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Quantum polyhedra constructed from angular momentum operators are the building blocks of space in
its quantum description as advocated by loop quantum gravity. Here we extend previous results on the
semiclassical properties of quantum polyhedra. Regarding tetrahedra, we compare the results from a
canonical quantization of the classical system with a recent wave-function-based approach to the large-
volume sector of the quantum system. Both methods agree in the leading order of the resulting effective
operator (given by an harmonic oscillator), while minor differences occur in higher corrections.
Perturbative inclusion of such corrections improves the approximation to the eigenstates. Moreover,
the comparison of both methods leads also to a full wave function description of the eigenstates of the
(square of the) volume operator at negative eigenvalues of large modulus. For the case of general quantum
polyhedra described by discrete angular momentum quantum numbers we formulate a set of quantum
operators fulfilling in the semiclassical regime the standard commutation relations between momentum and
position. Differently from previous formulations, the position variable here is chosen to have dimension of
(Planck) length squared which facilitates the identification of quantum corrections. Finally, we provide
expressions for the pentahedral volume in terms of Kapovich-Millson variables.
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I. INTRODUCTION

The quantum volume operator is among the most
intensively investigated items in the field of loop quantum
gravity and is pivotal for the construction of space-time
dynamics within this theoretical framework [1–3].
Traditionally two versions of such an operator are dis-
cussed, due to Rovelli and Smolin [4] and to Ashtekar and
Lewandowski [5], respectively, and considerable attention
has been devoted to their properties and interrelations
[6–19]. More recently, Bianchi, Dona, and Speziale [20]
offered a third proposal for a volume operator which is
closer to the concept of spin foams [3]. It relies on an older
geometric theorem due to Minkowski [21] stating that N
face areas Ai, i ∈ f1;…; Ng, with normal vectors ~ni such
that

XN
i¼1

~Ai ¼ 0 ð1Þ

for ~Ai ¼ ~niAi uniquely define a convex polyhedron of N
faces with areas Ai. The approach of Ref. [20] amounts to
expressing the volume of a classical polyhedron in terms of
its face areas, which are in turn promoted to be operators.
Minkowski’s proof, however, is not constructive, and a
remaining obstacle of the above route to a volume operator
is to actually find the shape of a general polyhedron given
its face areas and face normals [20,22–25].
Such difficulties do not occur in the simplest case of a

polyhedron, i.e. a tetrahedron consisting of four faces
represented by angular momentum operators coupling to
a total spin singlet [11,26]. Indeed, for such a quantum

tetrahedron all three definitions of the volume operator
coincide. On the other hand, for a classical tetrahedron the
general phase space parametrization devised by Kapovich
and Millson [27] results in just one pair of canonical
variables, and the (square of the) volume operator can
explicitly formulated in terms of these quantities [23,28].
Moreover, Bianchi and Haggard have performed a Bohr-
Sommerfeld quantization of the classical tetrahedron where
the role of a Hamiltonian generating classical orbits is
played by the volume operator squared. The resulting
semiclassical eigenvalues agree extremely well with exact
numerical data [22,23]. The above observations make clear
that classical tetrahedra, arguably the simplest structures a
volume can be ascribed to, should be considered as
perfectly integrable systems. In turn, a quantum tetrahedron
can be viewed as the “hydrogen atom” of quantum
spacetime, whereas the next complicated case of a penta-
hedron might be referred to as the “helium atom” [25].
Most recently, the present author has put forward yet

another approach to the semiclassical regime of quantum
tetrahedra [29]. Here, by combining observations on the
volume operator squared and its eigenfunctions (as
opposed to the eigenvalues), an effective operator in terms
of a quantum harmonic oscillator was derived, providing an
accurate as well as transparent description of the large-
volume sector. One of the purposes of the present work is to
demonstrate the relation between the different treatments of
quantum tetrahedra sketched above.
The outline of this paper is as follows. In Sec. II we first

summarize the Kapovich-Millson phase space parametri-
zation of general classical polyhedra (Sec. II A) before
reviewing and extending in Sec. II B results for the classical
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tetrahedron. In particular, we derive an expansion of the
volume squared around its maximum and minimum in up
to quadrilinear order. Section III A is devoted to the
quantum tetrahedron. We first outline in Sec. III A 1
elementary facts about the volume operator and its
Hilbert space, and we point out several relations between
appropriate quantum operators which have analogs in the
classical tetrahedron. Next the analysis of Ref. [29] is
extended to higher corrections to the resulting harmonic
oscillator of up to fourth order. The results are compared
with the outcome of a canonical quantization of the
classical volume expression. The expression of the penta-
hedral volume in terms of Kapovich-Millson variables is
discussed in the Appendix. Finally we construct in
Sec. III B a set of quantum operators for general polyhedra
whose commutation relations approach in the semiclassical
limit the standard commutators between momentum and
position.

II. CLASSICAL POLYHEDRA

Let us first recall the essentials of the polyhedral phase
space parametrization due to Kapovich and Millson [27].

A. Kapovich-Millson phase space variables

Viewing the vectors ~Ai as angular momenta, the Poisson
bracket of arbitrary functions of these variables reads

ff; gg ¼
XN
i¼0

~Ai ·

� ∂f
∂ ~Ai

×
∂g
∂ ~Ai

�
: ð2Þ

In order to implement the closure relation (1) one defines

~pi ¼
Xiþ1

j¼1

~Aj ð3Þ

for i ∈ f1;…; N − 3g resulting in N − 3 momenta
pi ¼ j~pij. Defining now

~vi ¼ ~pi × ~Aiþ1; ~wi ¼ ~pi × ~Aiþ2; ð4Þ
such that ~viþ1 ¼ ~wi (i < N − 3) and

~pi · ~vi ¼ ~pi · ~wi ¼ 0; ð5Þ
the canonical conjugate variables qi are then given to be the
angle between ~vi, ~wi. Indeed, a straightforward calculation
shows that these quantities fulfill indeed the canonical
Poisson relations [23,27]

fpi; qjg ¼ δij: ð6Þ

B. The tetrahedron

The classical volume of a tetrahedron can be
expressed as

V ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~A1 · ð~A2 × ~A3Þj

q
ð7Þ

suggesting to investigate the quantity

Q ¼ ~A1 · ð~A2 × ~A3Þ: ð8Þ

The latter can indeed easily be expressed in terms of the
phase space variables p1, q1 using the observation [23]

~v1 × ~w1 ¼ Q~p1: ð9Þ

Moreover, it is easily seen that

j~v1j ¼ j~A1 × ~A2j ¼ 2ΔðA1; A2; p1Þ ð10Þ

where Δða; b; cÞ is the area of a triangle with edges a; b; c
expressed via Heron’s formula,

Δða; b; cÞ ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððaþ bÞ2 − c2Þðc2 − ða − bÞ2Þ

q
: ð11Þ

Analogously, using the closure relation (1),

j~w1j ¼ j~A3 × ~A4j ¼ 2ΔðA3; A4; p1Þ ð12Þ

such that

Q ¼ 4
ΔðA1; A2; p1ÞΔðA3; A4; p1Þ

p1

sin q1: ð13Þ

In order to make closer contact to the quantum tetrahedron
to be discussed below, let us introduce the notation

A ≔ p1; p ≔ −q1 þ
π

2
ð14Þ

fulfilling fp; Ag ¼ 1 and

Q ¼ 2~βðAÞ cosp ð15Þ

with

~βðAÞ ¼ 2
ΔðA1; A2; AÞΔðA3; A4; AÞ

A
; ð16Þ

where A varies according to Amin ≤ A ≤ Amax with

Amin ¼ maxfjA1 − A2j; jA3 − A4jg; ð17Þ

Amax ¼ minfA1 þ A2; A3 þ A4g: ð18Þ

An expression close to (15) was also found in Ref. [28] in
the semiclassical limit of a quantum tetrahedron.
Obviously, ~βðAÞ is a non-negative function with

~βðAminÞ ¼ ~βðAmaxÞ ¼ 0, and it is not difficult to verify
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that it has a unique maximum at some A ¼ Ā between Amin

and Amax [29]. Thus, Q has a unique maximum at A ¼ k̄
and p ¼ 0 while the unique minimum lies at p ¼ π.
Expanding around the maximum gives (x ≔ A − Ā,
jxj ≪ 1, jpj ≪ 1)

Qðp; xÞ ¼ ~q

�
1 −

p2

2
−

~ω2

2
x2 þ ~c

3
x3 þ

~d
4
x4

þ ~ω2

4
x2p2 þ p4

24
þ � � �

�
ð19Þ

with

~q ¼ 2~βðĀÞ; ~ω2 ¼ −

�
d2 ~βðAÞ
dA2

�
A¼Ā

~βðĀÞ > 0 ð20Þ

and

~c ¼
�
d3 ~βðAÞ
dA3

�
A¼Ā

2~βðĀÞ ; ~d ¼
�
d4 ~βðAÞ
dA4

�
A¼Ā

6~βðĀÞ : ð21Þ

The analogous expansion around the minimum reads
[p ¼ π þ ðp − πÞ, jp − πj ≪ 1]

Q0ðp; xÞ ¼ − ~q

�
1 −

ðp − πÞ2
2

−
~ω2

2
x2 þ ~a

3
x3 þ

~b
4
x4

þ ~ω2

4
x2ðp − πÞ2 þ ðp − πÞ4

24
þ � � �

�
: ð22Þ

Concentrating in both cases on the quadratic contributions,
one obtains two harmonic oscillators,

Qoscðp; xÞ ¼ ~q

�
1 −

p2

2
−

~ω2

2
x2
�
; ð23Þ

Q0
oscðp; xÞ ¼ − ~q

�
1 −

ðp − πÞ2
2

−
~ω2

2
x2
�
: ð24Þ

Finally, it is certainly desirable to also express the
volume of higher polyhedra in terms of Kapovich-
Millson variables. The Appendix details the case of the
pentahedron. As shown there, the above task is certainly
feasible, but leads to unpleasantly complicated expressions
which inhibit analytical progress.

III. QUANTUM POLYHEDRA

A. The quantum tetrahedron

We begin by reviewing and extending general results of
quantum tetrahedra.

1. General properties

A quantum tetrahedron is defined by four angular

momentum operators ~̂ji, i ∈ f1; 2; 3; 4g, representing its
faces and coupling to a total singlet [11,12,22,23,26]; i.e.
the Hilbert space consists of all states jki fulfilling

ð~̂j1 þ ~̂j2 þ ~̂j3 þ ~̂j4Þjki ¼ 0: ð25Þ

A usual way to construct this space is to couple first the

pairs ~̂j1, ~̂j2 and ~̂j3, ~̂j4 to two irreducible SU(2) representa-

tions of dimension 2kþ 1 each. For ~̂j1, ~̂j2 this standard
construction reads explicitly

~̂k ≔ ~̂j1 þ ~̂j2; ð26Þ

jkmi12 ¼
X

m1þm2¼m

hj1m1j2m2jkmijj1m1ijj2m2i; ð27Þ

such that

k̂zjkmi12 ¼ mjkmi12; ð28Þ

~̂k
2jkmi12 ¼ kðkþ 1Þjkmi12; ð29Þ

where hj1m1j2m2jkmi are Clebsch-Gordan coefficients
following their usual phase convention [30]. Defining

analogous states jkmi34 for ~̂j3, ~̂j4, the quantum number
k becomes restricted by kmin ≤ k ≤ kmax with

kmin ¼ maxfjj1 − j2j; jj3 − j4jg; ð30Þ

kmax ¼ minfj1 þ j2; j3 þ j4g: ð31Þ

The two multiplets jkmi12, jkmi34 are then coupled to a
total singlet,

jki ¼ ei
π
2
ðk−kminÞ ·

Xk
m¼−k

ð−1Þk−mffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþ 1

p jkmi12jkð−mÞi34; ð32Þ

where the phase factor in front will become useful shortly
below. The states jki span a Hilbert space of dimen-
sion d ¼ kmax − kmin þ 1.
The volume operator of a quantum tetrahedron can be

formulated as

V̂ ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~̂E1 · ð ~̂E2 × ~̂E3Þj

q
ð33Þ

where the operators

~̂Ei ¼ l2
P
~̂ji; ð34Þ
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i ∈ f1; 2; 3; 4g represent the faces of the tetrahedron with
l2
P ¼ ℏG=c3 being the Planck length squared. Usually the

operators ~̂Ei are defined with additional prefactors propor-
tional to the Immirzi parameter on the r.h.s. of Eq. (34).
This establishes contact to the general formalism of loop
quantum gravity [1–3] but is unnecessary for our purposes
here. What will become important, however, is that l2

P is
proportional to ℏ.
As a result, one is led to consider the operator

R̂ ¼ ~̂j1 · ð~̂j2 × ~̂j3Þ; ð35Þ
which reads in the basis of the states jki as [12,23,29–32]

R̂ ¼
Xkmax

k¼kminþ1

αðkÞðjkihk − 1j þ jk − 1ihkjÞ ð36Þ

with

αðkÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1=4

p Δðj1 þ 1=2; j2 þ 1=2; kÞ

· Δðj3 þ 1=2; j4 þ 1=2; kÞ: ð37Þ
Note the close similarity of the expressions (37) and (16).
Moreover, in the above basis Q̂ couples only states with
neighboring labels and is represented by a real matrix. The
latter fact depends on the phase factor in the first line of
Eq. (32). Indeed, upon striping this factor (which is a
unitary operation) R̂ becomes antisymmetric and purely
imaginary. Thus, for even d, the eigenvalues of Q come in
pairs q, (−q), and since

uR̂uþ ¼ −R̂ ð38Þ
with u ¼ diagð1;−1; 1;−1;…Þ, the corresponding eigen-
states jϕqi, jϕ−qi fulfill

jϕ−qi ¼ ujϕqi; ð39Þ

i.e. eigenvectors of eigenvalues differing just in sign are
related to each other by changing the sign of any other
component. For odd d an additional zero eigenvalue
occurs [13].
To make further contact between the classical and the

quantum tetrahedron we define in analogy to Eqs. (4)

~̂v ¼ 1

2
ð~̂k × ~̂j2 − ~̂j2 × ~̂kÞ ¼ ~̂j1 × ~̂j2; ð40Þ

~̂w ¼ ~̂k × ~̂j3 ð41Þ

fulfilling

1

2
ð~̂v × ~̂w − ~̂w × ~̂vÞ ¼ 1

2
ðR̂ ~̂kþ~̂k R̂Þ; ð42Þ

which is the operator analog of Eq. (9). Moreover, one
straightforwardly obtains

~̂v2 ¼ 4ðΔð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1ðj1 þ 1Þ

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ðj2 þ 1Þ

p
; ~̂kÞÞ2 ð43Þ

and

Π̂ ~̂w2Π̂ ¼ 4Π̂ðΔð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j3ðj3 þ 1Þ

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j4ðj4 þ 1Þ

p
; ~̂kÞÞ2Π̂; ð44Þ

where

Π̂ ¼
Xkmax

k¼kmin

jkihkj ð45Þ

is the projector onto the singlet space. Equations (43) and
(44) are the operator analogs of Eqs. (10) and (12).

2. Rescaling to dimensionful variables

So far we have followed the formalism common to the
literature and parametrized the Hilbert space of the quan-
tum tetrahedron by a dimensionless quantum number k,
whereas the phase space variable A of the classical
tetrahedron has dimension of area. In order to establish
closer contact between both descriptions let us rescale the
involved quantum numbers by the Planck length squared
according to

k ↦ a ¼ l2
Pk; ji ↦ Ei ¼ l2

Pji ð46Þ

to quantities having also dimension of area. As we shall see
below, this step will also provide a close analogy to
standard quantum mechanics in the Schrödinger represen-
tation. The analog of the classical expression (8) reads

Q̂ ¼ l6
PR̂ ¼ ~̂E1 · ð ~̂E2 × ~̂E3Þ ð47Þ

¼
Xamax

a¼aminþl2P

βðaÞðjaiha − l2
Pj þ ja − l2

PihajÞ ð48Þ

with

βðaÞ ¼ l6
PαðkÞ ð49Þ

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − l4

p=4
q ΔðE1 þ l2

P=2; E2 þ l2
P=2; aÞ

· ΔðE3 þ l2
P=2; E4 þ l2

P=2; aÞ: ð50Þ

The latter quantity shares the essential properties of ~βðAÞ in
Eq. (16). In particular βðaÞ has a unique maximum at
some a ¼ ā.
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3. Large volumes

In Ref. [29] the present author has shown how to
accurately describe the large-volume (semiclassical) regime
of Q̂ (or R̂) by a quantum harmonic oscillator in real-space
representation with respect to a (or k, respectively). Here
we shall extend this analysis taking into account higher-
order corrections within the rescaled variables introduced
in the previous section.
Let us label the eigenstates of Q̂ by jni, n ∈ f0; 1; 2;…g,

in descending order of eigenvalues with j0i being the state
of the largest eigenvalue. With respect to the basis states jki
they can be expressed as

jni ¼
Xamax

a¼amin

hajnijai: ð51Þ

Thus, taking the view of the standard Schrödinger formal-
ism of elementary quantum mechanics, the coefficients
hajni are the “wave function” of the state jniwith respect to
the “coordinate” a. The approach of Ref. [29] starts from
evaluating matrix elements

hΦjQjΨi ¼
X
a

βðaÞðhΦjaiha − l2
PjΨi

þ hΦja − l2
PihajΨiÞ ð52Þ

between states lying predominantly in the sector of large
eigenvalues by approximating the sum by an integral
introducing the integration variable x ≔ a − ā,

hΦjQjΨi ≈ 1

l2
P

Z
dxβðāþ xÞð ~Φ�ðxÞ ~Ψðx − l2

PÞj

þ ~Φ�ðx − l2
PÞ ~ΨðxÞÞ ð53Þ

with ~ΦðxÞ ¼ hāþ xjΦi, ~ΨðxÞ ¼ hāþ xjΨi. Expanding
now βðāþ xÞ around its maximum at ā and the wave
functions ~Φ�ðx − l2

PÞ, ~Ψðx − l2
PÞ around x, one obtains in

up to fourth order the expansions

hΦjQjΨi≈
Z

dxΦ�ðxÞq̄
�
1−

�
−
l4
P

2

d2

dx2
þω2

2
x2
�

þc
3
x3þd

4
x4−

ω2

8
l4
P

�
x2

d2

dx2
þ d2

dx2
x2
�

þl8
P

24

d4

dx4
þω2

2
l2
P

�
d
dx

;x2
�
þc
3
l2
P

�
d
dx

;x3
��

ΨðxÞ

ð54Þ

with ΦðxÞ ¼ ~ΦðxÞ=lP, ΨðxÞ ¼ ~ΨðxÞ=lP and

q̄ ¼ 2βðāÞ; ω2 ¼ −

�
d2βðaÞ
da2

�
a¼ā

βðāÞ > 0; ð55Þ

c ¼
�
d3βðaÞ
da3

�
a¼ā

2βðāÞ ; d ¼
�
d4βðaÞ
da4

�
a¼ā

6βðāÞ : ð56Þ

In calculating the r.h.s. of Eq. (54) we have repeatedly
performed integration by parts and assumed the boundary
terms to vanish. Introducing now the operators

p̂ ¼ l2
P

i
d
dx

; x̂ ¼ x ð57Þ

one easily reads off the effective operator expression

Q̂ðp̂; x̂Þ ¼ q̄

�
1 −

p̂2

2
−
ω2

2
x̂2 þ c

3
x̂3 þ d

4
x̂4

þ ω2

8
ðx̂2p̂2 þ p̂2x̂2Þ þ p̂4

24
þ i

ω2

2
½p̂; x̂2�

þ i
c
3
½p̂; x̂3�

�
: ð58Þ

This result extends the findings of Ref. [29] to higher
corrections in the operators p̂, x̂. The contribution in
Eq. (54) involving only derivatives with respect to x can
be viewed as the result of a continuum approximation
according to

haþ l2
PjΨi þ ha − l2

PjΨi − 2hajΨi

≈ l4
P
d2 ~ΨðxÞ
dx2

þ l8
P

12

d4 ~ΨðxÞ
dx4

: ð59Þ

Note also that the symmetric operator ordering in the last
term of the second line in Eq. (54) [i.e. the middle
contribution in the second line in Eq. (58)] emerges from
the calculation and not an additional assumption.
As a result, the operator (58) perfectly matches the

classical expression (19) taking into account the correct
operator ordering and the vanishing of the commutators

½p̂; x̂2� ¼ −2il2
Px̂; ½p̂; x̂3� ¼ −3il2

Px̂
2 ð60Þ

which are indeed small compared to the other contributions
in (58) as they are proportional to ℏ. Alternatively, the
matrix elements of such commutators can be viewed to be
of higher order in derivatives since

ω2

2

Z
dxΦ�ðxÞ½p̂; x̂2�ΨðxÞ

¼ ω2

2

Z
dxððp̂ΦÞ�x̂2Ψ − Φ�x̂2ðp̂ΨÞÞ; ð61Þ

where the r.h.s contains in total three derivatives with
respect to a or x. Finally the coefficients in the expansions
(58) and (19) obviously coincide in the limit of large
quantum volumes, ā ≫ l2

P. In summary, up to the
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commutators discussed above, the operator (58) is the result
of the canonical quantization of the classical expression
(19) via the standard operator replacement (57).
When concentrating on the quadratic contributions in

Eq. (58) one recovers the harmonic-oscillator expression of
Ref. [29],

Q̂oscðp̂; x̂Þ ¼ q̄

�
1 −

�
p̂2

2
þ ω2

2
x̂2
��

ð62Þ

with eigenvalues

qoscn ¼ q̄ð1 − l2
Pωðnþ 1=2ÞÞ ð63Þ

and corresponding eigenfunctions

ψnðx;ωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n!2n

ffiffiffiffiffiffiffiffi
ω

πl2
P

rs
Hnð

ffiffiffiffi
ω

p
x=lPÞe

− ω
2l2

P
x2 ð64Þ

where HnðxÞ are the usual Hermite polynomials. We note
that ω has dimension of inverse area while l2

Pω is
dimensionless and can be computed via Eqs. (55) using
αðkÞ given in Eq. (37) instead of βðaÞ,

l4
Pω

2 ¼ −

�
d2αðkÞ
dk2

�
k¼k̄

αðk̄Þ : ð65Þ

As stated in Ref. [29], the expressions (63) and (64) are
excellent approximations to the eigenstates and eigenvalues
of the (square of the) volume operator for already inter-
mediate lengths of the involved spins. This fact is illustrated
again in Fig. 1 for a typical choice of angular momentum
quantum numbers all being of the order of a few tens. In
addition to Ref. [29] we also plot there the wave function
within the lowest-order correction in Eq. (58) arising from
cx̂3=3 accounted for by first-order perturbation theory.
Figure 2 shows similar data but for smaller spin lengths
ji ≡ 4. Here the oscillatorlike features of the wave func-
tions noticeably disappear with increasing n, and the
corrections from cubic term are clearly more substantial.
In both Figs. 1 and 2 we have used the expression
a − āþ l2

P=2 as the argument for the wave functions
where the additional increment l2

P takes into account that
βðāÞ couples states of the form jā − l2

Pi and jāi and
facilitates comparison with finite size data. With increasing
angular momentum quantum numbers, this shift becomes
more and more obsolete.

4. Negative eigenvalues of Q̂

So far we have concentrated on the large and positive
eigenvalues of the operator Q̂. The regime of negative
eigenvalues of large modulus can be explored by canoni-
cally quantizing the classical expression (24) according to
the standard recipe (57),

Q̂0
oscðp̂; x̂Þ ¼ −q̄

�
1 −

�ðp̂ − πÞ2
2

þ ω2

2
x̂2
��

; ð66Þ

where we have put for simplicity ~q ¼ q̄, ~ω ¼ ω̄. This
operator is related to Qosc given in Eq. (62) by a gauge
transformation along with a change in sign,

Q0
osc ¼ −eiπx=l2PQosce−iπx=l

2
P ð67Þ

FIG. 1 (color online). The coefficients hajni (filled circles) for
small n and a typical choice of angular momentum quantum
numbers. The black solid lines are the unperturbed oscillator

wave functions ψ ð0Þ
n ða − āþ l2

P=2;ωÞ (in units of 1=lP) given in
Eq. (64), while the red lines show the eigenfunctions including
the first-order perturbation arising from the cubic term cx̂3=3
in Eq. (58).

FIG. 2 (color online). The coefficients hajni (filled circles) for
small n and ji ≡ 4. The black solid lines are the unperturbed

oscillator wave functions ψ ð0Þ
n ða − āþ l2

P=2;ωÞ (in units of
1=lP) given in Eq. (64), while the red lines show the eigen-
functions including the first-order perturbation arising from the
cubic term cx̂3=3 in Eq. (58).
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such that the eigenfunctions are related by

ψ 0
nðxÞ ¼ eiπx=l

2
PψnðxÞ; ð68Þ

where the phase factor mimics the change in sign stated in
the strict relation (39) between eigenvectors of Q̂ to
eigenvalues differing in sign only. In fact, based on this
analogy, Eq. (68) and, as a consequence, Eqs. (66) and (67)
have already been given in Ref. [29]. Here we have
provided a more profound derivation based on the canoni-
cal quantization of the classical expression (24).

5. Canonical operators in the discrete case

In the operators (57) the variable x (and, in turn, a) is
considered to be a continuous quantity. Therefore the
question remains how to possibly construct a pair of
canonical operators retaining the discrete character of
a ¼ k=l2

P with k being (half-)integer. As a step towards
this goal we propose the operators

Â ¼
Xamax

a¼amin

ajaihaj: ð69Þ

P̂ ¼ i
2

Xamax

a¼aminþl2P

ðjaiha − l2
Pj − ja − l2

PihajÞ ð70Þ

fulfilling

½P̂; Â� ¼ l2
P

2i

Xamax

a¼aminþl2P

ðjaiha − l2
Pj þ ja − l2

PihajÞ: ð71Þ

For large volumes, the r.h.s. approaches the unit operator
acting on states whose components vary only little on the
scale set by l2

P,

hΦj½P̂; Â�jΨi ≈ l2
P

i

Xamax

a¼amin

hΦjaihajΨi ð72Þ

¼ l2
P

i
hΦjΨi: ð73Þ

In fact, the expression (70) is obviously a discretization of a
differential operator. However, as such discretizations are
by no means unique, the question remains open whether
there are operators P̂0, Â0 which (i) act on the original
discretely labeled quantum states, (ii) turn into p̂, x̂ at large
volumes, and (iii) fulfill

½P̂0; Â0� ¼ l2
P

i
ð74Þ

as an exact equation on the entire Hilbert space.

B. General polyhedra

In full analogy to the Kapovich-Millson variables we
define for a quantum polyhedron of N faces (angular
momenta) the operators

~̂ki ¼
Xiþ1

j¼1

~̂jj ð75Þ

for i ∈ f1;…; N − 3g. As the squares of these quantities
commute with each other,

½~̂k2i ; ~̂k
2

j � ¼ 0; ð76Þ

orthonormal basis states of the Hilbert space can be labeled
by quantum numbers ki according to

~̂k
2

i jk1…kN−3i ¼ kiðki þ 1Þjk1…kN−3i: ð77Þ
The closure relation (1) translates to

XN
i¼1

~̂jijk1…kN−3i ¼ 0; ð78Þ

i.e. the angular momentum operator ~̂kN−3 couples with the

remaining spins ~̂jN−1, ~̂jN to a total singlet implying kmin
N−3 ≤

kN−3 ≤ kmax
N−3 with

kmin
N−3 ≥ jjN−1 − jN j; ð79Þ

kmax
N−3 ≤ jN−1 þ jN; ð80Þ

Consider now two total singlet states with ki ¼ kð1Þi and

ki ¼ kð2Þi , i < N − 3, kð1Þi < kð2Þi and all other quantum

numbers kj, j ≠ i identical. Then states with ki ¼ kð1Þi þ
1;…; kð2Þi − 1 (and all other kj the same as before) are also

singlets, since ~̂ki−1 and ~̂jiþ1 can couple to these values of ki,

and ~̂ki with the above quantum numbers and ~̂jiþ2 can
couple to the given value of kiþ1. Thus, also the other
quantum numbers ki, i < N − 3, vary within intervals,
kmin
i ≤ ki ≤ kmax

i , and the representation theory of the
angular momentum algebra implies

kmin
i ≥ maxfkmin

i−1 − jiþ1; 0; jiþ1 − kmax
i−1 g; ð81Þ

kmax
i ≤ ki−1 þ jiþ1 ð82Þ

with k0 ¼ j1 for i ¼ 1. Without the additional conditions
(79) and (80) the inequalities (81) and (82) would hold as
equalities. We note, however, that the structure of the
quantum numbers ki is in general quite complex. For
instance, the limiting values kmin

i , kmax
i can depend on other
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quantum numbers kj, j ≠ i, and the entire structure
depends obviously also on the coupling scheme, i.e. the
labeling of the operators j1;…; jN . A very simple example
is provided by the case N ¼ 4 in Eqs. (30) and (31); for
N > 4 explicit expressions for kmin

i , kmax
i become increas-

ingly tedious.
Now rescaling the quantum numbers ki to dimensionful

quantities as in Sec. III A 2, ki ↦ ai ¼ kil2
P, we define

analogous to Eqs. (69) and (70) the operators

Âi ¼
X

a1…aN−3

aija1…aN−3iha1…aN−3j; ð83Þ

P̂i ¼
i
2

X
a1…aN−3

ðja1…aN−3iha1…ðai − l2
PÞ…aN−3j

− ja1…ðai − l2
PÞ…aN−3iha1…aN−3jÞ ð84Þ

fulfilling the commutation relations

½P̂i; Âj� ¼
δijl2

P

2i

·
X

a1…aN−3

ðja1…aN−3iha1…ðai − l2
PÞ…aN−3j

þ ja1…ðai − l2
PÞ…aN−3iha1…aN−3jÞ: ð85Þ

In the limit of large volumes, the above r.h.s. approaches
the unit operator in just the same way as in Eq. (71).

IV. CONCLUSIONS AND OUTLOOK

The investigation of the semiclassical limit of loop
quantum gravity is one of the key issues in that approach
towards a quantum theory of gravitation. In the present
work we have focused on semiclassical properties of
quantum polyhedra. Regarding tetrahedra, as their simplest
examples, Eqs. (41)–(45) provide operator analogs of
classical geometric relations for tetrahedra. These classical
relations are the key ingredient to the Bohr-Sommerfeld
analysis of Refs. [22,23].
The expansion of the classical volume squared in up to

fourth order in the canonical variables are given in Eqs. (19)
and (22). We have explicitly established the connection
between a canonical quantization of these expressions with
a recent wave-function-based approach by the present
author [29] to the large-volume sector of the quantum
system. In the leading order both routes concur, yielding a
quantum harmonic oscillator as an effective description for
the (square of the) volume operator. As regards higher
orders, the approach of Ref. [29] leads to additional
corrections in terms of commutators which are naturally
absent in the classical expressions. Including the third-
order correction perturbatively leads to improvements of
the approximate wave functions. In fact, it is a distinctive
feature of the present work (and Ref. [29]) that it addresses

not only the eigenvalues of the volume operator squared,
but also provides very accurate approximations to the
eigenstates. Furthermore, the comparison of both methods
leads also to a full wave function description of the
eigenstates of negative eigenvalues of large modulus, a
result which could only be conjectured in Ref. [29].
Differently from previous formulations, the position

variable used here is chosen to have dimension of
(Planck) length squared, l2

P ¼ ℏG=c3. This definitional
detail is by no means necessary but facilitates the identi-
fication of quantum corrections. The ultimate reason for the
latter observation is the fact that Planck’s constant ℏ itself is
dimensionful.
A further interesting point is the zero eigenvalue occur-

ring for tetrahedra with odd Hilbert space dimension d
where the eigenstate can be given, up to normalization, in a
closed form [13]. Moreover, the Bohr-Sommerfeld quan-
tization carried out by Bianchi and Haggard [22,23] yields
also surprisingly accurate results for eigenvalues of such
small modulus. Thus the question arises whether the
eigenstates corresponding to zero eigenvalues can also
be cast, for large angular momenta ji ≫ 1, in a wave
function of a continuous variable.
An important step towards extending the results for the

tetrahedron to higher polyhedra is to express their volume
in terms of canonical variables. In the Appendix we have
achieved this goal for the case of pentahedra. However, the
resulting expressions are particularly lengthy and complex
such that further practical progress seems to require
dedicated numerics and/or extensive but judicious use of
computer algebra, which is beyond the scope of the present
investigation.
For general quantum polyhedra described by discrete

angular momentum quantum numbers we have formulated
a set of quantum operators fulfilling in the semiclassical
regime the standard commutation relations between
momentum and position. Indeed a major challenge is of
course the analysis of the volume operator(s) for higher
polyhedra. Results towards this goal were obtained in
Refs. [24,25] for pentahedra, and for the general case
the operators constructed in the present paper in analogy to
the Kapovich-Millson variables of the classical phase space

FIG. 3. A pentahedron of dominant type (trigonal prism)
extended to a tetrahedron. Two different labelings of faces
are shown.
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might, although fairly straightforward, provide a useful
step. Yet another possible route for generalizing the present
investigations is to study polytopes in higher dimensions
which also allow for a description in terms of SU(2)
intertwiners [33].

APPENDIX: THE CLASSICAL PENTAHEDRON
AND CANONICAL VARIABLES

In this Appendix we discuss the volume of a classical
pentahedron in terms of Kapovich-Millson variables. We
concentrate on the dominant type of pentahedra which
define the submanifold of maximal dimension in the phase
space of the variables ~Ai [20]. These pentahedra are trigonal
prisms whereas a subdominant type is given by pyramidal
pentahedra. These can be generated from the former type
by collapsing an edge connecting the two trigonal faces
onto a single point and forming therefore a submanifold of
lower dimension.

1. Volume

An expression for the volume of a trigonal prism has
been devised by Haggard [24] starting from the observation
that such an object can always be extended to a tetrahedron.
Using the labeling on the left of Fig. 3 this extended body
fulfills the closure relation

α~A1 þ β~A2 þ γ~A3 þ ~A4 ¼ 0; ðA1Þ

and by projecting this equation onto appropriate cross
products the above coefficients are easily obtained as

α ¼ −
W234

W123

; β ¼ W134

W123

; γ ¼ −
W124

W123

ðA2Þ

with Wijk ¼ ~Ai · ð~Aj × ~AkÞ. The volume can now be
expressed as the difference of two tetrahedral volumes,

V ¼
ffiffiffi
2

p

3
ð

ffiffiffiffiffiffiffiffi
αβγ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − 1Þðβ − 1Þðγ − 1Þ

p
Þ

ffiffiffiffiffiffiffiffiffiffi
W123

p
:

ðA3Þ

2. Canonical variables

Our goal is now to express the scaling coefficients (A2)
occurring along W123 in Eq. (A3) in terms of standard
Kapovich-Millson variables. According to the prescription
given in Sec. II A we define

~p1 ¼ ~A1 þ ~A2; ðA4Þ

~p2 ¼ ~A1 þ ~A2 þ ~A3 ðA5Þ

and

~v1 ¼ ~p1 × ~A2; ðA6Þ

~w1 ¼ ~v2 ¼ ~p2 × ~A3; ðA7Þ

~w2 ¼ ~p2 × ~A4 ðA8Þ

such that the variables qi, i ¼ 1, 2, conjugate to pi ≔ j~pij,
are the angles between ~vi, ~wi. Using the definition (11) one
has

j~v1j ¼ 2Δðp1; A1; A2Þ; ðA9Þ

j~w1j ¼ j~v2j ¼ 2Δðp1; p2; A3Þ; ðA10Þ

j~w2j ¼ 2Δðp2; A4; A5Þ: ðA11Þ

Moreover, the relations

~v1 × ~w1 ¼ ~p1W123; ðA12Þ

~v2 × ~w2 ¼ ~p1ðW134 þW234Þ ðA13Þ

allow us to achieve a part of our task in a comparatively
compact manner,

W123 ¼
4Δðp1; A1; A2ÞΔðp1; p2; A3Þ sin q1

p1

; ðA14Þ

β − α ¼ Δðp2; A4; A5Þp1 sin q2
Δðp1; A1; A2Þp2 sin q1

: ðA15Þ

Unfortunately, the remaining quantities entering the vol-
ume (A3) will turn out to lead to clearly lengthier
expressions. To compute them, we shall not aim at
accessing further triple products Wijk directly but rather
project the closure relation (A1) onto ~pi,

α~p1 · ~A1 þ β~p1 · ~A2 þ γ~p1 · ~A3 ¼ −~p1 · ~A4; ðA16Þ

α~p2 · ~A1 þ β~p2 · ~A2 þ γ~p2 · ~A3 ¼ −~p2 · ~A4; ðA17Þ

providing two further equations for α, β, γ with coefficients
we will determine now.
From Eqs. (A4) and (A5) one easily finds

~p1 · ~A1=2 ¼
1

2
ðp2

1 � ðA2
1 − A2

2ÞÞ; ðA18Þ

~p1=2 · ~A3 ¼
1

2
ðp2

2 − p2
1∓A2

3Þ; ðA19Þ

along with

~p1 · ~p2 ¼
1

2
ðp2

1 þ p2
1 − A2

3Þ; ðA20Þ
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and, via the closure relation (1),

~p2 · ~A4 ¼ −
1

2
ðp2

2 þ A2
4 − A2

5Þ: ðA21Þ

In order to determine ~p2 · ~A1=2 we calculate, using
Eq. (A19),

~v1 · ~w1 ¼ ðð~A1 × ~A2Þ × ~p1Þ · ~A3

¼ −~A1 · ~A3ð~p1 · ~A2Þ þ ~A2 · ~A3ð~p1 · ~A1Þ

¼ 1

2
ðA2

1 − A2
2Þ~p1 · ~A3 −

1

2
p2
1ð~A1 − ~A2Þ · ~A3 ðA22Þ

such that, taking into account Eq. (A20),

~A1=2 · ~A3 ¼
1

4

�
1� A2

1 − A2
2

p2
1

�
ðp2

1 � ðA2
1 − A2

2ÞÞ∓ ~v1 · ~w1

p2
1

ðA23Þ

and finally

~p2 · ~A1=2 ¼ ~p1 · ~A1=2 þ ~A3 · ~A1=2

¼ 1

4
ðp2

1 þ p2
2 þ A2

3Þ � ðA2
1 − A2

2Þ
p2
1 þ p2

2 þ A2
3

4p2
1

∓ ~v1 · ~w1

p2
1

ðA24Þ

where

~v1 · ~w1 ¼ 4Δðp1; A1; A2ÞΔðp1; p2; A3Þ cos q1: ðA25Þ

Similarly, one finds

~v2 · ~w2 ¼ −p2
2 ~p1 · ~A4 þ

1

2
ðp2

2 þ p2
1 − A2

3Þ~p2 · ~A4; ðA26Þ

which yields in combination with Eq. (A22)

~p1 · ~A4 ¼
p2
1 þ p2

2 − A2
3

4p2
2

ðp2
2 þ A2

4 − A2
5Þ −

~v2 · ~w2

p2
2

ðA27Þ

with

~v2 · ~w2 ¼ 4Δðp1; p2; A3ÞΔðp2; A4; A5Þ cos q2: ðA28Þ

Thus we have expressed all scalar products occurring in
Eqs. (A17) and (A18) in terms of the canonical variables pi,
qi. Taking into account Eq. (A16), these relations can now
be formulated as

Mðp1; p2Þ
�
αþ β
γ

�
¼

�
Fðpi; qiÞ
Gðpi; qiÞ

�
ðA29Þ

with

Mðp1; p2Þ ¼
�

p2
1 p2

2 − p2
1 − A2

3

1
2
ðp2

2 þ p2
1 þ A2

3Þ p2
2 − p2

1 þ A2
3

�
ðA30Þ

and

Fðpi; qiÞ ¼
Δðp2; A4; A5Þp1 sin q2
Δðp1; A1; A2Þp2 sin q1

ðA2
1 − A2

2Þ

−
p2
1 þ p2

2 − A2
3

2p2
2

ðp2
2 þ A2

4 − A2
5Þ þ 2

~v2 · ~w2

p2
2

;

ðA31Þ

Gðpi; qiÞ ¼
Δðp2; A4; A5Þp1 sin q2
Δðp1; A1; A2Þp2 sin q1

×

�
−2

~v1 · ~w1

p2
1

þ ðA2
1 − A2

2Þ
p2
1 þ p2

2 þ A2
3

2p2
1

�
þ p2

2 þ A2
4 − A2

5: ðA32Þ

Now, inverting the 2 × 2 matrix (A31) and using again
Eq. (A16) one can explicitly solve for the scaling coef-
ficients α, β, γ. This procedure, however, will obviously
result in forbiddingly lengthy and complicated expressions,
which is mainly due to the cumbersome structures in the
r.h.s of Eq. (A30). We note that these expressions consid-
erably simplify for A1 ¼ A2 and A4 ¼ A5, i.e. if the two
triangular faces and two of the other faces have pairwise the
same area. Then one has

Fðpi; qiÞ ¼ −
1

2
ðp2

1 þ p2
2 − A2

3Þ þ 2
~v2 · ~w2

p2
2

; ðA33Þ

Gðpi; qiÞ ¼ −
8Δðp1; p2; A3ÞΔðp2; A4; A4Þ

p1p2

sin q2
tan q1

þ p2
2:

ðA34Þ

However, also these quantities seem to be too complicated
to allow for further practical analytical progress towards,
e.g., the extrema of the pentahedral volume and expansions
around them.

3. Relabelings and alternative variables

One might suspect that simpler expressions for the
pentahedral volume can be obtained by a judicious alter-
native choice of the canonical variables. For example, an
apparently more symmetric arrangement would be to
couple the trigonal faces separately with other faces to
canonical momenta. Using the labeling given on the right of
Fig. 3, this means to use the definitions (A4), (A6), and
(A7) as before and put
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~p0
2 ¼ ~A4 þ ~A5; ðA35Þ

~v02 ¼ ~p0
2 × ~A4; ðA36Þ

~w0
2 ¼ ~p0

2 × ~A3: ðA37Þ

However, the closure relation (1) immediately tells that

~p0
2 ¼ −~p2; ~v02 ¼ −~w2; ~w0

2 ¼ −~v2: ðA38Þ

Thus, up to inessential signs, we end up with the same
canonical variables as before. Moreover, the closure rela-
tion for the extended tetrahedral volume reads now

~A1 þ α0 ~A2 þ β0 ~A3 þ γ0 ~A4 ¼ 0; ðA39Þ

where the new scaling coefficients can be expressed in
terms of the old ones (A2) as [24]

α0 ¼ β

α
; β0 ¼ γ

α
; γ0 ¼ 1

α
: ðA40Þ

As a result, we encounter very similar technical difficulties.
Furthermore, in Ref. [24] an exhaustive list of pentahedral
face labelings and corresponding scaling coefficients has
been given. Inspecting these results does also not give rise
to the hope that such a change of variables will lead to
substantially simpler expressions for the volume.
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