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We study the origin of dark matter based on the ghost-free bigravity theory with twin matter fluids.
The present cosmic acceleration can be explained by the existence of graviton mass, while dark matter is
required in several cosmological situations (the galactic missing mass, the cosmic structure formation and
the cosmic microwave background observation). Assuming that the Compton wavelength of the massive
graviton is shorter than a galactic scale, we show the bigravity theory can explain dark matter by twin
matter fluid as well as the cosmic acceleration by tuning appropriate coupling constants.
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I. INTRODUCTION

Whether a graviton has a mass or not is one of the most
fundamental issues in physics. In general relativity (GR), it
is well-known that the graviton is a massless spin-2 particle.
However, Fierz and Pauli proposed a massive spin-2
particle theory, which is known as a unique ghost-free
linear massive gravity theory [1]. The present experimental
solid constraint on the graviton mass is m<7.1×10−23 eV
from the solar system experiment [2–4]. Although a simple
nonlinear extension of the Fierz–Pauli massive gravity
theory contains instabilities called the Boulware–Deser
ghost [5], it was shown that the special choice of the
interaction term can exclude such a ghost state by de
Rham et al. [6,7]. However, this theory cannot describe the
flat Friedmann universe if the fictitious metric for the
Stückelberg field is Minkowski’s one. One may consider an
inhomogeneous metric or extend it to the de Sitter metric.
When we discuss a curved fictitious geometry, it may be
natural for it to be dynamical. In fact, the de Rham–
Gabadadze–Tolley massive gravity theory has been gen-
eralized to such a bigravity theory, which is still ghost free.
It contains a massless spin-2 particle and a massive spin-2
particle [8].
A phenomenological motivation to consider such theo-

ries relates to the discovery of dark energy and dark
matter. The cosmological parameters are now determined
very precisely [9]. Although standard big bang cosmology
explains many observed data, those observations reveal
new unsolved mysteries in cosmology, i.e., the accelerated
expansion of the Universe and the existence of dark matter.
Among them, the observed cosmic acceleration is one of
the most mysterious problems in modern cosmology [10].
The acceleration might predict the existence of the dark
energy (either just a vacuum energy fine-tuned by the 120
orders of magnitude or some mysterious unknown matter

with a strange equation of state) or might be due to a
modification of gravitational theory. If we adopt an
appropriate gravitational theory different from GR, there
is a possibility to explain the accelerating expansion
without dark energy. As for the ghost-free massive gravity
or bigravity theory, many studies addressed the possibility
to explain cosmic acceleration by the “mass” term [11–24].
In contrast to the massive gravity theory, bigravity

theories also have a possibility to explain the origin of
dark matter [25]. It is because there are two types of matter
fields in a bigravity theory. If a matter field interacts with
both metrics [23], it will violate the equivalence principle,
which must hold in very high accuracy [3,33]. Furthermore,
the reappearance of the ghost for the case of matter coupled
to both metrics is also problematic. Although some ghost-
free matter coupling was discussed at a low-energy scale or
in a homogeneous Friedmann background universe, a ghost
mode appears in a generic situation such as an inhomo-
geneous background [34–36]. Hence, we have to discuss
two different matter fields, which are decoupled each other
and interact only through two metric interactions. We then
call them twin matter fields [37].
In the previous paper [24], we found that both dark

matter and dark energy components in the Friedmann
equation can be obtained by modification of gravitational
theory in the ghost-free bigravity theory. However, dark
matter is required not only in the big bang scenario but also
in the cosmological structure formation and as dark matter
halos existing around galaxies. This paper will show a
possibility to explain the origin of dark matter in such
situations.
The bigravity theory includes GR with/without a cos-

mological constant as a special case. If both metrics are
proportional, which we call a homothetic solution, the
basic equations are reduced to two sets of the Einstein
equations with cosmological constants, which originate
from the interaction terms of two metrics [38]. Although
two matters must satisfy a fine-tuned condition in a
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homothetic solution, such a solution is an attractor and is
obtained asymptotically from more generic initial condi-
tions [24].
The linear perturbations around a homothetic solution

are decomposed into two eigenstates: the massless and
massive graviton modes. Note that these are the mass
eigenstates, whereas they are mixed up in the physical
frame described by two metrics. That is, the massless and
massive modes couple to both twin matter fluids. As a
result, the perturbations of our spacetime are described by
the linear combinations of the massless and massive modes.
Our spacetime is affected by another one of the twin matter
fluids via the massless and massive graviton modes, and
then there is a possibility such that a dark matter component
is originated by another twin matter. The purpose of this
paper is to investigate such a possibility. Since dark matter
is required in many situations, we shall discuss three typical
evidences of dark matter: the content of the Universe, a
galactic halo, and the cosmic structure formation.
The paper is organized as follows. Introducing the ghost-

free bigravity, we summarize the basic equations and
present a homothetic solution in Sec. II. In Sec. III, we
then perform the perturbations around a homothetic sol-
ution. We show that dark matter can be obtained from
another one of the twin matter fluids from a galactic scale
to a cosmological scale in Sec. IV. Assuming the Compton
wavelength of the massive graviton is shorter than a
galactic scale, another twin matter can play the role of
dark matter in our world for all scales. We summarize our
results and give some remarks in Sec. V. In Appendix A, we
evaluate the values of the graviton mass and a cosmological
constant for given coupling parameters. We also present the
basic equations for the gauge-invariant perturbations in a
homothetic background solution.

II. BIGRAVITY THEORY

A. Hassan–Rosen bigravity model

In the present papers, we focus on the ghost-free
bigravity theory proposed by Hassan and Rosen, of which
the action is given by

S ¼ 1

2κ2g

Z
d4x

ffiffiffiffiffiffi
−g

p
RðgÞ þ 1

2κ2f

Z
d4x

ffiffiffiffiffiffi
−f

p
RðfÞ

þ S½m�ðg; f;ψg;ψfÞ −
m2

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
Uðg; fÞ; ð2:1Þ

where gμν and fμν are two dynamical metrics and RðgÞ and
RðfÞ are those Ricci scalars, respectively. κ2g ¼ 8πG and
κ2f ¼ 8πG are the corresponding gravitational constants,
while κ is defined by κ2 ¼ κ2g þ κ2f. We assume that the

matter action SðmÞ is divided into two parts,

SðmÞðg; f;ψg;ψfÞ ¼ S½m�
g ðg;ψgÞ þ S½m�

f ðf;ψfÞ; ð2:2Þ

i.e., matter fields ψg and ψf are coupled only to the gmetric
and to the f metric, respectively. This restriction guarantees
the weak equivalence principle as well as the ghost-free
condition. We call the g matter ψg and the f matter ψf twin
matter fluids.
The ghost-free interaction term between two metrics is

given by

Uðg; fÞ ¼
X4
k¼0

bkUkðγÞ; ð2:3Þ

U0ðγÞ ¼ −
1

4!
ϵμνρσϵ

μνρσ;

U1ðγÞ ¼ −
1

3!
ϵμνρσϵ

ανρσγμα;

U2ðγÞ ¼ −
1

4
ϵμνρσϵ

αβρσγμαγ
ν
β;

U3ðγÞ ¼ −
1

3!
ϵμνρσϵ

αβγσγμαγ
ν
βγ

ρ
γ;

U4ðγÞ ¼ −
1

4!
ϵμνρσϵ

αβγδγμαγ
ν
βγ

ρ
γγ

σ
δ; ð2:4Þ

where bk are coupling constants, while γμν is defined by

γμργ
ρ
ν ¼ gμρfρν: ð2:5Þ

Taking the variation of the action with respect to gμν and
fμν, we find two sets of the Einstein equations,

Gμ
ν ¼ κ2gðT ½γ�μ

ν þ T ½m�μ
νÞ; ð2:6Þ

Gμ
ν ¼ κ2fðT ½γ�μ

ν þ T ½m�μ
νÞ; ð2:7Þ

where Gμ
ν and Gμ

ν are the Einstein tensors for gμν and fμν,
respectively. The matter energy-momentum tensors are
given by

T ½m�
μν ¼ −2

δS½m�
g

δgμν

T ½m�
μν ¼ −2

δS½m�
f

δfμν
: ð2:8Þ

The γ-“energy-momentum” tensors from the interaction
term are given by

T ½γ�μ
ν ¼

m2

κ2
ðτμν − UδμνÞ; ð2:9Þ

T ½γ�μ
ν ¼ −

ffiffiffiffiffiffi−gp
ffiffiffiffiffiffi
−f

p m2

κ2
τμν; ð2:10Þ

with
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τμν ¼ fb1U0 þ b2U1 þ b3U2 þ b4U3gγμν
− fb2U0 þ b3U1 þ b4U2gðγ2Þμν
þ fb3U0 þ b4U1gðγ3Þμν − b4U0ðγ4Þμν:

The energy momenta of matter fields are assumed to be
conserved individually as

∇
ðgÞ

μT ½m�μ
ν ¼ 0; ∇

ðfÞ
μT ½m�μ

ν ¼ 0; ð2:11Þ

where ∇
ðgÞ

μ and ∇
ðfÞ

μ are covariant derivatives with respect to
gμν and fμν. From the contracted Bianchi identities for (2.6)
and (2.7), the conservation of the γ-energy momenta is also
guaranteed as

∇
ðgÞ

μT ½γ�μ
ν ¼ 0; ∇

ðfÞ
μT ½γ�μ

ν ¼ 0: ð2:12Þ

B. Homothetic solution

First, we give one simple solution, in which we assume
that two metrics are proportional,

fμν ¼ K2gμν; ð2:13Þ

where K is a scalar function. In this case, since we find the
tensor γμν ¼ Kδμν, the γ-energy momentum is given by

κ2gT ½γ�μ
ν ¼ −ΛgðKÞδμν;

κ2fT
½γ�μ

ν ¼ −ΛfðKÞδμν;

where

ΛgðKÞ ¼ m2
κ2g
κ2

ðb0 þ 3b1K þ 3b2K2 þ b3K3Þ;

ΛfðKÞ ¼ m2
κ2f
κ2

ðb4 þ 3b3K−1 þ 3b2K−2 þ b1K−3Þ:
ð2:14Þ

From the energy-momentum conservation (2.12), we
find that K is a constant. As a result, we find two sets of the
Einstein equations with cosmological constants Λg and Λf:

GμνðgÞ þ Λggμν ¼ κ2gT ½m�
μν; ð2:15Þ

GμνðfÞ þ Λffμν ¼ κ2fT
½m�

μν: ð2:16Þ

Since two metrics are proportional, we have the constraints
on the cosmological constants and matter fields as

ΛgðKÞ ¼ K2ΛfðKÞ; ð2:17Þ

κ2gT ½m�μ
ν ¼ K2κ2fT

½m�μ
ν: ð2:18Þ

The quartic equation (2.17) for K has at most four real
roots, which give four different cosmological constants.
The basic equations (2.15) [or (2.16)] are just the Einstein
equations in GR with a cosmological constant. Hence, any
solutions in GR with a cosmological constant are always
the solutions in the present bigravity theory. We shall call
these solutions homothetic solutions because of the pro-
portionality of two metrics.

III. LINEARIZATION OF THE
BIGRAVITY THEORY

A. Perturbations around a homothetic solution

The bigravity theory contains both massless and massive
spin-2 particles. It becomes clear when we discuss the
linear perturbations around a homothetic solution. Note that
a homothetic solution is an attractor in a cosmological
setting [24].
The unperturbed solution is assumed to be homothetic,

i.e.,

g
ð0Þ

μν and f
ð0Þ

μν ¼ K2 g
ð0Þ

μν; ð3:1Þ

which is the solution of two Einstein equations:

G
ð0Þ

μ
νð g

ð0ÞÞ ¼ −ΛgðKÞδμν þ κ2g T
ð0Þ ½m�μ

ν; ð3:2Þ

G
ð0Þ

μ
νð f

ð0Þ
Þ ¼ −ΛfðKÞδμν þ κ2fT

ð0Þ
½m�μ

ν: ð3:3Þ

A constant K is determined by the quartic equation (2.17),
and the matter energy momenta satisfy the following
condition:

κ2fT
ð0Þ

½m�μ
ν ¼

1

K2
κ2g T

ð0Þ ½m�μ
ν: ð3:4Þ

We then consider the perturbations

gμν ¼ g
ð0Þ

μν þ h½g�μν; ð3:5Þ

fμν ¼ f
ð0Þ

μν þ K2h½f�μν ¼ K2ð gð0Þ μν þ h½f�μν Þ ð3:6Þ

where jh½g�μνj; jh½f�μν j ≪ j gð0Þ μνj. The suffixes of h½g�μν as well

as h½f�μν are raised and lowered by the background

metric g
ð0Þ

μν.
The energy-momentum tensors of twin matter fluid and

γ-energy-momentum ones from the interaction terms can be
expanded as

κ2gT ½m�μ
ν ¼ κ2g½T

ð0Þ ½m�μ
ν þ T

ð1Þ ½m�μ
ν�; ð3:7Þ
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K2κ2fT
½m�μ

ν ¼ K2κ2f½T
ð0Þ

½m�μ
ν þ T

ð1Þ ½m�μ
ν� ð3:8Þ

and

κ2gT ½γ�μ
ν ¼ −Λgδ

μ
ν þ

m2
g

2
ðh½−�μν − h½−�δμνÞ; ð3:9Þ

K2κ2fT
½γ�μ

ν ¼ −K2Λfδ
μ
ν −

m2
f

2
ðh½−�μν − h½−�δμνÞ; ð3:10Þ

respectively, where

m2
g ≔

m2κ2g
κ2

ðb1K þ 2b2K2 þ b3K3Þ; ð3:11Þ

m2
f ≔

m2κ2f
K2κ2

ðb1K þ 2b2K2 þ b3K3Þ: ð3:12Þ

Here, we have introduced new variables h½−�μν and h½þ�
μν from

two metric perturbations as

h½−�μν ¼ h½g�μν − h½f�μν ;

h½þ�
μν ¼ m2

f

m2
eff

h½g�μν þ m2
g

m2
eff

h½f�μν ð3:13Þ

with

m2
eff ≔ m2

g þm2
f

¼ m2

κ2

�
κ2g þ

κ2f
K2

�
ðb1K þ 2b2K2 þ b3K3Þ: ð3:14Þ

The first-order perturbation equations are then given by

g
ð0Þ

μρR
ð1Þ

ρνðh½þ�Þ − R
ð0Þ

ρðμh½þ�
νÞρ ¼ M

ð1Þ ½þ�μ
ν; ð3:15Þ

g
ð0Þ

μρR
ð1Þ

ρνðh½−�Þ − R
ð0Þ

ρðμh½−�νÞρ

þm2
eff

4
ð2h½−�μν þ h½−�δμνÞ ¼ M

ð1Þ ½−�μ
ν; ð3:16Þ

where R
ð1Þ

μν denotes the linearized Ricci tensor, which is
defined for a metric perturbation hμν by

R
ð1Þ

μνðhÞ ≔
1

2

�
−∇
ð0Þ

μ∇
ð0Þ

νh − □

ð0Þ
hμν

þ ∇
ð0Þ

αð∇
ð0Þ

νhαμÞ þ ∇
ð0Þ

αð∇
ð0Þ

μhανÞ
�
; ð3:17Þ

and the matter perturbations M
ð1Þ ½��μ

ν are defined by

M
ð1Þ ½−�μ

ν ≔ κ2g
h
T
ð1Þ ½m�μ

ν −
1

2
T
ð1Þ ½m�δμν

i

− K2κ2f

h
T
ð1Þ

½m�μ
ν −

1

2
T
ð1Þ

½m�δμν
i
;

M
ð1Þ ½þ�μ

ν ≔
m2

f

m2
eff

κ2g
h
T
ð1Þ ½m�μ

ν −
1

2
T
ð1Þ ½m�δμν

i

þ m2
g

m2
eff

K2κ2f

h
T
ð1Þ

½m�μ
ν −

1

2
T
ð1Þ

½m�δμν
i
; ð3:18Þ

which are linear combinations of g- and f-matter pertur-
bations. Equations (3.15) and (3.16) are decoupled, and

then they provide two mass eigenstates. We find that h½þ�
μν

and h½−�μν describe massless and massive modes, respec-
tively, and meff denotes a graviton mass of the massive
mode in the homothetic background spacetime.

The Bianchi identity (∇
ðgÞ

μGμ
ν ¼ 0) gives the conserva-

tion of γ-energy-momentum tensor, i.e.,

∇
ðgÞ

μT ½γ�μ
ν ¼ 0; ð3:19Þ

of which the perturbation gives the constraint on the

massive mode h½−�αβ :

∇
ð0Þ

μðκ2g T
ð1Þ ½γ�μ

νÞ ¼
m2

g

2
½−∇

ð0Þ
μh½−�μν þ ∇

ð0Þ
νh½−�� ¼ 0: ð3:20Þ

Since m2
g ≠ 0, we find

∇
ð0Þ

μh½−�μν ¼ ∇
ð0Þ

νh½−�: ð3:21Þ

From another conservation equation, ∇
ðfÞ

μT ½γ�μ
ν ¼ 0 gives

the same constraint equation.
Taking a trace of Eq. (3.16) and using Eq. (3.21), we find

ð3m2
eff−2ΛgÞh½−� ¼ κ2gð2T

ð0Þ ½m�
αβ h

½−�αβ− T
ð0Þ ½m�h½−�Þþ2M

ð1Þ ½−�α
α:

ð3:22Þ

Equations (3.21) and (3.22) give five constraint equations

on h½−�αβ . There is no gauge freedom because h½−�αβ is a gauge-
invariant tensor. This is consistent with the fact that a
massive graviton has five degrees of freedom.
Using these constraints, we rewrite the above perturba-

tion equations as

− ∇
ð0Þ

μ∇
ð0Þ

νh½þ� − □

ð0Þ
h½þ�
μν þ 2∇

ð0Þ
ðν½∇

ð0Þ
αh½þ�

μÞα�

− 2R
ð0Þ

μ
α
ν
βh½þ�

αβ ¼ 2M
ð1Þ ½þ�

μν ; ð3:23Þ
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− ∇
ð0Þ

μ∇
ð0Þ

νh½−� − □

ð0Þ
h½−�μν − 2R

ð0Þ
μ
α
ν
βh½−�αβ

þm2
eff

�
h½−�μν þ 1

2
h½−� g

ð0Þ
μν

�
¼ 2M

ð1Þ ½−�
μν ; ð3:24Þ

where we have used

∇
ð0Þ

αð∇
ð0Þ

νχμαÞ ¼ ∇
ð0Þ

νð∇
ð0Þ

αχμαÞ þ R
ð0Þ

μ
αβ

νχαβ þ R
ð0Þ

ρ
νχμρ:

ð3:25Þ
Since two modes are decoupled, we shall analyze them

separately and then discuss the physical perturbations in the
g and f worlds, which are represented as

h½g�μν ¼ h½þ�
μν þ m2

g

m2
eff

h½−�μν ;

h½f�μν ¼ h½þ�
μν −

m2
f

m2
eff

h½−�μν : ð3:26Þ

Since the massive mode h½−�μν does not propagate beyond
the scale of the Compton wavelength of a massive graviton,
the spacetime perturbations are dominated by the massless

mode h½þ�
μν in a large scale system beyond the Compton

wavelength. The massless mode couples to both twin
matter fluids. As a result, there exists a possibility that
the f-matter fluid behaves like a dark matter component
in g world via a massless graviton mode, which we will
discuss in what follows.

IV. ORIGIN OF DARK MATTER

In this section, we will analyze whether the f-matter field
can be dark matter in our g world. We believe from
observation that the evidence of dark matter appears in
three situations: (A) dark matter in the Friedmann equation,
(B) a dark halo at a galaxy scale, and (C) cold dark matter
(CDM) in cosmic structure formation. So, we discuss them
in order.

A. Cosmic pie

First, we discuss the pie chart of the content of the
Universe. The amount of dark matter is about five times as
large as the baryonic matter. Since we discussed the details
of the dynamics of the Friedmann–Lemaître–Robertson–
Walker (FLRW) spacetime and the possibility to explain
the dark matter component by the f-matter fluid in
Ref. [24], we give a brief overview here.
To explain the cosmic pie, we consider the homogeneous

and isotropic spacetime, of which the metrics are given by

ds2g ¼ −N2
gdt2 þ a2g

�
dr2

1 − kr2
þ r2dΩ2

�
; ð4:1Þ

ds2f ¼ −N2
fdt

2 þ a2f

�
dr2

1 − kr2
þ r2dΩ2

�
; ð4:2Þ

whereNg andNf are the lapse function, while ag and af are
scale factors for gμν and fμν, respectively. Using the gauge
freedom, we can set Ng ¼ 1 without loss of generality.
For generic initial data, the ratios Nf=Ng and af=ag

can approach to the same constant K given by (2.17), as the
universe expands; i.e., the homothetic solution is an
attractor in the present system. The dynamical time scale
is about m−1

eff . We can approximate the cosmological
solution by small deviation of metrics from a homothetic
background when

3m2
eff − 2Λg ≫ jκ2gρg − K2κ2fρfj: ð4:3Þ

As a result, near the attractor, i.e., near the present stage of
the Universe, the evolution of the Universe is described by
the effective Friedmann equation

H2
g þ

k
a2g

¼ Λg

3
þ κ2eff

3
½ρg þ ρD�; ð4:4Þ

where

κ2eff ¼ κ2g

�
1 −

3m2
g

3m2
eff − 2Λg

�
; ð4:5Þ

ρD ¼ 3m2
f

3m2
f − 2Λg

K4ρf; ð4:6Þ

and ρg and ρf are energy densities of g and f matter,
respectively [24]. Hg ¼ _ag=ag is the Hubble parameter
where a dot denotes the derivative with respect to t. κ2eff is
the effective gravitational constant, and ρD is regarded as
the energy density of a dark component in the g world;
i.e., another one of twin matter fluids works as dark matter
through the interaction term between two metrics. Note that
the matter densities can deviate largely from those of the
homothetic solution such that ρD ≥ ρg, although the metric
deviation is still small enough as long as m2

eff ≥ κ2effρD. See
also Ref. [24], where we showed the full numerical result of
evolutions of density parameters without the above
approximation. It also confirms the above approximation
is valid.
If both matter components are dominated by nonrela-

tivistic matter,

ρg ¼
ρg;0
a3g

; ρf ¼
ρf;0
a3f

; ð4:7Þ

the density of the dark component is approximated by
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ρD ¼ 3m2
f

3m2
f − 2Λg

K4ρf;0
a3f

≈
3m2

f

3m2
f − 2Λg

Kρf;0
a3g

þOða−6g Þ: ð4:8Þ

Hence, if 3m2
f > 2Λg, ρD behaves as a dark matter

component in the g world. If ρg consists just of baryonic
matter, in order to explain the observed amount of dark
matter, we have to require

ρD
ρg

¼ 3m2
f

3m2
f − 2Λg

Kρf;0
ρg;0

∼ 5: ð4:9Þ

With an appropriate choice of the coupling parameters, we
find the above value, which may explain dark matter by the
f-matter fluid.

B. Dark matter halo

Next, we discuss how to explain a dark matter halo
around a galaxy by another one of the twin matter fluids.
The existence of the dark matter halo is confirmed by
observations such as a flat rotation curve of a galaxy [39].
Since we analyze a galactic scale, the background

spacetime is well approximated by the Minkowski metric

ð gð0Þ μν ≃ ημνÞ, ignoring the effect of a cosmological constant
Λg. The gravitational phenomena can be analyzed by the
linear perturbations around the Minkowski spacetime. The
equations of the massive mode are given by

∇
ð0Þ

μ∇
ð0Þ

νh½−� − □

ð0Þ
h½−�μν þm2

eff

�
h½−�μν þ 1

2
h½−�ημν

�
¼ 2M

ð1Þ ½−�
μν ;

∇
ð0Þ

μh½−�μν ¼ ∇
ð0Þ

νh½−�;

3m2
effh

½−� ¼ 2M
ð1Þ ½−�μ

μ: ð4:10Þ

Substituting the third equation into first one, we obtain

∇
ð0Þ

μ∇
ð0Þ

νh½−� − □

ð0Þ
h½−�μν þm2

effh
½−�
μν ¼ 2M

ð1Þ ½−�
μν −

1

3
M
ð1Þ ½−�ρ

ρημν:

ð4:11Þ

To analyze the gravitational fields of a galaxy, we
consider static Newtonian potentials Φg and Φf formed
by nonrelativistic mass densities ρg and ρf. From the 0-0
component of Eq. (4.11), we obtain the Poisson equation
for the massive mode as

ðΔ −m2
effÞΦ− ¼ 4

3
ð4πGρg − 4πGK2ρfÞ; ð4:12Þ

where Δ ¼ ∂i∂i is the usual three-dimensional Laplacian

operator and Φ− ¼ −h½−�00 =2 is the gravitational potential of
the massive mode. The factor 4=3 comes from van Dam–
Veltmann–Zakharov (vDVZ) discontinuity [40]. Note that
the source term is described by the difference of two mass
densities, and then it can be negative.
For the massless mode, we obtain the ordinary form of

the Poisson equation,

ΔΦþ ¼ 4πG
m2

f

m2
eff

ρg þ 4πGK2
m2

g

m2
eff

ρf; ð4:13Þ

where Φþ ¼ −h½þ�
00 =2 is the gravitational potential of the

massless mode. This source term is positive definite.
We find that both gravitational potentials are affected by

both g- and f-matter fluids. This is the main difference from
the Newtonian gravity theory. It may make it possible for
the f matter to behave as dark matter in the g worlds.
In a small scale such as the solar system, however, GR

must be restored because GR has been well confirmed by
the experiments and observations [3]. The restoration can
be realized via the so-called Vainshtein mechanism [41]. In
this range (below the Vainshtein radius), the linear pertur-
bation approach is broken down, and then nonlinear effects
must be taken into account. However, when GR is restored
from the bigravity theory, the effect on the gworld from the
f-matter fluid must be screened [42]. It indicates that the f
matter cannot be dark matter below the Vainshtein radius.
Since we are interested in whether the f matter plays a role
of dark matter in the g world, we shall only analyze the
linear perturbations. The evaluation of the Vainshtein radius
will be given in the last part of this subsection.
For a simplest case in which matter fluids are localized

spherically, the Newtonian potentials outside matter dis-
tributions are solved as

Φ− ¼ 4

3

�
GMg

r
e−meffr −

K2GMf

r
e−meffr

�
; ð4:14Þ

Φþ ¼ m2
f

m2
eff

GMg

r
þ m2

g

m2
eff

K2GMf

r
; ð4:15Þ

where the gravitational masses are defined by

Mg ¼
Z

4πρgr2dr; Mf ¼
Z

4πρfr2dr: ð4:16Þ

From (3.26), the Newtonian potentials in the g and f worlds
are described as
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Φg ¼ Φþ þ m2
g

m2
eff

Φ−

¼ −
GMg

r

�
m2

f

m2
eff

þ 4m2
g

3m2
eff

e−meffr

�

−
m2

g

m2
eff

K2GMf

r

�
1 −

4

3
e−meffr

�
; ð4:17Þ

Φf ¼ Φþ −
m2

f

m2
eff

Φ−

¼ −
K2GMf

r

�
m2

g

m2
eff

þ 4m2
f

3m2
eff

e−meffr

�

−
m2

f

m2
eff

GMg

r

�
1 −

4

3
e−meffr

�
; ð4:18Þ

where Φg ¼ −h½g�00=2, Φf ¼ −h½f�00=2.
Let us consider the Newtonian potential in the g world.

Below the Compton wavelength of the massive graviton
(r < m−1

eff ), the potential becomes

Φg ¼ −
GMg

r

�
1þ m2

g

3m2
eff

�
þ m2

g

3m2
eff

K2GMf

r
: ð4:19Þ

Note that the second term is positive definite. It means
that the f matter acts as a repulsive force in the g world. It
comes from the factor 4=3 in (4.17). To explain dark matter,
of course, the gravitational force must be attractive.
Therefore, the f matter cannot behave as dark matter when
the size of the localized system is smaller than the Compton
wavelength.
The origin of this repulsive force is the massive mode,

which cannot propagate in the large system such that
meffr ≫ 1. In fact, beyond the Compton wavelength
(r > m−1

eff ), the potential is approximated by

Φg ¼ −
Geff

r
ðMg þ K4MfÞ; ð4:20Þ

where

Geff ¼
m2

f

m2
eff

G ð4:21Þ

is the local effective gravitational constant. This potential is
formed by the f matter as well as the g matter. Hence, it is
possible to explain dark matter by another one of the twin
matter fluids.
Inside the Vainshtein radius, the gravitational constant is

restored to the Newtonian gravitational constant [42]. The
effective gravitational constants at a galactic scale is the
same as the effective one in the Friedmann equation with
m2

eff ≫ Λg, which we assume to explain dark matter as well
as dark energy. Since the difference between the effective

gravitational constant in the Friedmann equation and the
Newtonian one should not be so large from the cosmic
microwave background observation [43], we find a con-
straint such that

m2
g

m2
f

¼ K2κ2g
κ2f

≪ 1: ð4:22Þ

Now, we return to the Poisson equations, (4.12) and
(4.13), and study numerically whether f matter can provide
a flat rotation curve of a galaxy in the g world or not. We
assume the dark matter halo is composed of only f matter,
and the distribution of ρf is assumed to be proportional to
r−2 around the galactic disk. Although the rotation curve
is sensitive to the matter distributions of ρf as well as ρg,
for simplicity, we assume a spherically symmetric matter
distribution as

ρgðrÞ ¼ ρgð0Þ exp½−r=rgal�;

ρfðrÞ ¼
ρfð0Þ

1þ ðr=rhaloÞ2
: ð4:23Þ

We show the resulting rotation curves for several values
of meff in Fig. 1. The rotation velocity V is evaluated as
V2 ¼ rdΦg=dr. We find a flat rotation curve if m−1

eff ∼ kpc.
Note that since

m−1
eff ¼ 6.4 ×

�
meff

10−33 eV

�
−1

Gpc; ð4:24Þ

we have the solid limit on the Compton wave length as

m−1
eff > 0.091 pc ð4:25Þ

FIG. 1 (color online). The rotation curve in the g worlds.
We plot three cases of m−1

eff ¼ 5 (the red dashed-dotted curve), 10
(the blue dashed curve), and 15 kpc (the green solid curve).
Matter distributions are given by ρgðrÞ ¼ ρgð0Þ exp½−r=rgal�,
ρfðrÞ ¼ ρfð0Þð1þ ðr=rhaloÞ2Þ−1, where we set rgal ¼ rhalo ¼
3 kpc and ρgð0Þ ¼ ρfð0Þ. The effective gravitational constant
is Geff=G ¼ 0.961538 (mg=mf ¼ 0.2). The black dotted curve is
the rotation curve without f matter.

DARK MATTER IN GHOST-FREE BIGRAVITY THEORY: … PHYSICAL REVIEW D 90, 124089 (2014)

124089-7



from the experimental constraint on the graviton mass
[2–4].
We then conclude that the f matter behaves as dark

matter in the g world if the Compton wavelength of the
massive graviton is less than a galaxy scale such as
m−1

eff ∼ 1 kpc. When the mass becomes lighter, then the
rotation velocity decreases. It is due to a “repulsive force”
induced by the massive mode because the Compton
wavelength becomes larger. Note that in the shorter range
than r ∼ 10 the rotational velocity with the f matter (the
green curve) is smaller than that without the f matter (the
black dotted curve), which is the evidence that the f matter
acts as a repulsive force.
To justify the above analysis, we have to evaluate the

Vainshtein radius below which the linear approximation is
broken. Performing the same method as Ref. [42], we find
the linear perturbation analysis for a spherically symmetric
system is valid only when

m2
eff ≫

GM−ðrÞ
r3

; ð4:26Þ

where

GM−ðrÞ ≔
����G

Z
r

0

4π ~r2ρgð~rÞd~r − K2G
Z

r

0

4π ~r2ρfð~rÞd~r
����:

ð4:27Þ

Here, we have ignored a cosmological constant. The
mass of the galaxy is dominated by the dark matter
component, and we have the constraint (4.22); we find
K2GMf ≫ GMg, where Mg and Mf are total masses of
the g- and f-matter fluids, respectively. Hence, the right-
hand side is bounded from the above as

GM−ðrÞ ≤ K2GMf:

As a result, we conclude that the linear perturbation
analysis is valid for

r ≫ rV ≔
�
K2GMf

m2
eff

�
1=3

: ð4:28Þ

From Eq. (4.20), we find the effective mass of a galaxy in
the g world is

Mgal ≈
m2

f

m2
eff

K4Mf: ð4:29Þ

For Mgal ∼ 1012M⊙, we can evaluate the Vainshtein
radius as

rV ∼ 0.04 kpc

�
m−1

eff

1 kpc

�
2=3

�
1

1 −Geff=G

�
1=3

: ð4:30Þ

It guarantees that the linear perturbation approximation is
valid in a galactic scale if m−1

eff ≲ kpc.
Such a galactic scale graviton mass as well as a

cosmological constant to explain dark energy can be
obtained if the ratio of two gravitational constants is given
by κ2f=κ

2
g ∼ 1012 as shown in Appendix A. However, the

linear perturbation approximation may not be justified
because we find

rV ∼ 0.4 Mpc ×

�
m−1

eff

1 kpc

�
2=3

K−3=2; ð4:31Þ

by using ð1 − Geff=GÞ−1 ¼ 1þ K−2κ2f=κ
2
g. It may give

the larger Vainshtein radius such as rV ∼ 1 Mpc unless
K ≫ Oð1Þ. We may have to fine-tune the coupling con-
stants fbig as shown in Appendix A.

C. Cosmic structure formation

Finally, we discuss the evolution of cosmological density
perturbations based on the linear perturbation theory [44].
The basic equations for scalar-mode perturbations are
summarized in Appendix B. For simplicity, we assume
that the background flat FLRW spacetimes are given by the
homothetic solution. In this subsection, we calculate the
evolution of the density perturbations δg and δf in the g
and f worlds, respectively. Those perturbations are given
by the linear combinations of δþ and δ−, which are the
density perturbations in the equations for the massless and
the massive graviton modes, respectively. Since two modes
are decoupled, we first solve numerically the perturbation
equations for the massive graviton mode.

1. Numerical solutions

Since we are interested in formation of galaxies, we
discuss only subhorizon scale perturbations, a=k ≪ H−1.
In this subsection, we first analyze the linear perturbation
equations numerically. We assume that the matter compo-
nent is dominated by nonrelativistic matter ðw ¼ 0Þ. Since
there is another scale of length, i.e., the Compton wave-
length of the massive graviton m−1

eff , we can classify those
three scales into three possibilities:

Case (a) a=k ≪ H−1 ≪ m−1
eff ,

Case (b) a=k ≪ m−1
eff ≪ H−1,

Case (c) m−1
eff ≪ a=k ≪ H−1.

Assuming the initial data at the decoupling time are
given in each case, we solve numerically the perturbation
equations (B25)–(B30) for the massive graviton mode.
We show the results for one metric component βðLÞ−

and the density perturbation δ− in Fig. 2, where we have
chosen the initial data as (a) ain=k ¼ 10−4 ×m−1

eff , H
−1
in ¼

10−2 ×m−1
eff , (b) ain=k ¼ 10−2 ×m−1

eff , H−1
in ¼ 102 ×m−1

eff ,
and (c) ain=k ¼ 102 ×m−1

eff , H−1
in ¼ 104 ×m−1

eff . In the
calculation, we have ignored the terms with the sound
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speed because we consider the perturbations larger than the
Jeans length, i.e., k ≪ kJ ¼ a

ffiffiffiffiffiffiffiffiffiffiffi
4πGρ̄

p
=cs.

For case (a), both perturbation variables (βðLÞ− ; δ−) grow
exponentially. Hence, the linear perturbation is unstable.
On the other hand, for cases (b) and (c), the metric
perturbation βðLÞ− decays with oscillations, of which the
frequency is about

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk=aÞ2 þm2
eff

p
, while the density

perturbation δ− increases monotonically without oscilla-
tions. The increase rates are evaluated numerically by
power-law functions of the scale factor a as δ− ∝ a1.176

and a0.1077 for (b) and (c), respectively.
The Compton wavelength m−1

eff is larger than the horizon
scale H−1 for (a), while the relation is opposite for (b) and
(c). Hence, the above result concludes that if m−1

eff > H−1

[case (a)] the perturbative approach is no longer valid. Note
that it was shown that in the bigravity theory there exists a
gradient instability against linear cosmological perturba-
tions in the massless limit [45–47]. The nonlinear effect
must be taken into account.
When m−1

eff < H−1 [cases (b) and (c)], there are two
important time scales: One is the Hubble expansion time
H−1, and the other is the oscillation time scale of the
massive graviton m−1

eff . We find that the metric variables
fα−; βðLÞ− ; hðLÞ− ; hðTÞ− g are divided into two parts: the mono-
tonically growing part and the oscillating part. The former
part changes in the Hubble expansion time H−1, while
the latter part with the high frequency

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk=aÞ2 þm2

eff

p
is

always decaying. The metric component βðLÞ− has no
former part and then eventually vanishes as shown in
Fig. 2. On the other hand, the matter perturbations
fδ−; vðLÞ− g grow slowly in the Hubble time scale H−1

without oscillation.
As a result, all variables asymptotically approach mon-

otonic functions increasing in the Hubble time scale H−1.
There seems to exist an asymptotic solution that changes
monotonically in the Hubble time scale H−1. We then
assume that the perturbation variables change in the Hubble
time scale H−1, i.e., j _X−j ∼ jHX−j, which provides the
above asymptotic solution. We call such an approach an
adiabatic potential approximation [48], since we ignore the
oscillation parts of the metric that correspond to the scalar
gravitational waves.

2. Adiabatic potential approximation

Under the adiabatic potential approximation, we look
for a solution for subhorizon scale perturbations. From the
perturbation equations for the massive mode, (B25), (B29),
and (B30), we find

−
�
2
k2

a2
þ 3m2

eff

�
α− ¼ κ2gρ̄gδ− þ 3m2

effh
ðLÞ
− ; ð4:32Þ

βðLÞ− ¼ 0; hðTÞ− ¼ −3
�
α−
2
þ hðLÞ−

�
: ð4:33Þ

Substituting (B31) into (4.32), we obtain

−
�
k2

a2
þm2

eff

�
α− ¼ 4

3
×
κ2gρ̄g
2

δ−; ð4:34Þ

FIG. 2 (color online). The time evolution of βðLÞ− and δ−. The
background spacetime is the dust-dominant universe ða ∝ t2=3Þ.
We choose the initial data (a) ain=k ¼ 10−4 ×m−1

eff , H−1
in ¼

10−2 ×m−1
eff , (b) ain=k ¼ 10−2 ×m−1

eff , H−1
in ¼ 102 ×m−1

eff , and
(c) ain=k ¼ 102 ×m−1

eff , H−1
in ¼ 104 ×m−1

eff . The perturbations
grow exponentially for (a). For (b) and (c), the metric perturbation
βðLÞ− decays with oscillations, while the density perturbation δ−
increases slowly without oscillation.
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where we have ignored a cosmological constant compared
with the graviton mass term because we are interested in
the case with a rather large value of meff . This equation is
interpreted as the massive Poisson equation. The factor 4=3
comes from the vDVZ discontinuity. Using Eq. (4.34) and
ignoring the sound velocity term, the equation for the
density perturbation δ− is described as

δ̈− þ 2H_δ− −
4k2=a2

3ðk2=a2 þm2
effÞ

κ2gρ̄g
2

δ− ¼ 0: ð4:35Þ

As we showed numerically, the solution of this equation
is found as an attractor for generic initial data ifm−1

eff < H−1

is satisfied initially. However, the condition m−1
eff < H−1 is

not always true. In fact, when we go back to the past, since
H−1 ∼ t, then the condition is broken in the past epoch.
When we start from the epoch of m−1

eff > H−1, which
corresponds to the case (a), the linear perturbation is
unstable, and then nonlinear effect must be taken into
account. We can see this fact from the constraint equation.
For the small scale such that a=k ≪ m−1

effð< H−1Þ, we find

½3m2
eff − 2Λg − ð1 − wÞκ2gρ̄g�hðLÞ− ¼ κ2gρ̄g

3
ðδ− − 3wπðLÞ− Þ

ð4:36Þ

from (B31). Note that ð3m2
eff − 2ΛgÞ is a positive constant if

the Higuchi bound is satisfied, while −ð1 − wÞκ2gρ̄g for the
ordinary matter is negative definite, and its magnitude
decreases in time. Hence, the coefficient of the left-hand
side of (4.36) eventually vanishes when we go back to the
past, while the right-hand side does not usually vanish
simultaneously. It indicates that the linear perturbation
approximation is broken at the time when the coefficient
of the left-hand side vanishes because hðLÞ− must diverge. In
this epoch, to answer the question of whether there still
exists an adiabatic potential solution as an attractor,
we have to analyze the full dynamical equations with
inhomogeneities, which is quite difficult without heavy
numerical simulation. However, there is some hope from
Eq. (4.36), which shows a possibility that the density
perturbation is still small enough to be treated as linear
perturbation even when the metric perturbations become
nonlinear. In a spherically symmetric case, we find an
adiabatic potential solution with nonlinear metric pertur-
bations but with linear matter perturbations [49]. In this
solution, we claim that the Vainshtein mechanism is
working even in a cosmological context, and the solution
can be described by GR.
Hence, we may conceive the following scenario,

although the present analysis is based on the perturbations
around a homothetic solution, and an extended analysis
with more generic background such as that in Ref. [46] will
be required. In the early stage of the Universe, because of
the Vainshtein mechanism, gravity is described by GR, and

then the standard big bang scenario is found. However, the
Universe eventually evolves into the bigravity phase at
H−1 ∼m−1

eff as shown in Fig. 3. When the Universe reaches
the decoupling time, we find the case (b) or (c) for the
perturbations, in which the adiabatic potential approxima-
tion becomes valid as an attractor. Hence, we analyze
whether the f matter can be dark matter in the cosmic
structure formation, using the above adiabatic potential
approximation.

3. Growth history of density perturbation

The evolution equation of density perturbation for
the massless mode in a subhorizon scale is given from
Eq. (B24) as

δ̈þ þ 2H _δþ −
κ2gρ̄g
2

δþ ¼ 0; ð4:37Þ

where we have ignored a cosmological constant and the
term with a sound velocity as before. This equation for δþ
is the same as that in GR. On the other hand, as found in
Eq. (4.35), the evolution of the massive-mode variable
δ− depends on the Compton wavelength of the massive
graviton as well as the scale of the perturbations.
From Eqs. (4.35) and (4.37) for δþ and δ−, we obtain

the equations for the physical density perturbations (δg
and δf) as

δ̈g þ 2H _δg − 4πGeffðρ̄gδg þ ρ̄DδDÞ ¼ 0;

δ̈f þ 2H_δf − 4πGeffðρ̄fδf þ ρ̄GδGÞ ¼ 0; ð4:38Þ

where

Geff ¼ G
m2

f

m2
eff

�
1þ m2

g

m2
f

F

�
; ð4:39Þ

FIG. 3 (color online). The schematic diagram of the growth
history. In the early stage of the Universe (H−1 < m−1

eff ), because
of the Vainshtein mechanism, the standard big bang universe is
recovered. However, the Universe eventually evolves into the
bigravity phase, in which there are two cases (b) and (c)
depending on the perturbation scale compared with m−1

eff .
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ρ̄D ¼ K4ρ̄f; ð4:40Þ

δD ¼ 1 − F

1þ m2
g

m2
f
F
δf; ð4:41Þ

and

Geff ¼ G
K2m2

g

m2
eff

�
1þm2

f

m2
g
F

�
; ð4:42Þ

ρ̄G ¼ K−4ρ̄g; ð4:43Þ

δG ¼ 1 − F

1þ m2
f

m2
g
F
δg; ð4:44Þ

with

F ≔
4m−2

eff

3ðm−2
eff þ a2=k2Þ : ð4:45Þ

Beyond the Compton wavelength of the massive grav-
iton, the effective gravitational constant becomes Geff=G≈
m2

f=m
2
eff . It is the same not only as the cosmological value

but also as the local one if the graviton mass is large
(m2

eff ≫ Λg). The perturbation of the dark matter compo-
nent coincides with that of the f matter, i.e.,

δD ≈ δf; ð4:46Þ

for a=k ≫ m−1
eff. Therefore, the f-matter perturbation

behaves as the dark matter component in the g world as
in Secs. IVA and IV B.
Inside the Compton wavelength, the f matter acts as a

repulsive force as shown in Sec. IV B. In the present case, it
can be seen explicitly from the relation

δD ∼ −
1

3þ 4
m2

g

m2
f

δf ð4:47Þ

for a=k ≪ m−1
eff. It indicates that the gmatter accumulates in

a low-density region of the f matter.
We show the numerical result of the evolution of density

perturbations for two different scales [k−1 ¼ 10 Mpc and
100 kpc at the present (a ¼ 1)] in Fig. 4. We assume δg ¼
10−5 and δf ¼ 10−1 at the decoupling time (a ¼ 10−3). For
the large-scale perturbation, its scale is always larger
than the Compton wavelength after the decoupling time.
Hence, the f matter plays the role of dark matter in the g
world and helps small baryon perturbation δg to grow
rapidly as shown in Fig. 4(a). The evolution of δg is similar
to the growth of density perturbations with CDM in GR.

On the other hand, for the small scale perturbation, its
scale is shorter than the Compton wavelength at the
decoupling time. During the period of a=k < m−1

eff , the f
matter acts as a repulsive source in the g world. Then, the
evolution of δg is quite different due to the appearance of a
repulsive force by the f-matter perturbations as shown in
Fig. 4(b). δg changes its sign and then decreases to a
negative value in the early stage. But the perturbation scale
eventually exceedsm−1

eff as the scale factor increases. In fact,
the perturbation scale becomes larger than the Compton
wavelength after a ¼ k=

ffiffiffi
3

p
×m−1

eff , when δD changes its
sign. After then, the f matter begins to act as dark matter.
As shown in Fig. 4(b), δg changes its sign again to be
positive. δg then grow into a nonlinear regime via large
density perturbations of the f-matter fluid.
We set mg=mf ¼ 0.2, which satisfies the constraint

(4.22). From Eq. (B19), we find that the perturbations of
the g variables are dominated by the massless mode, while
those of the f variables have a significant influence by the

FIG. 4 (color online). The evolution of density perturbations for
two scales [(a) 10 Mpc and (b) 100 kpc at the present (a ¼ 1)].
We assume δg ¼ 10−5 and δf ¼ 10−1 at the decoupling time
(a ¼ 10−3). The blue dashed curve indicates the evolution of δf,
while the red solid curve indicates that of δg. The δþ and δ−
are the source terms for the massless graviton mode and the
massive graviton mode, respectively. We set m−1

eff ¼ 1 kpc and
mg=mf ¼ 0.2. The background spacetime is the dust-dominant
universe ða ∝ t2=3Þ.
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massive mode. Since the massive mode can grow only
when a=k ≪ m−1

eff , δf grows first, and then δg follows
as shown in Fig. 4(b). On the other hand, as shown in
Fig. 4(a), δf cannot grow at first because the massive mode
cannot grow for a=k ≫ m−1

eff. δf starts to grow after the
perturbation of the massless mode catches up to that of
the massive mode. δg grows rapidly by the increase of the
massless mode even when δf does not grow.
We conclude that the cosmic structure formation can also

be explained by another one of the twin matter fluids.

V. CONCLUDING REMARKS

We have studied a possibility to explain a dark matter
component by another one of the twin matter fluids in the
ghost-free bigravity theory. We have analyzed from a
galactic scale to a cosmological scale. If we assume the
Compton wavelength of the massive graviton is shorter
than a galactic scale, i.e., a graviton mass is rather heavy
(meff ∼ 10−27 eV), we find a dark matter component can be
explained by another twin matter for all scales. For such a
model, our matter field consists just of baryons. The origin
of the dark matter field is another matter field that couples
only to another metric.
For such a model, at first glance, it seems that the cosmic

acceleration cannot be explained by the interaction term
because the expected cosmological constant is also large.
As shown in Appendix A (see Table I), however, we can
find a large graviton mass and a small cosmological
constant although we need a fine-tuning of the coupling
parameters. For such fine-tuned coupling parameters, the
ghost-free bigravity theory could explain dark matter as
well as dark energy.
Our analysis is valid only for the late stage of the

Universe because the background space is assumed to be
homothetic. To find a whole history of the Universe, we
have to analyze more generic background spacetime with
perturbations. We also have to show that the Vainshtein
mechanism does really work in the early stage of the
Universe as we conceived. Those are in progress.
Our result shows the graviton mass is phenomenologi-

cally significant. The bigravity theory can explain only dark
energy form−1

eff ∼ Gpc, while if m−1
eff ≲ kpc it could explain

dark matter (as well as dark energy). Therefore, an
important remaining question is how large graviton mass
is possible from the theoretical and observational points of

view. From the theoretical point of view, we should
start from more fundamental theory in which a bigravity
theory is reduced as a low-energy effective theory [50–52].
We hope that the hierarchy between the graviton mass and
an effective cosmological constant to explain both dark
sectors will be solved in such a fundamental theory. From
the observational point of view, the evidence of a graviton
mass could be detected by gravitational waves [3,53].
Furthermore, comparing some bigravity phenomena with
the observational data in a galactic scale as well as in a
cosmological scale, we may find the constraint of the
graviton mass (e.g., gravitational lensing by galaxies [54]).
To clarify whether the graviton really has a mass and gives
a constraint on its value, further studies are required.
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APPENDIX A: EVALUATION OF THE
EFFECTIVE COSMOLOGICAL CONSTANT

AND THE GRAVITON MASS

The effective cosmological constant and the graviton
mass are given by (2.14) and (3.14), which contain many
unknown or unfixed values of coupling constants. To
discuss the evolution of the Universe, we have first to
evaluate the values of the graviton mass and the cosmo-
logical constant for given coupling constants.
For this purpose, it is more convenient to introduce

another set of coupling constants fckgðk ¼ 0; 1;…; 4Þ by
rewriting the interaction term in terms of another tensor
defined by Kμ

ν ¼ δμν − γμν as

Uðg; fÞ ¼
X4
k¼0

ckUkðKÞ: ðA1Þ

The relations between fbkg and fckg are given by

c0 ¼ b0 þ 4b1 þ 6b2 þ 4b3 þ b4;

c1 ¼ −ðb1 þ 3b2 þ 3b3 þ b4Þ;
c2 ¼ b2 þ 2b3 þ b4;

c3 ¼ −ðb3 þ b4Þ;
c4 ¼ b4: ðA2Þ

We assume that a flat Minkowski spacetime exists in the
present bigravity model. Then, we impose the following
conditions:

TABLE I. The ratios of the cosmological constant to the
graviton mass square. We assume c3 ¼ −1.

κ2g=κ2f 2c23 þ 3c4 KdS Λg=m2
eff m2

g=m2
f

1 1 5.08 0.0815 25.8
10−12 1 8.85 5.11 × 10−11 7.84 × 10−11

1 10−12 4.00 9.34 × 10−14 16.0
10−6 10−6 4.00 8.10 × 10−11 1.60 × 10−5
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c0 ¼ c1 ¼ 0: ðA3Þ

If m is assumed to be the graviton mass in the Minkowski
background in the massive gravity limit, we should set

c2 ¼ −1: ðA4Þ

As a result, fbkg are described by two free coupling
constants c3 and c4 as

b0 ¼ 4c3 þ c4 − 6;

b1 ¼ 3 − 3c3 − c4;

b2 ¼ 2c3 þ c4 − 1;

b3 ¼ −ðc3 þ c4Þ;
b4 ¼ c4: ðA5Þ

These coupling constants guarantee

m2
eff jK¼1 ¼ m2; ΛgjK¼1 ¼ ΛfjK¼1 ¼ 0; ðA6Þ

for the Minkowski background with K ¼ 1.
To explain dark energy, de Sitter spacetime must be an

attractor solution. As shown in Refs. [24,55], the quartic
equation (2.17) gives one de Sitter solution with K ¼ KdS
as well as two anti-de Sitter solutions if

2c23 þ 3c4 > 0: ðA7Þ

Since the Higuchi bound must be satisfied [56], the lower
bound of the graviton mass is given by the cosmological
constant as

m2
eff >

2

3
Λg:

If we consider a simple and natural case, i.e., bk ∼Oð1Þ
(or ck ∼Oð1Þ) and κg ∼ κf, we find the cosmological
constant and the graviton mass as

Λg ∼m2

meff ∼m ðA8Þ

for K ¼ KdS, assuming no fine-tuning of the coupling
constants.
In this case, dark energy fixes the value of Λg, and then

m−1 (the Compton wavelength) must be the cosmological
horizon scale H−1. As a result, the massive mode becomes
important for a subhorizon scale such as a galaxy. In this
case, the f matter does not explain dark matter because
it is in the GR phase. For the f matter to be dark matter,
meff ∼m is too light. As we show in Sec. IV, if
meff ∼ 1 kpc, the f matter can play the role of dark matter.
However, in that case, Λg is too large to explain the cosmic

acceleration, except for the K ¼ 0 branch with a different
origin of dark energy.
Is there any possibility such that Λg ∼H−1 but

meff ∼ 1 kpc? We then look for the possibility of a heavy
graviton mass, i.e., Λg ≪ m2

eff . One way to get a heavy
graviton mass as well as a small cosmological constant is to
assume κ2g ≫ κ2f or κ2f ≫ κ2g. If we have such a hierarchy
between two gravitational constants, we find Λg ≪ m2

eff
without fine-tuning of coupling constants fcig. Otherwise,
we have to fine-tune the coupling constants. Fine-tuning
the coupling constants such that

0 < 2c23 þ 3c4 ≪ 1;

we find a small effective cosmological constant
ðΛg ≪ m2

eff ∼m2Þ. We show some examples in Table I.
As a result, although the graviton mass square and the

cosmological constant are ordinarily the same asm2
eff ∼ Λg,

it is possible to find a much heavier graviton mass
compared with the observed cosmological constant.

APPENDIX B: COSMOLOGICAL
LINEAR PERTURBATIONS

In this Appendix, we shortly summarize the linear
perturbations of a flat FLRW universe in the bigravity
theory [44]. Just for simplicity, we assume that the back-
ground metrics are given by the homothetic flat FLRW
spacetimes. The detail analysis for more generic back-
ground spacetimes including vector and tensor modes was
discussed in Ref. [46].
The background homothetic flat FLRW spacetimes are

given by

g
ð0Þ

μνdxμdxν ¼ −dt2 þ a2ðtÞδijdxidxj; ðB1Þ

f
ð0Þ

μν ¼ K2 g
ð0Þ

μν: ðB2Þ

This background solution is determined by the standard
Friedmann equation with a cosmological constant, and the
following constraints must be satisfied:

κ2g T
ð0Þ ½m�μ

ν ¼ K2κ2fT
ð0Þ

½m�μ
ν; ðB3Þ

Λg ¼ K2Λf: ðB4Þ

We then consider the adiabatic scalar perturbations and
ignore an anisotropic stress. The perturbed metrics are
expressed as

DARK MATTER IN GHOST-FREE BIGRAVITY THEORY: … PHYSICAL REVIEW D 90, 124089 (2014)

124089-13



g00 ¼ −ð1þ 2αgYÞ;
g0i ¼ −aβðLÞg Yi;

gij ¼ a2ðδij þ 2hðLÞg δijY þ 2hðTÞg YijÞ; ðB5Þ

f00 ¼ −K2ð1þ 2αfYÞ;
f0i ¼ −K2aβðLÞf Yi;

fij ¼ K2a2ðδij þ 2hðLÞf δijY þ 2hðTÞf YijÞ; ðB6Þ

while the perturbed energy-momentum tensors are given by

T0
0 ¼ −ρ̄gð1þ δgÞ;

T0
i ¼ aðρ̄g þ P̄gÞðvðLÞg − βðLÞg ÞYi;

Ti
0 ¼ −a−1ðρ̄g þ P̄gÞvðLÞg Yi;

Ti
j ¼ Pgðδij þ πðLÞg δijÞ; ðB7Þ

T 0
0 ¼ −ρ̄fð1þ δfÞ;

T 0
i ¼ aðρ̄f þ P̄fÞðvðLÞf − βðLÞf ÞYi;

T i
0 ¼ −a−1ðρ̄f þ P̄fÞvðLÞf Yi;

T i
j ¼ Pfðδij þ πðLÞf δijÞ; ðB8Þ

where the scalar harmonic function Y is defined by

ðΔþ k2ÞY ¼ 0; ðB9Þ

with −k2 being an eigenvalue of the usual three-
dimensional Laplacian operator Δ, and its vector and tensor
harmonic functions are defined by

Yi ¼ −k−1∂iY;

Yij ¼ k−2
�
∂i∂j −

1

3
δij∂a∂a

�
Y; ðB10Þ

respectively. The perturbation variables fαg=f; βðLÞg=f; h
ðLÞ
g=f;

hðTÞg=fg and fδg=f; vðLÞg=f; π
ðLÞ
g=fg depend only on time. The

unperturbed energy densities and pressures, fρ̄g=f; P̄g=fg,
must satisfy

κ2gρ̄g ¼ K2κ2fρ̄f; κ2gP̄g ¼ K2κ2fP̄f: ðB11Þ

For the perturbation variables in the g world, we can
define the gauge-invariant variables as in GR,

Φg ¼ αg − _σðLÞg ;

Ψg ¼ Rg −HσðLÞg ;

Δg ¼ δg þ 3ð1þ wÞ a
k
HðβðLÞg − vðLÞg Þg;

Vg ¼ vðLÞg þ a
k
_hðTÞg ; ðB12Þ

where

w ¼ P̄g=ρ̄g; c2s ¼ _̄Pg= _̄ρg: ðB13Þ

Rg and σg are the curvature and the shear perturbations,
respectively, which are defined by

Rg ¼ hðLÞg þ 1

3
hðTÞg ; ðB14Þ

σðLÞg ¼ a2

k2
_hðTÞg −

a
k
βðLÞg : ðB15Þ

Similarly, we introduce the gauge-invariant variables in
the f world, which are defined by those with the subscript
f. We note w and c2s coincide in the g and f worlds because
of (B11).
The massless and massive mode perturbations, Xþ

and X−, are described by the linear combination of the
perturbed variables in the g and f worlds, Xg and Xf, as

Xþ ¼ m2
f

m2
eff

Xg þ
m2

g

m2
eff

Xf; ðB16Þ

X− ¼ Xg − Xf; ðB17Þ

or inversely

Xg ¼ Xþ þ m2
g

m2
eff

X−; ðB18Þ

Xf ¼ Xþ −
m2

f

m2
eff

X−: ðB19Þ

For the massless mode, there are four independent
equations,

−
k2

a2
Φþ ¼ κ2gρ̄g

2
Δþ ðB20Þ

Φþ þΨþ ¼ 0; ðB21Þ

_Δþ − 3wHΔþ þ ð1þ wÞ k
a
Vþ ¼ 0; ðB22Þ

and
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_Vþ þHVþ −
k
a

�
c2sΔþ
1þ w

þ Φþ

�
¼ 0; ðB23Þ

for four perturbation variables fΦþ;Ψþ;Δþ; Vþg.
If both background matter densities (ρ̄g and ρ̄f) are

dominated by nonrelativistic matter ðw ¼ 0Þ, the equation
for the density perturbation Δþ is given by

Δ̈þ þ 2H _Δþ þ
�
k2c2s
a2

−
κ2gρg
2

�
Δþ ¼ 0; ðB24Þ

which is the same as that in GR. Then, we will not discuss it
furthermore.
Unlike the massless mode, there are six independent

equations of motion for the massive mode variables
fα−; βðLÞ− ; hðLÞ− ; hðTÞ− ; δ−; vðLÞ− g. By use of Φ−;Ψ−, which
are given by the above six variables, we find the similar
four equations to those of the massless mode as

−
k2

a2
Φ− þm2

eff

�3
2
hðLÞ− þ 3

4

a
k
HβðLÞ− þ hðTÞ−

	
¼ κ2gρ̄g

2
Δ−;

ðB25Þ

Φ− þΨ− ¼ m2
eff

a2

k2
hðTÞ− ; ðB26Þ

_Δ− − 3wHΔ− þ ð1þ wÞ k
a
V− þ 3

4
ð1þ wÞm2

eff
a
k
βðLÞ− ¼ 0;

ðB27Þ

_V− þHV− −
k
a

�
c2sΔ−

1þ w
þ Φ−

�
¼ 0; ðB28Þ

in which the extra terms come from the interactions
between two metrics. In addition, we have two more
independent equations from (3.21) as

6_hðLÞ− þ 6HhðLÞ− − 6Hα− þ k
a
βðLÞ− ¼ 0; ðB29Þ

a
k

�
3

2
_βðLÞ− þ 6HβðLÞ−

�
þ 3α− þ 6hðLÞ− þ 2hðTÞ− ¼ 0: ðB30Þ

Note that, although the massive mode variables are gauge
invariant in themselves, we also use Φ−;Ψ−;Δ− and V−
just for the similar description to those of the mass-
less mode.
Once the equations of state are given, since the above six

dynamical equations are independent, we can solve the six
variables fα−; βðLÞ− ; hðLÞ− ; hðTÞ− ; δ−; vðLÞ− g for given appropri-
ate initial data.
To set up initial data, we have the additional constraint

equations,

ð3m2
eff − 2ΛgÞðα− þ 3hðLÞ− Þ

¼ κ2gρ̄gðδ− − 3wπðLÞ− − ð1þ 3wÞα− þ 3ð1 − wÞhðLÞ− Þ;
ðB31Þ

−HΦ− þ _Ψ− ¼ a
k
_HV− þ 1

4
m2

eff
a
k
βðLÞ− ; ðB32Þ

which are obtained from (3.22) and the 0-i component of
the Einstein equations.
From the above basic equations, we find that the

variables consist of two parts: One is an oscillating wave
part, and the other is a monotonically changing part in time.
As an example, we show the equation for hðTÞ− :

ḧðTÞ− þ 3H _hðTÞ− þ
�
k2

a2
þm2

eff

�
hðTÞ−

¼ −
k2

a2
ðα− þ 3hðLÞ− Þ þ 12Hð _hðLÞ− þHhðLÞ− −Hα−Þ

≈ −
k2

a2
ðα− þ 3hðLÞ− Þ

�
for

a
k
≪ H−1

�
: ðB33Þ

This equation naively shows that hðTÞ− oscillates with the
frequency ω ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2 þm2

eff

p
with the damping amplitude

due to the expansion of the universe (H). Although the
right-hand side may work as a source term, which could
increase the amplitude, it is not the case as we show it
numerically. As a result, the metric variable will approach a
monotonically changing part with damping oscillations.
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