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We study various aspects of black holes and gravitational collapse in Einstein-Yang-Mills theory under
the assumption of spherical symmetry. Numerical evolution on hyperboloidal surfaces extending to future
null infinity is used. We begin by constructing colored and Reissner-Nordström black holes on surfaces of
constant mean curvature and analyze their perturbations. These linearly perturbed black holes are then
evolved into the nonlinear regime and the masses of the final Schwarzschild black holes are computed as a
function of the initial horizon radius. We compare with an information-theoretic bound on the lifetime of
unstable hairy black holes derived by Hod. Finally we study critical phenomena in gravitational collapse at
the threshold between different Yang-Mills vacuum states of the final Schwarzschild black holes, where the
n ¼ 1 colored black hole forms the critical solution. The work of Choptuik et al. [Phys. Rev. D 60, 124011
(1999)] is extended by using a family of initial data that includes another region in parameter space where
the colored black hole with the opposite sign of the Yang-Mills potential forms the critical solution. We
investigate the boundary between the two regions and discover that the Reissner-Nordström solution
appears as a new approximate codimension-two attractor.
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I. INTRODUCTION

The Einstein-Yang-Mills equations have proven to be a
particularly versatile model for studying nonlinear phe-
nomena in gravitational collapse. Whereas for the Einstein-
Maxwell equations, a version of Birkhoff’s theorem implies
that any spherically symmetric solution must be static, this
does not apply to Yang-Mills fields. Hence one can study
interesting dynamical behavior in spherical symmetry even
with modest computational resources.
What makes the Einstein-Yang-Mills equations particu-

larly interesting is the existence of nontrivial static solutions,
which play a dynamical role in gravitational collapse. The
Bartnik-McKinnon solitons [1] are a discrete family of
regular static solutions. There are also black hole solutions,
the so-called colored black holes [2,3]. They are hairy black
holes in the sense that there is a Yang-Mills field outside the
horizon but the solutions do not carry a global charge. This is
in contrast toMaxwell andKlein-Gordon fields,where black
hole uniqueness theorems imply that the solutions are
characterized solely by their mass, angular momentum
and electric/magnetic charge evaluated at infinity [4]. The
Einstein-Yang-Mills equations also admit the Reissner-
Nordström black hole as an embedded Abelian solution
[5]; this solution does carry a global (magnetic) charge. We
remark that although we restrict ourselves to spherical
symmetry in this paper, more general axisymmetric regular

and black hole solutions to the Einstein-Yang-Mills equa-
tions have been found [6,7].
There are interesting relations between these spherically

symmetric static solutions. The colored black holes have
the horizon radius Rh as a free parameter. As Rh → 0, the
solutions approach the Bartnik-McKinnon soliton. In fact,
in [8] the authors suggested a model of the colored black
hole as a bound state of a bare (Schwarzschild) black
hole and the Bartnik-McKinnon soliton. And as one sends
the index n labeling the member of the discrete family of
colored black holes to infinity, the solutions approach the
Reissner-Nordström black hole.
All the above static solutions are unstable [9–14]. Within

the magnetic ansatz for the Yang-Mills field considered in
this paper (Sec. II. A), the nth soliton and colored black
hole have n unstable modes [15,16]. The Reissner-
Nordström solution has an infinite number of unstable
modes. This may come as a surprise because this solution is
certainly stable in Einstein-Maxwell theory. An explanation
in the isolated horizon framework was given in [8]: the
properly defined horizon mass in this framework is smaller
than the ADM mass in Einstein-Yang-Mills theory, while
the two are the same in Einstein-Maxwell theory. This mass
difference in the Einstein-Yang-Mills case accounts for the
available energy that can be radiated away to infinity.
The relevance of these static solutions to the Einstein-

Yang-Mills equations in the context of the present paper
lies in their role as critical solutions in gravitational
collapse. Here one starts with a one-parameter family of
regular initial data; depending on the value of the*oliver.rinne@aei.mpg.de
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parameter, the outcome of the evolution is different. First
discovered for the spherically symmetric Einstein-massless
scalar field system by Choptuik [17], critical phenomena in
gravitational collapse have since been found for a plethora
of matter models coupled to the Einstein equations (see
[18] for a review article). The Einstein-Yang-Mills system
is particularly rich in this sense as it admits both types of
critical behavior, as well as a new third type, depending on
the initial data chosen. Type I and II concern the threshold
between dispersal of the field to flat spacetime and black
hole formation. In Type I critical collapse, black hole
formation turns on at a finite mass, and the critical solution
is static; in this case it is the Bartnik-McKinnon soliton
[19]. In Type II critical collapse, one can make infinitesi-
mally small black holes, and the critical solution is
discretely self-similar [19,20]. A new “Type III” critical
phenomenon was discovered in [21]. Here the endstates on
both sides of the threshold are black holes, but the Yang-
Mills field is in different vacuum states. It is a curious
property of the magnetic ansatz for the Yang-Mills field in
spherical symmetry that there are two solutions for the
connection (or vector potential), namely w ¼ �1, that both
give rise to a vanishing field strength tensor. At the
threshold between black hole formation with w ¼ �1,
the n ¼ 1 colored black hole was found to be the critical
solution [21]. Across the threshold there is a mass gap
between the final Schwarzschild black holes.
This paper is mainly concerned with “Type III” critical

collapse. We have studied this phenomenon for a wide
range of parameters; in particular, we address the question
how the mass gap depends on the horizon radius of the
colored black hole critical solution. Motivated by work on
critical collapse in the five-dimensional vacuum Einstein
equations [22], where the authors exploited discrete sym-
metries to find a new critical solution with two unstable
modes by tuning two parameters in their initial data, wewere
led to the following question. The Einstein-Yang-Mills
equations are invariant under a sign flip of the potential,
w → −w. So each colored black hole solution has a “dual”
with the opposite sign. One would expect that this dual
solution can also be an attractor in critical collapse, for
different initial data. Is there a single smooth two-parameter
family of initial data that connects both regimes? And if so,
what happens at the boundary between them?
Studying these questions requires a robust and efficient

numerical code that is able to carry out accurate long-term
evolutions. A formulation of the Einstein equations on
hyperboloidal hypersurfaces developed with Vincent
Moncrief [23] has proven to be extremely useful. The
standard approach to numerical relativity is based on
evolution on Cauchy hypersurfaces truncated at a finite
distance, where boundary conditions must be imposed. The
hyperboloidal approach avoids any inaccuracies resulting
from imperfect boundary conditions, as the hypersurfaces
extend all the way to future null infinity Iþ, where all the

characteristics leave the computational domain and no
boundary conditions need to be imposed (or they are
determined uniquely by regularity considerations). In
principle we obtain access to the entire future of the initial
hyperboloidal surface. Furthermore, the constant mean
curvature surfaces we use extend smoothly to the interior
of black hole horizons so that we are able to study
gravitational collapse.
In [24] this approach was first implemented for the

vacuum axisymmetric Einstein equations, achieving long-
term stable evolutions of a perturbed Schwarzschild black
hole. In [25] we included matter sources and studied power-
law tails of massless scalar and Yang-Mills fields in
spherical symmetry. The present paper uses this latter
implementation to study critical phenomena in gravita-
tional collapse and associated properties of Einstein-Yang-
Mills black holes.
We would like to mention a few other numerical studies

(in addition to those on critical collapse mentioned above)
relevant to the topic of this paper. In [26], the authors
studied power-law tails for the Einstein-Yang-Mills system.
They included Iþ in the computational domain by employ-
ing Bondi coordinates. Those have the disadvantage that
they cannot penetrate black hole horizons, and hence are
unsuitable for gravitational collapse. In [27], tails of Yang-
Mills fields were computed using hyperboloidal evolution
as in our case, however on a fixed Schwarzschild back-
ground spacetime. A similar approach was used in [28] to
study interesting saddle-point behavior of Yang-Mills fields
on a Schwarzschild background. The test field admits static
solutions with one unstable mode, which act as unstable
attractors between basins of attraction belonging to the two
different vacuum states of the Yang-Mills field. This is
reminiscent of the behavior seen in colored black hole
critical collapse.
This paper is organized as follows. In Sec. II we briefly

review our formulation of the Einstein-Yang-Mills equa-
tions and numerical method. In Sec. III we compute the
relevant static solutions on the constant mean curvature
surfaces we use. We also analyze their perturbations,
focusing particularly on the Reissner-Nordström solution.
The eigenvalues are compared with an information-
theoretic bound derived by Hod [29]. In Sec. IV we turn
to nonlinear numerical evolutions. First we evolve linearly
perturbed colored and Reissner-Nordström black holes into
the nonlinear regime and investigate how their final masses
depend on the initial horizon radius (Sec. IV. A). These
results are useful for the following Sec. IV. B, which is
devoted to critical collapse. We present an extended family
of initial data that includes regions where the critical
behavior found in [21] is reproduced, as well as regions
where the colored black hole with the opposite sign
appears as the critical solution. We then investigate the
behavior at the threshold between the two and demonstrate
that the Reissner-Nordström solution is an approximate
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codimension-two attractor. We conclude and discuss some
further questions in Sec. V.

II. FORMULATION AND METHODS

In this section we briefly describe the formulation of the
Einstein-Yang-Mills equations and the numerical methods
we use. For simplicity we restrict ourselves to spherical
symmetry and a purely magnetic ansatz for the Yang-Mills
field here. More details and generalizations can be found
in [25].

A. Einstein-Yang-Mills equations

The Einstein-Yang-Mills equations derive from the
action

S ¼
Z

d4x μð4Þg

�
1

2κ
ð4ÞR −

1

4
FðaÞ
μν FðaÞμν

�
; ð1Þ

where ð4Þgμν is the spacetime metric, μð4Þg its volume

element, κ ¼ 8π in geometric units, ð4ÞR is the scalar

curvature, and FðaÞ
μν is the Yang-Mills field strength tensor,

FðaÞ
μν ¼ ∂μA

ðaÞ
ν − ∂νA

ðaÞ
μ þ ϵabcAðbÞ

μ AðcÞ
ν : ð2Þ

(For consistency with the literature we have chosen the
coupling constant g in [25] to be g ¼ 1 here.)
We write the spacetime metric as

ð4Þgμν ¼ Ω−2ð4Þγμν; ð3Þ

where the conformal factor Ω↘0 at Iþ. In spherical
symmetry we may write the conformal metric in isotropic
coordinates as

ð4Þγ ¼ − ~N2dt2 þ ðdrþ rXdtÞ2 þ r2dσ2 ð4Þ

with dσ2 ¼ dθ2 þ sin2θdϕ2. We consider an ADM [30]
decomposition with respect to the time coordinate t.
Constant mean curvature (CMC) slicing is used; i.e., the
mean curvature of the t ¼ const slices is a spacetime
constant K > 0. The tracefree part of the ADM momentum
πtr ij has only one degree of freedom in spherical symmetry,
which we take to be π ≔ ðr4 sin θÞ−1πtr rr. The gravitational
field is thus described by the four variables Ω; ~N;X and π,
which are functions of t and r only. In the following we use
an overdot to denote t-derivatives and a prime to denote
r-derivatives.
Preserving the isotropic spatial coordinate condition

and the CMC slicing condition under the time evolution
yields

0 ¼ r−1X0 þ 3

2
~Nπ; ð5Þ

0 ¼ −Ω2 ~N00 þ 3ΩΩ0 ~N0 − 2Ω2r−1 ~N0 −
3

2
Ω02 ~N

þ 1

6
~NK2 þ 15

8
~NΩ2r4π2 þ 1

2
κ ~NΩ4ð ~Sþ 2~ρÞ: ð6Þ

The Einstein equations reduce to the Hamiltonian and
momentum constraint,

0 ¼ −4ΩΩ00 þ 6Ω02 − 8Ωr−1Ω0 þ 3

2
Ω2r4π2

−
2

3
K2 þ 2κΩ4 ~ρ; ð7Þ

0 ¼ Ωðrπ0 þ 5πÞ − 2rΩ0π þ κΩ3r−1 ~Jr: ð8Þ

The source terms ~ρ, ~S and ~Jr in (6)–(8) are components of
the conformally rescaled energy-momentum tensor ~Tμν ¼
Ω−2Tμν and are defined for Yang-Mills fields below in (15)
and (16).
The Yang-Mills equations are conformally invariant and

hence we may define the fields in terms of the conformal
metric ð4Þγμν, indicated by tildes in the following. We take
the gauge group to be SU(2) and adopt a purely magnetic
ansatz for the vector potential in temporal gauge,

~AiðaÞ ¼ ½aij�xjWðt; rÞ; ~AðaÞ
0 ¼ 0; ð9Þ

where the symbol ½aij� is totally antisymmetric with
½123� ¼ 1. (We considered a more general ansatz in [25].)
In the literature [2,10,19,21] the vector potential is often
written in “(maximally) Abelian gauge” [31] as

~A ¼ wτθdθ þ ðcot θτr þ wτϕÞ sin θdϕ ð10Þ

where τa are the Pauli matrices. The two potentialsW andw
in (9) and (10) are related by

W ¼ 1 − w
r2

: ð11Þ

We prefer to useW also for numerical reasons (regularity at
r ¼ 0). The electric field is defined as

~DiðaÞ ¼ μð4Þγ
~FðaÞ0i ¼ ½aij�xjDðt; rÞ: ð12Þ

The Yang-Mills field equations take the form of a
nonlinear wave equation for W:

_W ¼ rXW0 þ 2XW − ~ND; ð13Þ

_D ¼ ðrXD − ~NW0Þ0 þ 2XD − 4 ~Nr−1W0

− 2Wr−1 ~N0 þ ~NW2ðr2W − 3Þ: ð14Þ
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The matter source terms in (6)–(8) are given by

~ρ ¼ ~S ¼ 1

2
½2r2D2 þ 12W2 þ r2W3ðr2W − 4Þ

þ 2rW0ðrW0 þ 4WÞ�; ð15Þ
~Jr ¼ 2rDðrW0 þ 2WÞ: ð16Þ

B. Numerical methods

We discretize the equations in space using fourth-order
finite differences. A mapping of the radial coordinate with
an adjustable parameter [25] is used in order to provide
more resolution where it is needed, especially near the
black hole horizon where the fields typically develop steep
gradients. The outermost grid point is placed at Iþ, which
we choose to correspond to r ¼ 1. Typical resolutions used
for the simulations in this paper range from 500 to 2000
radial grid points.
Following the method of lines, the evolution equa-

tions (13) and (14) are first discretized in space and then
integrated forward in time using a fourth-order Runge-
Kutta method with sixth-order Kreiss-Oliger dissipation
[32]. At each time step, the ODEs (5)–(8) are solved using a
Newton-Raphson method, at each iteration solving the
resulting linear system using a direct band-diagonal solver.
Boundary conditions at the origin r ¼ 0 (before a black

hole forms) follow from the fact that all the fields
Ω; ~N;X; π;W;D are even functions of r. Once an apparent
horizon forms, we place an excision boundary sufficiently
far inside it and remove its interior from the computational
domain. One-sided finite differences are used at this inner
boundary. Since the excision boundary lies inside the black
hole, all characteristics leave the domain and hence no
boundary conditions are required for the evolution equa-
tions (13) and (14). The outer boundary Iþ is an outflow
boundary as well and is treated in the same fashion.
Boundary conditions for the elliptic equations (5)–(8)
follow from regularity at Iþ and compatibility with the
remaining Einstein evolution equations at the excision
boundary; see [25] for details.
In all our evolutions the value of the mean curvature is

taken to be K ¼ 1=2.
The code has been written in and the figures produced

with PYTHON, making use of the NUMPY, SCIPY and
MATPLOTLIB extensions (for an excellent recent introduc-
tion see [33]).

III. STATIC SOLUTIONS AND THEIR LINEAR
PERTURBATIONS

In order to evolve perturbed Yang-Mills black holes and
to analyze their role in dynamical collapse evolutions, we
need first to construct these solutions. So far these solutions
have been considered on maximal slices K ¼ 0 approach-
ing spacelike infinity (Sec. III. A), whereas we use CMC

slices K > 0 approaching future null infinity. We develop a
general procedure for transforming a static solution on a
maximal slice to a CMC slice in Sec. III. B. Finally we find
the unstable eigenmodes of the solutions in Sec. III. C.

A. Solutions on a maximal slice

Static spherically symmetric solutions to the Einstein-
Yang-Mills equations are most commonly constructed in
polar-areal coordinates, in which the spacetime metric takes
the form

ð4Þg ¼ −
�
1 −

2m
R

�
e−2δdT2 þ

�
1 −

2m
R

�
−1
dR2 þ R2dσ2;

ð17Þ

where m and δ are functions of the areal radius R only.
An example in closed form is the familiar Schwarzschild

solution, a vacuum solution to the Einstein equations with

m¼M¼ const; δ¼ 0; w¼�1; D¼ 0; ð18Þ

M being the black hole mass, M ¼ 0 corresponding to
Minkowski spacetime. Note there are two different solu-
tions for the Yang-Mills potential, w ¼ �1, that both give

rise to vacuum ~FðaÞ
μν ¼ 0. This plays a crucial role in critical

collapse where the end state can be a Schwarzschild black
hole with the Yang-Mills field in either of its two vacua.
Another closed-form static solution to the Einstein-

Yang-Mills equations relevant to the present paper is the
Reissner-Nordström solution [5] (with unit magnetic
charge)

m¼M−
1

2R
; δ¼0; w¼0; D¼0: ð19Þ

Further spherically symmetric, static, purely magnetic
solutions to the Einstein-Yang-Mills equations have been
found: a discrete family of regular solutions known as
Bartnik-McKinnon solitons [1] and a discrete family of
colored black holes [2,3]. These solutions are not known in
closed form but can be constructed numerically by solving
the static Einstein-Yang-Mills equations, which read

0 ¼ R2

�
1 −

2m
R

�
w;RR þ

�
2m −

ð1 − w2Þ2
R

�
w;R

þ ð1 − w2Þw; ð20Þ

m;R ¼
�
1 −

2m
R

�
ðw;RÞ2 þ

ð1 − w2Þ2
2R2

; ð21Þ

δ;R ¼ −
2

R
ðw;RÞ2: ð22Þ

We proceed as in [2]. Expanding the solution about the
black hole event horizon at R ¼ Rh, where Rh ¼ 2mðRhÞ,

OLIVER RINNE PHYSICAL REVIEW D 90, 124084 (2014)

124084-4



one finds that given a value of Rh, there is one undeter-
mined parameter at the horizon, namely b ≔ wðRhÞ. We
integrate the pair of ODEs (20) and (21) numerically from
the horizon to some large value of R and, using the shooting
method, search for a value of b > 0 such that w → −1 as
R → ∞. Here we are only interested in the solution with
one zero of w, the n ¼ 1 colored black hole. Once the
solution for w and m is found, (22) is solved for δ. We
choose the initial value of δ at the horizon to be δh ¼ 0;
later a constant is subtracted so that δ → 0 as R → ∞,
ensuring that the metric (17) approaches the flat metric in
the standard coordinates as R → ∞.
Note that because (20)–(22) are invariant underw → −w,

each static solution has a related solution with the opposite
sign of w. This will play an important role in Sec. IV. B.

B. Transforming to a CMC slice

Given the metric (17) on the maximal slice, we now
show how to transform it to a CMC slice and a conformally
compactified radial coordinate. This generalizes the
method used in [34] to find the Schwarzschild solution
on CMC slices to arbitrary static spherically symmetric
spacetimes.
First we introduce a new time coordinate

t ¼ T − hðRÞ; ð23Þ
where hðRÞ is the height function. The mean curvature of a
t ¼ const slice is found to be

K ¼ eδR−2 d
dR

(
R2e−δh;Rð1 − 2m

R Þ
½ð1 − 2m

R Þ−1e2δ − ðh;RÞ2ð1 − 2m
R Þ�1=2

)
.

ð24Þ

We require this to be a constant K > 0. Let us introduce the
function

ΔðRÞ ≔ 3

R3

�Z
R

Rh

R̄2e−δðR̄ÞdR̄þ Ch

�
; ð25Þ

where Ch is an integration constant discussed below, and
Rh is the areal radius of the horizon. Eq. (24) can now be
solved for h;R to obtain

h;R ¼
1
3
KΔe2δ

ð1 − 2m
R Þf

; ð26Þ

where we have defined

f ≔
�
1

R2

�
1 −

2m
R

�
þ e2δ

�
1

3
KΔ

�
2
�
1=2

: ð27Þ

Using (26) we can write the metric with respect to the new t
coordinate as

ð4Þg ¼ −N2dt2 þ ð3ÞgRRðdRþ NRdtÞ2 þ R2dσ2; ð28Þ

where

N ¼ e−δRf; NR ¼ −
1

3
KΔR2f; ð3ÞgRR ¼ ðRfÞ−2:

ð29Þ

Next we transform to conformal radius r defined by

dr
dR

¼ r½ð3ÞgRR�1=2
R

¼ r
R2f

: ð30Þ

Thus we arrive at the line element (3)–(4) with

Ω ¼ r
R
; ~N ¼ re−δf; X ¼ −

1

3
KΔ: ð31Þ

We also compute

π ¼ 2

3
KRr−3ð1 − eδΔÞ; ð32Þ

and from _W ¼ 0 in (13) we find the electric field

D ¼ 1

3
KΔeδr−3R2w;R: ð33Þ

This completes the computation of all the evolved fields.
Numerically, we need to integrate (25) and (30) to find

ΔðRÞ and rðRÞ. The conformal radius r may be multiplied
by an overall constant so that r ¼ 1 at R ¼ ∞ correspond-
ing to Iþ. The function rðRÞ is inverted (by interpolation)
to find RðrÞ on the numerical grid chosen for the conformal
radius r, and this then allows us to specify all the fields as
functions of r on the numerical grid.
Finally we comment on the integration constant Ch in

(25). The expansion of the outgoing radial null rays is
computed as

Θþ ¼ 1

3
KΔeδ þ f: ð34Þ

At the horizon, we have Rh ¼ 2mh and thus

Θþ;h ¼
1

3
KeδhðΔh þ jΔhjÞ: ð35Þ

Hence in order to have Θþ;h ¼ 0 we need the constant
Ch < 0 in (25). In Schwarzschild (and also Reissner-
Nordström) spacetime we have δ≡ 0, and the constant
C appearing in the metric on the CMC slice in [34] is
related to our constant Ch via

Ch ¼ −
C
K
þ 1

3
R3
h: ð36Þ
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C. Mode analysis

In order to compute the eigenmodes of linear perturbations
about static solutions of the Einstein-Yang-Mills equations,
we prefer to work on the CMC slice using conformal radius.
This is because our coordinates smoothly extend to the black
hole interior, unlike the standard Schwarzschild-like coor-
dinates, or Kruskal-Szekeres coordinates where the horizon
is pushed off to negative infinity in the radial coordinate used
(cf. the debate on smoothness of the modes in [10,11,35]).
Also our computational domain extends all the way out to
future null infinity.
Separating the time dependence, we make the general

ansatz

w ¼ w̄þ eλtδwðrÞ; ð37Þ

with λ ∈ C, where w̄ refers to the static background
solution and δw to its linear perturbation. We are looking
for unstable modes corresponding to positive real eigen-
values λ > 0. Substituting the ansatz (37) into the dynami-
cal Einstein-Yang-Mills equations (Sec. II. A), we find the
pulsation equation

c2δw00 þ c1δw0 þ c0δw ¼ 0; ð38Þ

where as in Sec. II. A a prime refers to a derivative
with respect to conformal radius r. The coefficients ci
are given by

c2 ¼ ~N2 − r2X2; ð39Þ

c1 ¼ ~N−1 ~N0ð ~N2 þ r2X2Þ − 2r2XX0 − 2rX2 þ 2λrX; ð40Þ

c0 ¼ −2r−2 ~N2 þ 3 ~N2r−2ð1 − w̄2Þ
þ λðX − ~N−1 ~N0rX þ rX0Þ − λ2; ð41Þ

where ~N and X are to be evaluated for the background
solution. At Iþ the following conditions hold [25]:

r ~N0 ¼ ~N; rX ¼ − ~N; X0 ¼ 0: ð42Þ

Substituting these into (38) yields

δw0 ¼ −δw
λ̂2 þ 2r−2

2λ̂
ð43Þ

at Iþ, where we have defined λ̂ ≔ λ= ~N∞, and we choose
the lapse at Iþ to be ~N∞ ¼ K=3 so that time t agrees with
the standard time coordinate in flat spacetime asymptoti-
cally [25]. The value of δw at Iþ can be freely chosen, and
(43) provides us with initial data for the pulsation equa-
tion (38) at Iþ, which we integrate inwards toward the
horizon. There the solution δw must be finite, and this

condition determines the eigenvalues λ. Once an eigenvalue
has been found, (38) can be integrated to the interior of the
horizon as well.
For the n ¼ 1 colored black hole, there is precisely one

unstable mode, which was first computed in [10]. A plot of
the eigenvalue as a function of the horizon radius can be
found in [36]. Our results are in good agreement with this.
In the Einstein-Yang-Mills system, the Reissner-

Nordström solution has an infinite number of unstable
modes [11,13,14]. The nth mode has n zeros, n ¼
0; 1; 2;… The first three modes are plotted in Fig. 1 for
one value of the horizon radius. Note how they are perfectly
smooth at the horizon in our coordinates. Figure 2 shows
the corresponding eigenvalues as functions of horizon
radius.
It is interesting to compare the eigenvalues of the

Reissner-Nordström solution with a bound on the lifetime
of unstable hairy black holes proposed by Hod [29], based
on arguments from quantum information theory. This bound
was shown in [29] to be satisfied for the n ¼ 1 colored black
hole but the situation for the Reissner-Nordström solution
remained inconclusive. The bound implies that the eigen-
values should be bounded by

λ ≤ ½4ðRh þ ΔEÞ�−1 ≤ ð4RhÞ−1: ð44Þ

We refer to the first bound on the right-hand side as the
strong bound and the second as the weak bound. In
the strong bound, ΔE is the mass that is swallowed by
the unstable black hole in a nonlinear evolution. As a first
approximation, this was taken in [29] to be the entire mass
outside the horizon of the initial black hole,ΔE ¼ ΔMmax ¼
M − 1

2
Rh. For the Reissner-Nordström solution, we have

FIG. 1 (color online). The first three unstable eigenmodes of
the Reissner-Nordström solution as a function of conformal
radius r. The horizon radius Rh ¼ 2.57 and slicing constant Ch ¼
−1.84 in (25) have been chosen to agree with the attractor
observed in the evolutions of Sec. IV. B. The modes have been
normalized so that δw ¼ 1 at Iþ. The location of the horizon is
indicated by the vertical line.
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M ¼ R2
h þ 1

2Rh
⇒ ΔMmax ¼ M −

Rh

2
¼ 1

2Rh
: ð45Þ

Figure 2 shows that close to the extremal value Rh ¼ 1,
only the weak bound is satisfied, whereas the above version
of the strong bound is violated (unlike for the colored black
holes, where both are satisfied [29]). However, ΔE should
really be taken to be the actual amount of hair that falls into
the black hole; this will be computed in the following
section.

IV. NONLINEAR EVOLUTIONS

In this section we perform nonlinear numerical evolu-
tions of the Einstein-Yang-Mills equations. While we are
ultimately interested in the formation (and later decay) of
Yang-Mills black holes as intermediate attractors in gravi-
tational collapse (Sec. IV. B), we begin by studying the

final fate of linear perturbations of these static solutions
(Sec. IV. A). The reason is that in critical collapse, the
situation near the critical solution can be described in terms
of linear perturbations. As we shall see, the critical
solutions relevant to the present study are the n ¼ 1 colored
black holes and the Reissner-Nordström solution. In order
to approach these critical solutions, one needs to tune one
(or even two, as in Sec. IV. B) parameters in the initial data,
which is done by a bisection search involving a large
number of evolutions. If we are only interested in the
behavior after the critical solution is approached, it suffices
and is much less time-consuming to start with the linearly
perturbed critical solution and evolve it into the nonlinear
regime.

A. Perturbed black holes

We begin with a colored black hole solution of a given
horizon radius Rh0 and add to it the unstable mode with a
typical amplitude ∼5 × 10−3. Depending on the sign of the
perturbation, the solution evolves to a Schwarzschild black
hole with the Yang-Mills field either in its w ¼ þ1 or w ¼
−1 vacuum state. Figure 3 illustrates that in a w → þ1
evolution, most (but not all) of the Yang-Mills hair falls into
the black hole, whereas in a w → −1 evolution, most (but
not all) of it escapes to infinity. The resulting mass gap is
plotted in Fig. 4 as a function of the horizon radius of the
initial colored black hole for a few evolutions. Note that
the case Rh ¼ 0 corresponds to the regular, horizon-less
Bartnik-McKinnon soliton, which either disperses to
Minkowski spacetime or collapses to a Schwarzschild
black hole swallowing nearly all of the soliton’s mass.

FIG. 2 (color online). Top: the first three unstable eigenvalues
of the Reissner-Nordström solution as functions of horizon radius
Rh. Bottom: comparison of the dominant eigenvalue (middle
curve, solid blue) with Hod’s bound [29] in its weak (upper curve,
dashed black) and strong (lower curve, solid black) form, where
for the latter we take ΔE to be the entire mass outside the horizon.
If instead ΔE is taken to be the fraction of this mass that falls into
the black hole in a nonlinear evolution, the black points result.

FIG. 3 (color online). Bondi mass mIþ (solid lines) and
apparent horizon mass mh ¼ 1

2
Rh (dashed lines) as functions

of time for two perturbed colored black hole evolutions with
opposite sign of the perturbation, leading to final vacuum states
w ¼ −1 (blue) or w ¼ þ1 (red). The initial horizon radius is
Rh ¼ 2.11 (chosen to agree with the attractor of the evolution
with rb ¼ 0.7 in Sec. IV. B).
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In Fig. 4 we compare the actual mass gap observed in the
nonlinear evolutions with the maximalmass gap (see Fig. 2
of [36]) that would result if either all of the Yang-Mills hair
outside the horizon fell into the black hole or all of it
escaped to infinity. In [36] the authors wondered whether
the actual mass gap goes to zero at some large but finite Rh,
so that the line of colored black holes in a phase space
diagram [21] would terminate at a finite distance, “in an
amusing similarity to the gas-liquid boundary on phase
diagrams for typical substances.” While our results cannot
exclude this possibility, if the trend continues then the mass
gap will only approach zero asymptotically as Rh → ∞. We
remark that the numerical evolution is stopped when the
horizon mass 1

2
Rh and the Bondi mass differ by less than

one part in 104, so we can only determine the final mass up

to that accuracy. As a result, the relative mass gap, being the
quotient of two small quantities, has relatively large errors
for large values of Rh.
We repeat this calculation for the Reissner-Nordström

solution in Fig. 5, where we add the dominant unstable
mode. Since the background solution has w ¼ 0 and the
Einstein-Yang-Mills equations are symmetric under
w → −w, the evolutions for both signs of the perturbation
are identical up to a sign, and there is no mass gap. We have
already computed the mass outside the horizon of the
Reissner-Nordström solution, ΔMmax in (45). The part of
this mass that falls into the black hole in a nonlinear
evolution is shown in Fig. 5. It shows remarkably little
variation, starting at about 50% of ΔMmax for Rh0 → 1 and
settling down to about 40% for R ∼ 10. Since we cannot
evolve the extremal Reissner-Nordström solution (Rh ¼ 1)
using our current numerical implementation, we only
consider horizon radii close to but larger than this limit.
With these results we now return to the comparison of

the dominant unstable eigenvalue of the Reissner-
Nordström solution with the bound derived by Hod [29],
the lower panel of Fig. 2. If we take ΔE in (44) to be the
actual amount of mass that falls into the black hole during
the evolution, ΔE ¼ Mf − 1

2
Rh0, then the strong version of

the bound is satisfied and saturated remarkably closely.

B. Critical collapse

In this section we study the formation of black holes
from regular initial data. The family of initial data for the
Yang-Mills potential w we consider consists of a kink as in
[21] with an additional Gaussian bump:

wð0;rÞ¼− tanh

�
r−rk
σk

�
−Abexp

�
−
ðr−rbÞ2
2σ2b

�
: ð46Þ

FIG. 4. Masses of colored black holes and their decay products.
In the top panel, the dashed line shows the total mass of hair
ΔMmax ¼ M − 1

2
Rh0 outside the horizon radius Rh0 of the initial

colored black hole. The upper solid line represents the quantity
Mfþ − 1

2
Rh0, where Mfþ is the mass of the final Schwarzschild

black hole in a w → þ1 evolution. The lower solid line shows the
corresponding Mf− − 1

2
Rh for a w → −1 evolution. The differ-

ence ΔMact ¼ Mfþ −Mf− is the actual mass gap, indicated by
the shaded region. The ratio of the actual and the maximal mass
gap is plotted in the lower panel. The error bars indicate an
estimate of the numerical accuracy.

FIG. 5. Masses of Reissner-Nordström black holes and their
decay products. The dashed line shows the mass of the Yang-
Mills field outside the horizon radius Rh0 of the initial Reissner-
Nordström black hole, ΔMmax ¼ M − 1

2
Rh0. The solid line

represents the quantity Mf − 1
2
Rh0, where Mf is the mass of

the final Schwarzschild black hole.
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From this we form our evolved field W, rolling it off with
an additional Gaussian to ensure regularity at r ¼ 0:

Wð0; rÞ ¼ 1 − wð0; rÞ
r2

�
1 − exp

�
−

r2

2σ2r

��
: ð47Þ

The time derivative of w is taken to vanish initially. The
constraint equations are solved for the gravitational field.
In [21] colored black hole critical collapse was observed

in the kink family of initial data [without our additional
Gaussian, Ab ¼ 0 in (46)]. We observe the same phenome-
non in regions of our extended family. Since the Einstein-
Yang-Mills equations are symmetric under w → −w, it is
tempting to search for regions in parameter space where the
critical solution is the one with the opposite sign as in the
original simulations of [21]. Indeed such regions exist, and
an extensive search in parameter space led us to discover a
two-parameter family that smoothly connects two regions
with opposite signs of the colored black hole critical
solution. We fix σk ¼ σb ¼ σr ¼ 0.05 and rk ¼ 0.4 in
(46) and vary the two parameters rb and Ab.
For various values of rb, we perform a bisection search

for Ab between the two possible outcomes of the evolution,
Schwarzschild black holes with w ¼ �1 (Fig. 6). Let us
call the solution that is thus approached Ab-critical. For
values of rb well smaller than some critical value
r�b ≈ 0.6036, we find that the critical solution is a colored
black hole with w ¼ −1 at Iþ, as in [21]. For rb > r�b, the
colored black hole with the opposite sign of w is
approached (Fig. 7).
The behavior we find at the Ab-critical threshold is the

same as reported in [21]. Figure 8 shows w at Iþ as a
function of time for a slightly Ab-supercritical evolution
with rb ¼ 0.7. The black hole forms at t ¼ 28, and the

different phases of the evolution are clearly visible:
approach to the colored black hole with w ¼ þ1 at Iþ,
exponential instability of this intermediate attractor, and
ringdown to the final Schwarzschild black hole with w ¼
þ1 at Iþ. We only plot w at Iþ here, however the approach
to the static solutions can be observed at all radii.
The time t ¼ τ when the evolution departs from the

critical solution is plotted for this rb ¼ 0.7 evolution as the
dashed line in Fig. 9. Here we define τ as the time when
the zero of w crosses r ¼ 0.5 in slightly subcritical
evolutions. It exhibits critical scaling as in Type I critical
collapse [18],

τ ¼ const − γ ln jAb − A�
bj; ð48Þ

FIG. 6. The critical line in the two-dimensional parameter
space. For values of Ab above (below) the threshold, the evolution
ultimately approaches a Schwarzschild black hole with w≡þ1
(−1). The critical value rb ¼ r�b is indicated by a dot. For rb < r�b
(rb > r�b), the critical solution is a colored black hole (CBH) with
w ¼ −1 (w ¼ þ1) at Iþ.

FIG. 7 (color online). Ab-near-critical evolutions of w at future
null infinity for a few typical values of rb. The value of Ab for the
slightly supercritical (upper curves, red) and slightly subcritical
(lower curves, blue) evolutions differs by ≈10−14.

FIG. 8. An ever so slightly Ab-supercritical evolution of w at Iþ
for rb ¼ 0.7.

FORMATION AND DECAY OF EINSTEIN-YANG-MILLS … PHYSICAL REVIEW D 90, 124084 (2014)

124084-9



with a fitted value γ ¼ 9.79. Using the methods of
Sec. III. C we compute the eigenvalue of the unstable
mode of the colored black hole (with Rh ¼ 2.11 for this
evolution) as λ ¼ 0.1020. Hence 1=λ ¼ 9.80 ≈ γ, as
expected. Our results demonstrate the universality of the
critical phenomenon discovered in [21], as the family of
initial data and the critical parameter we use is different
(recall the Gaussian in (46) was not included in [21]).
We also observe a mass gap between the slightly

Ab-subcritical and slightly Ab-supercritical evolutions,
and this agrees well with the mass gap we obtained in
Sec. IV. A by starting off with the perturbed colored black
hole directly. (For the case Rh ¼ 2.11 considered above, the
mass gap between near-critical evolutions is found to be
ΔM ¼ 0.1465; the mass gap from the perturbed colored
black hole evolutions is ΔM ¼ 0.1469.)
The question arises what happens as rb approaches the

critical value r�b that separates the two regions of colored
black hole critical behavior with opposite signs of the
critical solution. We find that as we tune rb closer and
closer to the threshold, the Reissner-Nordström solution
corresponding to w ¼ 0 appears as a new approximate
unstable attractor before the colored black hole is
approached (Fig. 7); the term approximate will be
explained below. Very close to r�b this new attractor
dominates and the colored black hole attractor is no longer
visible. (Seeing it would require an excessive amount of
fine-tuning of Ab.)
We nowanalyze the behavior at the rb-critical threshold in

more detail. First we look at the time the solution spends near
the Reissner-Nordström attractor in an Ab-critical search
(the solid line in Fig. 9), this time with rb ≈ r�b. Here we
define τ as the time when w first passes the value w ¼ 0.1 at

Iþ in slightly Ab-supercritical evolutions. Again this shows
critical scaling, with a fitted exponent γ ¼ 10.67. This
agrees well with the inverse of the dominant eigenvalue
of the Reissner-Nordström attractor (which has horizon
radius Rh ¼ 2.57): λ0 ¼ 0.09348 ⇒ 1=λ0 ¼ 10.70.
Next we look at the departure time from the Reissner-

Nordström attractor (defined as above) tangential to the
critical line, i.e. we tune Ab very closely to threshold and
vary rb. The result is shown in Fig. 10. Critical scaling with
a fitted exponent γ ¼ 93.3 is found, which differs by about
one order of magnitude from the exponent away from the
critical line. This value agrees well with the next-to-
dominant eigenvalue of the Reissner-Nordström solution,
λ1 ¼ 0.01062 ⇒ 1=λ1 ¼ 94.2.
Finally we evaluate the mass gap ΔM ¼ Mfþ −Mf−

between slightly Ab-subcritical and Ab-supercritical evo-
lutions as a function of rb (Fig. 11). This vanishes linearly
as rb → r�b, consistent with perturbations about Reissner-
Nordström spacetime, which have vanishing mass gap

FIG. 9. The time t ¼ τ when the evolution departs from the
critical solution as a function of the logarithm of the parameter
distance in Ab-critical searches. The dashed line is for rb ¼ 0.7,
where the critical solution is a colored black hole, whereas the
solid line is for rb ¼ 0.6036 ≈ r�b, where the critical solution is
the Reissner-Nordström black hole. The lines are linear fits to the
data points.

FIG. 10. The time t ¼ τ when the evolution departs from the
Reissner-Nordström attractor as a function of rb along the critical
line, where Ab has been tuned very closely to threshold. The line
is a linear fit to the data points.

FIG. 11. The mass gap ΔM ¼ Mfþ −Mf− across the
Ab-critical threshold as a function of rb.

OLIVER RINNE PHYSICAL REVIEW D 90, 124084 (2014)

124084-10



(Sec. IV. A). In fact, the zero of the mass gap allows for the
most accurate determination of the critical value r�b.
All these results are consistent with the picture (Fig. 6)

that the codimension-two unstable attractor that divides the
critical line in the two-dimensional parameter space
into colored black hole solutions with opposite sign is
the Reissner-Nordström solution. Along its dominant
unstable mode, the solution departs immediately to one
of the final Schwarzschild endstates. Along its second
unstable mode, it first approaches one of the copies of the
n ¼ 1 colored black hole (with either sign) before departing
to Schwarzschild.
There remains a puzzle though: the Reissner-Nordström

solution has an infinite number of unstable modes. By
tuning two parameters in the initial data, one can eliminate
the two dominant modes but in general not any of the other
unstable modes. These modes have an increasing number
of radial oscillations. When decomposing the near-critical
solution into the eigenmodes, the coefficients must there-
fore fall off fast with the mode number, as the solution
certainly remains smooth. Thus we would expect the near-
critical solution to look qualitatively like the third unstable
mode, which has two zeros. Indeed this is what we see
(Fig. 12). The third eigenvalue is much smaller than the
second (by a factor 33) and hence the associated eigenmode
is seen as almost constant in time.
The Reissner-Nordström solution is thus only an

approximate codimension-two attractor, but one that is
approached remarkably closely.

V. CONCLUSIONS AND DISCUSSION

We investigated static spherically symmetric black hole
solutions to the Einstein-Yang-Mills equations, in particu-
lar the n ¼ 1 colored black hole and the magnetic Reissner-
Nordström solution, and the role they play in gravitational
collapse.

A new formulation and numerical implementation of the
equations on hyperboloidal surfaces of constant mean
curvature (CMC) extending out to future null infinity
was used [23–25]. This gives us access to the entire part
of spacetime to the future of the initial hyperboloidal
surface. Our coordinates smoothly pass through the horizon
to the interior of the black hole, allowing us to study black
hole formation from regular initial data.
We began by constructing the relevant static solutions on

CMC surfaces, and we computed the unstable modes and
corresponding eigenvalues in linear perturbation theory.
The modes are regular at the horizon.
We then studied nonlinear numerical evolutions of these

linearly perturbed static black holes. The mass gap between
the final Schwarzschild black holes of evolutions with
either sign of the perturbation was computed for a range of
horizon radii for the first time and compared with the
maximal mass gap that would result if all of the black hole’s
hair either fell into the black hole or dispersed to infinity.
Even though obtaining accurate results for large horizon
radii Rh is numerically very challenging, our results suggest
that the actual mass gap will likely only approach zero as
Rh → ∞. Similarly, we computed the final mass of per-
turbed Reissner-Nordström black holes for a range of
horizon radii. In this case there is no mass gap.
For the Reissner-Nordström solution, we compared the

dominant eigenvalue with a bound on the lifetime of
unstable hairy black holes proposed by Hod [29]. This
bound comes in two versions (44). We find that the weak
bound is satisfied for all values of the horizon radius. If the
quantityΔE appearing in the strong bound is taken to be the
entire mass outside the horizon, as in [29], then this bound
is violated for near-extremal Reissner-Nordström black
holes. If however ΔE is taken to be the fraction of this
mass that actually falls into the black hole during the
nonlinear evolution (which is suggested by the derivation in
[29]) then the strong bound is satisfied and saturated very
closely. It is quite remarkable that the somewhat heuristic
arguments from quantum information theory used in [29]
result in such a good prediction.
Finally we turned to critical behavior in gravitational

collapse. Our results confirm and demonstrate the univer-
sality of the phenomena first observed in [21] at the
threshold between the two different final vacua (w ¼ �1)
of the Yang-Mills field within the class of evolutions that
collapse to black holes (“Type III” critical collapse). The
critical solution is the n ¼ 1 colored black hole, and the time
spent in its vicinity shows critical scaling with an exponent
that is in agreement with the unstable eigenvalue of the
colored black hole. We also showed that the mass gap
between slightly subcritical and slightly supercritical evo-
lutions agrees well with the mass gap observed by starting
off directly with the perturbed colored black hole critical
solution.

FIG. 12 (color online). The Yang-Mills potential w as a function
of conformal radius r at time t ¼ 250 for an evolution with
rb ¼ 0.6036 ≈ r�b. Compare with δw2 in Fig. 1.
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The main result of this paper is a novel codimension-two
critical phenomenon. Using an extended family of regular
initial data, we were able to probe regions of parameter
space where the colored black hole critical solutions have
opposite sign. The existence of two copies of these
solutions is a consequence of the invariance of the
Einstein-Yang-Mills equations under w → −w. We con-
structed a two-parameter family of initial data that
smoothly connects these two regions in parameter space
and investigated the boundary between them. We gave
strong evidence that the Reissner-Nordström solution
appears as a new codimension-two attractor. In a neighbor-
hood the evolutions show the expected critical scaling of
the time spent near the Reissner-Nordström solution,
consistent with the results from the linear mode analysis.
Along the dominant unstable mode, the solution departs
immediately to one of the two Schwarzschild endstates;
along the subdominant mode, it first moves towards one of
the copies (with different signs of w) of the colored black
hole. However, the Reissner-Nordström solution is only an
approximate attractor because it has an infinite number of
unstable modes, which cannot all be tuned away using two
parameters. The contribution of the higher modes is
remarkably small though, and at the time of closest
approach the solution is dominated by the third eigenmode.
This appears to be the first time that a critical solution with
an infinite number of unstable modes was shown to play a
role as an intermediate attractor in gravitational collapse.
The fact that the Reissner-Nordström solution appears at

the boundary between n ¼ 1 colored black hole solutions
of opposite sign came as a surprise—we expected this role
to be taken by the n ¼ 2 colored black hole. In two-
parameter studies of Type II critical collapse in the five-
dimensional vacuum Einstein equations [22], the authors
found a new discretely self-similar solution with two
unstable modes as the codimension-two attractor, exploit-
ing discrete symmetries similar to our w → −w symmetry.
There are arguments that this behavior is quite generic [37].
Of course we cannot exclude that there might be other
families of initial data that do have the n ¼ 2 colored black
hole as a codimension-two attractor.
One might wonder whether similar behavior exists for

the standard Type I critical collapse separating black hole
formation and dispersal. In this case the critical solution is

the Bartnik-McKinnon soliton [19]. Indeed, by the same
symmetry of the Einstein-Yang-Mills equations, two copies
of this solution with opposite signs of w exist. However,
there is no smooth family of initial data covering regions of
critical collapse with both versions of the critical solution.
The reason is that regularity at the origin r ¼ 0 requires that
the Yang-Mills field be in one of its vacua w ¼ �1 at the
origin at all times (and our choice of W as an evolved
variable (11) selects the w ¼ 1 vacuum). It is impossible for
the Yang-Mills field to switch from one vacuum to the other
at the origin during an evolution, and hence it is impossible
to have both solitons with opposite signs as critical
attractors in the same smooth family of initial data.
Another interesting question suggested by our discovery

of the codimension-two critical behavior is whether super-
extremal (M < 1) magnetic Reissner-Nordström black
holes can be formed in this process. There is not much
room for this because the minimum mass of the colored
black holes along the critical line is M ≈ 0.83, the mass of
the Bartnik-McKinnon soliton. We have not been able to
construct a two-parameter family of initial data that con-
nects such sufficiently light colored black hole attractors of
opposite sign without hitting regions of parameter space
where the fields disperse instead of forming a black hole. It
could well be that this is the way cosmic censorship is
enforced in this context.
Finally we point out that we assumed a purely magnetic

ansatz for the Yang-Mills field (9). In [25] we considered
the most general ansatz and used this in numerical studies
of power-law tails at future null infinity. The question
remains how the presence of a sphaleronic part of the Yang-
Mills field affects critical behavior; this will be the subject
of future work.
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