-transverse totally symmetric rank-ðj −mÞ tensor of SO
(3, 1). From the value of the eigenvalue, it turns out that the
5D-traceless 5D-transverse mode in the mth sector corre-
sponds to the ðn; l; mÞ ¼ ð0; 0; mÞmode. The z dependence
we determined above implies that

ΨðjÞ;0;0iν;0;0;mð−Δ2; zÞ ∝ ðΔzÞmΨðjÞ;0;0iν;0;0;0ð−Δ2; zÞ: ðA56Þ

This result corresponds to the ðs; NÞ ¼ ð0; 0Þ case of (97).
The normalization constant Nj;m is determined later in this
section.
Let us now proceed to determine other ΨðjÞ;s;Niν;0;0;m, not just

for ðs; NÞ ¼ ð0; 0Þ. Using the 5D-transverse condition,
(A53), aðm−1;1;0Þðz;ΔÞ can be determined from
aðm;0;0Þðz;ΔÞ.

aðm−1;1;0Þ ¼ D
Δ2

aðm;0;0Þ; ΨðjÞ;1;0iν;0;0;m ¼
D
Δ
ΨðjÞ;0;0iν;0;0;m: ðA57Þ

In order to determine the s ¼ 2 components aðm−2;2;NÞ
(N ¼ 0; 1) of the ðn; lÞ ¼ ð0; 0Þmode in themth sector, one
has to use both the 5D-transverse condition and the 5D-
traceless condition:

2Δ2aðm−2;2;0Þ ¼ Daðm−1;1;0Þ; ðA58Þ

2Δ2aðm−2;2;0Þ−4ðj−mþ3=2Þaðm−2;2;1Þ ¼aðm;0;0Þ: ðA59Þ
Therefore,

aðm−2;2;0Þ ¼ 1

2Δ2

�
D
Δ

�
2

aðm;0;0Þ;

aðm−2;2;1Þ ¼ 1

4ðj −mþ 3=2Þ
��

D
Δ

�
2

− 1

	
aðm;0;0Þ:

ðA60Þ
After factoring out the normalization factor ðbðj−mÞs;N =Δs−2NÞ
and the common 4D-tensor ϵð0;0;mÞ, we obtain

ΨðjÞ;2;0iν;0;0;m ¼
�
D
Δ

�
2

ΨðjÞ;0;0iν;0;0;m;

ΨðjÞ;2;1iν;0;0;m ¼
��

D
Δ

�
2

− 1

	
ΨðjÞ;0;0iν;0;0;m: ðA61Þ

The 5D-transverse conditions (A53) determine the s ¼ 3
components aðm−3;3;NÞðz;ΔÞ (N ¼ 0; 1) from the s ¼ 2
components:

aðm−3;3;0Þ ¼ 1

6Δ3

�
D
Δ

�
3

aðm;0;0Þ;

aðm−3;3;1Þ ¼ 1

4ðj −mþ 3=2ÞΔ
��

D
Δ

�
3

−
�
D
Δ

�	
aðm;0;0Þ;

ðA62Þ

and after factoring out the normalization factor
ðbðj−mÞs;N =Δs−2NÞ and ϵð0;0;mÞ as before, we obtain

ΨðjÞ;3;0iν;0;0;m ¼
�
D
Δ

�
3

ΨðjÞ;0;0iν;0;0;m;

ΨðjÞ;3;1iν;0;0;m ¼
��

D
Δ

�
3

−
�
D
Δ

�	
ΨðjÞ;0;0iν;0;0;m: ðA63Þ

The s ¼ 3 components determined purely by the conditions
(A53) satisfy the 5D-traceless condition (A50) with the s ¼
1 component:

6Δ2aðm−3;3;0Þ − 4ðj −mþ 3=2Þaðm−3;3;1Þ

¼ D
Δ2

aðm;0;0Þ ¼ aðm−1;1;0Þ: ðA64Þ
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In this way, the wave functions ΨðjÞ;s;Niν;0;0;mð−Δ2; zÞ for all
ðs; NÞ are determined, and the result is

ΨðjÞ;s;Niν;0;0;mð−Δ2; zÞ

¼
XN
a¼0
ð−ÞaNCa

�
D
Δ

�
s−2a
½ðzΔÞmΨðjÞ;0;0iν;0;0;0ð−Δ2; zÞ�×Nj;m:

ðA65Þ

The only remaining concern was that there are more
conditions from (A50), (A53) than number of components
aðk;s;NÞ in the mth sector; there can be at most one
eigenmode satisfying these 5D-traceless 5D-transverse
conditions, as we stated earlier, but there may be no

eigenmode left if the conditions are overdetermining. We
have confirmed, however, that the wave functions (97),
(A65) satisfy all of the relations given by (A50), (A53).

a. Normalization

We have yet to determine the normalization factor Nj;m;
as in the main text, we choose (99) to be the normalization
condition. Orthogonal nature among the eigenmodes is
guaranteed because of the Hermitian nature of the operator
α0ð∇2 −M2Þ. It is thus sufficient to focus only on the
divergent part of the integral in the normalization condition
in order to determine Nj;m.
The divergent part of the integral in (99) comes only

from terms with s ¼ m, k ¼ 0, ð0 ≤ N ≤ ½m=2�Þ, and
a ¼ 0. For a given m,

½ϵ · ϵ0�δðν − ν0Þ ∼ N2
j;m

Z
0

dz
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðzÞ

p
e−2jA

×

�X½m=2�

N¼0
~ENDm−2N ½ϵð0;0;mÞ� b

ðj−mÞ
m;N

Δm−2N
z3∂m

z z−3

Δm ðzΔÞmΨðjÞ;0;0iν;0;0;mð−Δ2; zÞ
�

μ1���μj

×

�X½m=2�

M¼0
~EMDm−2M½ϵð0;0;mÞ� b

ðj−mÞ
m;M

Δm−2M
z3∂m

z z−3

Δm ðzΔÞmΨðjÞ;0;0iν;0;0;mð−Δ2; zÞ
�μ̂1���μ̂j

: ðA66Þ

The divergent part of the integral in this expression comes from�
2

π

�
2 ν sinhðπνÞ

2

Z
dxx2j−5½x3∂m

x x−1−jþmKiνðxÞ�½x3∂m
x x−1−jþmKiν0 ðxÞ�

≃Ym
p¼1
½ðj − pþ 1Þ2 þ ν2�δðν − ν0Þ ¼ Γðjþ 1 − iνÞΓðjþ 1þ iνÞ

Γðjþ 1 −m − iνÞΓðjþ 1 −mþ iνÞ δðν − ν0Þ:

Noting that

�X½m=2�

N¼0
~ENDm−2N ½ϵð0;0;mÞ� b

ðj−mÞ
m;N

Δm−2N

��X½m=2�

M¼0
~EMDm−2M½ϵ0ð0;0;mÞ� b

ðj−mÞ
m;M

Δm−2M

�
;

¼ j!
ðj −mÞ!

�X½m=2�

N¼0
bðj−mÞm;N

�
ϵð0;0;mÞμ1���μj−m · ϵ0ð0;0;mÞμ̂1���μ̂j−m;

we find that (A66) implies

N−2
j;m ¼

Γðjþ 1 − iνÞΓðjþ 1þ iνÞ
Γðjþ 1 −m − iνÞΓðjþ 1 −mþ iνÞ

j!
ðj −mÞ!

�X½m=2�

N¼0
bðj−mÞm;N

�
;

¼ Γðjþ 1 − iνÞ
Γðjþ 1 −m − iνÞ

Γðjþ 1þ iνÞ
Γðjþ 1 −mþ iνÞ jCm

Γð3=2þ j −mÞ
2mΓð3=2þ jÞ

Γð2þ 2jÞ
Γð2þ 2j −mÞ : ðA67Þ

4. A note on the wave function of the
massless vector field

For a rank-1 tensor (vector) field on AdS5, we can determine the wave function of the ðn; l; mÞ ¼ ð1; 0; 1Þ eigenmode, not
just for the ðn; l; mÞ ¼ ð0; 0; mÞ modes with m ¼ 0; 1. With the eigenvalue E1;0 ¼ ð3jþ 5þ ν2Þjj¼1,
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að0;1;0Þ ¼ ϵð1;0;1Þz2KiνðΔzÞ;
að1;0;0Þ ¼ ϵð1;0;1Þ∂zðz2KiνðΔzÞÞ ðA68Þ

is the eigenvector solution to (A44).
The ðn; l; mÞ ¼ ð0; 0; 1Þ mode and the ðn; l; mÞ ¼
ð1; 0; 1Þ mode are independent, even after the mass-shell
condition (66) for generic vector fields in bosonic string
theory. However, for the massless vector field Am obtained
by the simple dimensional reduction of the massless vector
field AðYÞM with Y ¼ f1; 0; 0g, these two modes become
degenerate. To see this, note that cy ¼ −4 for this mode, so
that the mass-shell condition (66) implies,

ðjþ 4þ ν2 þ cyÞjj¼1 ¼ 0 ð0; 0; 1Þ mode;

ð3jþ 5þ ν2 þ cyÞjj¼1 ¼ 0 ð1; 0; 1Þ mode; ðA69Þ

or, equivalently, iν ¼ 1 and iν ¼ 2, respectively, for
these two modes. It is now obvious that the terms propor-
tional to ðϵ · qÞ in (35) are in the form of this ðn; l; mÞ ¼
ð1; 0; 1Þ mode. With the relations x3∂x½x−3þ2K1ðxÞ� ¼
−x3½x−1K2ðxÞ� and ∂x½x2K2ðxÞ� ¼ −x2K1ðxÞ, one can also
see that the wave function for the ðn; l; mÞ ¼ ð0; 0; 1Þmode
is also proportional to the form given in (35) when the on-
shell condition is imposed.

5. Projection operator of SO(3, 1) tensors

Note first that

a ¼
Xr
s¼0

X½s=2�
N¼0

~ENDs−2N
Δ ½aðs;NÞ� ðA70Þ

is an orthogonal decomposition of a totally symmetric SO
(3, 1) tensor a of rank r into totally symmetric 4D-traceless
4D-transverse SO(3, 1) tensors aðs;NÞ of rank ðr − sÞ. Here,
the metric is given by

½bð−ΔÞ� · ½aðΔÞ� ≔ ½bð−ΔÞ�ρ1���ρr ½aðþΔÞ�σ1���σrηρ̂1σ̂1 � � � ηρ̂rσ̂r ;
ðA71Þ

as in the main text. To see that the decomposition is
orthogonal under this metric, one needs to use only (A37)
to verify that

½ ~EMDt−2M
−Δ ½bðt;MÞ�� · ½ ~ENDs−2N

Δ ½aðs;NÞ��

¼ δM;Nδt−2M;s−2N
Δ2ðs−2NÞ

bðr−sÞs;N

½bðt;MÞ� · ½aðs;NÞ�: ðA72Þ

Using the fact that (A70) is an orthogonal decomposi-
tion, let us construct projection operators Pðr;s;NÞ that
extract various components aðs;NÞ from a totally symmetric
SO(3, 1) tensor a of rank r. We introduced an operator PðrÞ
in (102) which acts on rank-r SO(3, 1) tensors. From what

we have seen above, it can be used to extract the aðs;NÞ¼ð0;0Þ
component from a rank-r tensor a. That is, Pðr;0;0Þ ¼ PðrÞ. It
is straightforward to see that the projection operator for
other components aðs;NÞ with general ðs; NÞ is given by

Pðr;s;NÞ ≔
X
a

bðr−sÞs;N

Δ2ðs−2NÞ
1

Da
ð ~ENDs−2N

Δ ½ϵa�Þρ1���ρr
× ð ~ENDs−2N

−Δ ½ϵa�Þσ1���σr ; ðA73Þ

where ϵa’s are an orthogonal basis of totally symmetric 4D-
traceless 4D-transverse SO(3, 1) tensors of rank ðr − sÞ.
It is also useful to have a concrete form of the projection

operator PðrÞ, not just its abstract definition in (102). We
find that it is given by

PðrÞ · a ¼
X½j2�
M¼0

ð−1ÞMΓðrþ 1
2
−MÞ

4MM!Γðrþ 1
2
Þ

×
Xr−2M
k¼0

ð−1Þk
k!
½ ~EMDkOPðp;qÞ¼ðM;kÞ� · a; ðA74Þ

where OPðp;qÞ is the operator given in (A37). A totally
symmetric rank-r tensor a is converted once into rank-ðr −
2M − kÞ tensors, and then they are converted back to a
rank-r tensor under the operator PðrÞ. To see that all of the
~ENDs−2N ½aðs;NÞ� components are projected out by PðrÞ, one
needs to use only the following formula [40]:

XN
M¼0
ð−1ÞMNCM

Γðr − N þ 3
2
Þ

Γðr − N þ 3
2
−MÞ

Γðrþ 1
2
−MÞ

Γðrþ 1
2
Þ

¼ Γð1
2
− rÞ

Γð1
2
− rþ NÞΓð1 − NÞ ; ðA75Þ

which vanishes for an integer N ≥ 0.

6. Some tensor computations

Let us derive a more concrete expression for the product
ðqμ1…qμrÞ · ½PðrÞ�ν1…νr

μ1…μr
· ðpν1…pνrÞ by using the explicit

expression for the projection operator PðrÞ to the SO(3, 1)-
transverse SO(3, 1)-traceless rank-r tensor:

ðqμ1…qμrÞ · ½PðrÞ�ν1…νr
μ1…μr

· ðpν1…pνrÞ

¼
X½r=2�
M¼0

ð−1ÞMΓðjþ 1
2
−MÞ

4MM!Γðjþ 1
2
Þ

r!
ðr − 2MÞ!

×

�
q2 −

ðq · ΔÞ2
Δ2

�
M

ðp2ÞMðq · pÞr−2M; ðA76Þ

where we made p · Δ ¼ 0. Within the regime of
q2;ðp ·qÞ;ðq ·ΔÞ≫Λ2;Δ2;p2 that we have been interested
in this article, ðq · ΔÞ2=Δ2 ≫ q2. Thus, after ignoring q2,
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ðqμ1…qμrÞ · ½PðrÞ�ν1…νr
μ1…μr

· ðpν1…pνrÞ

≈ ðp · qÞr
X½r=2�
M¼0

Γðrþ 1
2
−MÞ

4MM!Γðrþ 1
2
Þ

r!
ðr− 2MÞ!

��
q ·Δ
q ·p

�
2 p2

Δ2

�
M

≕ ðp · qÞr × d̂rðη;Δ2Þ: ðA77Þ

This introduces d̂r, which is a polynomial of skewness
ðq · ΔÞ=ðp · qÞ ¼ −2η of degree 2½r=2�.

When r is even, this polynomial of η can also be
rewritten by using a Legendre polynomial, PlðxÞ, which
is defined by ([41], page 82)

PlðxÞ ¼ 2F1

�
−l;lþ 1; 1;

1 − x
2

�

¼ ð2l − 1Þ!!
l!

xl2F1

�
−
l
2
;
1 − l
2

;
1

2
− l;

1

x2

�
: ðA78Þ

For an even r,

d̂rðη;Δ2Þ ¼
Xr=2
M¼0

ð− r
2
ÞMð1−r2 ÞM

M!ð1
2
− rÞM

�
−
4p2

Δ2
η2
�

M

¼ 2F1

�
−
r
2
;
1 − r
2

;
1

2
− r;
ð4m2

h þ Δ2Þη2
Δ2

�

¼ r!
ð2r − 1Þ!!

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

h þ Δ2

Δ2

r
η

#
r

Pr

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

4m2
h þ Δ2

s
1

η

!
≕ d̂rð½η�Þ; ðA79Þ

where we used the kinematical relation 4p2 ¼ −ð4m2
h þ Δ2Þ.

Similarly, it is also necessary to compute the following expression in order to study the m ¼ 0 exchange amplitude in
Sec. VI C 2: �X

a≠b
ϵ2�ρaϵ

1
ρbqρ1 � � �ρa̬ ρb̬ � � �qρj

�
· ½PðjÞ�ρ̂1���ρ̂jσ1���σj · ½pσ̂1 � � �pσ̂j �; ðA80Þ

which is also evaluated as above. The term proportional to ημ̂ ν̂ϵ2�ν ϵ1μ (the contribution to the structure function V1) is

22
X½j=2�
M¼1

ð−1ÞMΓðjþ 1
2
−MÞ

4MM!Γðjþ 1
2
Þ

j!
ðj − 2MÞ!2!

�
q2 −

ðq · ΔÞ2
Δ2

�
M−1
ðp2ÞMðq · pÞj−2M

≈ −2
Δ2

ðq · ΔÞ2 × ðq · pÞj
X½j=2�
M¼1

Γðjþ 1
2
−MÞ

4MM!Γðjþ 1
2
Þ

j!
ðj − 2MÞ!

��
q · Δ
q · p

�
2 p2

Δ2

�
M

: ðA81Þ

This expression is once again a polynomial of η of degree 2½j=2� − 2 and is roughly of order Δ2=ðq · pÞ2 times the
expression (A77).
We will also need the following computation in Secs. VI C 3 and VI C 4:

ðqμ1 � � � qμj−kÞ · ð ~ENDs−2N
−Δ ½ϵð0;0;mÞ�Þμ̂1���μ̂j−k ¼

ðj − kÞ!
ðj −mÞ!

�
q2 −

ðq · ΔÞ2
Δ2

�
N

ð−iq · ΔÞs−2N ½ðqμ1 � � � qμj−mÞ · ϵð0;0;mÞ�: ðA82Þ

APPENDIX B: CONFORMAL OPE COEFFICIENTS FROM AdS INTEGRALS

Let us introduce an integral,

C1ðδ; ϑÞ ≔ ð1 − ϑ2Þ1=2
Z

∞

0

dyy1þδK1ðy
ffiffiffiffiffiffiffiffiffiffiffi
1þ ϑ
p ÞK1ðy

ffiffiffiffiffiffiffiffiffiffiffi
1 − ϑ
p

Þ; ðB1Þ

which we encounter as the photon-photon– Pomeron/Reggeon vertex on AdS5. ϑ ¼ η=x and δ ¼ jþ iν in that
context.
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It is known ([42], page 101), if Reðαþ βÞ > 0 and Reð1� ν� μ − ρÞ > 0, thatZ
∞

0

dtt−ρKμðαtÞKνðβtÞ ¼ 2−ρ−2αρ−ν−1βν½Γð1 − ρÞ�−1

× Γ
�
1þ νþ μ − ρ

2

�
Γ
�
1þ ν − μ − ρ

2

�
Γ
�
1 − νþ μ − ρ

2

�
Γ
�
1 − ν − μ − ρ

2

�

× 2F1

�
1þ νþ μ − ρ

2
;
1þ ν − μ − ρ

2
; 1 − ρ; 1 −

β2

α2

�
: ðB2Þ

Substituting in ρ ¼ −1 − δ, μ ¼ 1, ν ¼ −1, α ¼ ffiffiffiffiffiffiffiffiffiffiffi
1 − ϑ
p

, and β ¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ ϑ
p

, we obtain

C1ðδ; ϑÞ ¼
Γðδ

2
ÞðΓðδ

2
þ 1ÞÞ2Γðδ

2
þ 2Þ

Γðδþ 2Þ 2δ−1ð1 − ϑÞ−δ
2
2F1

�
δ

2
;
δþ 2

2
; δþ 2;

2ϑ

ϑ − 1

�
: ðB3Þ

An equivalent, but slightly different expression is also obtained by using the following relation ([41], page 60):

2F1ðα; β; 2β; 2zÞ ¼ ð1 − zÞ−α2F1

�
α

2
;
αþ 1

2
; β þ 1

2
;

�
z

1 − z

�
2
�
; ðB4Þ

namely,

C1ðδ; ϑÞ ¼ 2δ−1
δþ 2

δ

ðΓðδ
2
þ 1ÞÞ4

Γðδþ 2Þ 2F1

�
δ

4
;
δ

4
þ 1

2
;
δ

2
þ 3

2
; ϑ2
�
: ðB5Þ

As a function of ϑ ¼ η=x, (B3) and (B5) are precisely of the form (25) and (26), respectively, required in the conformal OPE
coefficients.
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