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Using the reconstruction method, we investigate which FðRÞ theories, with or without the presence of
matter fluids, can produce the matter bounce scenario of holonomy corrected loop quantum cosmology. We
focus our study in two limits of the cosmic time, the large cosmic time limit and the small cosmic time limit.
For the former, we find that, in the presence of noninteracting and nonrelativistic matter, the FðRÞ gravity
that reproduces the late time limit of the matter bounce solution is actually the Einstein-Hilbert gravity plus
a power law term. In the early time limit, since it corresponds to large spacetime curvatures, assuming that
the Jordan frame is described by a general metric that, when it is conformally transformed to the Einstein
frame, produces an accelerating Friedmann-Robertson-Walker metric, we find explicitly the scalar field
dependence on time. After demonstrating that the solution in the Einstein frame is indeed accelerating, we
calculate the spectral index derived from the Einstein frame scalar-tensor counterpart theory of the FðRÞ
theory and compare it with the Planck experiment data. In order to implement the resulting picture, we
embed the FðRÞ gravity explicitly in a loop quantum cosmology framework by introducing holonomy
corrections to the FðRÞ gravity. In this way, the resulting inflation picture corresponding to the FðRÞ gravity
can be corrected in order that it coincides to some extent with the current experimental data.
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I. INTRODUCTION

One of the most striking experimental results in astro-
physics and cosmology was confirmed at the end of the
1990s predicting, using standard candles as references, that
the Universe is expanding but, contrary to the up to then
status of expansion, in an accelerating way [1]. Current
experimental research aims to enlighten the Universe’s
evolution from early times to late times [2,3]. The exper-
imentally verified late time acceleration generated an
important stream or direction of modern cosmology
research, with most of the models and scenarios trying
to explain this rather curious and unexpected late time
acceleration. Along with the verification of the B-mode
power spectrum [3], the main aim of research is to
consistently describe early time and late time acceleration
of the Universe within the same theoretical framework. The
correct description should in some way describe the various
cosmological eras of the Universe along with the rather
smooth and consistent with experimental data, transition
between these eras.
The modified gravity theories provide a consistent

description of the early time and late time acceleration,
with the latter being named dark energy and being
described as a negative pressure perfect fluid. This dark
energy can be consistently described within the theoretical

framework of FðRÞmodified theories of gravity and related
modifications. The bibliography on the subject is vast, but
for important papers on this vast research topic, the reader
is referred to [4–28] and references therein. It is worth
mentioning that the first consistent unified description of
early time and late time acceleration in the FðRÞ theories
theoretical framework was done in [29]. For alternative
theories to FðRÞ gravities that can actually describe dark
energy, the reader is referred to [30–34].
Nevertheless, any theory that predicts modifications to

Einstein gravity has to be confronted with the astrophysical
data. The viability constraints to FðRÞ theories come from
planetary, star formation and local tests (see for example
[4,5,14]) and we should also bare in mind that a cosmo-
logically viable FðRÞ theory must have concordance with
the Λ cold dark matter model [13,14,19,24,25]. In addition,
every FðRÞ theory is formally equivalent to a Jordan frame
scalar-tensor counterpart theory with ω zero and nonzero
potential. This Jordan frame scalar-tensor theory is, by
means of a conformal transformation, mathematically
equivalent to an Einstein frame scalar-tensor theory, the
scalaron of which has to be classical, in order for the
stability of the theory to be ensured (see relevant work in
[4–8] and that related to the subject references therein).
The experimental results of Planck [2] and BICEP [3]

have narrowed down the set of inflationary models,
excluding models such as chaotic inflation generating
power law potentials, exponential potential models and
inverse power law models. Interestingly enough, the data
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set received from the aforementioned experiments seem to
be favorably inclined towards R2 gravity. In view of this
data, the matter bounce scenario, in the context of hol-
onomy corrected loop quantum cosmology (LQC) [35–58],
predicts solutions consistent or that can be consistent with
the experimental data. For an important stream of reviews
and important papers on LQC see [35–58]. The theoretical
framework of LQC is quite appealing since singularities, a
rather unwanted feature in every physical theory, are
resolved in an elegant way [39–42].
One appealing matter bounce scenario [48–58] results if

it is assumed that the Universe is filled with only one scalar
field with the simplest scalar potential, leading at early
times to matter domination when in the contracting phase
[57,58]. In Refs. [57,58] an analytic solution of the matter
bounce scenario was given, along with a numerical study of
the allowed orbits that can be in close agreement with the
predictions of the Planck data. In addition, the bounce
matter solutions were obtained within an FðTÞ gravity
context in [51] and also teleparallelism in LQC was studied
in [52]. For a study of R2 modified FðRÞ gravity, in the
context of LQC, see [54].
In view of the interesting properties that are attributed to

the cosmological solutions originating from the LQC
matter bounce theory, we shall use a very well-known
technique [21] in order to reconstruct the FðRÞ theory that
can produce the LQC bounce solutions. There are two
reconstruction methods for FðRÞ gravities, one with the
additional use of an auxiliary scalar field [13] and the other
method not requiring any auxiliary field [21]. In this paper,
by using the latter method [21], we shall investigate which
FðRÞ theories can produce the LQC matter bounce sol-
utions. In addition, apart from searching only a pure FðRÞ
theory that produces the LQC cosmology, we shall also
take into account the presence of matter fluids and search
for the FðRÞ theory in this case too. We shall take two limits
in our study, the early time limit, describing the inflation
era, and the large t limit, more convenient for the
description of the matter domination period. With regards
to the early time limit, we shall find the Einstein frame
scalar-tensor counterpart of the Jordan frame FðRÞ theory
taking into account the presence of a relativistic matter fluid
(radiation) and we try to make contact with the exper-
imental data of the Planck experiment, focusing on the
spectral index value. In order to do so, we assume that we
conformally transform a metric from the Jordan frame,
which produces a flat Friedmann-Robertson-Walker metric
in the Einstein frame. Having found the Einstein frame
scalar potential corresponding to the Jordan frame FðRÞ
theory, we demonstrate explicitly that acceleration occurs
in the Einstein frame and then we compute the spectral
index (it is known that the spectral index for two math-
ematically equivalent frames may be effectively the same,
see Ref. [59]). In order to achieve concordance with the
experimental data, we embed the FðRÞ theory in a LQC

framework by introducing holonomy corrections and we
qualitatively describe the results. The LQC FðRÞ theory
may yield better results with respect to inflation data.
We have to mention that, apart from the FðRÞ

reconstruction method we shall apply in this article, there
is another equally elegant method of reconstruction that
uses, instead of the Ricci scalar, the torsion scalar T. This is
the FðTÞ method, which can also yield very useful results
and is very relevant to our analysis. Particularly relevant
to our study is Ref. [60], where an actual realization
of the matter bounce scenario was extensively studied,
with the important study of cosmological perturbations
within the context of FðTÞ theories. We shall perform
calculations along similar lines of research but in the
context of FðRÞ gravities.
This paper is organized as follows: In Sec. II we briefly

present the essentials of FðRÞ theories. In Sec. III, after
introducing all the necessary information regarding the
LQC matter bounce solutions, using the reconstructing
technique we search for which FðRÞ gravity produces the
LQC bounce solutions. We investigate the problem in the
small and large cosmic time t limits. In both cases and in
the absence of matter fluids we obtain exact analytical
solutions for the pure FðRÞ gravities. The same applies also
in the case matter is present but in the large t limit, with the
interesting feature of this case being that when collision-
less, nonrelativistic matter is taken into account, the
resulting FðRÞ gravity is of the form FðRÞ ¼ Rþ ARp.
In Sec. IV, by means of a general conformal transformation
we find the Einstein frame scalar-tensor counterpart theory
to the early time geometrical FðRÞ theory and we try to
compare the results we get for the spectral index corre-
sponding to this theory, with the experimental results
coming from the Planck experiment. In Sec. V we embed
the FðRÞ theory in a LQC framework explicitly and we
qualitatively describe the general picture of the predicted
dynamical equations. The conclusions follow at the end of
the paper. Finally, in Appendixes A and B we present some
details with regards to the calculations we performed in
the text.

II. ESSENTIALS OF FðRÞ GRAVITY

In order to keep the article self-contained, we review the
essential features of FðRÞ gravity theories considered in the
Jordan frame in the metric formalism. The reader is referred
to detailed analysis on these issues in Refs. [4–8,11–22]
and references therein.
In this article it shall be presumed that the geometric

properties of spacetime, on which the FðRÞ theories are
built, are described by a pseudo-Riemannian geometrical
background, which locally is a Lorentz metric (the
Friedmann-Robertson-Walker metric in our case). In addi-
tion, the connection is assumed to be a torsionless,
symmetric and metric compatible affine connection, very
well known as the so-called Levi-Civita connection.
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Working on such geometric backgrounds, the Christoffel
symbols are equal to

Γk
μν ¼

1

2
gkλð∂μgλν þ ∂νgλμ − ∂λgμνÞ ð1Þ

and furthermore the Ricci scalar becomes

R ¼ gμνð∂λΓλ
μν − ∂νΓ

ρ
μρ − Γσ

σνΓσ
μλ þ Γρ

μρgμνΓσ
μνÞ: ð2Þ

The four-dimensional action of FðRÞ theories in the Jordan
frame is equal to

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi−gp
FðRÞ þ Smðgμν;ΨmÞ: ð3Þ

In the above relation (3) κ is related to the gravitational
constant κ2 ¼ 8πG and in addition Sm stands for the matter
action containing the matter fields Ψm.
In the metric formalism, the equations of motion are

obtained by varying the action (3) with respect to the

metric gμν, and by doing so we obtain the following
equations of motion:

F0ðRÞRμνðgÞ − 1

2
FðRÞgμν − ∇μ∇νF0ðRÞ þ gμν□F0ðRÞ

¼ κ2Tμν: ð4Þ
In the above, the prime of the FðRÞ function denotes
differentiation with respect to the Ricci scalar, that is
F0ðRÞ ¼ ∂FðRÞ=∂R, and moreover Tμν is the energy
momentum tensor.
One of the intriguing characteristics of FðRÞ modified

gravity theories is that what actually makes them modified
with respect to the Einstein-Hilbert theory of gravity is that
they modify the right-hand side of the Einstein equations
directly, with the left remaining completely unaltered. So
practically speaking, FðRÞ theories introduce some new
form of perfect fluid with purely geometric origin. Of
course, this reasoning works at a background level: one
should bear in mind that this is a gravitational FðRÞ fluid.
The result obtained in relation (4) equations of motion for
FðRÞ theories can be cast in the following form:

Rμν − 1

2
Rgμν ¼

κ2

F0ðRÞ
�
Tμν þ

1

κ2

�
FðRÞ − RF0ðRÞ

2
gμν þ∇μ∇νF0ðRÞ − gμν□F0ðRÞ

��
: ð5Þ

Hence, we get an additional contribution to the energy-
momentum tensor Tμ;ν, originating from the term

Teff
μν ¼

1

κ

�
FðRÞ−RF0ðRÞ

2
gμνþ∇μ∇νF0ðRÞ−gμν□F0ðRÞ

�
:

ð6Þ

This new term (6), absent in Einstein-Hilbert gravity, is
what actually explicitly models the dark energy in FðRÞ
theories of modified gravity, and that is where the geo-
metric dark energy terminology stems from. Taking the
traces of Eq. (4), we obtain the following equation:

3□F0ðRÞ þ RF0ðRÞ − 2FðRÞ ¼ κ2T; ð7Þ

with T the energy-momentum tensor’s trace T ¼ gμνTμν ¼−ρþ 3P, and ρm and Pm the total matter-energy density
and the pressure respectively.
Equation (7) reveals another degree of freedom that is

present in FðRÞ theories of gravity, with this degree of
freedom described by the function f0ðRÞ, commonly
known as the scalaron field. The equation of motion for
this field is Eq. (7). Finally, in this paper we shall use a flat
Friedmann-Lemaitre-Robertson-Walker (FRW) spacetime
of the following form:

ds2 ¼ −dt2 þ a2ðtÞ
X
i

dx2i : ð8Þ

The Ricci scalar in this metric is equal to

R ¼ 6ð2H2 þ _HÞ; ð9Þ

where HðtÞ stands for the Hubble parameter and the “dot”
indicates differentiation with respect to time.

III. RECONSTRUCTION OF FðRÞ GRAVITY FROM
LOOP QUANTUM COSMOLOGY BOUNCE

SOLUTIONS

In principle, it is not an easy task to built a well behaved
bounce model and there are some simple reasons for this
which we now briefly mention. We first mention that in
order for the Hubble rate to increase and a bounce to occur,
the null energy condition for the matter fields contained in
most phenomenological models, that is, the sum of the
matter energy density and pressure, has to become neg-
ative. These models eventually suffer from ghost instabil-
ities, with the exception of Galileon and ghost condensate
models, with the latter two, though, violating the null
energy condition, are free from the pathologies of the usual
phenomenological model in a flat FRW Universe.
Moreover, a phenomenologically correct bounce model
should in some way solve the primordial anisotropie’s
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increase, which occurs during the contracting phase. With
respect to Galileon and ghost condensate models, it is to
date unclear whether these theories result from a more
fundamental theory [61]. So considering matter with an
equation of state being such, so that a bounce occurs, the
anisotropies during the contracting phase could cause
Belinskii-Khalatnikov-Lifshitz oscillations and in effect
the Universe could collapse in a chaotic big crunch.
There are two promising ways to address this problem,
with the first being to consider ekpyrotic matter [61], which
is characterized by a stiff equation of state and in this way
the need for very special initial conditions is avoided [61].
The other scenario is the matter bounce inflation scenario,
whose reconstruction we study here. For a comprehensive
and informative study on both these issues, the reader is
referred to [61].
The holonomy corrected Friedmann equation in the

context of LQC for a matter dominated Universe is given
by [57,58]

H2 ¼ ρ

3

�
1 − ρ

ρc

�
; _ρðtÞ ¼ −3HρðtÞ ð10Þ

with the matter-energy density being equal to

ρðtÞ ¼ ρc
3
4
t2 þ 1

: ð11Þ

Solving (10) and having in mind (11) we obtain the
following solutions for the scale factor aðtÞ and the
Hubble parameter HðtÞ in the matter bounce LQC scenario
[57,58]:

aðtÞ ¼
�
3

4
ρct2 þ 1

�
1=3

; HðtÞ ¼
1
2
ρct

3
4
ρct2 þ 1

: ð12Þ

Having at hand these two solutions, we shall reconstruct the
FðRÞ models that can produce such an expansion history
for the Universe (for a recent study of bounce cosmology in
FðRÞ gravity, see [62]). There are two ways of reconstruct-
ing FðRÞ models that describe a specific cosmological
evolution [13,21], with the difference being that in the first
one an auxiliary scalar field is used to construct the FðRÞ
model. In this paper we shall make use of the second
method in which no auxiliary field is used and we briefly
present it now. As was explicitly demonstrated in [21] every
FRW cosmology can be realized by a specific FðRÞ gravity.
The action of FðRÞ gravity is given by

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi−gp
FðRÞ þ Smðgμν;ΨmÞ; ð13Þ

and the first FRW equation appearing in relation (5) can be
written as

− 18ð4HðtÞ2 _HðtÞ þHðtÞḦðtÞÞF00ðRÞ

þ 3ðH2ðtÞ þ _HðtÞÞF0ðRÞ − FðRÞ
2

þ κ2ρ ¼ 0 ð14Þ

with F0ðRÞ ¼ dFðRÞ
dR and the Ricci scalar R given by relation

(9) as a function of the time variable. The method
developed in [21] is based on the introduction of a new
variable instead of the cosmological time t, the e-folding
number N, which is related to the scale factor as follows:

e−N ¼ a0
a
: ð15Þ

Then, the first FRWequation (14) can be rewritten in terms
of the e-fold parameter N,

−18ð4H3ðNÞH0ðNÞþH2ðNÞðH0Þ2þH3ðNÞH00ðNÞÞF00ðRÞ

þ3ðH2ðNÞþHðNÞH0ðNÞÞF0ðRÞ−FðRÞ
2

þκ2ρ¼0

ð16Þ

in which case the Hubble parameter is regarded as a
function of the e-folds N and the derivatives are defined
with respect to N too, which is H0 ¼ dH=dN and
H00 ¼ d2H=dN2. Using the function GðNÞ ¼ H2ðNÞ,
Eq. (16) can be further simplified to the following equation:

− 9GðNðRÞÞð4G0ðNðRÞÞ þ G00ðNðRÞÞÞF00ðRÞ

þ
�
3GðNÞ þ 3

2
G0ðNðRÞÞ

�
F0ðRÞ − FðRÞ

2
þ κ2ρ ¼ 0

ð17Þ

with G0ðNÞ ¼ dGðNÞ=dN and G00ðNÞ ¼ d2GðNÞ=dN2. A
key point relation is to be used so that GðNÞ is expressed in
terms of the Ricci scalar R, in the following way:

R ¼ 3G0ðNÞ þ 12GðNÞ: ð18Þ

Given the functions aðtÞ and HðtÞ, by using Eqs. (15) and
(18), the second order differential equation (17) can be
solved with respect to FðRÞ, so the modified gravity giving
rise to the cosmology described by aðtÞ and HðtÞ can be
reconstructed in an explicit way. In Ref. [21] concrete
examples were studied in detail so the reader is referred to it
for details.
In this paper the focus is to pinpoint which FðRÞ gravity,

with or without ordinary matter, can produce the bounce
cosmological expansion solutions expressed in terms of the
aðtÞ and HðtÞ given in relation (10), which stem from the
holonomy corrected FRWequation, in the context of LQC.
From relations (10), it easily follows that the Hubble

parameter can be written in terms of the scale factor as
follows:
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H2 ¼ 1

4
ρ2c

�
4

3
a−3 − a−6

�
ð19Þ

which by using (15) can be expressed as a function of N
and recalling that GðNÞ ¼ H2ðNÞ, we get,

GðNÞ ¼ ρ2c
4a30

�
4

3
ρce−3N − 1

a30
e−6N

�
: ð20Þ

For notational convenience we make the following replace-
ments:

A ¼ ρ2c
4a30

; a ¼ 4ρc
3

; b ¼ 1

a30
ð21Þ

and by using relations (18) and (20) we can express the e-
fold parameter N as a function of R, as follows:

N ¼ − 1

3
ln

�−3aAþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2A2 þ 24RAb

p

12Ab

�
: ð22Þ

In addition, we shall assume that the matter-energy density
appearing in Eq. (17) is of the form

ρ ¼
X
i

ρi0a
−3ð1þwiÞ
0 e−3ðNðRÞÞ ð23Þ

so by setting Si ¼ ρi0a
−3ð1þwiÞ
0 and using (44), the matter-

energy density becomes

ρ ¼
X
i

Si

�−3aAþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2A2 þ 24RAb

p

12Ab

�
1þwi

: ð24Þ

By making the replacement x¼−3aAþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2A2þ24RAb

p
,

after some calculations, the differential equation (17) takes
the form

ð12
ffiffiffi
3

p
AbÞ2ðx − 12aAÞðxþ 3aAÞx2 d

2FðxÞ
dx2

þ
��

6a2Aþ 1
3A ðxþ 3aAÞ2 − 3ðxþ 3aAÞ

8b

�

× ðxþ 3aAÞ12
ffiffiffi
3

p
Ab

− ð12
ffiffiffi
3

p
bAÞ2x2ðx − 12aAÞ

�
dFðxÞ
dx

− ðxþ 3aAÞ2 FðxÞ
2

þ
X
i

Bi1x1þwiðxþ 3aAÞ2 ¼ 0

ð25Þ

where we have set

Bi1 ¼
Si

12Ab
: ð26Þ

The differential equation (25) is a nonhomogeneous gen-
eralized Heun equation [63], with the difference being that
the coefficient of the second derivative has x ¼ 0 as a
double root, so it is rather hard to solve it explicitly. It is
easy to prove however that no polynomial solutions FðxÞ
exist. In order to see this, let us quote a theorem relevant to
this, taken from Ref. [63], that states,
Given the second order differential equation,

�
XðxÞ d

2SðxÞ
dx2

þ YðxÞ dSðxÞ
dx

þ ZðxÞSðxÞ ¼ 0

�
ð27Þ

with XðxÞ ¼ P
4
k¼0 akx

k, YðxÞ ¼ P
3
k¼0 bkx

k and
ZðxÞ ¼ P

2
k¼0 ckx

k, a degree n polynomial solution of
the form SðxÞ ¼ Πiðx − xiÞn exists if the following con-
ditions are simultaneously satisfied:

c2 ¼ −nðn − 1Þa4 − nb3

c1 ¼ −ð2ðn − 1Þa4 þ b3Þ
Xn
i¼1

xi − nðn − 1Þa3 − nb2

c0 ¼ −ð2ðn − 1Þa4 þ b3Þ
Xn
i¼1

x2i − 2a4
Xn
i<j

xixj

− ð2ðn − 1Þa3 þ b2Þ
Xn
i¼1

xi − nðn − 1Þa2 − nb1

ð28Þ

with xi the n distinct roots of the polynomial solution SðxÞ.
In addition, the roots xi of the polynomial solution SðxÞ
satisfy the Bethe ansatz equations:

Xn
i≠j

2

xi − xj
þ b3x3i þ b2x2i þ b1xi þ b0
a4x4i þ a3x3i þ a2x2i þ a1xi þ a0

;

i ¼ 1; 2;…; n: ð29Þ

Let us consider, for simplicity and for the moment, the
homogeneous part of the differential equation (25) thus
disregarding any matter contribution of any form, at least
for the moment. For the case at hand, the conditions (28)
are not satisfied, as can easily be checked by looking at
the differential equation (25). Indeed, in our case, although
the first condition might give an integer n, ∈ N�, when the
following condition is satisfied:

A2b2 ¼ 1

432 × k2
ð30Þ

with k any positive integer of our choice, the rest of the
conditions are very difficult to satisfy simultaneously. In
Appendix A we provide all the coefficients of the poly-
nomials XðxÞ, YðxÞ and ZðxÞ corresponding to the differ-
ential equation (25) for the reader’s convenience.
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So we study the problem at hand in the limiting cases
when t, the cosmological time, tends to infinity and in the
case t tends to zero.

A. Large t approximation of LQC bounce solution

We first study the large t limit of the LQC bounce
solutions of relation (12) in order to investigate which FðRÞ
gravity, along with some matter content, can generate this
late time cosmology. In the large t limit, the scale factor and
the Hubble parameter are given by the following relations:

aðtÞ ¼ A1t2=3; HðtÞ ¼ 2

3t
ð31Þ

so that H2 ¼ Γ1a−3 and where A1 and Γ1 stand for

A1 ¼
�
3

4
ρc

�
1=3

; Γ1 ¼
4A3=2

1

9a30
: ð32Þ

We shall make use of the technique we described in the
previous section, hence by making use of (15), the function
GðNÞ is equal to GðNÞ ¼ B1

a3
0

e−3N , and thereby, solving
Eq. (18) with respect to R, we get

N ¼ − 1

3
ln

�
R
Γ1

�
: ð33Þ

Substituting NðRÞ, from the above relation, into Eq. (17),
we obtain the following differential equation:

3R2F00ðRÞ − R
2
F0ðRÞ − FðRÞ

2
þ
X
i

Si

�
R
Γ1

�
1þwi ¼ 0:

ð34Þ

Let us first find which pure FðRÞ gravity with no content of
matter fluids may produce this kind of cosmology,
described by the large t limit of the LQC bounce solutions.
Without the matter content, the differential equation (34)
becomes

3R2F00ðRÞ − R
2
F0ðRÞ − FðRÞ

2
¼ 0; ð35Þ

which is the Euler second order differential equation, with
solutions f1ðRÞ and f2ðRÞ,

f1ðRÞ ¼ Rρ1 ; f2ðRÞ ¼ R−ρ2 ð36Þ

with ρ1 ¼ 27=2 and ρ2 ¼ −1=2. Hence, the pure FðRÞ
theory that generates the cosmology described by relation
(31), is

FðRÞ ¼ c1Rρ1 þ c2R−ρ2 : ð37Þ

We now add matter to the FðRÞ theory so we see which
modified gravity theory with matter content can produce

(31), assuming that matter is described by cold dark matter,
so that wi ¼ 0. Then, the differential equation (34) becomes

3R2F00ðRÞ − R
2
F0ðRÞ − FðRÞ

2
þ Si
Γ1

R ¼ 0: ð38Þ

Suppose the solution to differential equation (38) is of the
form

FðRÞ ¼ c1ðRÞf1ðRÞ þ c2ðRÞf2ðRÞ ð39Þ
with f1ðRÞ and f2ðRÞ being the solutions of the homo-
geneous differential equation (35). In order to find c1ðRÞ
and c2ðRÞ we solve the following system of differential
equations:

f1ðRÞc01ðRÞ þ f2ðRÞc02ðRÞ ¼ 0

f01ðRÞc01ðRÞ þ f02ðRÞc02ðRÞ ¼ − Si
Γ1x

: ð40Þ

Solving this system, we obtain the following solutions,

FðRÞ ¼
�

c1Si − c2Si
Γ1ð1 − ρ2Þρ2

�
R

þ
�
c2ρ1 − c1

ρ2ðρ2 − ρ1 þ 1Þ
�
Rρ2þ1 ð41Þ

with c1; c2 arbitrary constants and ρ1;2 defined below
Eq. (36). It is quite intriguing that the late time cosmology,
which is equivalent to a small R limit, is described by an
FðRÞ function that contains Einstein gravity plus a frac-
tional power of the scalar curvature R. Note that we can
choose the arbitrary constants in such a way that the
coefficient of the term proportional to R is equal to one,
that is,

c1Si − c2Si
Γ1ð1 − ρ2Þρ2

¼ 1 ð42Þ

so that the FðRÞ action is the Einstein-Hilbert one plus an
extra fðRÞ term. Therefore it is quite intriguing that the late
time era for a Universe described by the FðRÞ gravity that
reproduces the matter bounce late time cosmological
behavior corresponds to an FðRÞ gravity with nonrelativ-
istic matter, which is the Einstein-Hilbert gravity, plus a
power law term.

B. Small t approximation of LQC bounce solution

In the small t approximation, the scale factor and the
Hubble parameter behave in the following way:

aðtÞ ∼ 1þ ρct2

4
; HðtÞ ∼ ρct

2
ð43Þ

and therefore, by using (15) and (18), the e-fold parameter
N as a function of R reads
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N ¼ 1

3
ln

�
12g1g2 þ R

21g1

�
; ð44Þ

where we have set g1 ¼ ρca0 and g2 ¼ ρc. Thereby, the
differential equation (16) can be written in terms of the
Ricci scalar R and can be written as follows:

− 9g1ð12g1g2 þ RÞ
�
−g2 þ 12g1g2 þ R

21g1

�
F00ðRÞ

þ
�
9g1g2
7

þ 5R
14

�
F0ðRÞ − FðRÞ

2

þ
X
i

B2ðRþ 12g1g2Þ1þwi ¼ 0; ð45Þ

where B2 stands for

B2 ¼
ρi0a

3ð1þwiÞ
0

ð21Þ1þwi
: ð46Þ

As we did in the previous large t case, we shall first
investigate which pure FðRÞ gravity (with no matter
content) can produce the early time cosmology described
by relation (43). After making the replacement R ¼ γ1x, the
differential equation (47) can be written in the following
way:

ðx − 1Þ
�
xþ 4

3

�
F00ðxÞ − 45

6
ðxþ 2ÞF0ðxÞ þ 7

6
FðxÞ ¼ 0;

ð47Þ

which can be written as a homogeneous Gauss hyper-
geometric equation. In order to see this, the above differ-
ential equation is of the form

ða2x2 þ b2xþ c2ÞF00ðxÞ þ ðb1xþ c1ÞF0ðxÞ þ c0FðxÞ ¼ 0

ð48Þ

with the parameters being

a2 ¼ 1; b2 ¼
1

3
; c2 ¼ − 4

3
;

b1 ¼ − 45

6
; c1 ¼ − 45

3
; c0 ¼

7

6
ð49Þ

with the polynomial coefficient of F00ðxÞ having roots λ1 ¼−4=3 and λ2 ¼ 1. We make the substitution

z ¼ x − λ1
λ2 − λ1

; ð50Þ

so that the final form of the differential equation (47) is

zðz − 1ÞF00ðzÞ þ ðAzþ BÞF0ðzÞ þ CFðzÞ ¼ 0; ð51Þ

where we have set

A ¼ b1
a2

; B ¼ b1λ1 þ c1
a2ðλ2 − λ1Þ

; C ¼ c0
a2

: ð52Þ

The differential equation (51) has as its solution the Gauss
hypergeometric function, FðzÞ ¼ F1ðα; β; γ; zÞ, with

αβ ¼ c0
a2

; αþ β þ 1 ¼ A; γ ¼ −B: ð53Þ

Solving the first two equations of relation (53) with respect
to the parameters α; β, we obtain a set of two solutions,
which are

α ¼ −51 − ffiffiffiffiffiffiffiffiffiffi
2433

p

12
; β ¼ −51þ ffiffiffiffiffiffiffiffiffiffi

2433
p

12
;

α ¼ −51þ ffiffiffiffiffiffiffiffiffiffi
2433

p

12
; β ¼ −51 − ffiffiffiffiffiffiffiffiffiffi

2433
p

12
: ð54Þ

It is worth finding an approximation of the Gauss hyper-
geometric function in the large R limit, since the small t
limit actually describes the inflationary era and we shall
need an explicit form of the FðRÞ action in order to make
contact with the Planck data of inflation. Recalling that
z ¼ ðx − λ1Þ=ðλ2 − λ1Þ and R ¼ γ1x, the Gauss hypergeo-
metric function F1ðα; β; γ; zÞwhen R goes to infinity can be
approximated with the following expression:

FðRÞ ∼
ΓðγÞð γ1

λ1−λ2Þ−αΓð−αþ βÞ
ΓðβÞΓð−αþ γÞ R−α

þ
ΓðγÞð γ1

λ1−λ2Þ−βΓðα − βÞ
ΓðαÞΓð−β þ γÞ R−β: ð55Þ

We can further simplify the above expression by taking into
account the values of α and β given in relation (49). By
observing these values it is obvious that studying only one of
the two cases automatically provides the solution to the other
set of values, since these are symmetric. Taking only the first
two values for α and β, and observing that both α and β are
negative numbers, sincewe are studying the largeR case, the
first term of relation (55) dominates, so we disregard the
second term and the final expression looks like

FðRÞ ¼ A4R−α ð56Þ

with A4 being equal to

A4 ¼
ΓðγÞð γ1

λ1−λ2Þ−αΓð−αþ βÞ
ΓðβÞΓð−αþ γÞ : ð57Þ

This simplification is necessary sowe can analytically study
the cosmological evolution of the Universe affected by the
FðRÞ function, during the inflationary period of expansion.
However, this may modify the final results, as we shall see,
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therefore a concrete numerical analysismay be required. In a
later section we shall make use of relation (56), in order to
make contact with the Planck data.

1. Small t approximation with relativistic matter

We now study the case in which, apart from the FðRÞ
modified gravity in the small t limit, we also take into
account the presence of a relativistic matter fluid (w ¼ 1=3).
Then, the differential equation (51) is written as follows:

zðz − 1ÞF00ðzÞ þ ðAzþ BÞF0ðzÞ þ CFðzÞ

¼ 21B2

�
zðλ2 − λ1Þ þ λ1 þ

4

3

�
4=3

; ð58Þ

where A;B;C; B2 are given in relations (46), (49) and (52).
In order to find a solution to this equation, which we shall
denote y2ðzÞ, we shall make use of the solution we found
corresponding to the nonhomogeneous case, which we
denote y1ðzÞ and is given by the Gauss hypergeometric
function, that is,

y1ðzÞ ¼ FðzÞ ¼ F1ðα; β; γ; zÞ: ð59Þ
Then we can reduce the order of the nonhomogeneous
differential equation (58) using well-known techniques. For
the sake of notational simplicity we shall introduce some
new notations. We set

PðzÞ ¼ zð1 − zÞ; QðzÞ ¼ −ðAzþ BÞ

GðzÞ ¼ 21B1

�
zðλ2 − λ1Þ þ

4

3
þ λ1

�
4=3

: ð60Þ

Then, the solution of (58) can be written y2ðzÞ ¼ y1ðzÞvðzÞ
with uðzÞ ¼ v0ðzÞ and uðzÞ being equal to

uðzÞ ¼ e−
R

A1ðzÞdz
�Z

B1ðzÞe
R

A1ðzÞ þ c

�
ð61Þ

with A1ðzÞ, B1ðzÞ defined as

A1ðzÞ ¼ 2
y10ðzÞ
y1ðzÞ

þQðzÞ
PðzÞ ; B1ðzÞ ¼

GðzÞ
PðzÞy1ðzÞ

: ð62Þ

The final solution of the nonhomogeneous differential
equation (58) is of the following form:

y2ðzÞ ¼ y1ðzÞvðzÞ ð63Þ

with vðzÞ being equal to

vðzÞ ¼
Z

uðzÞdzþ C: ð64Þ

In order to compute the solution, we shall take the limit
z → ∞, which is equivalent to the largeR limit. By omitting
some tedious calculations, the resulting expression for the
solution of the nonhomogeneous equation FðzÞ, expressed
as a function of the Ricci scalar R, is given by the following
expression:

FðRÞ ¼
12B1Γð43 þ αÞΓðα − βÞ2ΓðβÞΓðγÞΓð−αþ γÞλ1ð γ1−λ1þλ2

Þ43−Aþ2α−2βð−λ1 þ λ2Þ1=3
ð1
3
− Aþ Bþ αÞð1þ 3αÞð4

3
− Aþ 2α − βÞΓðαÞ2Γð1

3
þ αÞΓð−αþ βÞΓð−β þ γÞ2 R

4
3
−Aþ2α−2β

þ
12B1Γð43 þ αÞΓðα − βÞΓðγÞλ1ð γ1−λ1þλ2

Þ43−Aþα−βð−λ1 þ λ2Þ1=3
ð1
3
− Aþ Bþ αÞð1þ 3αÞð4

3
− Aþ 2α − βÞΓðαÞΓð1

3
þ αÞΓð−β þ γÞR

4
3
−Aþα−β: ð65Þ

The details of the approximations we made can be found in Appendix B. Taking into account the values of the parameters
defined in relations (49) and (54), we can approximate the FðRÞ function (65) as follows:

FðRÞ ¼ A4Rδ ð66Þ

with the parameter δ being equal to

δ ¼ 4

3
− Aþ α − β ð67Þ

and the coefficient A4 defined as

A4 ¼
12Γð4

3
þ αÞΓðα − βÞΓðγÞB1λ1ð γ1−λ1þλ2

Þ43−Aþα−βð−λ1 þ λ2Þ1=3
ð1
3
− Aþ Bþ αÞð1þ 3αÞð4

3
− Aþ 2α − βÞΓðαÞΓð1

3
þ αÞΓð−β þ γÞ : ð68Þ
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Notice that many viable FðRÞ theories may be approxi-
mated at large or small cosmic time regime, as some power
law models [7], (relation II.68), i.e. the models we precisely
obtained here. Of course, it is rather hard to analytically
reconstruct such nonlinear functions, this can be done only
numerically. Notice that reconstructed models can have
relations with viable gravities based on the Khoury cha-
meleon scenario [64].
In the next section we shall attempt to make contact with

the Planck data regarding inflation for the FðRÞ function
corresponding to the pure modified gravity theory, in the
absence of the matter fluid. We have to note that in order to
obtain the results in an analytically described closed form,
we shall use the approximation (55) for the pure FðRÞ
function, so we expect some deviations from the exper-
imental data.

IV. EINSTEIN FRAME INFLATIONARY
POTENTIAL AND COMPARISON WITH

PLANCK DATA

In this section we shall study inflation by studying the
scalar-tensor theory corresponding to the FðRÞ function
appearing in relation (56) [for a general description of FðRÞ
inflation, see [65]]. A basic question arises when someone
wants to consider inflation issues with regards to the
Einstein frame having to do with the de Sitter (in general
an acceleration producing metric) metric in the Einstein
frame. In order for inflation to occur in the Einstein frame,
it is compelling to have a de Sitter (accelerating) FRW
metric describing the evolution of the Universe in that
frame. Now it would be appealing for the bounce FRW
metric under a specific conformal transformation to pro-
duce the de Sitter (accelerating) metric in the Einstein
frame. This actually occurs in the present case as we shall
demonstrate shortly. Then, there appears the beautiful
picture: what looks like bounce in one frame, may be
inflation in the conformally related frame, or to put it in a
different way, it could be that what looks like bounce in one
frame, may look like inflation in a mathematically equiv-
alent frame. We give some arguments to support this
conjecture below.
Our strategy is to assume that we start at the Jordan

frame, with the Universe being described by an FðRÞ
gravity in a metric background with metric tensor that,
when it is conformally transformed to the Einstein frame,
produces the de Sitter (in general accelerating) expansion in
that frame. In principle, the Jordan frame metric is a
solution of the Einstein equations in the Jordan frame,
but the particular form of it is of no importance for the
moment. Notice that in this approach the Jordan frame is
the unphysical frame. So conformally transforming this
metric we obtain a de Sitter (accelerating) metric in the
Einstein frame. Then, by solving the slow-roll inflation
equations, we may obtain the solution with respect to the
scalar field that describes inflation. It is exactly that field

that enters in the conformal transformation from the Jordan
frame. Having at hand the scalar field, we may explicitly
check whether this transformation produces a matter
bounce FRW Universe in the Jordan frame, or equivalently
if we use this slow-roll inflation producing scalar field
in the conformal transformation, then can the Jordan
frame matter bounce metric produce some accelerating
cosmology?
In order to study inflation, we shall express the Jordan

frame theory in terms of the Einstein frame, by means of a
conformal transformation. We assume that the Jordan frame
metric is such that, when conformally transformed to the
Einstein frame, it produces an accelerating or de Sitter
expansion to the Einstein frame. This technique is quite
well known and can be found in most review articles, see
for example [4,5] and also [66] for a concrete similar
analysis to the one we perform here. Starting from the
action (13), neglecting matter fields and introducing the
auxiliary field A, the action (13) can be written as follows:

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi−gp ðF0ðAÞðR − AÞ þ FðAÞÞ: ð69Þ

It can be easily checked that variation with respect to A
yields the solution A ¼ R, a fact that indicates the equiv-
alence of the two actions (13) and (69). The canonical
transformation that will relate the Jordan frame FðRÞ
theory to the Einstein frame scalar tensor theory is defined
by means of the following functional relation:

σ ¼ −
ffiffiffiffiffiffiffi
3

2k2

r
lnðF0ðAÞÞ; ð70Þ

where we introduced the scalaron field σ, which will be a
scalar degree of freedom in the Einstein frame. Using the
conformal transformation of the Jordan frame metric gμν,

~gμν ¼ e−σgμν; ð71Þ

where the “tilde” denotes the Einstein frame metric, we
obtain the Einstein frame action,

~S ¼
Z

d4x
ffiffiffiffiffiffi−~g

p �
~R

2k2
− 1

2

�
F00ðAÞ
F0ðAÞ

�
2

~gμν∂μA∂νA

− 1

2k2

�
A

F0ðAÞ −
FðAÞ
F0ðAÞ2

��

¼
Z

d4x
ffiffiffiffiffiffi−~g

p �
~R

2k2
− 1

2
~gμν∂μσ∂νσ − VðσÞ

�
; ð72Þ

with VðσÞ, where again the tilde denotes quantities in the
Einstein frame. The potential as a function of σ is
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VðσÞ ¼ A
F0ðAÞ −

FðAÞ
F0ðAÞ2

¼ 1

2k2

�
e

ffiffiffiffiffiffiffiffiffi
2k2=3

p
σR

�
e−

ffiffiffiffiffiffiffiffiffi
2k2=3

p
σ
�

− e2
ffiffiffiffiffiffiffiffiffi
2k2=3

p
σF

h
R
�
e−

ffiffiffiffiffiffiffiffiffi
2k2=3

p
σ
�i�

ð73Þ

with the function Rðe−
ffiffiffiffiffiffiffiffiffi
2k2=3

p
σÞ being the solution of

Eq. (70), with respect to A, with A ¼ R. Having at hand
the Einstein frame action, we can easily obtain the
essentials of the inflation framework, in order to make
contact with the experimental data of Planck. The
energy density and the pressure of the scalar field are
given by

ρσ ¼
_σ2

2
þ VðσÞ; pσ ¼

_σ2

2
− VðσÞ ð74Þ

with the dot indicating, as always, derivative with respect
to the cosmological time. The Friedmann equations in
the presence of the σ field in the Einstein frame are
equal to

3H2

k2
¼ _σ2

2
þ VðσÞ; − 1

k2
ð2 _H þ 3H2Þ ¼ _σ2

2
− VðσÞ;

ð75Þ
while the energy conservation law yields a second order
equation for the inflaton field,

σ̈ þ 3H _σ ¼ −V 0ðσÞ: ð76Þ
Here the prime denotes differentiation with respect to the
inflaton field σ. The acceleration of the inflationary
Universe can be written in terms of the slow-roll parameter
ϵ as follows:

ä
a
¼ H2ð1 − ϵÞ ð77Þ

with ϵ being equal to,

ϵ ¼ − _H
H2

¼ k2 _σ2

2H2
: ð78Þ

There is also another slow-roll parameter denoted as η and
defined as

η ¼ ϵ − _ϵ

2ϵH
¼ − σ̈

H _σ
: ð79Þ

A fundamental requirement for the existence of a consistent
inflationary era is that the Universe evolves into a quasi de
Sitter space, in which state it remains for a sufficient period
of time. In order for this to be true, the quantity _H and
consequently the slow-roll parameters must be very small.
Thereby, the kinetic energy of the field during the infla-
tionary era has to be small, a fact that is expressed
quantitatively by the following requirement,

_σ2 ≪ VðσÞ; ð80Þ
and therefore the slow-roll parameters can be expressed as
functions of the inflaton potential in the following way:

ϵ ¼ 1

2k2

�
V 0ðσÞ
VðσÞ

�
; η ¼ 1

k2

�
V 00ðσÞ
VðσÞ

�
: ð81Þ

The inflationary period ends when ϵ; η ∼ 1. Finally, in order
to make contact with the Planck data, we will use the
spectral index corresponding to the slow-roll inflationary
period,

ns ¼ 1 − 6ϵþ 2η; ð82Þ
with the last Planck data constraining the allowed values to
be (see [66])

ns ¼ 0.9603� 0.0073: ð83Þ
After this brief review of the inflation essentials (for more
details consult [67]), we proceed to calculate the potential
in the Einstein frame corresponding to the FðRÞ function
(56). The solution of Eq. (70) for the FðRÞ function (56) is

R ¼ e

ffiffiffiffi
2
3
k2

p
σ

1þα ðαA4Þ 1
1þα ð84Þ

and correspondingly, the potential VðσÞ can easily be
calculated using relation (73), and is equal to

VðσÞ ¼
e

ffiffiffiffiffi
2
3
k2

p
σ

�
e

ffiffi
2
3

p ffiffiffi
k2

p
σ

1þα ðαA4Þ 1
1þα

�−α�
−A4 þ

�
e

ffiffi
2
3

p ffiffiffi
k2

p
σ

1þα ðαA4Þ 1
1þα

�1þα�

2k2
: ð85Þ

Before we proceed in calculating the slow-roll parameters
for inflation, we have to show that the expansion in the
Einstein frame is indeed accelerating. Solving the pair of
the following coupled differential equations, valid in the
slow-roll limit,

3H2

k2
≃ VðσÞ; 3H _σ ≃−V0ðσÞ ð86Þ

with the potential being equal to (85), the slow-roll limit
solution of Eq. (86) is equal to
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σðtÞ≃− 1

γ1
ln ðγ1Btþ t0Þ ð87Þ

with the parameters γ1 and B being equal to

γ1 ¼
ffiffiffiffiffiffiffi
2k2

3

r
1

1 − δ
; B ¼ kðδ − 2ÞðδA4Þ

1
2ð1−δÞ

3k2ðδ − 1Þ : ð88Þ

Consequently we have

HðtÞ≃ GðBγ1tþ t0Þ
2−δ

2ðδ−1Þ;

_H þH2 ≃ G2ðBγ1tþ t0Þ
2−δ
ðδ−1Þ þ GBγ1ðBγ1tþ t0Þ

4−3δ
2ðδ−1Þ

2ðδ − 1Þ ð89Þ

with G being equal to,

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδA4Þ 1

1−δ − A4ðδA4Þ δ
1−δ

q
: ð90Þ

Notice that 2−δ
2ðδ−1Þ < 0. In addition, since the following

inequalities always hold true,

G2 > 0;
Bγ1G

2ð−1þ δÞ > 0; ð91Þ

the expansion is accelerating, so inflation actually occurs.
Now our task is to see to what extend the inflationary
solutions in the Einstein frame agree with the available
experimental data. Using relation (81), we can calculate the
slow-roll parameters ϵ and η, in the slow-roll limit of
inflation, with ϵ being equal to

ϵ ¼

�
ð1þ αÞA4 − ð2þ αÞ

�
e

ffiffi
2
3

p ffiffiffi
k2

p
σ

1þα ðαA4Þ 1
1þα

�1þα�2

3ð1þ αÞ2
�
A4 −

�
e

ffiffi
2
3

p ffiffiffi
k2

p
σ

1þα ðαA4Þ 1
1þα

�1þα�2

ð92Þ
while η is equal to

η ¼
−2ð1þ αÞ2A4 þ 2ð2þ αÞ2

�
e

ffiffi
2
3

p ffiffiffi
k2

p
σ

1þα ðαA4Þ 1
1þα

�1þα

3ð1þ αÞ2
�
−A4 þ

�
e

ffiffi
2
3

p ffiffiffi
k2

p
σ

1þα ðαA4Þ 1
1þα

�1þα� :

ð93Þ
In order to be concise with the slow-roll approximation, we
have to express relations ϵ and η in the σ → −∞ limit
[which correspond to the large curvature limit, see relation
(70)]. Recalling that from relation (54) that α is negative,
then relations (92) and (93) in the σ → −∞ limit are
approximated to be

ϵ≃ 1

3
; η≃ 2ðð2þ αÞ2 − 3 − 2αÞ

3ð1þ αÞ2 ; ð94Þ

so using the numerical value of the parameter
α≃−8.3604, the spectral index is approximately
ns ≃ 0.33. Hence compared to the experimental data, we
can see that the model described by the FðRÞ function of
relation (66) does not provide a perfect fit to the Planck
experimental data, with regards to the spectral index value.
However the model (66) is just an approximation of the full
model given in relation (65) so one should take into account
the whole FðRÞ model of relation (65). However, it would
be rather difficult to solve analytically Eq. (70) when the
complete FðRÞmodel of relation (65) is taken into account.
Instead, we can further implement the FðRÞ gravity results
by embedding the theory directly in a LQC framework by
introducing holonomy corrected FðRÞ gravity. We briefly
sketch out how this would work in the next section,
deferring the reader to a future detailed work on these
issues. Let us note that in the case at hand, the Universe
expands in an eternal inflationary way. However the ending
of the eternal inflation process [68] may be caused by
curvature perturbations, like in the primordial de Sitter
Universe emerging due to the conformal anomaly [69,70]
or owing to the instability of the reconstructed FðRÞ gravity
which causes the curvature perturbations. We shall address
the latter issue in a future work.
Having the scalar field solution (87) which guarantees a

slow-roll inflation in the Einstein frame, we can explicitly
conformal transform the bounce matter FRW metric,

ds2 ¼ −dt2 þ
�
3

4
ρct2 þ 1

�
2=3X

i

dx2i ; ð95Þ

in order to see if it produces an inflationary-accelerating
solution in the Einstein frame. Notice that the following
investigation is not related to the Einstein frame accelerat-
ing cosmology we found previously, since in that case we
started from a general metric that, when conformally
transformed, produces a FRW accelerating slow-roll cos-
mology in the Einstein frame. Here we are just interested in
seeing if the matter bounce metric can be conformally
related to an accelerating metric, with the choice of the
conformal transformation being determined by the slow-
roll inflationary solution in the Einstein frame, namely
Eq. (87).
Performing the conformal transformation of the bounce

metric (95), using σðtÞ defined in (87), we get the following
metric:

ds2 ¼ −ðBγ1tþ t0Þ−
1
γ1dt2 þ ð3

4
ρct2 þ 1Þ2=3

ðBγ1tþ t0Þ
1
γ1

X
i

dx2i : ð96Þ

Performing the transformation

t →
1

Bγ1
ðBγ1tþ t0Þ

4γ1−1
2γ1 ð97Þ
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the metric becomes

ds2 ¼ −dt2 þ
�
3ρcðBγ1t2γ1 4γ1−1−t0Þ

Bγ1

�
1=3

ðBγ1Þ−
2

4γ1−1t
−1

4γ1−1

X
i

dx2i ; ð98Þ

which gives the following two results, with respect to
Hubble parameter:

HðtÞ≃
3þ γ1

�
2− 2t0

t0−Bt
γ1
2t0 γ1

�

12tt0
;

_HþH2≃ 9t20ð1− 4γ1ÞþB2t
γ1
t0 γ21ð3þ 2γ1Þð3− 12t0þ 2γ1Þ

144t2t20ðt0−Bt
γ1
2t0γ1Þ2

−
6Bt

γ1
2t0t0γ1ð3þ 2γ1ð1þ γ1Þ− 4t0ð3þ γ1ÞÞ

144t2γ21ðt0−Bt
γ1
2t0γ1Þ2

;

ð99Þ

which, owing to the fact that B < 0 and for the appropriate
choice of t0, in order that 3 − 12t0 þ 2γ1 > 0 can give an
accelerating expansion. Therefore we have shown that the
bounce matter FRW metric in the Jordan frame can be
conformally related to an accelerating metric in the Einstein
frame, by choosing the scalar field appearing in the
conformal transformation, to be the solution of the slow-
roll inflation in the Einstein frame. In principle however, it
is rather difficult to achieve the conditions that ensure
acceleration in the Einstein frame.

V. LOOP QUANTUM COSMOLOGICAL
EXTENSION OF FðRÞ GRAVITY

So far our aim was to reproduce the matter bounce
evolution of the Universe in terms of the scale factor and
the Hubble parameter. Therefore, there was no direct use of
the LQC holonomy corrections, directly in the FðRÞ
gravity. It is however very well known that holonomy
corrections can be introduced in the FðRÞ gravity
Lagrangian directly [52,54,71]. Such a modification of
the FðRÞ gravity Lagrangian can in principle have very
appealing results in the FðRÞ theory predictions, such as
avoidance of early time curvature singularities or even
refinements of the inflationary period predictions of the
FðRÞ theory (see Ref. [54] for the study of Rþ aR2

gravity). In view of these appealing properties that the
holonomy corrected FðRÞ gravity offers, we shall briefly
study here the Einstein frame implications of the holonomy
corrected FðRÞ gravity appearing in relation (66). As we
shall demonstrate shortly, certain issues arise that render
this study a kind of intriguing issue which deserves a more
detailed study than the one we shall briefly present here,
just to sketch out the problem.

We start off by describing the general framework of
holonomy LQC FðRÞ gravity (for details consult
[52,54,71]). We assume a flat FRW metric in order to
simplify the equations and also work in the Einstein frame,
because the Jordan frame problem might be particularly
difficult. For details on the Jordan frame problem see [54].
Denoting with a tilde all the Einstein frame quantities, the
classical variable ~β≡ γ ~H and the volume ~V ¼ ~a3 are
canonically conjugated variables with the Poisson bracket
being equal to f ~β; ~Vg ¼ γ=2, with ~H and γ being the
Hubble law parameter and the Barbero-Immirzi parameter.
Owing to the fact that we are working on a discrete space,
the state space of vectors belonging to the corresponding
Hilbert space consists of periodic functions. In addition, the
operator β is not a well-defined quantum operator
and holonomy corrections have to be directly introduced
into the Hamiltonian in order to have well-defined
operators (this non-well-defined property comes from the
Hamiltonian constraint in which β enters directly).
Introducing the holonomy corrections (for details on this
look at [54]), the holonomy corrected FRW equation in the
Einstein frame is

~H2 ¼ 1

3
~ρ

�
1 − ~ρ

~ρc

�
ð100Þ

with ~ρc the critical density in the Einstein frame. As pointed
out in [54], Eq. (100) describes an ellipse in the ð ~H; ~ρÞ
plane, with the dynamics of the Universe being very simple
to describe, since the Universe moves clockwise from a
contracting phase to an expanding phase, beginning and
ending at the critical point (0,0) and bouncing off only once
at ð0; ~ρÞ. Let us proceed to make contact with the particular
holonomy corrected FðRÞ gravity at hand, and in order to
do so, we shall need the Einstein frame version of the FðRÞ,
which we studied in the previous section. Particularly we
shall need the potential (85), which can be obtained by
making the conformal transformation from the Jordan
frame (70). By doing so, the equation describing the scalar
field evolution in the Einstein frame is

σ̈ þ 3 ~H _σþ ∂VðσÞ
∂σ ¼ 0; ð101Þ

with the potential being the one appearing in Eq. (85). The
physics described by the holonomy corrected LQC can be
resumed in the following scenario, in which the Universe
starts in the contracting phase with zero energy, the energy
increases up to the energy equal to the Einstein frame
critical density and then bounces off entering in the
accelerating phase. In our case, by performing the change

of variable
ffiffiffiffiffi
2k2
3

q
ψ ¼ ln σ, the evolution equation for the

scalar field ψ reads
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ψ̈ψ þ 3 ~H _ψ ψ þ 1ffiffiffi
6

p ðδ − 1Þk
× ððδ − 2ÞðδA4Þ 1

1−δψnþ1 − 2ðδ − 1ÞðδA4Þ δ
1−δψnÞ ð102Þ

with “n” being related to the parameter δ as follows:

n ¼ 2δ − 3

δ − 1
: ð103Þ

As shown in Ref. [54], Eq. (102) has some symmetries,
which for the case at hand are particularly simple to see.
Actually the orbits of the dynamical system at hand, being
described in phase space by ð _ψ ;ψÞ, have a symmetry axis,
the _ψ axis, since Eq. (102) remains invariant under the
transformation

~t → −~t; ~H → − ~H: ð104Þ
Practically speaking, the orbit ðψðtÞ; _ψðtÞÞ in the con-
tracting phase, that is with ~H < 0, under the transformation
(104), the orbit is the trajectory ðψð−tÞ; _ψð−tÞÞ in the
expanding phase ~H > 0. The energy density ~ρ in the
Einstein frame is given by

~ρ ¼ _ψ2

2ψ2
þ 1

2k2ψ2
ððδA4Þ 1

1−δψnþ1 − A4ðδA4Þ δ
1−δψnÞ: ð105Þ

Having in mind that the Hubble parameter ~H is related to
the energy density ~ρ by the holonomy corrected FRW
equation (100), the Hubble parameter vanishes at the point
ðψ ; _ψÞ ¼ ðδ; 0Þ and also at the curve ~ρ ¼ ~ρc. In a future
work we shall further study these two different autonomous
dynamical systems given by Eq. (101), implementing the
analytic results with a detailed numerical study. In this
article we confine ourselves to just qualitatively describing
the evolution of the Universe in the Einstein frame, and the
evolution goes as follows: The Universe starts off in the
contracting phase ~H < 0, oscillates around the unique
critical point ðδ; 0Þ, then the amplitude of oscillations
increases up to the point it reaches the curve ~ρ ¼ ~ρc, at
which point the Hubble parameter vanishes. After that, the
Universe bounces off entering in the expanding phase with
~H > 0, expanding in an oscillating way, until it reaches the
critical point ðδ; 0Þ. We aim to address this LQC corrected
FðRÞ gravity in the Einstein frame, with FðRÞ being any of
the very well-known viable gravities, in a future publica-
tion. However let us note that the general form of the ~ρ ¼
~ρc curve is not as simple as in the R2 gravity case, so a
numerical study is compelling.

VI. CONCLUSIONS

Modified by the attributes of the matter bounce scenario
in holonomy corrected LQC, we addressed the question
which FðRÞ gravity can produce the cosmological

solutions of matter bounce LQC. Using the reconstruction
technique without the need of any auxiliary field, we were
able to construct a general differential equation that leads
to the matter bounce cosmological solutions. As we
demonstrated, this differential equation is a generalized
Heun second order differential equation, which in the
presence of matter fluids, apart from the pure FðRÞ
geometric fluid, is a nonhomogeneous differential equa-
tion with polynomial coefficients. We explicitly showed
that this equation does not have any polynomial solution
and in order to focus on two particular regimes of current
experimental interest, late time and early time, we studied
in detail the limiting behaviors of the cosmological
solutions in these two limits. In the large cosmic time
regime, when no matter fluid is present, the FðRÞ gravity
that produces the matter bounce LQC cosmology is an
FðRÞ function with positive rational numbers powers of
the Ricci scalar. Interestingly enough, when noninteracting
nonrelativistic matter is taken into account, the FðRÞ
function that produces the matter bounce cosmology is
described by Einstein gravity plus a positive rational
power of the Ricci scalar. Note that the large time regime
describes eras with high redshift, such as matter domina-
tion era or the late time acceleration era, in which case the
curvature R takes small values. In the case of small cosmic
time, and in the absence of a matter fluid, the FðRÞ gravity
that reproduces the matter bounce solutions is given by a
Gauss hypergeometric function, which can be further
approximated to positive powers of the Ricci scalar.
Notice that the small cosmic time limit corresponds to
the early time and also positive powers of the Ricci scalar
during this early time regime is, in principle, a favorable
feature, since such FðRÞ functions can consistently
describe inflation. In the presence of a relativistic matter
fluid, the problem becomes quite complicated, so by using
appropriate simplifications by means of asymptotic expan-
sions which can be found in Appendix B, we obtained an
FðRÞ function described by a combination of positive
powers of the Ricci scalar. In order to make contact with
the experimental data and see to which extend such FðRÞ
gravities can consistently describe inflation, we studied
what results are produced by the FðRÞ gravity we obtained
in the small cosmic t limit, without the presence of a
matter fluid. In order to analytically obtain the corre-
sponding Einstein frame scalar-tensor theory in terms of
the inflaton field, we kept only the most dominating term
from the whole FðRÞ function and this resulted in a
spectra index value different from the one obtained by
Planck experiment, but of the same order. However, the r
index is off the predicted value by far and we believe that
in order for correct results to be obtained, the whole FðRÞ
function should be used. This however would make the
analytical solution of the canonical transformation that
connects the Jordan and Einstein frame, with respect to R,
a rather formidable task. In order to implement the FðRÞ
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theory predictions on inflation data, we embedded the
FðRÞ theory in a LQC framework, by extending the
Hamiltonian constraint in the Einstein frame. The result-
ing dynamical equations gave similar results to the R2

gravity and the inflation slow-roll parameters of the FðRÞ
theory in the Einstein frame can be corrected to some
extend in order to have concordance with the experimental
data.
It’s worth studying the reconstruction of the FðRÞ theory

that produces the matter bounce LQC solutions, using
the auxiliary field technique, an issue that is currently
under study from us and we hope to report the results
soon.
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APPENDIX A: Full form of the FðRÞ related
Differential Equation

In this Appendix we shall provide the detailed differ-
ential equation that the reconstruction method for the LQC
bounce solutions results in, taking also into account the
matter fluids contribution. We refer to the differential
equation (25) appearing in the text. The detailed version
of the differential equation is

ð−15552a2A4b2x2 − 3888aA3b2x3 þ 432A2b2x4Þ d
2FðxÞ
dx2

þ
�
9

2

ffiffiffi
3

p
a2A2 − 81

2

ffiffiffi
3

p
a2A3 þ 27

ffiffiffi
3

p
a2A4 þ 3

ffiffiffi
3

p
aAx − 27

ffiffiffi
3

p
aA2x

þ 9
ffiffiffi
3

p
aA3xþ

ffiffiffi
3

p
x2

2
− 9

2

ffiffiffi
3

p
Ax2 þ 5184aA3b2x2 − 432A2b2x3

�
dFðxÞ
dx

− ð9a2A2 þ 6aAxþ x2ÞFðxÞ
2

þ
X
i

Bi1x1þwiðxþ 3aAÞ2 ¼ 0: ðA1Þ

APPENDIX B: Large R approximations

Here we shall present all the approximations we made in order to obtain the modified FðRÞ that generates the LQC
bounce solutions in the presence of a relativistic matter fluid, within the small t (large R) approximation. We start off by
presenting all the relevant quantities to the calculation of the integral (61).
The first expression we shall present is

GðzÞ
PðzÞy1ðzÞ

ðy1ðzÞ−2 þ ð1 − zÞ−ðA−BÞ þ z−BÞ

¼ zαþβð−2ðB1ð−λ1 þ λ2Þ4=3Þð1zÞ2=3Þ
zβ
�
Γð−αþβÞΓðγÞ
ΓðβÞΓð−αþγÞ þ αð1þα−γÞΓð−αþβÞΓðγÞ

ð1þα−βÞΓðβÞΓð−αþγÞz
�
þ zα

�
Γðα−βÞΓðγÞ
ΓðαÞΓð−βþγÞ þ βð1þβ−γÞΓðα−βÞΓðγÞ

ð1−αþβÞΓðαÞΓð−βþγÞz
� : ðB1Þ

Secondly, we made the following approximation, keeping the dominant terms as z tends to infinity,

ðy1ðzÞ2 þ ð1 − zÞð−AþBÞ þ zBÞ ¼ ð1 − zÞ−AþB þ zB þ z−2α
�
Γð−αþ βÞ2ΓðγÞ2
ΓðβÞ2Γð−αþ γÞ2

�
þ z−2β

�
Γðα − βÞ2ΓðγÞ2
ΓðαÞ2Γð−β þ γÞ2

�

þ z−α−β
�

2Γðα − βÞΓð−αþ βÞΓðγÞ2
ΓðαÞΓðβÞΓð−αþ γÞΓð−β þ γÞ

�
: ðB2Þ

Finally, the final expression for uðzÞ is easily obtained by using the above two expressions, namely relations (B1) and (B2),
and integrating over z:
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uðzÞ ¼ 12B1z
1
3
−Bþ2α−3βΓðα − βÞ3ΓðβÞΓðγÞ2Γð−αþ γÞλ1ð−λ1 þ λ2Þ1=3

ð1þ 3α − 6βÞΓðαÞ3Γð−αþ βÞΓð−β þ γÞ3

þ 24B1z
1
3
−Bþα−2βΓðα − βÞ2ΓðγÞ2λ1ð−λ1 þ λ2Þ1=3

ð1 − 3βÞΓðαÞ2Γð−β þ γÞ2

þ 12B1z
1
3
−B−βΓðα − βÞΓð−αþ βÞΓðγÞ2λ1ð−λ1 þ λ2Þ1=3
ð1 − 3αÞΓðαÞΓðβÞΓð−αþ γÞΓð−β þ γÞ

þ 12B1z
1
3
þ2α−βΓðα − βÞΓðβÞΓð−αþ γÞλ1ð−λ1 þ λ2Þ1=3
ð1þ 3Bþ 3αÞΓðαÞΓð−αþ βÞΓð−β þ γÞ

þ 12B1z
1
3
−Aþ2α−βΓð4

3
þ αÞΓðα − βÞΓðβÞΓð−αþ γÞλ1ð−λ1 þ λ2Þ1=3

ð1
3
− Aþ Bþ αÞð1þ 3αÞΓðαÞΓð1

3
þ αÞΓð−αþ βÞΓð−β þ γÞ

−
12B1z

1
3
−Bþ2α−3βΓðα − βÞ3ΓðβÞΓðγÞ2Γð−αþ γÞλ2ð−λ1 þ λ2Þ1=3

ð1þ 3α − 6βÞΓðαÞ3Γð−αþ βÞΓð−β þ γÞ3

−
24B1z

1
3
−Bþα−2βΓðα − βÞ2ΓðγÞ2λ2ð−λ1 þ λ2Þ1=3

ð1 − 3βÞΓðαÞ2Γð−β þ γÞ2

−
12B1z

1
3
−B−βΓðα − βÞΓð−αþ βÞΓðγÞ2λ2ð−λ1 þ λ2Þ1=3
ð1 − 3αÞΓðαÞΓðβÞΓð−αþ γÞΓð−β þ γÞ

−
12B1z

1
3
þ2α−βΓðα − βÞΓðβÞΓð−αþ γÞλ2ð−λ1 þ λ2Þ1=3
ð1þ 3Bþ 3αÞΓðαÞΓð−αþ βÞΓð−β þ γÞ

−
12B1z

1
3
−Aþ2α−βΓð4

3
þ αÞΓðα − βÞΓðβÞΓð−αþ γÞλ2ð−λ1 þ λ2Þ1=3

ð1
3
− Aþ Bþ αÞð1þ 3αÞΓðαÞΓð1

3
þ αÞΓð−αþ βÞΓð−β þ γÞ : ðB3Þ

The final expression for y2ðzÞ is easily obtained by using the approximation (B3), keeping the dominant terms as z tends to
infinity and integrating over z.

[1] A. G. Riess et al. (High-z Supernova Search Team), Astron.
J. 116, 1009 (1998).

[2] P. A. R. Ade et al., arXiv:1303.5062.
[3] P. A. R. Ade et al., Phys. Rev. Lett. 112, 241101 (2014).
[4] S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod.

Phys. 11, 1460006 (2014); 04, 115 (2007).
[5] S. Capozziello and V. Faraoni, Beyond Einstein Gravity

(Springer, Berlin, 2010).
[6] A. de la Cruz-Dombriz and D. Sáez-Gómez, Entropy 14,

1717 (2012); F. S. N. Lobo, arXiv:0807.1640.
[7] S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59

(2011).
[8] S. Capozziello and M. De Laurentis, Phys. Rep. 509, 167

(2011).
[9] K. Bamba, S. Nojiri, and S. D. Odintsov, J. Cosmol.

Astropart. Phys. 10 (2008) 045.
[10] S. Nojiri and S. D. Odintsov, Phys. Lett. B 657, 238 (2007);

Gen. Relativ. Gravit. 36, 1765 (2004).
[11] S. Capozziello, S. Nojiri, S. D. Odintsov, and A. Troisi,

Phys. Lett. B 639, 135 (2006); S. Nojiri and S. D. Odintsov,
Phys. Rev. D 77, 026007 (2008).

[12] S. Capozziello, V. F. Cardone, S. Carloni, and A. Troisi, Int.
J. Mod. Phys. D 12, 1969 (2003).

[13] S. Nojiri and S. D. Odintsov, Phys. Rev. D 74, 086005
(2006); S. Nojiri, S. D. Odintsov, and D. Sáez-Gómez, AIP
Conf. Proc. 1458, 207 (2011); S. Nojiri and S. D. Odintsov,
J. Phys. Conf. Ser. 66, 012005 (2007); A. de la Cruz-
Dombriz and A. Dobado, Phys. Rev. D 74, 087501 (2006).

[14] W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).
[15] S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner,

Phys. Rev. D 70, 043528 (2004); S. Capozziello, Int. J.
Mod. Phys. D 11, 483 (2002).

[16] R. Myrzakulov, L. Sebastiani, and S. Zerbini, Int. J. Mod.
Phys. D 22, 1330017 (2013).

[17] O. Bertolami and R. Rosenfeld, Int. J. Mod. Phys. A 23,
4817 (2008).

[18] A. Capolupo, S. Capozziello, and G. Vitiello, Int. J. Mod.
Phys. A 23, 4979 (2008).

[19] P. K. S. Dunsby, E. Elizalde, R. Goswami, S. Odintsov, and
D. Sáez-Gómez, Phys. Rev. D 82, 023519 (2010).

[20] G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov,
L. Sebastiani, and S. Zerbini, Phys. Rev. D 77, 046009

MATTER BOUNCE LOOP QUANTUM COSMOLOGY FROM … PHYSICAL REVIEW D 90, 124083 (2014)

124083-15

http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/300499
http://arXiv.org/abs/1303.5062
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://dx.doi.org/10.1142/S0219887814600068
http://dx.doi.org/10.1142/S0219887814600068
http://dx.doi.org/10.1142/S0219887807001928
http://dx.doi.org/10.3390/e14091717
http://dx.doi.org/10.3390/e14091717
http://arXiv.org/abs/0807.1640
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://dx.doi.org/10.1016/j.physrep.2011.04.001
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://dx.doi.org/10.1016/j.physrep.2011.09.003
http://dx.doi.org/10.1088/1475-7516/2008/10/045
http://dx.doi.org/10.1088/1475-7516/2008/10/045
http://dx.doi.org/10.1016/j.physletb.2007.10.027
http://dx.doi.org/10.1023/B:GERG.0000035950.40718.48
http://dx.doi.org/10.1016/j.physletb.2006.06.034
http://dx.doi.org/10.1103/PhysRevD.77.026007
http://dx.doi.org/10.1142/S0218271803004407
http://dx.doi.org/10.1142/S0218271803004407
http://dx.doi.org/10.1103/PhysRevD.74.086005
http://dx.doi.org/10.1103/PhysRevD.74.086005
http://dx.doi.org/10.1088/1742-6596/66/1/012005
http://dx.doi.org/10.1103/PhysRevD.74.087501
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://dx.doi.org/10.1103/PhysRevD.70.043528
http://dx.doi.org/10.1142/S0218271802002025
http://dx.doi.org/10.1142/S0218271802002025
http://dx.doi.org/10.1142/S0218271813300176
http://dx.doi.org/10.1142/S0218271813300176
http://dx.doi.org/10.1142/S0217751X08042675
http://dx.doi.org/10.1142/S0217751X08042675
http://dx.doi.org/10.1142/S0217751X08042857
http://dx.doi.org/10.1142/S0217751X08042857
http://dx.doi.org/10.1103/PhysRevD.82.023519
http://dx.doi.org/10.1103/PhysRevD.77.046009


(2008); K. Bamba, C.-Q. Geng, and C.-C. Lee, J. Cosmol.
Astropart. Phys. 08 (2010) 021.

[21] S. Nojiri, S. D. Odintsov, and D. Sáez-Gómez, Phys. Lett. B
681, 74 (2009).

[22] S. Capozziello, V. F. Cardone, and A. Troisi, Phys. Rev. D
71, 043503 (2005).

[23] J. C. C. de Souza and V. Faraoni, Classical Quantum Gravity
24, 3637 (2007); V. Faraoni, Phys. Rev. D 74, 104017
(2006); G. J. Olmo, Phys. Rev. Lett. 95, 261102 (2005);
Phys. Rev. D 75, 023511 (2007).

[24] S. A. Appleby, R. A. Battye, and A. A. Starobinsky,
J. Cosmol. Astropart. Phys. 06 (2010) 005.

[25] S. A. Appleby and R. A. Battye, Phys. Lett. B 654, 7 (2007);
J. Cosmol. Astropart. Phys. 05 (2008) 019.

[26] A. Silvestri and M. Trodden, Rep. Prog. Phys. 72, 096901
(2009).

[27] E. Elizalde, E. O. Pozdeeva, and S. Yu. Vernov, Phys. Rev.
D 85, 044002 (2012).

[28] V. Faraoni, Phys. Rev. D 75, 067302 (2007).
[29] S. Nojiri and S. D. Odintsov, Phys. Rev. D 68, 123512

(2003).
[30] M. Sami, Curr. Sci. 97, 887 (2009); Y.-F. Cai, E. N.

Saridakis, M. R. Setare, and J.-Q. Xia, Phys. Rep. 493, 1
(2010).

[31] T. Padmanabhan, Phys. Rep. 380, 235 (2003); K. Bamba,
S. Capozziello, S. Nojiri, and S. D. Odintsov, Astrophys.
Space Sci. 342, 155 (2012).

[32] P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559
(2003); V. Sahni, AIP Conf. Proc. 782, 166 (2005); J. Phys.
Conf. Ser. 31, 115 (2006); M. Li, X.-D. Li, S. Wang, and
Y. Wang, Commun. Theor. Phys. 56, 525 (2011); A. Joyce,
B. Jain, J. Khoury, and M. Trodden, arXiv:1407.0059.

[33] V. Faraoni, Int. J. Mod. Phys. D 11, 471 (2002); V. K.
Onemli and R. P. Woodard, Classical Quantum Gravity 19,
4607 (2002).

[34] A. Gomez-Valent, J. Sola, and S. Basilakos, arXiv:
1409.7048.

[35] A. Ashtekar and P. Singh, Classical Quantum Gravity 28,
213001 (2011).

[36] A. Ashtekar, Nuovo Cimento B 122, 135 (2007).
[37] A. Corichi and P. Singh, Phys. Rev. D 80, 044024 (2009).
[38] P. Singh, K. Vandersloot, and G. V. Vereshchagin, Phys.

Rev. D 74, 043510 (2006).
[39] P. Singh, Classical Quantum Gravity 26, 125005 (2009).
[40] A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. D 74,

084003 (2006).
[41] M. Bojowald, Classical Quantum Gravity 26, 075020

(2009).
[42] M. Sami, P. Singh, and S. Tsujikawa, Phys. Rev. D 74,

043514 (2006).
[43] E. J. Copeland, D. J. Mulryne, N. J. Nunes, and M. Shaeri,

Phys. Rev. D 77, 023510 (2008).
[44] D. Samart and B. Gumjudpai, Phys. Rev. D 76, 043514

(2007).
[45] T. Naskar and J. Ward, Phys. Rev. D 76, 063514 (2007).
[46] T. Cailleteau, J. Mielczarek, A. Barrau, and J. Grain,

Classical Quantum Gravity 29, 095010 (2012).

[47] T. Cailleteau, A. Barrau, J. Grain, and F. Vidotto, Phys. Rev.
D 86, 087301 (2012).

[48] R. H. Brandenberger, arXiv:1206.4196; J. Quintin, Y.-F.
Cai, and R. H. Brandenberger, Phys. Rev. D 90, 063507
(2014); Y.-F. Cai, D. A. Easson, and R. Brandenberger,
J. Cosmol. Astropart. Phys. 08 (2012) 020; Y.-F. Cai, R.
Brandenberger, and X. Zhang, Phys. Lett. B 703, 25 (2011).

[49] Y.-F. Cai, R. Brandenberger, and X. Zhang, J. Cosmol.
Astropart. Phys. 03 (2011) 003; C. Li, R. H. Brandenberger,
and Y.-K. E. Cheung, arXiv:1403.5625; Y.-F. Cai, E.
McDonough, F. Duplessis, and R. H. Brandenberger,
J. Cosmol. Astropart. Phys. 10 (2013) 024; R. H.
Brandenberger, arXiv:1206.4196.

[50] P. Singh, Classical Quantum Gravity 26, 125005 (2009).
[51] J. Amoros, J. Haro, and S. D. Odintsov, Phys. Rev. D 87,

104037 (2013); T. Qiu, X. Gao, and E. N. Saridakis, Phys.
Rev. D 88, 043525 (2013).

[52] J. Haro, Europhys. Lett. 107, 29001 (2014).
[53] Y.-F. Cai, S.-H. Chen, J. B. Dent, S. Dutta, and E. N.

Saridakis, Classical Quantum Gravity 28, 215011 (2011).
[54] J. Amoros, J. de Haro, and S. D. Odintsov, Phys. Rev. D 89,

104010 (2014).
[55] E. Wilson-Ewing, J. Cosmol. Astropart. Phys. 03 (2013)

026.
[56] Y.-F. Cai and E. Wilson-Ewing, J. Cosmol. Astropart. Phys.

03 (2014) 026.
[57] J. Haro and J. Amoros, arXiv:1406.0369.
[58] J. Haro and J. Amoros, J. Cosmol. Astropart. Phys. 08

(2014) 025.
[59] D. I. Kaiser, Phys. Lett. B 340, 23 (1994); Phys. Rev. D 52,

4295 (1995).
[60] Y.-F. Cai, S.-H. Chen, J. B. Dent, S. Dutta, and E. N.

Saridakis, Classical Quantum Gravity 28, 215011
(2011).

[61] Y.-F. Cai, Sci. China Phys. Mech. Astron. 57, 1414 (2014).
[62] K. Bamba, A. N. Makarenko, A. N. Myagky, S. Nojiri, and

S. D. Odintsov, J. Cosmol. Astropart. Phys. 01 (2014) 008.
[63] Y.-Z. Zhang, J. Phys. A 45, 065206 (2012).
[64] J. Khoury and A. Weltman, Phys. Rev. D 69, 044026

(2004).
[65] K. Bamba, S. Nojiri, S. D. Odintsov, and D. Sáez-Gómez,

arXiv:1410.3993.
[66] L. Sebastiani, G. Cognola, R. Myrzakulov, S. D. Odintsov,

and S. Zerbini, Phys. Rev. D 89, 023518 (2014).
[67] V. Mukhanov, Physical Foundations of Cosmology

(Cambridge University Press, Cambridge, England,
2005); D. S. Gorbunov and V. A. Rubakov, Introduction
to the Theory of the Early Universe: Cosmological Pertur-
bations and Inflationary Theory (World Scientific, Hack-
ensack, NJ, 2011), p. 489.

[68] A. H. Guth, Phys. Rep. 333–334, 555 (2000); J. Phys. A 40,
6811 (2007).

[69] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).
[70] K. Bamba, R. Myrzakulov, S. D. Odintsov, and L.

Sebastiani, Phys. Rev. D 90, 043505 (2014).
[71] X. Zhang and Y. Ma, Phys. Rev. Lett. 106, 171301

(2011).

S. D. ODINTSOV AND V. K. OIKONOMOU PHYSICAL REVIEW D 90, 124083 (2014)

124083-16

http://dx.doi.org/10.1103/PhysRevD.77.046009
http://dx.doi.org/10.1088/1475-7516/2010/08/021
http://dx.doi.org/10.1088/1475-7516/2010/08/021
http://dx.doi.org/10.1016/j.physletb.2009.09.045
http://dx.doi.org/10.1016/j.physletb.2009.09.045
http://dx.doi.org/10.1103/PhysRevD.71.043503
http://dx.doi.org/10.1103/PhysRevD.71.043503
http://dx.doi.org/10.1088/0264-9381/24/14/006
http://dx.doi.org/10.1088/0264-9381/24/14/006
http://dx.doi.org/10.1103/PhysRevD.74.104017
http://dx.doi.org/10.1103/PhysRevD.74.104017
http://dx.doi.org/10.1103/PhysRevLett.95.261102
http://dx.doi.org/10.1103/PhysRevD.75.023511
http://dx.doi.org/10.1088/1475-7516/2010/06/005
http://dx.doi.org/10.1016/j.physletb.2007.08.037
http://dx.doi.org/10.1088/1475-7516/2008/05/019
http://dx.doi.org/10.1088/0034-4885/72/9/096901
http://dx.doi.org/10.1088/0034-4885/72/9/096901
http://dx.doi.org/10.1103/PhysRevD.85.044002
http://dx.doi.org/10.1103/PhysRevD.85.044002
http://dx.doi.org/10.1103/PhysRevD.75.067302
http://dx.doi.org/10.1103/PhysRevD.68.123512
http://dx.doi.org/10.1103/PhysRevD.68.123512
http://dx.doi.org/10.1016/j.physrep.2010.04.001
http://dx.doi.org/10.1016/j.physrep.2010.04.001
http://dx.doi.org/10.1016/S0370-1573(03)00120-0
http://dx.doi.org/10.1007/s10509-012-1181-8
http://dx.doi.org/10.1007/s10509-012-1181-8
http://dx.doi.org/10.1103/RevModPhys.75.559
http://dx.doi.org/10.1103/RevModPhys.75.559
http://dx.doi.org/10.1063/1.2032730
http://dx.doi.org/10.1088/1742-6596/31/1/020
http://dx.doi.org/10.1088/1742-6596/31/1/020
http://dx.doi.org/10.1088/0253-6102/56/3/24
http://arXiv.org/abs/1407.0059
http://dx.doi.org/10.1142/S0218271802001809
http://dx.doi.org/10.1088/0264-9381/19/17/311
http://dx.doi.org/10.1088/0264-9381/19/17/311
http://arXiv.org/abs/1409.7048
http://arXiv.org/abs/1409.7048
http://dx.doi.org/10.1088/0264-9381/28/21/213001
http://dx.doi.org/10.1088/0264-9381/28/21/213001
http://dx.doi.org/10.1103/PhysRevD.80.044024
http://dx.doi.org/10.1103/PhysRevD.74.043510
http://dx.doi.org/10.1103/PhysRevD.74.043510
http://dx.doi.org/10.1088/0264-9381/26/12/125005
http://dx.doi.org/10.1103/PhysRevD.74.084003
http://dx.doi.org/10.1103/PhysRevD.74.084003
http://dx.doi.org/10.1088/0264-9381/26/7/075020
http://dx.doi.org/10.1088/0264-9381/26/7/075020
http://dx.doi.org/10.1103/PhysRevD.74.043514
http://dx.doi.org/10.1103/PhysRevD.74.043514
http://dx.doi.org/10.1103/PhysRevD.77.023510
http://dx.doi.org/10.1103/PhysRevD.76.043514
http://dx.doi.org/10.1103/PhysRevD.76.043514
http://dx.doi.org/10.1103/PhysRevD.76.063514
http://dx.doi.org/10.1088/0264-9381/29/9/095010
http://dx.doi.org/10.1103/PhysRevD.86.087301
http://dx.doi.org/10.1103/PhysRevD.86.087301
http://arXiv.org/abs/1206.4196
http://dx.doi.org/10.1103/PhysRevD.90.063507
http://dx.doi.org/10.1103/PhysRevD.90.063507
http://dx.doi.org/10.1088/1475-7516/2012/08/020
http://dx.doi.org/10.1016/j.physletb.2011.07.074
http://dx.doi.org/10.1088/1475-7516/2011/03/003
http://dx.doi.org/10.1088/1475-7516/2011/03/003
http://arXiv.org/abs/1403.5625
http://dx.doi.org/10.1088/1475-7516/2013/10/024
http://arXiv.org/abs/1206.4196
http://dx.doi.org/10.1088/0264-9381/26/12/125005
http://dx.doi.org/10.1103/PhysRevD.87.104037
http://dx.doi.org/10.1103/PhysRevD.87.104037
http://dx.doi.org/10.1103/PhysRevD.88.043525
http://dx.doi.org/10.1103/PhysRevD.88.043525
http://dx.doi.org/10.1209/0295-5075/107/29001
http://dx.doi.org/10.1088/0264-9381/28/21/215011
http://dx.doi.org/10.1103/PhysRevD.89.104010
http://dx.doi.org/10.1103/PhysRevD.89.104010
http://dx.doi.org/10.1088/1475-7516/2013/03/026
http://dx.doi.org/10.1088/1475-7516/2013/03/026
http://dx.doi.org/10.1088/1475-7516/2014/03/026
http://dx.doi.org/10.1088/1475-7516/2014/03/026
http://arXiv.org/abs/1406.0369
http://dx.doi.org/10.1088/1475-7516/2014/08/025
http://dx.doi.org/10.1088/1475-7516/2014/08/025
http://dx.doi.org/10.1016/0370-2693(94)91292-0
http://dx.doi.org/10.1103/PhysRevD.52.4295
http://dx.doi.org/10.1103/PhysRevD.52.4295
http://dx.doi.org/10.1088/0264-9381/28/21/215011
http://dx.doi.org/10.1088/0264-9381/28/21/215011
http://dx.doi.org/10.1007/s11433-014-5512-3
http://dx.doi.org/10.1088/1475-7516/2014/01/008
http://dx.doi.org/10.1088/1751-8113/45/6/065206
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://arXiv.org/abs/1410.3993
http://dx.doi.org/10.1103/PhysRevD.89.023518
http://dx.doi.org/10.1016/S0370-1573(00)00037-5
http://dx.doi.org/10.1088/1751-8113/40/25/S25
http://dx.doi.org/10.1088/1751-8113/40/25/S25
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1103/PhysRevD.90.043505
http://dx.doi.org/10.1103/PhysRevLett.106.171301
http://dx.doi.org/10.1103/PhysRevLett.106.171301

