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We consider a broad class of asymptotically flat, maximal initial data sets satisfying the vacuum
constraint equations, admitting two commuting rotational symmetries. We construct a mass functional for
“t − ϕi”-symmetric data which evaluates to the Arnowitt-Deser-Misner mass. We then show that
R × Uð1Þ2-invariant solutions of the vacuum Einstein equations are critical points of this functional
amongst this class of data. We demonstrate the positivity of this functional for a class of rod structures
which include the Myers-Perry initial data. The construction is a natural extension of Dain’s mass
functional to D ¼ 5, although several new features arise.
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I. INTRODUCTION

Dain has established the remarkable inequality
m ≥

ffiffiffiffiffiffijJjp
, for complete asymptotically flat, axisymmetric

maximal initial data ðΣ; h; KÞ of the vacuum Einstein
equations in four dimensions [1–4]. Here m is the
Arnowitt-Deser-Misner (ADM) mass of the Riemannian
manifold and J is the conserved angular momenta, defined
from the existence of the U(1) isometry. This result was
subsequently strengthened to a more general class of
metrics, multiple asymptotic ends and weaker asymptotic
falloff conditions [5]. Dain’s equality is saturated if and
only if ðΣ; h; KÞ is that of a constant Boyer-Lindquist time
hypersurface of the extreme Kerr black hole.
An important step in the proof of this inequality was the

construction of a well-defined mass functional M, defined
for t − ϕ-symmetric, asymptotically flat maximal initial
data.M ¼ Mðv; YÞ depends on two scalar functions v and
Y which can be shown to fully specify the initial data set.
The proof shows that m ¼ Mðv; YÞ for t − ϕ-symmetric
maximal initial data, and that m ≥ M for arbitrary axi-
symmetric maximal data. Mðv; YÞ can be shown to be
positive definite and the unique minimizer is extreme Kerr,
completing the elegant argument.
It is natural to expect that an analogous inequality would

hold in D ¼ 5 dimensions, under suitable restrictions on
the initial data. The situation is particularly interesting as
there are potentially two candidates for minimizers:
extreme Myers-Perry black holes with S3 horizon topology
[6], and extreme black rings with S1 × S2 horizon topology.
The masses of these solutions satisfy

M3 ¼ 27π

32
ðjJ1j þ jJ2jÞ2; ðMyers-PerryÞ ð1Þ

M3 ¼ 27π

32
jJ1jðjJ1j þ jJ2jÞ; ðblack ringÞ ð2Þ

where Ji are conserved angular momenta computed in
terms of Komar integrals. Of course it is not manifestly
clear how an expression which is derived from the ADM
mass (i.e. evaluated at spatial infinity) would capture
information on the topology of the horizon; indeed, at
the level of the initial data, the horizon is a minimal surface
in the interior. It is worth noting that another, related class
of geometric inequalities relating the area of marginally
outer trapped surfaces to the angular momenta (and charge)
have also been established in three spatial dimensions [7,8].
Once again the geometries which uniquely saturate the
bound were the horizon geometries corresponding to the
extreme Kerr geometry. Recently, Hollands has derived an
area-angular momenta inequality in general dimension D,
for spaces admitting a Uð1ÞD−3 action as isometries [9]. In
this case, the inequality depends on the topology of the
marginally outermost trapped surface.
As a first step towards establishing a mass-angular

momenta inequality in five dimensions, in this work we
investigate a generalization of Dain’s mass functional
Mðv; YÞ to D > 4 for maximal spatial slices of five-
dimensional vacuum spacetimes with Uð1Þ2 isometry.
Note that most of the local analysis works equally well
for D-dimensional spacetimes with Uð1ÞD−3 isometry.
However, such spacetimes could only be asymptotically
flat for D ¼ 5 (there might be a useful extension to spaces
that are asymptotically Kaluza-Klein). Hence we will focus
on this case, although it will be sometimes convenient to
leave D as a free parameter.
Our first goal is to construct a positive-definite functional

which evaluates to the mass for a broad class of asymp-
totically flat, maximal initial data with “t − ϕi” symmetry
(i ¼ 1…D − 3). Such data can be thought of as data that is
“stationary at a moment in time.” In particular, it allows us
to specify the extrinsic curvature in terms of D − 3 twist
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potentials, using the construction of transverse traceless
tensors given in Ref. [10]. The functional is defined over
functions on the orbit spaceB≡ Σ=Uð1ÞD−3 and depends on
a matrix λ0ij specifying the metric on surfaces of transitivity
of the Uð1ÞD−3 action (often called the “Gram” matrix) and
D − 3 twist potentials. Setting D ¼ 5, this amounts to five
independent functions.
Carter has established a variational formulation of the

stationary, axisymmetric vacuum Einstein equations [11].
Our main result is to demonstrate that the mass functional
we have defined, when integrated over an appropriate
domain, is the same as Carter’s functional up to (divergent)
boundary terms. Therefore R × Uð1Þ2-invariant vacuum
solutions arise as critical points of the mass amongst all
asymptotically flat, t − ϕi-symmetric initial data (see
Bardeen’s result [12] for the 3þ 1-dimensional case). In
this sense our proposed functional is an extension of
Dain’s functional Mðv; YÞ, which also has this property.
However, there are a number of important differences.
As we will elaborate, our functional contains boundary
terms which encode the “rod structure” of the initial data. In
particular, the initial data may contain 2-cycles (“bubbles”)
which also contribute to the mass. The rod structure plays
an important role in the black hole uniqueness theorem
[13,14] in five-dimensional vacuum gravity. In the case of
stationary black holes containing additional 2-cycles, the
usual laws of black hole mechanics have been shown to be
modified [15]. More recently, an explicit example of a
black hole spacetime containing a 2-cycle in the exterior
region was constructed in supergravity [16].
This paper is organized as follows. In Sec. II we

introduce a broad class of Uð1Þ2-invariant maximal initial
data ðΣ; habKabÞ for the vacuum Einstein equations and
discuss the particular case of t − ϕi-symmetric data, which
allows us to construct a general class of transverse-traceless
tensors in the geometry. The resulting data is parametrized
by functions on the orbit space and we discuss in detail their
various boundary and asymptotic conditions that we must
impose. In Sec. III we introduce a functional defined for
asymptotically flat initial data which evaluates to the ADM
mass and discuss some of its properties. Section IV
investigates the relationship of this functional to Carter’s

variational formulation for stationary, axisymmetric vac-
uum solutions. We conclude with an argument that dem-
onstrates the positivity of this functional for a particular
class of rod structure which includes Myers-Perry black
hole initial data.

II. INITIAL DATA WITH ROTATIONAL
ISOMETRIES

A. Conformal data

Consider a stationary vacuum solution of the Einstein
equations with the Uð1ÞD−3 isometry group. It is a well-
known result [13,17] that Frobenius’ theorem and the
vacuum equations imply orthogonal transitivity of the
R × Uð1ÞD−3 action, and the metric can be written in
the form

g ¼ Gαβdξαdξβ þ gABdxAdxB ð3Þ

where d=dξα generate the isometry group (α; β ¼ 0; 1; 2)
and xA are coordinates on the two-dimensional surfaces
orthogonal to the surfaces of transitivity. We may write this
explicitly as

g ¼ −Hdt2 þ λ0ij
H1=N ðdϕi − widtÞðdϕj − wjdtÞ

þ e2νðdρ2 þ dz2Þ ð4Þ

where N ¼ D − 1 and ρ2 ¼ det λ0 is harmonic on the
spacetime orbit space ~B≡M=Uð1ÞD−3 and dz is the
harmonic conjugate of dρ. Further details on the functions
λij and one-forms ωi, and an analysis of ~B, are given in
Refs. [13,14]. Note that constant time slices in this
spacetime have the induced metric h ¼ H−1=N ~h where

~h ¼ λ0ijdϕ
idϕj þ e2Uðdρ2 þ dz2Þ ð5Þ

where e2U ¼ e2νH1=N . If we consider five-dimensional
asymptotically flat black hole solutions, it is known that
in an appropriate coordinate system, the spacetime metric
takes the form [13]

ds2 ¼ −
�
1 −

μ

R2
þOðR−2Þ

�
dt2 þ

�
2μa1ðR2 þ a21Þ

R4
sin2θ þOðR−3Þ

�
dtdϕ1

þ
�
2μa2ðR2 þ a22Þ

R4
cos2θ þOðR−3Þ

�
dtdϕ2 þ

�
1þ μ

2R2
þOðR−3Þ

�

×

�
R2 þ a21cos

2θ þ a22sin
2θ

ðR2 þ a21ÞðR2 þ a22Þ
R2dR2 þ ðR2 þ a21cos

2θ þ a22sin
2θÞdθ2

þ ðR2 þ a21Þsin2θdϕ1 þ ðR2 þ a22Þcos2θdϕ2

�
ð6Þ
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where R → ∞ corresponds to spatial infinity and ðμ; aiÞ are
parameters related to the mass M and angular momenta Ji
of the black hole respectively. It is clear that t ¼ constant
slices in the above asymptotic geometry can be written
h ¼ Φ2 ~h, where ~h has vanishing ADM mass.
We now focus attention on a general class of vacuum

initial data. It is important to note that the results discussed
in this work apply to spacetimes which will evolve from
this data. In particular, the evolution need not be stationary,
and so the results apply to dynamical spacetimes. We will
consider solutions of the vacuum constraint equations in N
space dimensions (latin indices a; b ¼ 1…N)

Rh − KabKab þ ðTrhKÞ2 ¼ 0;

∇bðKab − TrhKhabÞ ¼ 0 ð7Þ

where ðΣ; hab; KabÞ refer to an asymptotically flat
Riemannian manifold ðΣ; habÞ with second fundamental
form Kab in spacetime. This initial data set is assumed to be
maximal (TrhK ¼ 0) and invariant under a Uð1ÞN−2 isom-
etry group generated by commuting Killing vector fields
mi, that is

Lmi
hab ¼ 0; Lmi

Kab ¼ 0: ð8Þ

Motivated by the above asymptotic geometry of black hole
slices, we will focus on the case N ¼ 4 and hab is
conformal to a Uð1Þ2 invariant metric ~h of the form (5)
with vanishing ADMmass. This encompasses a broad class
of initial data (we have checked this explicitly for the initial
data for Myers-Perry black holes and the extreme doubly
spinning black ring). For generic initial data, of course, one
need not have orthogonal transitivity of the Uð1ÞN−2 action,
and, indeed, ρ ¼

ffiffiffiffiffiffiffiffiffiffi
det λ0

p
need not be harmonic and so the

two-dimensional metric will not take the conformally flat
form above (i.e. hρz ≠ 0). We expect, however, that these
restrictions can be removed (see e.g. Ref. [18]).
By Frobenius’ theorem the two-dimensional subspace of

the tangent space at each point that is spanned by vectors
orthogonal to m1 and m2 is integrable (tangent to two-
dimensional surfaces) if and only if

∇½aηb� ¼ l½aηb� þ s½aγb�; ð9Þ

∇½aγb� ¼ p½aηb� þ q½aγb� ð10Þ

where we have set ηa ≡ma
1 , γ

a ≡ma
2 and η ¼ ηaη

a and
γ ¼ γaγ

a, and la, sa, pa, and qa are arbitrary one-forms. It
is straightforward to verify that these imply the following
identities:

ðdet λ0Þ∇aηb ¼ γη½b∇a�η − 2Lγcη½b∇a�ηc − Lγ½b∇a�η

þ 2ηγcγ½b∇a�ηc;

ðdet λ0Þ∇aγb ¼ −Lη½b∇a�γ þ 2γγcη½b∇a�γc þ ηγ½b∇a�γ

− 2Lγcγ½b∇a�γc ð11Þ

where L ¼ ηaγ
a. We will use these shortly.

The Ricci tensor for the metric (5) is straightforward to
compute [17]. We will divide the indices a; b along A;B ¼
1…2 and i; j ¼ 1…N − 2. Our main interest is the scalar
curvature. Since λ0ijRij ¼ 0 we have

~R ¼ gABRAB

¼ e−2U
�
−2∇2U þ 1

ρ2
−
1

4
λ0ik∇Aλ

0
kjλ

0jm∇Bλ
0
miδ

AB

�
ð12Þ

where ∇ refers to the flat partial derivative operator ∂A.
We will also denote by · the scalar product with respect to
the flat metric δAB. The last term can also be written in the
compact form

−
1

4
Tr½ðλ0−1dλ0Þ2�: ð13Þ

IfN ¼ 3, the final two terms in Eq. (12) cancel, and ~R takes
a particularly simple form. This fact is crucial to establish
the positive definiteness of the mass functional for three-
dimensional initial data.
We consider solutions ðΣ; hab; KabÞ of Eq. (7) expressed

by the conformal rescaling

hab ¼ Φ2 ~hab; Kab ¼ Φ−2 ~Kab ð14Þ

in terms of which the constraint equations for maximal
slices become (note Tr ~h ~K ¼ 0)

Δ ~hΦ −
1

6
R ~hΦþ 1

6
~Kab

~KabΦ−5 ¼ 0; ð15Þ

~∇b
~Kab ¼ 0: ð16Þ

The Lichnerowicz equation (15) is a second-order non-
linear elliptic partial differential equation for the conformal
factor Φ on a fixed Riemannian manifold ðΣ; ~habÞ with a
given symmetric, traceless, divergenceless rank-two tensor
field ~Kab. The existence and uniqueness of solutions of
Eq. (15) is guaranteed by the results of Ref. [19] (see
Sec. VIII) under suitable regularity conditions, i.e. ~Kab

~Kab

belongs to a particular weighted Sobolev space and ðΣ; ~hÞ
is in the positive Yamabe class. Clearly, the latter condition
is true, because ~h is conformal to h, which must have
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positive scalar curvature. The former condition is an
additional condition we impose on the data.
We now focus attention on a class of axisymmetric initial

data sets ðΣ; ~hab; ~KabÞ for which the extrinsic curvature can
be specified completely from scalar potentials. The con-
struction of transverse, traceless tensors under these con-
ditions is given in Ref. [10] and we will only briefly review
it here. Let ϕi be angular coordinates adapted to the
commuting Killing fields mi. Following Ref. [20] we
define an initial data set to be t − ϕi-symmetric if
(i) ∂=∂ϕi generate a Uð1Þ2 isometry and (ii) ϕi → −ϕi

is a diffeomorphism that preserves ~h but reverses the sign of
~Kab. Condition (i) is obviously trivially satisfied by
construction. In terms of the Weyl coordinate system used
above, condition (ii) implies Kij ¼ KAB ¼ 0 (initial data
with this property arise naturally within the context of
slices of stationary, axisymmetric black holes forN ¼ 3; 4).
Note that t − ϕi symmetry implies that the Uð1Þ2 action is
orthogonally transitive, i.e. the identities (11) hold.
As a consequence of this symmetry, Kab is automatically

traceless. Using the divergenceless condition and the
property that Σ is simply connected [10], we can express
~Kab in a compact form. We define two scalar potentials Yi
and one-forms

Si ¼ 1

2 det λ0
im1

im2
⋆dYi: ð17Þ

Note that d⋆Si ¼ 0. Then an arbitrary divergenceless
t − ϕi-symmetric extrinsic curvature can be expressed
as [10]

~Kab ¼
2

det λ0
½ðλ022S1ðam1bÞ − λ012S

2ðam1bÞÞ
þ ðλ011S2ðam2bÞ − λ012S

1ðam2bÞÞ�: ð18Þ

The vanishing of the trace of Eq. (18) is obvious since Si

and the mi are orthogonal. The divergenceless condition is
more involved and requires the use of the identities (11).
Hence for t − ϕi-symmetric initial data, the extrinsic
curvature is completely characterized by the scalar poten-
tials Yi as well as the metric functions λ0ij. One can show
[10] that these potentials are simply the pull-backs of
the spacetime twist potentials defined in the usual way,
i.e. dYi ¼ ⋆5ðm1∧m2∧dmiÞ.
Further, it is useful to note that the full contraction of this

tensor is

~Kab
~Kab ¼ e−2U

Trðλ0−1dY · dYtÞ
2 det λ0

ð19Þ

where for simplicity we use the notation dY ¼ ðdY1; dY2Þt
to define a column vector. If we consider the extrinsic
curvature K̄ab of a Uð1Þ2-invariant, non-t − ϕi-symmetric
initial data set, one can show that

K̄abK̄ab ¼ ~Kab
~Kab þ KABKCDgACgBD þ KijKklλ

0ikλ0jl

≥ ~Kab
~Kab ð20Þ

where gAB ¼ e2UδAB. In particular there is equality if
and only if t − ϕi symmetry holds.
In summary, we are considering the class of Uð1Þ2-

invariant maximal initial data sets ðhab; KabÞ of the form
(14) satisfying Eq. (8). The conformal metric (5) has
vanishing ADM mass and is specified by the functions
U and λ0ij. Finally, if we impose in addition that the initial
data be t − ϕi symmetric, then the extrinsic curvature is
fully characterized by specifying in addition to the other
data, two twist potentials Yi.

B. Geometry of Σ
To conclude this section we discuss general properties of

the manifold ðΣ; hÞ and its Uð1Þ2 action. We assume Σ is
complete and simply connected and it may have several
asymptotic ends, each asymptotically flat or asymptotically
cylindrical. As a simple example,the maximal initial data
slices of Schwarzschild have this property; the topology of
the slice is R × S3 which has two asymptotic flat ends.
Asymptotically cylindrical ends arise in the context of
initial data for extreme black holes.
Holland, Hollands and Ishibashi [21] have shown that

for asymptotically flat spacetime metrics with R × Uð1Þ
isometry we must have

Σ ≅ ðR4#pðS2 × S2Þ#p0CP2ÞnB ð21Þ

where B is the black hole region and p; p0 are non-negative
integers. For spherical topology, this is equivalent to
removing a point from the manifold. However, if the black
hole horizon is S1 × S2, then B ¼ S1 × B3, where Bn is an
n-ball [22]. We will assume that our spatial slices have a
similar form, as explained below.
We consider a Σ which possesses an arbitrary number of

asymptotic ends and an arbitrary number of 2-cycles
(we assume p0 ¼ 0 above). The invariance of the functions
under the Uð1Þ2 isometry implies we need only consider
them as functions on the two-dimensional orbit space
B≡ Σ=Uð1Þ2. As in the spacetime case, B is a non-
compact, simply connected manifold with one-dimensional
boundary ∂B ≅ R and corners [23]. Since Σ is asymptoti-
cally flat, B has an asymptotic end corresponding to this
spatial infinity. In the interior of B, the matrix λ0ij has rank
two, whereas on ∂B and the corners it has rank one and
rank zero respectively. ∂B consists of finite spatial intervals
(“rods”), and two semi-infinite intervals [13]. These re-
present codimension-two surfaces upon which an integer
linear combination of the rotational Killing fields vanish,
and the two rotation axes which extend to spatial infinity,
respectively. As we discuss in more detail below, the
finite-length rods correspond to 2-cycles in the spacetime.
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Thus in the absence of any additional asymptotic ends this
situation represents initial data onR4 with “bubbles,” and is
qualitatively different to the situation in R3, where topo-
logical censorship rules out the existence of 2-cycles.
If we are considering initial data for spacetimes con-

taining black holes, then Σ will have regions removed (i.e.
Σ ≅ R4 − pt for a spatial slice of Myers-Perry that does not
intersect the event horizon). Hence the orbit space will
have, in addition to a boundary consisting of intervals and
an asymptotic boundary, additional points removed from it.
By axisymmetry, these points must lie on the axis ρ ¼ 0. Of
course, these removed points represent entire asymptotic
regions that are an infinite proper distance from other points
in Σ. Note that a similar situation in the Lorentzian setting
occurs when analyzing the rod structure of extreme black
holes, when the rod corresponding to a timelike Killing
field becoming null shrinks to zero size [14]. In summary,
the boundary ρ ¼ 0 of the orbit space for more general
initial data will consist of two semi-infinite rods, possibly
finite rods, and points removed between the rods. We
illustrate this in Fig. 1, which shows the orbit space of a
black hole spacetime and its associated standard constant-
time maximal slice for the Myers-Perry black hole [6] and a
black ring [24].
We now discuss the behavior of the functions appearing

in the class of conformal metrics (5) on the boundary and
asymptotic regions of the orbit space. These will be
required to analyze properties of the mass functional to
be defined in the next section.

1. Asymptotic behavior

First of all, note that R4 in the ρ; z chart given in
Eq. (5) is

δ4 ¼
dρ2 þ dz2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
q

− z
�
dϕ2

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
q

þ z
�
dψ2 ð22Þ

where ρ ∈ Rþ∪f0g and z ∈ R. This can be put in a more
familiar chart by setting

ρ ¼ r2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
; z ¼ r2

2
x ð23Þ

and noting that r2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
, the metric is

δ4 ¼ dr2 þ r2dx2

4ð1 − x2Þ þ
r2

2
ðð1 − xÞdϕ2 þ ð1þ xÞdψÞ

ð24Þ

where r ≥ 0 and −1 ≤ x ≤ 1 and ϕ;ψ have period 2π.
Hence our asymptotically flat metrics must approach δ4
with appropriate falloff conditions. Note that asymptotic
infinity corresponds to r → ∞ so that ρ; z → ∞ with
zðρ2 þ z2Þ−1=2 fixed and the axes of rotation x ¼ �1 lie
on the axis ρ ¼ 0 with finite z [14]. In particular, the
boundary of the orbit space for ðR4; δ4Þ consists of the
semi-infinite rods I−∶ −∞ < z < 0 and Iþ∶ 0 < z < ∞
where ∂ψ and ∂ϕ vanish respectively (see Fig. 2).
Let us now consider our class of asymptotically flat

conformal metrics ~h. We will consider U and λ0ij as
functions on the orbit space B. First of all, asymptotic
flatness implies e−2U → 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
. Since we assume the

conformal metric has zero ADM mass, it is convenient to
decompose U as

FIG. 1. (a) and (b) are spacetime rod structures for the Myers-
Perry black hole and Emparan-Reall black ring. (c) and (d) are
rod structures of conformal slice metrics for initial data with a
spherical minimal surface and a ring-topology minimal surface
respectively. The rod point āE in both rod structures represents
another asymptotic end of the slice.

FIG. 2. The region is the orbit space B. The thick line is the axis
ρ ¼ 0 and the dashed line is infinity z ¼ ρ ¼ ∞. Some of these
rod points aEk

may represent another asymptotic end.
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U ¼ V −
1

2
log ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

q
Þ ð25Þ

where V ¼ Oðr−2Þ, that is

V ¼ V̄ðxÞ
r2

þ oðr−2Þ; r → ∞ ð26Þ

and V̄ satisfies the condition that the integral given in
Eq. (A3) vanishes. As shown in Appendix A, this is
equivalent to the requirement that ~h has vanishing ADM
mass. Next, we take the falloff conditions of the Killing
metric λ0ij to be

λ011 ¼
r2

2
ð1 − xÞ

�
1þ fðxÞ

r2
þ oðr−2Þ

�
;

λ022 ¼
r2

2
ð1þ xÞ

�
1þ gðxÞ

r2
þ oðr−2Þ

�
;

λ012 ¼ ð1 − x2Þoðr−2Þ

ð27Þ

with fðxÞ þ gðxÞ ¼ 0 because det λ0 ¼ ρ2 where ρ is given
by Eq. (23). We also assume the following fall off at infinity
r → ∞:

Y1 ¼ y1 −
J1ðxþ 1Þ2

π
þOðr−2Þ;

Y2 ¼ y2 −
J2ð3 − xÞðxþ 1Þ

π
þOðr−2Þ

ð28Þ

where Ji are angular momenta and yi are constants [14].
Therefore we have

~Kab ¼ oð1=r3Þ: ð29Þ

Finally, we have assumed

Φ − 1 ¼ Oð1=r2Þ; Φ;r ¼ Oð1=r3Þ ð30Þ

which is sufficient to ensure a finite ADM mass of ðΣ; hÞ.

2. Boundary conditions on the axis

The boundary of the orbit space ∂B lies on the z axis
ρ ¼ 0. We know from Ref. [17] that the eigenspace for the
eigenvalue zero of the matrix λ0ij for a given z is one-
dimensional, except for isolated values of z. These isolated
points are denoted a1;…; an and we can divide the axis into
subintervals ð−∞; a1Þ; ða1; a2Þ;…; ðan;∞Þ (see Fig. 2).
On each interval a particular integer linear combination of
the mi vanishes. The semi-infinite rods I� at the ends
correspond to the axes of rotation of the asymptotic R4

region. Without loss of generality, we can choosem1; m2 to
vanish on Iþ and I− respectively.

The finite-length rods, on the other hand, correspond to
2-cycles in Σ. Suppose that on a particular rod Ii we have

λ0ijv
j ¼ 0; v ¼ vi

∂
∂ϕi ; vi ∈ Z: ð31Þ

By an SLð2;ZÞ change of basis ðm1; m2Þ → ðm0
1; m

0
2Þ of

the Killing fields, one can always choose v ¼ m0
1 and

another basis vector w ¼ m0
2 such that w is nonvanishing on

Ii except at its two end points ai and aiþ1. Hence the
interval Ii is topologically an S2 submanifold of Σ.
The functions V and λ0ij must satisfy regularity require-

ments as ρ → 0. We will review these briefly here. Let ψ be
a coordinate such that ∂=∂ψ ¼ v. Then in order to ensure
the absence of conical singularities of the metric we impose
that

Δψ ¼ 2πlim
ρ→0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2e2U

λ0ijv
ivj

s
¼ 2πlim

ρ→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2e2V

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
λ0ijv

ivj

s
¼ 2π;

z ∈ ðai; aiþ1Þ

and hence

V ¼ 1

2
log

�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
λ0ijv

ivj

ρ2

�
¼ 1

2
logVi;

where z ∈ ðai; aiþ1Þ and ρ → 0 ð32Þ

where Vi ¼ ViðzÞ is a bounded function.
Now consider the behavior of V on the semi-infinite rods

I� defined above. The metric must take the asymptotic
form of the flat metric. Then on either axis, we have, as
z → �∞,

λ0ijv
ivj ¼ 1

2jzj ρ
2 þOðρ4Þ ð33Þ

where v is taken to be m1 or m2. Thus we see that V� → 1
as z → �∞, where V� refers to the function Vi evaluated
on I�.
Moreover, consider the rod Ii (either finite or semi-

infinite). Near Ii, in the adapted basis ðm0
1; m

0
2Þ discussed

above we have the following behavior for λ0ij:

λ0ij ¼
�
Oðρ2Þ Oðρ2Þ
Oðρ2Þ Oð1Þ

�
; ρ → 0: ð34Þ

In addition, we will require that near Ii, the twist potentials
in this basis behave as

Y1 ¼ C1 þOðρ4Þ; Y2 ¼ C2 þOðρ2Þ; ρ → 0

ð35Þ
where C1 and C2 are constants. The falloff of Y1 is more
restrictive than simply requiring dY1 ¼ Oðρ2Þ along a rod
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where v ¼ m0
1 vanishes, but this condition is satisfied by

the twist potentials of the Myers-Perry and black ring
solutions. The condition (35) will be needed to show that
certain terms in the mass functional are finite as ρ → 0.
Finally, on the axis ρ ¼ 0, apart from isolated points

corresponding to asymptotic ends, we require

Φ ¼ Oð1Þ: ð36Þ

3. Behavior near asymptotic ends

As discussed above, Σ may have additional asymptotic
ends. Note that to have nontrivial angular momenta, Σmust
have nontrivial topology. More precisely, if S represents the
sphere at infinity, then since d⋆dmi ¼ 0 by virtue of the
vacuum spacetime equations, it follows that the Komar
angular momenta Ji vanishes unless S is not the boundary
of some compact domain contained in Σ. Such a situation
arises when isolated points are removed from Σ, yielding
additional asymptotic ends. By the Uð1Þ2 symmetry
assumption, these lie on a point on the axis ρ ¼ 0.
For example, in the case that the initial data arises from
a stationary black hole, the location of the removed point
corresponds to the location of the event horizon. We will
allow for both asymptotically flat ends and cylindrical ends,
the latter of which arise in the context of initial data for
extreme black holes [10]. We impose singular boundary
conditions on the conformal factor Φ:

Φ ¼ Oðr−2i Þ; ∂riΦ ¼ Oðr−3i Þ; asymptotically flat;

ð37Þ

Φ ¼ Oðr−1i Þ; ∂riΦ ¼ Oðr−2i Þ; cylindrical end

ð38Þ

where ri represents the distance to the asymptotic end.
We assume that the conformal metric ~h approaches the flat
metric on R4 in the former case, whereas in the latter case,
the conformal metric ~h will be asymptotically cylindrical,
so ~h ¼ Ω2ðdr2i þ r2i γÞ where γ is a metric on a compact
manifold (the example of extreme Myers-Perry is discussed
in detail in Appendix B). This assumption is most easily
illustrated by considering the example of a maximal
constant-t slice of the five-dimensional Schwarzschild
geometry,

h ¼
�
1þ μ

2r2

�
2

δ4 ð39Þ

where ~h ¼ δ4 is the flat metric on R4 given in Eq. (22) and
r ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
. One easily sees that the point r ¼ 0

corresponds to another asymptotically flat end and the
conformal factor Φ has the singular behavior (37). In this
simple case, this asymptotic region corresponds to the

corner point ðρ; zÞ ¼ ð0; 0Þ on the axis of the orbit space
where both Killing fields vanish.
For the initial data of the Myers-Perry black hole, the

conformal factor Φ diverges in the same way and the
removed point is again located at a corner [13] of the orbit
space [the point āE in Fig. 1(c)]. However, for the black
ring, the removed point is not at a corner, but instead lies on
the rod corresponding to the Killing field which vanishes
on the S2 of the horizon. One can again verify thatΦ has the
above singular behavior at this point, and is in fact regular
at the point ā2 [see Fig. 1(d)]. Finally, we impose the same
condition (26) on V with r replaced by ri and V̄ → V̄i.

III. A MASS FUNCTIONAL FOR INITIAL DATA

We now follow the approach of Dain [25] to construct a
proposal for a mass functionalM. This functional depends
on the functions ðλ0ij; YiÞ and should evaluate to the mass
for the class of initial data we considered in the previous
section when t − ϕi symmetry holds. Our starting point is
the ADM mass for the asymptotically flat, complete
Riemannian manifold ðΣ; habÞ:

MADM ¼ 1

16π
lim
r→∞

Z
S3r

ð∂ahac − ∂chaaÞncdsh ð40Þ

where S3r refers to a three-sphere of coordinate radius rwith
volume element dsh in the Euclidean chart outside a large
compact region and n is the unit normal. If we evaluate the
ADM mass in terms of the conformally scaled initial data
and by the assumptions in the previous section, one has

MADM ¼ −
3

8π
lim
r→∞

Z
S3r

nc ~∇cΦds ~h ð41Þ

where ~∇ refers to the covariant derivative with respect to
~hab. Using Eq. (7) and the fact that Φ → 1 as r → ∞, we
define

m≡ −
3

8π
lim
r→∞

Z
S3r

~∇cΦ
Φ

ncds ~h

¼ −
3

8π

Z
Σ

~∇c
� ~∇cΦ

Φ

�
dΣ ~h þ

3

8π
lim
ri→0

Z
S3i

~∇cΦ
Φ

ncds ~h

¼ 3

8π

Z
Σ

�
−

~R
6
þ

~Kab
~Kab

6Φ6
þ

~∇cΦ ~∇cΦ
Φ2

�
dΣ ~h

þ 3

8π
lim
ri→0

Z
S3i

~∇cΦ
Φ

ncds ~h ð42Þ

where in passing from the first line to the second line, we
have used the divergence theorem. Provided the behavior of
Φ at the asymptotic ends is given by Eq. (37) the last term in
m is zero.
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This form of expressing the mass as a bulk integral is
important for defining the functional M. For our class of
initial data, we can reduce the integral to one over the orbit
space B. Note that det ~h ¼ e4Uρ2. Performing the trivial
integrals over the angles gives

m ¼ 3π

2

Z
B

�
−

~Re2U

6
þ

~Kab
~Kabe2U

6Φ6
þ ∂AΦ∂AΦ

Φ2

�
ρdρdz:

ð43Þ

Equivalently, in terms of the flat metric on R3 in cylindrical
coordinates

δ ¼ dρ2 þ dz2 þ ρ2dφ2 ð44Þ

where φ is an auxiliary angular coordinate with period 2π,
we can write

m ¼ 3

4

Z
R3

�
−

~Re2U

6
þ

~Kab
~Kabe2U

6Φ6
þ ∂AΦ∂AΦ

Φ2

�
dμ0

and dμ0 is the volume element of δ.
We are now in the position to define our mass functional

for arbitrary t − ϕi-symmetric initial data. Recall that for
this data, the extrinsic curvature is specified in terms of
twist potentials Yi as given by Eq. (18) and its square is
given by the contraction (19). Using the expression for the
scalar curvature ~R [Eq. (12)] we have

m ¼ 1

8

Z
R3

�
2Δ2U −

1

ρ2
þ 1

4
Tr½ðλ0−1dλ0Þ2�

þ e−6v
Trðλ0−1dYdYtÞ

2 det λ0
þ 6ðdvÞ2

�
dμ0 ð45Þ

where v ¼ logΦ. As an integral over R3, this expression
appears to be similar to the analogous formula for m when
N ¼ 3 first given in Ref. [25]. However, in N ¼ 4 there are
a number of key qualitative differences.
First, consider the terms

−
1

ρ2
þ 1

4
Tr½ðλ0−1dλ0Þ2�: ð46Þ

In N ¼ 3, it is easily seen that the above expression
vanishes identically. This is no longer the case in N ¼ 4.
We note for later use the identity

−
1

ρ2
þ 1

4
Tr½ðλ0−1dλ0Þ2�

¼ −
1

4
ðTrðλ0−1dλ0ÞÞ2 þ 1

4
Tr½ðλ0−1dλ0Þ2�

¼ −
1

2

det dλ0

det λ0
for 2 × 2 matrices ð47Þ

where we are using the notation det dλ0 ¼ 1
2
ϵikϵjldλ0ij · dλ

0
kl.

A second important difference is that, unlike in N ¼ 3,
the integral over Δ2U does not vanish. Indeed, in terms of
the rod structure formalism, the class of three-dimensional
initial data studied in Ref. [25] has ∂B consisting of a single
rod [the rotation axis of the generator of the U(1) sym-
metry] with points removed corresponding to asymptotic
ends. As we shall now explain, this is sufficient, along with
appropriate falloff conditions, to prove that the first term in
m does not contribute either. However, we shall see that the
situation is more complicated in our present case. Note that

Δ2U ¼ ∂2U
∂ρ2 þ ∂2U

∂z2 : ð48Þ

Using our expression for U, we have

Z
B
Δ2Uρdρdz ¼

Z
B

�
Δ2V −

1

2
Δ2 log ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

q
Þ
�
ρdρdz

¼
Z
B
Δ2Vρdρdz ¼

Z
B
dα ð49Þ

where we have defined the one-form

α≡ ðρV;ρ − VÞdz − ρV;zdρ: ð50Þ
Recall that the boundary of the orbit space consists of the
asymptotic region B∞ ≡ fz; ρ → ∞; zðρ2 þ z2Þ−1=2 finiteg,
i.e. r → ∞, and the axis ρ ¼ 0 is denoted by ∂B. Using the
asymptotic condition (26), we find to leading order that
α ¼ −V̄ðxÞdx as r → ∞. Hence by Stokes’ theorem we
have Z

B
dα ¼

Z
∂B∪B∞

α ¼
Z
∂B

α ¼
Z
I−∪I1∪���∪Iþ

α

¼
Z
I−∪I1∪���∪Iþ

ðρV;ρ − VÞjρ¼0dz

¼ −
Z
I−∪I1∪���∪Iþ

Vjρ¼0dz

¼ −
1

2

X
rods

Z
Ii

logVidz:

Note that the integral over B∞ vanishes due to the fact that
~h has vanishing ADM mass [Eq. (A3)].
The above considerations lead us to define the following

mass functional for t − ϕi-symmetric, maximal asymptoti-
cally flat vacuum data:
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M≡ π

4

Z
B

�
−

1

ρ2
þ 1

4
Tr½ðλ0−1dλ0Þ2�

þ e−6v
Trðλ0−1dYdYtÞ

2 det λ0
þ 6ðdvÞ2

�
ρdρdz

−
π

4

X
rods

Z
Ii

logVidz ð51Þ

where M ¼ Mðλ0ij; Yi; vÞ. Note that if we consider maxi-
mal, Uð1Þ2-invariant data without t − ϕi symmetry, we
have m ≥ M as a consequence of Eq. (20).
The mass functional depends on the matrix λ0ij, the twist

potentials Yi, and the conformal factor v. It also depends
upon the boundary values of the λ0ij along finite rods on the
axis, via the functions Vi. If we define A≡ fðλ0; Y; vÞ∶
Mðλ0; Y; vÞ is boundedg, then M will be well defined on
A. Of course, not all elements belonging toAwill represent
the mass of some initial data set. There are three functions
in λ0ij with a constraint det λ0 ¼ ρ2 so there are two
independent functions in λ0ij, two independent potentials
Yi and the conformal factorΦ (or v ¼ logΦ). We have seen
that all axisymmetric and t − ϕi-symmetric data can be
generated by six functions ðU; λ0; Y; vÞ. These functions are
coupled by the Lichnerowiscz equation (15) which can be
rewritten as

Δ3vþ
1

3
Δ2U −

1

6ρ2
þ 1

24
Tr½ðλ0−1dλ0Þ2�

¼ e−6v
Trðλ0−1dYdYtÞ

12 det λ0
ð52Þ

where Δ3 is the three-dimensional Laplace operator with
respect to the metric δ. Now for a given ðλ0ij; Y; vÞ, we have a
linear two-dimensional Poisson equation for U. Then by
Eq. (25) we have a linear two-dimensional Poisson equation
for V:

Δ2V ¼ Fðv; λ0; YÞ ð53Þ

with the boundary (26) at infinity and we have V ¼ Oð1Þ at
ρ ¼ 0. Now letA1 be a solution of Eq. (53) with appropriate
falloff conditions. Then Mðλ0ij; Yi; vÞ will give us the mass
of an initial data set only if the given data is selected
from A1 ⊂ A.
Finally, using the asymptotic and boundary conditions

on the orbit-space functions, we now show thatM is finite.
By the asymptotic condition (27) the behavior of the first
two terms of M near infinity is

−
1

ρ2
þ 1

4
Tr½ðλ0−1dλ0Þ2� ¼ Oðr−8Þ as r → ∞: ð54Þ

Thus it is bounded at infinity. Near the axis, we must
analyze the behavior of these terms near each rod. One can
check that

−
1

ρ2
þ 1

4
Tr½ðλ0−1dλ0Þ2� ¼ Oð1Þ as ρ → 0: ð55Þ

The third term in the mass functional from Eqs. (27)
and (28) has the following behavior at infinity:

e−6v
Trðλ0−1dYdYtÞ

2 det λ0
¼ Oðr−10Þ as r → ∞: ð56Þ

Near the axis one has, using Eqs. (34) and (35),

e−6v
Trðλ0−1dYdYtÞ

2 det λ0
¼ Oð1Þ as ρ → 0: ð57Þ

Finally, if one uses the conditions near additional asymp-
totically flat ends, one can ensure that M is finite,
assuming continuity of the functions in the interior of B.

IV. STATIONARY, BIAXISYMMETRIC DATA

Let us return to vacuum solutions with the R × Uð1Þ2
isometry group. As discussed above, the metric takes the
canonical form

g ¼ −Hdt2 þ λ0ij
H1=2 ðdϕi − widtÞðdϕj − wjdtÞ

þ e2νðdρ2 þ dz2Þ ð58Þ

where ρ2 ¼ det λ0 is harmonic on the orbit space.
Remarkably, the vacuum field equations for this spacetime
can be derived from the critical points of the following
functional, as first discussed by Carter for D ¼ 4 in
Ref. [11] (see Ref. [13] for a general dimension):

M0 ¼ π

16

Z
~B
TrðV−1dVÞ2ρdρdz ð59Þ

where ~B is the orbit space of spacetime, V is the 3 × 3
unimodular matrix

V ¼
 

1
det λ − Yi

det λ

− Yj

det λ λij þ YiYj

det λ

!
ð60Þ

where

λij ¼
λ0ij
H1=2 ð61Þ

and Y are the spacetime twist potentials. Note that it follows
thatH ¼ ρ2ðdet λÞ−1. That is, the Euler-Lagrange equations
for M0 are precisely those for the vacuum field equations
for the above form of the metric. Once Φ is determined, the
remaining functions H and conformal factor ν are deter-
mined by quadrature.
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Expanding out the Lagrangian gives

Tr½ðV−1dVÞ2� ¼
�
d det λ
det λ

�
2

þ Tr½ðλ−1dλÞ2�

þ 2
Trðλ−1dYdYtÞ

det λ
: ð62Þ

We wish to express the action in terms of λ0ij. Since

dλ ¼ 1

2

�
det λ
ρ2

�
−1
2

�
d det λ
ρ2

− 2
det λdρ
ρ3

�
λ0 þ

�
det λ
ρ2

�1
2

dλ0;

ð63Þ

a calculation yields

Tr½ðλ−1dλÞ2� ¼ 1

2

�
d det λ
det λ

�
2

− 2

�
dρ · dρ
ρ2

�
þ Tr½ðλ0−1dλ0Þ2�:

Note that dρ · dρ ¼ 1.
Consider a constant-time spatial slice of the stationary,

axisymmetric metric (58). The metric can be placed in our
general form for our initial data provided

Φ2 ¼ e2v ¼ 1

H1=2 ¼
�
det λ
det λ0

�
1=2

ð64Þ

which implies

v ¼ 1

4
logðdet λÞ − log ρ

2
: ð65Þ

We then deduce that

dv · dv ¼
�
d det λ
4 det λ

−
dρ
2ρ

�
2

¼ 1

16

�
d det λ
det λ

�
2

−
1

4
dðlog ρÞ · d log

�
ρ

det λ

�
: ð66Þ

Using Eqs. (61) and (65) one can replace the independent
variables v and λ0ij by det λ and λij in the mass functional.
Then det λ, λij, and Yi are taken to be independent, and we
have

M ~B ¼ M0 þ π

4

Z
~B

�
dρ · dρ

ρ
−
3

2

dρ · d det λ
det λ

�
dρ∧dzþ π

2

Z
∂ ~B
α

¼ M0 þ π

4

Z
~B
d

�
log

�
ρ

ðdet λÞ3=2
�
dz

�
þ π

2

Z
∂ ~B

α

¼ M0 þ π

4

Z
∂ ~B∪ ~B∞

�
2αþ log

�
ρ

ðdet λÞ3=2
�
dz

�
ð67Þ

where α is the one-form defined in Eq. (50). Note that we
have taken the domain of integration in M to be over ~B
when demonstrating this equivalence. This is an important
point, because ∂ ~B will, in general, contain additional finite
timelike rods on the axis ρ ¼ 0 corresponding to Killing
horizons (i.e. where a timelike Killing vector field becomes
null) which are not present on ∂B. The domain of
integration of M0 covers only the region exterior to the
black hole, with an inner boundary representing the
horizon. In contrast, our mass functional is naturally
defined over B and covers a complete manifold with no
inner boundary, and in particular may have additional
asymptotic regions. In general, M ~B will be singular
because it may diverge on the horizon rod, whereas, M
is finite. In the special case of extreme horizons, however,
the orbit spaces coincide, because the timelike horizon rod
shrinks to a point and corresponds to an asymptotically
cylindrical region [14].
In summary, we have shown that over an appropriate

domain, M equals Carter’s functional, up to a divergent
boundary term. Equivalently, we have proved that if one
considers the change of variables ðv; λ0ijÞ → λij given by
Eqs. (61) and (65), thenM is precisely the same as M0 up
to a boundary term. It follows that they have the same
Euler-Lagrange equations, provided we consider variations
which are fixed on ∂ ~B. Hence the critical points of Carter’s
functional i.e. the stationary, axisymmetric vacuum solu-
tions, are also critical points of the mass functional.
It is interesting to directly compute the Euler-Lagrange

equations of M. The details are tedious and we simply
summarize the result here. First we vary the mass functional
with respect to functions on the orbit space λ̄0, v̄ and Ȳ,
which have compact support on the interior of B (and in
particular vanish on ∂B and B∞). Therefore, by Ref. [10]
the angular momenta will be preserved. We define

EðϵÞ ¼ Mðvþ ϵv̄; λ0 þ ϵλ̄0; Y þ ϵȲÞ: ð68Þ

Then we have

δEð0Þ ¼ π

4

Z
B

�
12dv · dv̄ −

1

2ρ2
ðdλ̄011 · dλ022 þ dλ011 · dλ̄

0
22 − 2dλ̄012 · dλ012Þ

þ e−6v
�
ðdet λ̄0ÞTrðλ̄

0−1dYdYtÞ
2ρ4

þ Trðλ0−1dȲdYtÞ
ρ2

− 3v̄
Trðλ0−1dYdYtÞ

ρ2

��
ρdρdz: ð69Þ

Performing the appropriate integration by parts and imposing δEð0Þ ¼ 0 yields
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4Δ3vþ e−6v
Trðλ0−1∇Y · ∇YtÞ

ρ2
¼ 0; ð70Þ

∇ ·

�∇λ0

ρ2

�
þ e−6v

ρ4
∇Y ·∇Yt ¼ 0;

∇ ·

�
e−6v

ρ2
λ0−1∇Y

�
¼ 0 ð71Þ

where Δ3 is the Laplacian and ∇ is the usual gradient with
respect to the metric (44). Consider the critical points ofM
that are extreme, stationary, axisymmetric vacuum solu-
tions. We can use the above to show that the mass
functional is positive definite for these data. We have h ¼
e2v ~h and thus

~R ¼ Re2v þ 6Δ ~hvþ 6e−2UðdvÞ2: ð72Þ
Since Δ ~h ¼ e−2UΔ3 on Uð1Þ2-invariant functions, using
Eqs. (7), (19) and (70) yields

~R ¼ e−2U
�
−2e−6v

Trðλ0−1dYdYtÞ
2ρ2

þ 6ðdvÞ2
�
: ð73Þ

Substituting this into the expression (43) gives

Mcp ¼
3π

4

Z
B
e−6v

Trðλ0−1dYdYtÞ
2 det λ0

ρdρdz ð74Þ

where Mcp is the restriction of M to these critical points.
Clearly this is positive definite.

V. POSITIVITY OF M

In this section we investigate the positivity of M.
Positivity is a desirable property as it plays a key role in
applications to geometric inequalities for three-dimensional
initial data [1–3] and investigating the linear stability of
extreme black holes1 [28]. Gibbons and Holzegel [29] have
generalized Brill’s proof of positive mass for a restricted
class of four-dimensional initial data with Uð1Þ2 isometry,
by expressing the mass in a manifestly positive-definite
way. We will show that for a particular set of initial data,
M can be expressed in a form such that the arguments of
Ref. [29] can be adapted to demonstrate positivity. It is
important to note that our boundary conditions are weaker
than the ones used in Ref. [29]. A proof of positivity for
arbitrary rod data remains to be found. In the following,
we will consider asymptotically flat data with a single
additional asymptotic end.
We introduce the coordinates ðr; xÞ given by the trans-

formation (23). This is equivalent to introducing a map

from B ≅ R ×RþnfaEg to the infinite strip B ≅ R×
½−1; 1� [14]. This map will divide the axis ρ ¼ 0 into
two disconnected axes I� ¼ fr > 0; x ¼ �1g and another
end, aE ¼ fr ¼ 0; jxj ≤ 1g. Note that the rod structure is
contained on I�; see Fig. 3.
Consider the mass functional (45) and (51). The inner

products are taken with respect to δ2 ¼ dρ2 þ dz ¼
r2ðdr2 þ r2dx2

4ð1−x2ÞÞ ¼ r2δ02. We will rewrite the functional

with respect to δ02 and as an integral over the infinite strip.
Thus we have

M ¼ 1

32

Z
B

�
−
det dλ0

2 det λ0
þ e−6v

Trðλ0−1dY · dYtÞ
2 det λ0

þ 6ðdvÞ2
�

× r3drdxþ 1

4

Z
∂B∪B∞

α ð75Þ

where all scalar products of one-forms are taken with
respect to δ02. Note that ðρ; zÞ and ðx; rÞ have positive
orientation. The boundary is ∂B∪B∞ ¼ IE þ I∞ þ Iþ þ
I− where IE ≡ fr ¼ 0;−1 ≤ x ≤ 1g, I∞ ≡ fr ¼ ∞;
−1 ≤ x ≤ 1g. In terms of the ðr; xÞ chart, we have

α¼−ðrð1−x2ÞV;xþ rxVÞdrþ
�
r3

4
V;r−

r2

2
V

�
dx: ð76Þ

FIG. 3. The rod point aE ¼ fρ; z ¼ 0g is another end. (a) and
(b) illustrate the map from the zþ ip complex plane to the yþ ix
complex plane where y ¼ log r.

1The stability argument uses the positivity of the second
variation of the mass functional about extreme Kerr. This energy
is related to the recent construction of Hollands-Wald [26] of a
canonical energy, which has recently been used to demonstrate
the existence of instabilities of (near-)extreme black holes [27].
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Then we have

αjIE
¼ −V̄EðxÞdx; αjI∞

¼ −V̄ðxÞdx;
αjIþ ¼ −rVjx¼1dr; αjI− ¼ rVjx¼−1dr:

Thus with the appropriate orientation

Z
∂B∪B∞

α ¼
Z

∞

0

rðVjx¼1 þ Vjx¼−1Þdr

¼
Xn−1
i¼0

Z
biþ1

bi

rðVjx¼1 þ Vjx¼−1Þdr: ð77Þ

Consider the integral (75). We are given n rod points ai.
Subdivide the infinite strip into n rectangular columns Ai
with

Ai ¼ f−1 ≤ x ≤ 1; bi < r < biþ1g; i ¼ 0…n − 1 ð78Þ

where bi correspond to the locations of the rod points ai
after ordering along the y ¼ log r axis (see Fig. 4).
For convenience, we have chosen b1 < b2 < … < bn−1.
We take b0 ¼ 0 to correspond to the asymptotic end aE
and bn to correspond to the asymptotically flat end r → ∞.
We then express Eq. (75) as

M ¼
Xn−1
i¼0

Z
Ai

Mi ð79Þ

where Mi is the restriction of M to Ai.
We fix a region Ai. Then one of the following two

possibilities must occur: (a) the distinct Killing fields vðiÞ
and wðiÞ vanish on Ai∩Iþ and Ai∩I− respectively (in this
case Ai is topologically S3 ×R), or (b) the same Killing
field vðiÞ ¼ viðiÞmi vanishes on both of the disjoint sub

intervals Ai∩I� (in this case Ai is topologically S2 ×D
where D is a noncontractible disc). We can demonstrate
positivity for case (a). In this case without loss of generality
we can select the following parametrization of the three
independent functions contained in λ0ij and v:

λ011 ¼
r2ð1 − xÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −W2

p eV1−V2 ; λ022 ¼
r2ð1þ xÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −W2

p eV2−V1 ;

λ012 ¼
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
W

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −W2

p ; v ¼ V1 þ V2 þ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −W2

p

2

ð80Þ
where without loss of generality we have chosen vðiÞ ¼ ∂ϕ1

and wðiÞ ¼ ∂ϕ2. V1; V2 and W are C1 functions whose
boundary conditions on the axis are induced from those of
λ0ij and v [Eqs. (26) and (27)]. In particular, we have
det λ0 ¼ ρ2 and to remove conical singularities on I�
[Eq. (32)] we require

2V −V1 þV2 ¼ 0 on Iþ; 2V− V2 þV1 ¼ 0 on I−;

W ¼ 0 on I�: ð81Þ
Note that since λ0ij and v are continuous across the
boundary of Ai, this will impose boundary conditions on
the parametrization functions in adjacent subregions.
Second, we rewrite the second and fourth terms of M
as functions of V1, V2, and W, yielding

det dλ0

2 det λ0
¼ −1

2ð1 −W2Þ

×

�
ðdV1 − dV2Þ2 −

8

r2
∂xðV1 − V2Þ þ ðdWÞ2

þW2ðdWÞ2
1 −W2

þ 4W2

r2ð1 − x2Þ
�

ð82Þ

and

6ðdvÞ2 ¼ 3

2
ðdV1 þ dV2Þ2 þ

3

2

W2ðdWÞ2
ð1 −W2Þ2

−
3W

1 −W2
ðdV1 · dW þ dV2 · dWÞ: ð83Þ

Therefore, we have

FIG. 4. The orbit space can be subdivided into subregions Ai
which are half-annuli in the ðρ; zÞ plane and rectangles in the
ðy; xÞ plane. In this case n ¼ 7.
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Mi ¼
1

32

Z
Ai

�
Re2vþ2U þ ðdV1 þ dV2Þ2 þ ðdV1Þ2 þ ðdV2Þ2 þ

W2

2ð1 −W2Þ
�
ðdV1 − dV2Þ2 −

6

W
ðdV1 · dW þ dV2 · dWÞ

�

þ W2

r2ð1 −W2Þ
�
4∂xV2 − 4∂xV1 þ

2

ð1 − x2Þ
�
þ ðdWÞ2
2ð1 −W2Þ þ

2W2ðdWÞ2
ð1 −W2Þ2

�
r3dxdr

þ 1

8

Z
biþ1

bi

rððV1 − V2Þjx¼−1 − ðV1 − V2Þjx¼1Þdrþ
1

4

Z
biþ1

bi

rðVjx¼1 þ Vjx¼−1Þdr

¼ 1

32

Z
Ai

�
Re2vþ2U þ ðdV1 þ dV2Þ2 þ ðdV1Þ2 þ ðdV2Þ2 þ

W2

2ð1 −W2Þ
�
ðdV1 − dV2Þ2 −

6

W
ðdV1 · dW þ dV2 · dWÞ

�

þ W2

r2ð1 −W2Þ
�
4∂xV2 − 4∂xV1 þ

2

ð1 − x2Þ
�
þ ðdWÞ2
2ð1 −W2Þ þ

2W2ðdWÞ2
ð1 −W2Þ2

�
r3dxdr: ð84Þ

Consider the first equality. The first term follows from
the constraint equation for maximal slices, Eq. (19), and
Eq. (14). The remaining bulk terms follow from Eqs. (82)
and (83) while the first boundary term comes from Eq. (82)
and the second from Eq. (77). The second equality is
obtained by noting that the boundary contributions cancel
by regularity on the axes (81). The remaining terms can be
shown to be positive by a straightforward application of
the arguments given in Sec. 4.3 of Ref. [29]. Therefore,
Mi ≥ 0.
From this result it follows that provided all subregions Ai

fall into class (a) then M is positive definite. In particular,
for the rod structure of Myers-Perry initial data, there is
only one region A0 of class (a) and hence for any data with
the same rod structure,M ≥ 0. One might expect a similar
argument to hold for class (b). This case of course includes
initial data for black rings (the same Killing vector field
vanishes on either side of the asymptotic end). By choosing
a general parametrization for the various functions in this
region, one finds that the boundary term has an indefinite
sign. However our strategy is merely sufficient to demon-
strate positivity, and we expect that positivity will hold for a
general rod structure. Interestingly, for the initial data for
extreme black rings, the expression (74) shows M ≥ 0.

VI. DISCUSSION

We have constructed a mass functional M valid for a
broad class of asymptotically flat t − ϕi-symmetric maxi-
mal initial data for the vacuum Einstein equations in five
dimensions.M can be considered an extension of a similar
functional defined for three-dimensional initial data sets
[25]. We can check that this mass functional is finite and
evaluates to the ADM mass provided certain boundary and
asymptotic conditions are met. These conditions encom-
pass a large class of initial data, and in particular we have
checked this explicitly for the usual maximal constant-time
slices for the Myers-Perry black hole (see Appendix B) and
the extreme vacuum black ring solution. Moreover, we
proved that R × Uð1Þ2-invariant solutions of the vacuum

Einstein equations are critical points of this functional
amongst this class of data. Finally, we have shown
explicitly that the mass functional is positive for a particular
class of rod structures as explained in detail above,
although it remains to show this for arbitrary rod data.
This property is relevant for investigating geometric
inequalities for five-dimensional vacuum solutions. A start
towards this goal is to show a local mass-angular momenta
inequality along the lines of Ref. [1]. This problem is
currently under investigation.
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APPENDIX A: MASS OF CONFORMAL METRIC

Assume that we have an asymptotically flat initial data
set ðΣ; hab; KabÞ of Einstein’s equation. The ADM mass of
this data is given by Eq. (40). But by a rescaling similar to
Eq. (14) we have

MADM ¼ −
3

8π
lim
r→∞

Z
S3r

nc ~∇cΦds ~h þ ~MADM ðA1Þ

where ~MADM is the ADM mass of ~h. Now as in Sec. V we
can introduce a chart with coordinates ðr; xÞ such that the
asymptotically flat conformal metric takes the form

~h ¼ e2V
�
dr2 þ r2

4ð1 − x2Þ dx
2

�
þ f2

r2

2
ð1 − xÞdϕ2

þ f3
r2

2
ð1þ xÞdψ2 þ f4r2ð1 − x2Þdϕdψ ðA2Þ
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with the falloff conditions e2V − 1; f2 − 1, and f3 − 1 ¼
Oðr−2Þ and f4 ¼ oðr−2Þ as r → ∞. Then the ADMmass of
the conformal metric is

~MADM ¼ −
1

16π
lim
r→∞

Z
S3

�
r2∂r½rðf2 þ f3 − 2Þ�

þ r5∂r

�
e2V − 1

r2

��
dΩ3

¼ 1

16π

Z
S3
ðfðxÞ þ gðxÞÞdΩ3 þ

1

2π

Z
S3
V̄ðxÞdΩ3

¼ π

2

Z
1

−1
V̄ðxÞdx: ðA3Þ

The first equality is the definition of ADM mass applied to
Eq. (A2). The second equality uses the expansion of λ0ij and
V at infinity [Eqs. (27) and (26)]. Therefore, we can see that
the ADMmass of the conformal metric is zero if and only if
the right-hand side of Eq. (A3) vanishes. It is trivially
satisfied if V ¼ oðr−2Þ. In general however, one may wish
to consider weaker falloff conditions on V that still lead to a
vanishing ADM mass of the conformal metric. In particu-
lar, we have checked explicitly for the general Myers-Perry
black hole and for the extreme doubly spinning black ring
that the right-hand side of Eq. (26) vanishes, although
V̄ðxÞ ≠ 0 in these cases.

APPENDIX B: MYERS-PERRY INITIAL DATA

Here we consider the Myers-Perry solution with coor-
dinates ðt; ~r; θ;ϕ1;ϕ2Þ [30]. The ϕi have period 2π.
Then we have following metric functions:

ω1 ¼ μaλ22sin2θ − μbλ12cos2θ
Σ det λ

;

ω2 ¼ μbλ11cos2θ − μaλ12sin2θ
Σ det λ

; ðB1Þ

λ11 ¼
a2μ
Σ

sin4θ þ ð~r2 þ a2Þsin2θ;

λ12 ¼
abμ
Σ

sin2θcos2θ; ðB2Þ

λ22 ¼
b2μ
Σ

cos4 θ þ ð~r2 þ b2Þ cos2 θ ðB3Þ

where

Σ ¼ ~r2 þ b2 sin2 θ þ a2 cos2 θ; ðB4Þ

Δð~rÞ ¼ ð~r2 þ a2Þð~r2 þ b2Þ − μ~r2: ðB5Þ

The metric on a constant-time slice will be

h ¼ Σ
Δð~rÞ dr

2 þ Σdθ2 þ λijdϕidϕj: ðB6Þ

This metric is singular at two roots ~r� of Δð~rÞ which
correspond to spacetime inner and outer horizons. One can
define a quasi-isotropic coordinate as

~r2 ¼ r2 þ 1

2
ðμ − a2 − b2Þ

þ μðμ − 2a2 − 2b2Þ þ ða2 − b2Þ2
16r2

: ðB7Þ

Note that the outer horizon at ~rþ is shifted to r ¼ 0 and the
slice metric will be

h ¼ Σ
r2
ðdr2 þ r2dθ2Þ þ λijdϕidϕj ðB8Þ

where 0 < r < ∞, 0 < θ < π=2, and 0 < ϕ1;ϕ2 < 2π. The
point r ¼ 0 is another asymptotic infinity (see Fig. 1) and
one can show this by computing the distance to r ¼ 0 along
a curve of constant ðθ;ϕ1;ϕ2Þ from r ¼ r0, i.e.

Distance ¼
Z

r0

r

ffiffiffi
Σ

p

r
dr → ∞ as r → 0: ðB9Þ

In the extreme limit μ ¼ ðaþ bÞ2 the quasi-isotropic radius
simplifies to [10]

~r2 ¼ r2 þ ab: ðB10Þ

The conformal metric ~h can be determined by the relations

Φ2 ¼
ffiffiffiffiffiffiffiffiffi
det λ

p

ρ
; e2U ¼ ρΣ

r4
ffiffiffiffiffiffiffiffiffi
det λ

p ; λ0ij ¼ Φ−2λij

ðB11Þ

where ρ ¼ 1
2
r2 sin 2θ and z ¼ 1

2
r2 cos 2θ. The potentials in the general case are cumbersome, but in the extreme case they

simplify to

Y1 ¼ aða2 − b2Þðr2 þ abþ b2Þcos2θ − r2að2a2 þ 2abþ r2Þ
ða − bÞ2 þ aðr2 þ abþ a2Þ2ðr2 þ abþ b2Þ

Σða − bÞ2 ;

Y2 ¼ br2ððaþ bÞ2 þ r2Þ − bða2 − b2Þðr2 þ abþ a2Þcos2θ
ða − bÞ2 −

bðr2 þ abþ a2Þðr2 þ abþ b2Þ2
Σða − bÞ2 : ðB12Þ
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The expansion at infinity is

Y1 ¼ a3ðaþbÞ2
ða−bÞ2 −

4J1
π

cos2 θð2− cos2 θÞþOðr−2Þ; ðB13Þ

Y2 ¼ −
ab2ðaþ bÞ2
ða − bÞ2 −

4J2
π

cos4 θ þOðr−2Þ: ðB14Þ

The asymptotic behavior of the conformal factor at infinity is
given by

Φ ¼ 1þ μ

4r2
þOðr−4Þ r → ∞: ðB15Þ

The region r → 0 corresponds to another asymptotic region.
In the nonextreme case, we have

Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ − ðaþ bÞ2Þ2ðμ − ða − bÞ2Þ24

p
4r2

þOð1Þ;
Φ;r ¼ Oðr−3Þ; r → 0 ðB16Þ
and it is easy to verify that ~h approaches the flat metric on
R4. Hence this region is an asymptotically flat end. In the
extreme case, however, one can check that

Φ ¼ ðabðaþ bÞ3Þ1=4
ðacos2θ þ bsin2θÞrþOðrÞ r → 0: ðB17Þ

By examining the behavior of the metric h, one can see that
the asymptotic region r → 0 is a cylindrical end. In fact, an
explicit computation of U and λ0i shows that the conformal
metric ~h approaches the metric of a cone over an S3 equipped
with an inhomogeneous metric,

~h ¼ Ω2ðdr2 þ r2γÞ ðB18Þ

where Ω ¼ ΩðθÞ ≠ 0 and γ is conformal to the inhomo-
geneous metric on cross sections of the horizon of the
extreme Myers-Perry black hole.
The conformal factor in either case satisfies the con-

ditions of Eqs. (30) and (41), and we have at the asymptotic
ends

3

8π
lim
r→0

Z
Sr

~∇cΦ
Φ

ncds ~h ¼ 0 ðB19Þ

where ds ~h ¼ r3 sin θ cos θ þOðr6Þ. Now, one can expand
the function V at infinity and at the origin. As we discussed
before we only consider the behavior of V near ρ ¼ 0.
We find

V ¼ ða2 − b2Þ cos 2θ
4r2

þOðr−4Þ;
r → ∞; ðB20Þ

Vþ ¼ 2zþ a2 þ abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z2 þ 3a2b2 þ 2a2zþ b4 þ 2b2zþ 4abzþ a3bþ 3ab3

p ; z ∈ Iþ; ðB21Þ

V− ¼ −2zþ b2 þ abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ 3a3bþ 3a2b2 − 2a2zþ ab3 − 4abz − 2b2zþ 4z2

p ; z ∈ I−: ðB22Þ

Thus V satisfies Eqs. (26) and (32). In particular, we read
off V̄ ¼ 1

4
ða2 − b2Þx and hence from Eq. (A3) we see that ~h

[see Eq. (B11)] has vanishing ADM mass. In addition,
when z → �∞ we have that V� → 1 and V� are bounded
continuous functions on rods I�. Therefore, they are
integrable. Let us consider the boundedness of other terms
in the mass functional (51). We will consider explicitly the
nonextreme case so the end is asymptotically flat. First we
have the following expansion for v at origin and infinity:

ðdvÞ2 ¼ −
μ

2r5
þOðr−7Þ; r → ∞;

ðdvÞ2 ¼ −
2

r3
þOðr−1Þ; r → 0

ðB23Þ

since the volume element is ρdρdz ¼ r5 sin θ cos θdrdθ,
and ðdvÞ2 is bounded at the origin and infinity. Now we
consider the term which is related to the scalar curvature in
mass functional (51). We use the identity (47) and we have

det dλ0

det λ0
¼ Oðr−8Þ; r → ∞;

det dλ0

det λ0
¼ Oð1Þ; r → 0: ðB24Þ

This is clearly bounded. One can check numerically over a
range of ða; bÞ that det dλ0 < 0 everywhere. The only term
remaining is related to the full contraction of the extrinsic
curvature and we have

Trðλ0−1dYdYtÞ
2 det λ0

¼ Oðr−10Þ; r → ∞;

e−6v
Trðλ0−1dYdYtÞ

2 det λ0
¼ Oðr2Þ; r → 0: ðB25Þ

Therefore, nonextreme Myers-Perry lies in the domain on
which the mass functional (51) is defined. By similar steps
the same result holds for the extreme case.
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