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I derive the Komar mass/function for the Schwarszchild–de Sitter black hole inside the de Rham–
Gabadadze–Tolley nonlinear theory of massive gravity by taking the usual notion of timelike Killing vector
in unitary gauge. The de Rham–Gabadadze–Tolley Komar function depends on the dynamics of the
Stückelberg fields through the gauge transformation function. It goes to the standard value obtained in
general relativity if the spatial derivative of the gauge function vanishes. In such a case, the (gauge) function
corresponds to the usual notion of time as in general relativity.
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I. INTRODUCTION

If we want to modify gravity in order to reproduce the
effects of dark energy, one possibility is to modify the
Einstein-Hilbert action, such that nonderivative term inter-
actions are introduced in addition to the standard second
derivative terms. On the other hand, if we want to reproduce
dark matter effects, first derivative terms in the action
should appear [1,2]. The de Rham–Gabadadze–Tolley
(dRGT) theory is able to reproduce dark energy effects
inside a ghost-free formulation of the nonlinear massive
gravity [3]. The theory is successful in the sense that it is
able to reproduce some of the already known consequences
attributed originally to a cosmological constant (Λ) when it
is introduced inside the standard Einstein equations in
general relativity (GR). The theory is even able to repro-
duce the scale rV ¼ ðGM=m2Þ1=3, known as the Vainshtein
scale inside dRGT [4]. However, such scale is not new and
it has been part of the Einstein theory with cosmological
constant for a long time if we analyze the local effects of Λ
[5–7] and if additionally we relate the mass of the graviton
to the Λ scale. Recently some pathologies have been
reported inside the dRGT formulation. Most of them are
related to superluminal propagation, matter-coupling
inconsistencies, problems of causality, unitarity, and pre-
dictability [8] and, in addition, the impossibility of finding a
consistent partially massless limit which would be useful at
the moment of formulating a consistent bimetric theory [9].
At the cosmological level, some unstable solutions were
found in [10]. Some possible pathologies for the black-hole
solutions were also reported in [11,12]. In fact, one of the
most important predictions of Einstein gravity is the
existence of black holes. The black-hole solution with a
cosmological constant (Λ) is known as Schwarzschild–de
Sitter (S-dS), which is stable in Einstein gravity. Any
consistent modification of gravity should be able to
reproduce the existence of stable black-hole solutions as
in the standard case. The black-hole solutions in dRGT
were originally derived by Koyama et al. and subsequently

by other authors [13]. Recently it was found that the S-dS
black-hole solution in dRGT is stable, although some
possible pathologies might remain due to the apparent
degeneracy appearing through the time components of the
Stückelberg fields [12]. Inspired in this work, Babichev
and colleagues have demonstrated that inside the bimetric
formulation of gravity, the Schwarzschild-like solution
becomes stable if the fiducial metric is flat. Additionally
some interesting properties for the solutions with one free
parameter were mentioned [11]. By exploring the degen-
eracy arguments inside the S-dS solution in dRGT, the
author commented that the usual notion of energy is not
conserved in dRGT [14]. The concept can, however, be
extended in order to write a conserved quantity under time
translations. In that sense, the theory is still predictable.
The apparent loss of predictability, already mentioned by
Kodama and the author in [12], only exists if a certain
gauge transformation function T0ðr; tÞ is not well defined
at the background level, extending then the problem to the
perturbative level. In the present manuscript, I go further
with the definition of energy in dRGT by using the S-dS
black-hole solution in order to obtain an expression for
the Komar mass function. I demonstrate that the Komar
mass function in dRGT depends on the dynamic of the
Stückelberg fields through the gauge transformation func-
tion defined by T0ðr; tÞ. The standard definition of the
Komar mass function in GR is recovered as ∂rT0ðr; tÞ ¼ 0.
In such a case, T0ðr; tÞ recovers the role of time. In a
previous manuscript, it was demonstrated that the
Arnowitt-Deser-Misner (ADM) mass is not conserved if
we consider a linear massive term [15]. However, this is not
necessarily the case at the nonlinear level. It is true that
the usual notion of energy is not conserved; however, the
concept can be extended in order to include the dynamic of
the Stückelberg fields. If the Killing vector is taken in the
standard timelike direction, the effects of the Stückelberg
fields will appear as spatial dependence of the gauge
transformation function. In [15], the space was considered
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to be asymptotically flat. This in principle can be done, but
at the nonlinear level it is not correct because in such a case
we are covering scales larger than the cosmological horizon
where there is no guarantee that our coordinate system is
still the appropriate one. In fact we have to be careful in
working inside the region where our static (quasistationary
approach in dRGT in unitary gauge) coordinates are valid.
The region remains inside the two horizons, namely, the
black-hole horizon and the cosmological one, if we con-
sider the S-dS solutions. The present manuscript is organ-
ized as follows: In Sec. II, I introduce the static S-dS
black-hole solution in the standard theory of GR; in Sec. III,
I introduce the S-dS solution, but this time inside the dRGT
massive gravity formulation in unitary gauge; in Sec. III,
I derive the conserved quantities associated with the motion
of a massive test particle. This part was already derived in
[6,14]; in Sec. V, I derive the Komar energy function for the
S-dS solution in dRGT. This part is the new contribution of
this manuscript; finally in Sec. VI, I conclude.

II. THE SCHWARZSCHILD–DE SITTER SPACE
IN GENERAL RELATIVITY: MOTION

OF A TEST PARTICLE

The Schwarzschild–de Sitter metric in static coordinates
is given by

ds2 ¼ −eνðrÞdt2 þ e−νðrÞdr2 þ r2dθ2 þ r2sin2θdϕ2; ð1Þ
with

eνðrÞ ¼ 1 −
rs
r
−

r2

3r2Λ
; ð2Þ

where rs ¼ 2GM is the gravitational radius and rΛ ¼ 1ffiffiffi
Λ

p
defines the cosmological constant scale.

III. THE SCHWARZSCHILD–DE SITTER
SOLUTION IN DRGT: UNITARY GAUGE

In dRGT massive gravity theory, the action is defined as

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþm2Uðg;ϕÞÞ; ð3Þ

with the potential expansion for Uðg;ϕÞ given by

Uðg;ϕÞ ¼ U2 þ α3U3 þ α4U4; ð4Þ
where α3 and α4 correspond to the two free parameters of
the theory. Inside this formulation, some black-hole sol-
utions corresponding to different metrics have been found
in [13]. Additionally, in [12], the S-dS solution in unitary
gauge was derived for two different cases. The first one
corresponds to the family of solutions satisfying the
condition β ¼ α2, where β and α are related to the two
free parameters α3 and α4 [12]. In such a case, the gauge

transformation function T0ðr; tÞ becomes arbitrary but
obeying a symmetry. The second one corresponds to the
family of solutions with two free parameters satisfying the
condition β ≤ α2 with the gauge transformation function
T0ðr; tÞ constrained. The explicit relations between the two
free parameters α3 and α4 with respect to β and α are

α ¼ 1þ α3; β ¼ 3ðα3 þ 4α4Þ: ð5Þ
All the spherically symmetric solutions obtained in [12]

can be generically expressed as

ds2 ¼ gttdt2 þ grrdr2 þ grtðdrdtþ dtdrÞ þ r2dΩ2
2; ð6Þ

where

gtt ¼ −fðrÞð∂tT0ðr; tÞÞ2;

grr ¼ −fðrÞð∂rT0ðr; tÞÞ2 þ
1

fðrÞ ;

gtr ¼ −fðrÞ∂tT0ðr; tÞ∂rT0ðr; tÞ; ð7Þ
with fðrÞ ¼ 1 − 2GM

r − 1
3
Λr2. The metric (7) contains all

the degrees of freedom (5 in total). It means that we are
working in the unitary gauge. In such a case, the fiducial
metric is just the Minkowskian one given explicitly as

fμνdxμdxν ¼ −dt2 þ dr2

S20
þ r2

S20
ðdθ2 þ r2sin2θÞ; ð8Þ

where S0 ¼ α
αþ1

. The Stückleberg fields take the standard
form defined in [12].

IV. CONSERVED QUANTITIES FOR A TEST
PARTICLE MOVING IN DRGT

Inside the dRGT formulation of massive gravity, in
unitary gauge, the quantity

gμνUμUν ¼ C ð9Þ

is a constant of motion. It represents the Lagrangian of a
test particle moving around a source. If we want to analyze
the other conserved quantities, then it is convenient to write
Eq. (9) explicitly as

gtt

�
dt
dτ

�
2

þ grr

�
dr
dτ

�
2

þ 2gtr

�
dr
dτ

��
dt
dτ

�
þ gϕϕ

�
dϕ
dτ

�
2

¼ C; ð10Þ

where I have omitted the zenithal angle represented by θ
because we can fix it due to the spherical symmetry of the
metric. If we assume the metric to be stationary, then the
gauge-transformation function T0ðr; tÞ is linear in time and
then the components of the metric (gμν) are time indepen-
dent. In such a case, from (10), we can find the equations of
motion for t and ϕ as
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d
dτ

�
gtt

�
dt
dτ

�
þ grt

�
dr
dτ

��
¼ 0; ð11Þ

d
dτ

�
r2
�
dϕ
dτ

��
¼ 0: ð12Þ

The second equation is just the conservation of the
angular momentum. The first equation is related to the
energy conservation. In GR, the term grt vanishes since we
have gauge freedom for the dynamical metric in such a
case. Inside dRGT, however, any attempt for removing the
r − t component of the metric just translates degrees of
freedom from the dynamical metric to the fiducial one and
the physical effects of the grt component would just be
translated to the fiducial metric. From Eq. (12), the total
energy is not conserved in its original form, namely,
E ¼ gttdt=dτ. Instead, the conserved quantity associated
with translations in time is given by

gtt

�
dt
dτ

�
þ grt

�
dr
dτ

�
¼ EdRGT; ð13Þ

where the subindex dRGT suggests that this quantity
should be recognized as an extended total energy inside
dRGT. Equation (13), however, tells us that the total energy
in its usual form is a velocity-dependent quantity. For
different values of dr=dτ, the value of E ¼ gttðdtdτÞ changes.
Then any attempt for describing the motion of a particle (or
perturbation) by using the standard notion of energy
reproduces a degeneracy. EdRGT can be considered as a
conserved quantity along the direction T0ðr:tÞ. This does
not mean that the concept of timelike Killing vector should
change. In fact, we can still define the timelike Killing
vector in its usual form (in agreement with GR):

Kμ → ð1; 0; 0; 0Þ; ð14Þ
as r → ∞ in asymptotically flat spaces, and rs ≪ r ≪ rΛ
for asymptotically de Sitter spaces. Here I will consider this
second situation, where, however, a correction due to a
normalization factor must be taken into account for the
timelike Killing vector [7]. General relativity has different
notions of energy. Here I will consider the Komar energy.

V. THE KOMAR ENERGY: THE CASE
OF S-DS SOLUTION IN DRGT

I will derive the Komar energy in dRGT. From the
previous section, we can expect some modification of the
energy expression to be conserved under time translations.
In [15], the analysis for the ADM energy was done inside
the linear regime of massive gravity. Here I consider the full
nonlinear regime in order to calculate the Komar energy
function. In the nonlinear regime, the field equations are

Gμν ¼ −m2Xμν; ð15Þ

where Gμν is the Einstein tensor and Xμν is the energy-
momentum tensor derived from the variation of the potential
with respect to the dynamical metric. There is an extra
equation obtained from the variation of the potential with
respect to the Stückelberg fields. This equation, which
corresponds to the dynamic of the Stückelberg fields, is
equivalent to the Bianchi identity only in the unitary gauge.
Once we work outside the unitary gauge, the dynamic of the
Stückelberg fields is not necessarily related to the energy-
momentum conservation. In general relativity, there are
different notions of energy. All of them have a common
feature. They correspond to the symmetry under time trans-
lations. In dRGT nonlinear massive gravity, care must be
taken at the moment of calculating the energy by using this
concept. The reason is that the usual notion of time can be
kept only in the unitary gauge. Once we work outside this
gauge, we have to take the arrow of time in agreement with
the value assumed by the time component of the Stückelberg
field. This in fact is just an illusion since the usual notion of
time remains unchanged in a physical sense. In GR, we can
define the following conserved current:

JμT ¼ KνTμν; ð16Þ

where Kμ is the form defined as gμνKν, with Kμ representing
the timelike Killing vector. Tμν is the energy-momentum
tensor. From this previous expression, we can define the
following energy inside a two-sphere:

ET ¼
Z
P d3x

ffiffiffi
γ

p
nμJ

μ
T; ð17Þ

where nμ corresponds to a unit vector normal to the spacelike
hypersurface. It is true that in dRGTwe can in principle use
the same set of equations in order to evaluate the previous
quantities. However care must be taken in such a case
because the nondiagonal term gtr of the dynamical metric
provides an extra contribution to the integral. That contri-
bution cannot be gauged away because it comes from the
Stückelberg fields as has been explained before. In GR
however, the current defined in (16) is not good because in
general we study the space-time in vacuum (Tμν ¼ 0). It is
true that in massive gravity we do not work exactly in
vacuum because we have a contribution coming from Xμν

defined in (15). However, at the background level, this
quantity behaves exactly as the cosmological constant for
certain family of solutions [12,13]. Anyway, the definition
(17) does not take into account the energy coming from the
gravitational field itself. Then it is not a good concept of
energy. Instead, we can define the following current:

JR ¼ KνRμν; ð18Þ

which is conserved if we keep in mind that Kμ represents a
Killing vector and as a consequence, the formKμ satisfies the

KOMAR MASS FUNCTION IN THE DE RHAM–… PHYSICAL REVIEW D 90, 124082 (2014)

124082-3



Killing equation. Additionally the geometry is unchanged in
the direction of the Killing vector. The energy associated to
the current (18) is given by

ER ¼ 1

4πG

Z
P d3x

ffiffiffi
γ

p
nμJ

μ
R: ð19Þ

Taking into account that the Killing vector satisfies the
condition ∇μ∇νKμ ¼ KμRμν, then we can write the current
(18) as a total derivative given by JμR ¼ ∇νð∇μKνÞ. Then
the Komar energy given by (19) can be expressed as

ER ¼ 1

4πG

Z
∂P d2x

ffiffiffi
γ

p
nμσν∇μKν: ð20Þ

Here ∂P is the boundary and it corresponds to a two-
sphere (S2) at large spatial scales; it has a metric γij and
an outward pointing unit vector σμ. In addition, Kμ →
ð1; 0; 0; 0Þ inside a region satisfying rs ≪ r ≪ rΛ. More
exactly, the timelike Killing vector should be normalized by
using the same method used by Bousso and Hawking [7].
In general the Killing vector can be written as

Kμ ¼ γt
∂
∂t ; ð21Þ

where γt is just a normalization factor. It would be γt ¼ 1 if
we normalize the Killing vector as K2 → −1 as r → ∞ as it
is normally done in an asymptotically flat space. In this
case however, we are considering an asymptotically de
Sitter space and we want to guarantee the good behavior
of our coordinate system. Then we have to normalize the
timelike Killing vector as

γt ¼ ð−g00Þ−1=2r¼rV : ð22Þ

Here rV corresponds to the Vainshtein scale defined in
[6] as an extremal condition for the dynamical metric in
unitary gauge. The scale rV can be derived after solving the
equation

dgμν ¼
�∂gμν

∂r
�

t
drþ

�∂gμν
∂t

�
r
dt ¼ 0; ð23Þ

when all the degrees of freedom are inside the dynamical
metric. For stationary coordinates, the previous condition is
just reduced to f0ðrÞ ¼ 0, which is in agreement with the
Bousso-Hawking definition of static observer condition
in the S-dS space in GR. Some differences might appear
however, when we consider time-evolving geometries,
even at the stationary level. For evaluating the integral
(20), we have to take into account the appropriate normal-
izations for nμ and σμ. In this case, even if the Killing vector
normalization changes, it depends explicitly on the mass of
the black hole and then it will be a constant with respect to

spatial derivatives. Then we can use the same procedure
for evaluating the Komar integral as it is normally done
for the case of asymptotically flat space. Before evaluating
the integral (20), we have to know explicitly the term
nμσν∇μKν. First, we can normalize gμνnμnν ¼ −1 and
gμνσμσν ¼ 1. It then provides the following results:

n0 ¼ −
ffiffiffiffiffiffiffiffiffi
fðrÞ

p ∂tT0ðr; tÞ;

σr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞð∂rT0ðr; tÞÞ2 þ

1

fðrÞ

s
: ð24Þ

Then we get

nμσν∇μKν

¼ 1

∂tT0ðr; tÞfðrÞ
ð−fðrÞ2ð∂rT0ðr; tÞÞ2 þ 1Þ3=2Γr

00γt

þ fðrÞ∂rT0ðr; tÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−fðrÞ2ð∂rT0ðr; tÞÞ2 þ 1

q �
Γr
r0γt;

ð25Þ
where Γμ

νσ corresponds to the connection components.
What remains to do is to evaluate the Christoffel con-
nections. Here I will consider stationary backgrounds. Then
the metric components are expected to be time indepen-
dent. In such a case, we expect T0ðr; tÞ to be linear with
respect to the standard time t, but arbitrary with respect to
the coordinate r. Explicitly it would be of the form

T0ðr; tÞ∽tþ AðrÞ; ð26Þ

with AðrÞ being an arbitrary function. Then it is clear
that ∂t∂rT0ðr; tÞ ¼ 0 and that ∂tT0ðr; tÞ∽1. The relevant
Christoffel components are then given by

Γr
00 ¼

1

2
ð∂tT0ðr; tÞÞ2fðrÞf0ðrÞ;

Γr
r0 ¼

1

2
ð∂rT0ðr; tÞÞð∂tT0ðr; tÞÞfðrÞf0ðrÞ: ð27Þ

If we replace these results in (25), then we get

nμσν∇μKν ¼ γt
2
∂tT0ðr; tÞf0ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞ2ð∂rT0ðr; tÞÞ2 þ 1

q
:

ð28Þ

The determinant of the induced metric is given by

ffiffiffiffiffiffiffi
γð2Þ

q
¼ r2 sin θ: ð29Þ

If we introduce the results (28) and (29) inside (20), then
we get
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ER ¼ γt
2G

∂tT0ðr; tÞr2f0ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞ2ð∂rT0ðr; tÞÞ2 þ 1

q
¼ MdRGT: ð30Þ

This previous result should be considered as the Komar
mass function in dRGT massive gravity. Note that the value
of the mass will in general depend on the gauge trans-
formation function which contains the information of
the dynamic of the Stückelberg fields. As ∂rT0ðr; tÞ ¼ 0,
we recover the mass function already behaving like
ER∽M − Λr3=6 if we take the appropriate sign convention
for Λ [16] as in GR. Note that the Komar mass function
given by (30) is a well-defined quantity only if the
following condition is satisfied:

−
Z

dr
fðrÞ þ C1ðtÞ < T0ðr; tÞ <

Z
dr
fðrÞ þ C2ðtÞ; ð31Þ

where C1;2ðtÞ are time-dependent functions. Since we are
considering here only stationary backgrounds, thenCðtÞ∽t,
as has been mentioned before. Note that the condition (31)
is satisfied by the second solution obtained in [12]. That
solution corresponds to the case with two free parameters
with the gauge transformation function defined as

T0ðr; tÞ ¼ St�
Z

Sr
�

1

fðuÞ − 1

�
: ð32Þ

On the other hand, for the case α ¼ β2, since T0ðr; tÞ is
in principle arbitrary (although related to a symmetry), then
it is important to keep in mind the condition (31). Even if
we ignore the Λ contribution in (30), the result is different
with respect to the conserved quantity obtained from GR.
This is expected because we have the energy contribution
of the extra degrees of freedom activated after the
Vainshtein radius through the spatial dependence of the
gauge transformation function. In fact, MdRGT would

depend on the dynamics of the Stückelberg fields.
MdRGT becomes a conserved quantity (independent
on r), if

�fðrÞ∂rT0ðr; tÞ ¼ Constant < 1: ð33Þ
It can be also considered a conserved quantity (in some

sense) if, independent on the explicit solution for T0ðr; tÞ,
the following attractor condition is satisfied:

�fðrÞ∂rT0ðr; tÞr≫rs → 0; ð34Þ

or constant smaller than unity. In Eq. (34), we can forget for
a while the Λ contribution which will appear anyway for
large r. In such a case, T0ðr; tÞ would correspond to an
attractor solution for the dynamic involved.

VI. CONCLUSIONS

I have obtained a compact expression of the Komar mass
function for the case of a stationary background inside
the dRGT nonlinear formulation of massive gravity. The
expression corresponds to the S-dS black-hole solution
found in [12]. In general, the quantity MdRGT is conserved
under some conditions depending on the dynamics of the
Stückelberg fields. MdRGT represents the contributions
coming from all the degrees of freedom, including the
Stückelberg fields. In the special case where
∂rT0ðr; tÞ ¼ 0, the results are reduced to the standard
Komar/ADM mass energy as defined in general relativity.
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