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We consider three-dimensional gravity with negative cosmological constant in the presence of a scalar
and an Abelian gauge field. Both fields are conformally coupled to gravity, the scalar field through a
nonminimal coupling with the curvature and the gauge field by means of a Lagrangian given by a power of
the Maxwell one. A sixth-power self-interaction potential, which does not spoil conformal invariance is
also included in the action. Using a circularly symmetric ansatz, we obtain black hole solutions dressed
with the scalar and gauge fields, which are regular on and outside the event horizon. These charged hairy
black holes are asymptotically anti–de Sitter spacetimes. The mass and the electric charge are computed by
using the Regge-Teitelboim Hamiltonian approach. If both leading and subleading terms of the asymptotic
condition of the scalar field are present, a boundary condition that functionally relates them is required for
determining the mass. Since the asymptotic form of the scalar field solution is defined by two integration
constants, the boundary condition may or may not respect the asymptotic conformal symmetry. An analysis
of the temperature and entropy of these black holes is presented. The temperature is a monotonically
increasing function of the horizon radius as expected for asymptotically anti–de Sitter black holes.
However, restrictions on the parameters describing the black holes are found by requiring the entropy to be
positive, which, given the nonminimal coupling considered here, does not follow the area law. Remarkably,
the same conditions ensure that the conformally related solutions become black holes in the Einstein frame.
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I. INTRODUCTION

In different contexts, a number of physical applications
involving hairy black holes have emerged in the last years.
For instance, asymptotically anti–de Sitter (AdS) black
holes endowed with a scalar field have been related to
superconductors by means of the gravity/gauge duality [1].
Additionally, in a totally different area, efforts towards
testing the no-hair theorem from astronomical observations
have been recently developed [2,3]. The extensive literature
about hairy black holes and the broad applications confirm
their physical relevance.
Such as three-dimensional gravity has been a fruitful

arena for quantum gravity, including the Bañados,
Teitelboim, and Zanelli (BTZ) black hole [4,5], it also
has been very generous in providing exact black holes
dressed with a scalar field. After the first examples [6,7]
characterized by a scalar field which is regular everywhere,
other three-dimensional scalar hairy black holes have been
reported with emphasis in the microscopic computation of
their entropy [8–10] (see also [11]), and as the result of an
algorithm to determine all stationary circularly symmetric
solutions [12]. The above results represent only a small part

of the considerable attention that the three-dimensional
scalar hairy black holes have received in recent years (see
for instance [13] and references therein).
In absence of a scalar field, the electrically charged

BTZ black hole was introduced in [4] and the rotating one
with an electromagnetic field was presented in [14]. In both
cases the dynamics of the gauge field was defined by the
usual Maxwell Lagrangian, and consequently, the gauge
field exhibits a logarithmic dependence on the radial
coordinate, as expected in 2þ 1 dimensions.
In this article we consider three-dimensional gravity with

negative cosmological constant in the presence of a single
real scalar field and an Abelian gauge field. This composite
matter source is characterized by the fact that both fields are
conformally coupled to gravity, in contrast with some
recently proposed models [15,16]. The action for the scalar
field contains, in addition to the kinetic term, an interacting
term with the curvature and a sixth-power self-interaction
potential. With these ingredients, this nonminimal action
for the scalar field becomes conformal invariant. On the
other hand, it is well known that the Maxwell action is
invariant under conformal transformations of the metric
only in four dimensions. This symmetry is recovered in any
spacetime dimension n if the Maxwell Lagrangian is raised
to the ðn=4Þth power [17]. Therefore, a Lagrangian of this
form describes the Abelian gauge field considered in this
work. Remarkably, this conformal invariant action for the
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gauge field may provide a Coulomb-like electric field in
arbitrary dimensions.
In the next section, we introduce the action and the

corresponding field equations, which are solved using a
circularly symmetric ansatz and the black hole solutions are
identified. Since the solutions are given by simple expres-
sions, the search for black holes is greatly simplified.
Additionally, the geometrical and thermodynamic proper-
ties of them can be easily analyzed, and consequently, their
physical meaning becomes clear.
The geometries asymptotically approach AdS spacetime,

and the scalar fields are regular on and outside of the
corresponding horizons. In Sec. III the mass and electric
charge of the black holes are determined using the Regge-
Teitelboim method [18]. Boundary conditions over the
leading and subleading terms in the asymptotic form of the
scalar field are required for obtaining the mass. Since
the scalar field is defined for two independent integration
constants, a wide class of boundary conditions are allowed,
even those that spoil the asymptotic AdS invariance.
Section IV is devoted to the thermodynamic analysis.
The temperature, electric potential and entropy are deter-
mined. The entropy is not automatically a positive definite
quantity in this nonminimal frame, and additional con-
ditions must be imposed on the integration and self-
interacting coupling constants in order to ensure a positive
entropy. Finally, the last section contains some concluding
remarks and prospects for future work.

II. BLACK HOLE SOLUTIONS

We consider three-dimensional gravity with negative
cosmological constant in presence of a scalar and an
electromagnetic field, being both fields conformally
coupled to gravity. The action is given by

I½gμν;ϕ; Aμ� ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
Rþ 2l−2

2κ
−
1

2
gμν∇μϕ∇νϕ

−
1

16
Rϕ2 − λϕ6 þ σð−FμνFμνÞ3=4

�
; ð1Þ

where κ is the gravitational constant and l is the AdS radius.
Moreover, λ and σ are the coupling constants of the self-
interaction potential and the nonlinear electromagnetic
term, respectively.
The equations of motion are

Eμν ≡ Gμν þ Λgμν − κðTϕ
μν þ TA

μνÞ ¼ 0; ð2aÞ

□ϕ −
1

8
Rϕ − 6λϕ5 ¼ 0; ð2bÞ

∂μð
ffiffiffiffiffiffi
−g

p
F−1=4FμνÞ ¼ 0; ð2cÞ

with Fμν ¼ ∂μAν − ∂νAμ and F ¼ −FμνFμν.

The energy-momentum tensor of the scalar field is
given by

Tϕ
μν ¼ ∂μϕ∂νϕ −

1

2
gμν∂λϕ∂λϕ − λgμνϕ6

þ 1

8
½gμν□ −∇μ∇ν þ Gμν�ϕ2; ð3Þ

and

TA
μν ¼ σð3FλμFλ

νF−1=4 þ gμνF 3=4Þ ð4Þ

is the corresponding one for the nonlinear electromag-
netic field.
It is worth noticing that the negative sign inside the

nonlinear electromagnetic term in the action (1) ensures
that purely electric configurations remain real.
Furthermore, the coupling constant σ is chosen to be
positive1 in order to keep the energy density of the
electromagnetic field—the TA

0̂ 0̂
component of the energy-

momentum tensor in the orthonormal frame—positive for
this class of configurations.
Since the fields are conformally coupled, their corre-

sponding stress tensors are traceless on-shell, so that
Einstein’s equations (2a) imply

R ¼ −6l−2: ð5Þ

We will deal with asymptotically AdS spacetimes. In this
context, potentials unbounded from below, for instance the
case for λ < 0 in the action (1), do not generate the sort of
instabilities as in asymptotically flat spacetimes, provided
the mass of the scalar field is bounded from below by the
Breitenlohner-Freedman one m2

BF [19–21]. In three dimen-
sions,m2

BF ¼ −l−2, and because of (5), in our case the mass
of the scalar field is 3=4l−2, which satisfies the men-
tioned bound.
We look for static and circularly symmetric configura-

tions described by the line element

ds2 ¼ −FðrÞdt2 þ F−1ðrÞdr2 þ r2dθ2; ð6Þ

a scalar field depending just on the radial coordinate, and a
gauge field of the form A ¼ AtðrÞdt, which generates a
purely radial electric field. The coordinates range as −∞ <
t < ∞; 0 ≤ r < ∞; 0 ≤ θ < 2π.
From the subtraction Et

t − Er
r in (2a), a second-order

differential equation for the scalar field is obtained, whose
integration yields

ϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
b

rþ c

r
; ð7Þ

1Without lost of generality, σ is chosen to be 21=4 just for
simplifying numerical factors.
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where b and c are integration constants. Moreover, from the
nonlinear Maxwell equation (2c) the gauge field is easily
obtained (modulo gauge transformations)

A ¼ −
q
r
dt: ð8Þ

The constant q is related with the electric charge as we will
show below in Sec. III. Finally, the metric function FðrÞ
can be directly obtained from Eq. (5), which gives

FðrÞ ¼ r2

l2
þ a1 þ

a2
r
; ð9Þ

where a1 and a2 are integration constants. It is clear, from
the line element (6) and the radial dependence of F shown
in (9), that these solutions are asymptotically anti–de Sitter
spacetimes whose asymptotic behaviors match the well-
known Brown-Henneaux conditions [22]. However, as is
discussed in Sec. III, boundary conditions on the matter
fields could spoil the conformal invariance of the full
configuration.
The case of vanishing scalar field (b ¼ 0) was studied in

[23], and we will not consider it here. The remaining
equations of motion give relations among the integration
constants a1, a2, b, c and q. Since we are interested in the
case of nonvanishing scalar field we assume b ≠ 0 in these
equations, which give rise to two different branches:
(i) c ¼ 0 and (ii) c ≠ 0. Furthermore, it is convenient to
address the case without self-interaction potential (λ ¼ 0)
in a separate section.

A. Case c ¼ 0: Black hole dressed with a stealth
composite matter source

The solution is determined by the metric function

FðrÞ ¼ r2

l2
þ 24λb2; ð10Þ

the scalar field

ϕðrÞ ¼
ffiffiffi
b
r

r
; ð11Þ

and the gauge field given by (8) with

jqj3=2 ¼ −λb3: ð12Þ
The scalar field is real provided b > 0. Moreover, in

order to ensure a real q it is necessary to fix the coupling
constant λ ≤ 0 as one can see from the rhs of (12). In this
case, the spacetime corresponds to a black hole, whose
horizon is located at r2þ ¼ −24λl2b2. It should be noticed
that this black hole has the same metric as the static and
uncharged BTZ black hole. However, it possesses a non-
vanishing electric charge and is dressed with a conformal

scalar field. This occurs because the total energy-
momentum tensor vanishes, i.e., the scalar field and gauge
field contributions cancel out. Therefore, the above solution
can be considered as a stealth configuration [24–29]
produced by two different matter sources. The metric is
free of singularities and the matter fields diverge at the
origin, r ¼ 0.

B. Black holes in the general case c;λ ≠ 0

First, it is convenient to redefine the coupling constant
as λ ¼ κ2α=ð512l2Þ, where now α plays the role of the
coupling constant associated to the self-interaction poten-
tial. Additionally, we also define b ¼ 8ac=κ, where a is an
integration constant.
In this way, the solution with a nonvanishing scalar field

is given by the metric function

FðrÞ ¼ r2

l2
−
ð1 − αa2Þ

l2

�
2c3

r
þ 3c2

�
; ð13Þ

the scalar field

ϕðrÞ ¼
ffiffiffi
8

κ

r ffiffiffiffiffiffiffiffiffiffiffi
ac

rþ c

r
; ð14Þ

and the gauge field shown in (8), with an integration
constant q satisfying

jqj3=2 ¼ −
c3ð1 − αa2Þð1 − aÞ

κl2
: ð15Þ

This expression indicates that the gauge field vanishes for
two particular values of a, which allow us to rediscover
previous uncharged solutions. The case a ¼ 1 corresponds
to the scalar hairy black hole found in [6,7], and the case
a ¼ 1=

ffiffiffi
α

p
is the massless hairy solution reported in [30].

In the case a ¼ 0, the scalar field vanishes and the extreme
charged black hole in [23] is recovered. Hereafter, we focus
our attention in new black hole configurations with q ≠ 0
and a nonvanishing scalar field.
The horizons are located at the positive roots of the cubic

equation FðrÞ ¼ 0. By replacing r ¼ cx, this problem is
reduced to solve

x2 − ð1 − αa2Þ
�
2

x
þ 3

�
¼ 0: ð16Þ

In the case c > 0, we are interested in the positive roots of
(16), and for c < 0 the relevant roots correspond to the
negative ones. Since we are dealing with a cubic equation,
it is possible to write down their exact roots xi in the
following form:

xi ¼ zþi z
−
i ðzþi þ z−i Þ; i ¼ 1; 2; 3 ð17Þ
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with

zþi ¼ γi
�
1þ

ffiffiffiffiffiffiffiffi
αa2

p �
1=3

and z−i ¼ γi
�
1 −

ffiffiffiffiffiffiffiffi
αa2

p �
1=3

:

ð18Þ

Here γi represent the roots of unity γ3i ¼ 1, and γi are their
complex conjugates. These are

γ1 ¼ 1; γ2 ¼ −
�
1þ i

ffiffiffi
3

p

2

�
; γ3 ¼ −

�
1 − i

ffiffiffi
3

p

2

�
:

ð19Þ

For α ≤ 0, z−i ¼ z̄þi so that all the roots (17) are real. In the
opposite case α > 0, we note that x1 is always a real root of
(16) and x2; x3 are complex.
The qualitative behavior of the roots is illustrated in

Figs. 1 and 2. The real roots correspond to the intersection
of a parabola with a hyperbola as is shown in (16). This can
be described as follows:

(i) If 1 − αa2 > 0, the root x1 is positive and the nature
of x2 and x3 depend on the sign of α. If α < 0, x2 and
x3 are negative. On contrary, if α > 0, x2 and x3 are
complex numbers (see Fig. 1).

(ii) If 1 − αa2 < 0, the root x1 is negative and x2 and x3
are complex roots (see Fig. 2).

After capturing the general properties of the roots of
(16), we are in position to analyze the existence of black
hole solutions. The analysis requires us to study both signs
of the integration constant c as is shown below. Note that,
for thermodynamic considerations explained in Sec. IV, the
presence of a horizon is not enough to ensure physically
sensible black hole solutions.

1. Event horizon for c > 0

The previous analysis indicates that only for 1 − αa2 > 0
there is a positive root, x1. Moreover, the condition a > 1
appears by demanding positivity of the rhs of (15).
The intersection of these two inequalities, 1 − αa2 > 0
and a > 1, implies that (A) there is no restriction for any
α < 0, or (B) for a positive self-interacting coupling
parameter α, it is required to be bounded from above such
that 0 < α ≤ 1, in conjunction with a bounded integration
constant 1 < a < 1=

ffiffiffi
α

p
.

Under the conditions (A) or (B) there exists an event
horizon located at rþ ¼ x1c. Additionally, from the ana-
lytic expression of x1 it is possible to determine bounds for
the event horizon according to the sign of the self-coupling
parameter. Under the conditions (A) we have rþ > 2c,
while (B) provides the bounds 0 < rþ < 2c.
Since r and c are positive, the scalar field is regular

everywhere. The gauge field and metric are singular at
the origin r ¼ 0, as one can read from (8) and from the
Kretschmann invariant, 12l−4ð1þ 2c6ð1 − αa2Þ2r−6Þ,
respectively.

2. Event horizon for c < 0

We are now interested in the negative roots of (16). First,
the root x1 < 0 can be discarded since it requires the
condition 1 − αa2 < 0 and also, from (15), a > 1. This last
requirement is incompatible with the necessary condition
a < 0 to ensure a real scalar field (14). Therefore, x1 does
not produce an event horizon. Second, it is possible to
consider the roots x2 and x3, which become negative real
numbers provided 1 − αa2 > 0 and α < 0 [conditions
labeled by (C)]. From the definitions of x2 and x3 one
can to extract the following properties: 2=3 < jx2j < 1 and
jx3j > 1. Then, since jx3j > jx2j the event horizon is
located at rþ ¼ x3c, provided conditions (C) are satisfied.
The root x2 gives rise an inner horizon. Since we are
considering α and a ≠ 0, the root x2 cannot equal x3, then

FIG. 1 (color online). The roots x1; x2; x3 are shown for the case
ð1 − αa2Þ > 0. The root x1 is positive and the roots x2 and x3
depend on the sign of α. If α < 0, x2 and x3 are negative.
Alternatively, if α > 0, x2 and x3 are both complex numbers,
since the hyperbola does not intersect the parabola for x < 0.

FIG. 2 (color online). The roots x1; x2; x3 are shown for the case
ð1 − αa2Þ < 0. The root x1 is negative and x2 and x3 are both
complex roots.
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an extreme black hole does not occur. Due to the inequality
rþ > −c, the singularity of the scalar field at r ¼ −c is
hidden by the event horizon rþ. As in the previous case, the
metric and gauge field are singular only at the origin.

C. Black hole in absence of self-interaction
potential (λ ¼ 0)

A particularly simple solution is obtained in absence
of self-interaction potential. The metric function FðrÞ
reduces to

FðrÞ ¼ ðrþ cÞ2ðr − 2cÞ
rl2

; ð20Þ

and the gauge and scalar fields are given by (8) and (14),
respectively. Now, the constant q satisfies

jqj3=2 ¼ c3ða − 1Þ
κl2

: ð21Þ

Although it is possible to consider c < 0, the double zero of
FðrÞ at r ¼ −c is not suitable to be promoted to event
horizon because the scalar field (14) is singular there. We
adopt a conservative point of view saying that the singu-
larity of the scalar field prevents the existence of an extreme
black hole. Thus, we consider only the simple root r ¼ 2c,
which becomes an event horizon for c > 0. The condition
a > 1 arises from (21). As in the previous case with c > 0,
the gauge and metric fields are singular at the origin, and
the scalar field is regular everywhere.

III. MASS AND ELECTRIC CHARGE

The aim of this section is to determine the conserved
charges of the black holes introduced above. For this goal
we consider the Hamiltonian Regge-Teitelboim method
[18]. In this approach the charges Q½ξ; ξA� are the surface
terms added to the Hamiltonian generator in order to ensure
well-defined functional derivatives. The bulk piece of the
canonical generator

H½ξ; ξA� ¼
Z

dx2ðξ⊥H⊥ þ ξiHi þ ξAGÞ þQ½ξ; ξA�;
ð22Þ

is a linear combination of the constrainsH⊥ andHi, where
i denotes the two spatial dimensions, and G is the Gauss
constraint associated to the Abelian gauge field. The charge
corresponds to the canonical generator for vanishing
constraints. The vector ξ ¼ ðξ⊥; ξiÞ represents the asymp-
totic symmetries of the spacetime, and ξA is the parameter
associated to the Abelian gauge symmetry.
For the class of solutions we are dealing with, it is

sufficient to consider a minisuperspace of circularly sym-
metric configurations defined by the line element

ds2 ¼ −ðN⊥ðrÞÞ2dt2 þ FðrÞ−1dr2 þ r2dθ2; ð23Þ

a scalar field ϕðrÞ and a gauge field A ¼ AtðrÞdt. In this
case, the only nontrivial canonical momentum is that
corresponding to the gauge field EðrÞ, which is given by

EðrÞ ¼ 3r

�
FðrÞ

ðN⊥ðrÞÞ2
�

1=4
jFtrj1=2signðFtrÞ: ð24Þ

Since all the canonical momenta associated to the gravi-
tational field and the scalar field vanish, the constraintHi is
identically zero, H⊥ takes the form

H⊥ ¼ 1ffiffiffiffi
F

p
�
F0

2κ

�
1 −

κϕ2

8

�
þ rF

4
ðϕ02 − ϕϕ00Þ

−
ϕϕ0

8
ðrF0 þ 2FÞ − r

l2κ
þ rλϕ6 þ jEj3

27r2

�
; ð25Þ

and the Gauss constraint reduces to G ¼ −∂rE.
The variation of surface term δQ is chosen so that

δH ¼ 0 on the vanishing constraints. In this case, the
boundary is a circle S1 of infinite radius. Integrating over
the angular coordinate, we obtain

δQðξ⊥; ξAÞ ¼
�
πξ⊥ð−8þ κϕðϕþ 2rϕ0ÞÞ

8κ
ffiffiffiffi
F

p δF

−
1

2
πr

ffiffiffiffi
F

p
ðϕðξ⊥Þ0 þ 3ξ⊥ϕ0Þδϕ

þ 1

2
πr

ffiffiffiffi
F

p
ξ⊥ϕδϕ0 þ 2πξAδE

�
r→∞

: ð26Þ

The integration of δQ requires to choose suitable asymp-
totic conditions for all fields. These conditions should allow
for the asymptotic behavior of the exact solutions found in
the previous section. These conditions, specified up to the
order that contributes to the charge, are given by

FðrÞ ¼ r2

l2
þ F0 þO

�
1

r

�
; ð27Þ

ϕðrÞ ¼ ϕ0

r1=2
þ ϕ1

r3=2
þO

�
1

r5=2

�
; ð28Þ

EðrÞ ¼ E0 þO
�
1

r

�
; ð29Þ

ξ⊥ðrÞ ¼ r
l
ξ0 þO

�
1

r

�
; ð30Þ

ξAðrÞ ¼ ξA0 þO
�
1

r

�
; ð31Þ
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where the quantities labeled with subscripts 0 and 1 are
arbitrary constants. Under these asymptotic conditions the
variation (26) reduces to

δQ ¼ ξ0

�
−
πδF0

κ
þ π

2l2
ð3ϕ1δϕ0 − ϕ0δϕ1Þ

�
þ 2πξA0 δE0:

ð32Þ

The mass M is the conserved charge associated to time
translation symmetry, parametrized here by ξ0, and the
electric charge Qe is that coming from the U(1) gauge
invariance, represented by the gauge parameter ξA0 . From
(32) we can read directly

δM ¼ −
πδF0

κ
þ π

2l2
ð3ϕ1δϕ0 − ϕ0δϕ1Þ; ð33Þ

δQe ¼ −2πδE0: ð34Þ

The minus sign in (34) comes from the sign difference
between the electric field density and the canonical
momentum of the gauge field. The electric charge can
be immediately integrated, and is given by the leading term
of the canonical momentum of the gauge field:

Qe ¼ −2πE0: ð35Þ

It is clear that the second term in (33), which takes into
account the contribution of the scalar field to the mass,
provided ϕ0 ≠ 0 and ϕ1 ≠ 0, needs a boundary condition
for integrating it, i.e., a functional relation ϕ1 ¼ ϕ1ðϕ0Þ.
In simple words, the mass is determined after imposing
boundary conditions, and is given by2

M ¼ −
πF0

κ
þ π

2l2

Z �
3ϕ1 − ϕ0

dϕ1

dϕ0

�
dϕ0: ð36Þ

Apart from the boundary conditions ϕ0 ¼ 0 or ϕ1 ¼ 0,
there is only one additional case which also leads a
vanishing contribution from scalar field to the mass: the
functional relation

ϕ1 ¼ γϕ3
0; ð37Þ

where γ is a constant without variation. These three
boundary conditions share a same feature: they do not
spoil the conformal invariance of a scalar field approaching
to infinity in the form (28), as pointed out in [7] (for a recent
related discussion in four dimensions see [31]). Any other
functional relation ϕ1 ¼ ϕ1ðϕ0Þ, in the way of Designer

Gravity [32], breaks the conformal invariance of the scalar
field and consequently, the asymptotic AdS symmetry of
the whole configuration.
We can now compute the mass and electric charge for the

black holes found in Sec. II. The first case is the black hole
with stealth matter described in Sec. II A. In this case, F0 ¼
24λb2;ϕ0 ¼

ffiffiffi
b

p
;ϕ1 ¼ 0 and E0 ¼ 3λ1=3bsignðqÞ. Then,

evaluating (36) and (35), the corresponding mass and
electric charge are

M ¼ −
24πλb2

κ
; and Qe ¼ 6πð−λÞ1=3bsignðqÞ; ð38Þ

respectively.
For the black holes found in Sec. II B, ϕ0;ϕ1 ≠ 0 and a

boundary condition is required in order to determine the
mass. For instance, the boundary condition

ϕ1 ¼ γϕn
0; ð39Þ

where γ; n ≠ −1 are constants without variation, yields a
mass

M ¼ −
πF0

κ
þ πγð3 − nÞ
2l2ðnþ 1Þϕ

nþ1
0 : ð40Þ

Then, using the asymptotic values for this class of black
holes,

F0 ¼ −
3c2ð1 − αa2Þ

l2
; ϕ0 ¼

ffiffiffiffiffiffiffiffi
8ac
κ

r
;

ϕ1 ¼ −

ffiffiffiffiffiffiffiffiffiffi
2ac3

κ

r
;

ð41Þ

the mass and the electric charge can be written as

M ¼ 3πc2ð1 − αa2Þ
κl2

þ πγð3 − nÞ
2l2ðnþ 1Þ

�
8ac
κ

�nþ1
2

; ð42Þ

Qe ¼ 6πjqj1=2signðqÞ; ð43Þ

where q is given in Eq. (15). Note that the boundary
condition (39) fixes a relation between the integration
constants a and c. Finally, the limit α → 0 in (42) and
(43) gives the mass and electric charge of the black hole
without self-interaction potential described in Sec. II C.

IV. THERMODYNAMICS

This section is devoted to study thermodynamic proper-
ties of the charged hairy black holes shown in Sec. II.
The conjugate variables associated to the conserved
charges, mass and electric charge, are the temperature
and the electric potential, respectively. The temperature can
be obtained by means of the surface gravity κH

2Two arbitrary additive constants (but fixed, i.e. without
variation) appear in the integration of (33) and (34). They will
be set to zero in order that the massless BTZ has a vanishing
mass, and in absence of the gauge field, the solution be electri-
cally uncharged.
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T ¼ κH
2π

; ð44Þ

which is given by κ2H ¼ −1=2∇μχν∇μχ
ν with χμ ¼ ð1; 0; 0Þ.

Additionally, the electric potential is defined as

Φ≔A0ðrþÞ − A0ð∞Þ ¼ −
q
rþ

: ð45Þ

The entropy can be found using the modified
Bekenstein-Hawking area formula,

S ¼ ΩðrþÞ
4π2rþ
κ

; ð46Þ

where the factor ΩðrþÞ ¼ 1 − κϕðrþÞ2=8 comes from the
nonminimally coupling term in the action [33,34]. Since
this factor is not positive definite, the entropy could become
negative. In order to avoid such a non-well-behaved
thermodynamic situation, solutions in which ΩðrþÞ is
negative must be discarded as black holes. For this reason,
it is necessary to impose additional constrains on the
integration constants and α as discussed in detail below.
We start examining the validity of the first law for the

black holes introduced in Sec. II. Using the variation of
the global charges (33) and (34), and the expressions for the
temperature (44), entropy (46) and electric potential (45),
evaluated on each particular black hole, it is possible to
prove that the first law of black hole thermodynamics

δM ¼ TδSþ ΦδQ ð47Þ

holds in all the cases. It can be seen as follows. In the
general case c ≠ 0 the expressions for each member of the
above equation are given by

δM ¼ −
2πc2

l2κ
ð1þ 3αaÞδaþ 6πc

l2κ
ð1 − αa2Þδc ð48Þ

δQe ¼−
25=6πsignðqÞσ2=3cð3αa2−2αa−1Þδa

κl2ð1−aÞ2=3ð1−αa2Þ2=3

−
325=6πsignðqÞσ2=3ð1−aÞ1=3ð1−αa2Þ1=3δc

κl2
ð49Þ

δS ¼ −
4π2xδa
κð1þ xÞ −

4π2ð−1þ a − xÞxδc
κð1þ xÞ

þ 4π2cð−aþ ð1þ xÞ2Þδx
κð1þ xÞ2 : ð50Þ

After applying repeatedly the following identities which
comes from FðrþÞ ¼ 0,

x3 ¼ ð1 − αa2Þð2þ 3xÞ; δx ¼ −
2αað2þ 3xÞδa

3ð−1þ αa2 þ x2Þ ;

ð51Þ

it is possible to show that the first law is satisfied. Note that
this property holds regardless a relation between a and c,
i.e., the first law is satisfied for any boundary condition. For
c ¼ 0 the check of the first law is straightforward, we have
in this case

δM ¼ −
48πλbδb

κ
; ð52Þ

δQe ¼ 6πð−λÞ1=3signðqÞδb; ð53Þ

δS ¼ 8l
ffiffiffiffiffiffiffiffi
6jλjp

δb
κ

: ð54Þ

Now, we analyze the thermodynamic behavior of the black
hole solutions according to the different values of c. In the
case c ¼ 0, discussed in Sec. II A, there exists an event
horizon only if the coupling constant λ is negative. Then,
the temperature, electric potential and entropy are

T ¼ rþ
2πl2

; Φ ¼ −
signðqÞrþ
24ð−λÞ1=3l2 ;

S ¼
�
1 −

κ

8l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24ð−λÞp

�
4π2rþ
κ

;

ð55Þ

respectively. We can see that these quantities are linear
functions of rþ ¼ 2

ffiffiffiffiffiffiffiffi
6jλjp

lb. However, the entropy is
positive only if

ffiffiffiffiffiffi
−λ

p
< κ=8l

ffiffiffiffiffi
24

p
. Thus, this physical

requirement on the entropy yields an upper bound for
the coupling constant λ.
For the case c ≠ 0, studied in Sec. II B, the expressions

for temperature, electric potential, and entropy computed
from (44), (46), and (45) are

T ¼ 3rþ
2πl2

�
rþ þ c
3rþ þ 2c

�
;

Φ ¼ −
signðqÞc2ð1 − αa2Þ2=3ð1 − aÞ2=3

ðκl2Þ2=3rþ
;

ð56Þ

S ¼
�
1 −

ac
rþ þ c

�
4π2rþ
κ

; ð57Þ

respectively.
First, we analyze the temperature behavior. Since

rþ þ c > 0, the temperature is a positive, monotonically
increasing function of rþ as shown in Fig. 3. For large
values of rþ, the temperature approaches a linear function
of rþ with the same slope, 1=ð2πl2Þ, as for that in the case
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c ¼ 0, which coincides with the temperature of the static
BTZ black hole.
Now, we focus the attention on the entropy (57) for

c ≠ 0. As mentioned, the entropy derived from the action
(1) is not a positive definite quantity. Then, the conditions
that guarantee black holes with positive entropy must be
determined. This is summarized in Table I.
A conformal transformation maps the action (1) to the

Einstein frame (EF), where the scalar field is minimally
coupled to gravity. The entropy in the Einstein frame
follows the Bekenstein-Hawking area law, and hence is a
positive definite quantity. Naively, one may think that
negative entropy configurations, now mapped into the
Einstein frame could have a positive entropy.
Remarkably, as shown in [35], for a similar class of
solutions in four dimensions, they are not mapped into
black holes but naked singularities in the new frame. The
mechanism acts as follows. In three dimensions the
conformal transformation is given by

gEFμν ¼ ΩðϕÞ2gμν ¼
�
1 −

κ

8
ϕ2

�
2

gμν: ð58Þ

First, we note the hypersurfaces where the conformal factor
ΩðϕÞ vanishes are mapped into curvature singularities of
the corresponding image in the EF. For the solutions
presented in this work, ΩðϕÞ is a monotonously increasing
function of r approaching 1 for a large r, but it is not a
positive definite function. For configurations where
ΩðϕðrþÞÞ ≤ 0, the conformal factor necessarily vanishes
in a hypersurface located at r0 ≥ rþ generating a naked
singularity in the EF. On the contrary, for those configu-
rations withΩðϕðrþÞÞ > 0, the curvature singularity occurs
at r0 < rþ. Only in the latter case black holes in the
conformal frame are mapped into black holes in the EF. In
consequence, sinceΩðϕðrþÞÞ > 0 is the same condition for

ensuring a positive entropy, only black holes having a well-
defined entropy in the conformal frame generate black
holes in the EF. Therefore one concludes that the conditions
for the black holes parameters in the conformal frame,
shown in Table I ensuring the entropy to be positive,
exactly coincide with the ones that guarantee cosmic
censorship in Einstein frame.

V. DISCUSSION

We have obtained exact, circularly symmetric, three-
dimensional black holes, which are regular on and outside
their event horizons, endowed with conformally coupled
scalar and gauge fields. We remark that all these inter-
actions were fixed ab initio in the action. The black holes
are described by means of very simple expressions, even in
the presence of a self-interaction potential compatible with
the conformal invariance. For this reason, their geometries
and thermodynamic properties can be easily explored, and
consequently, the physical meaning of them becomes clear.
In general, the integration of the field equations provides

two arbitrary constants which parametrize the solutions in
conjunction with the self-interaction coupling constant.
The black holes can be classified in three groups. The first
group, discussed in Sec. II A, includes those with a stealth
composite matter source, where the contributions of both
fields to the energy-momentum tensor cancel out. The case
in which the three parameters do not vanish defines the
second group treated in Sec. II B. Here two black holes
appear, one with a single horizon, and another one having
an inner horizon, which cannot become extreme, keeping a
nontrivial scalar field. The third group is defined by the
absence of the self-interaction potential (Sec. II C). This
class contains the electrically charged version of the black
hole found in [6]. Additionally, an extreme black hole
emerges if the condition of regularity for the fields at the
horizon is removed.

TABLE I. The table shows the conditions that ensure a positive
entropy for c ≠ 0. In the first column the existence conditions for
black holes are displayed. The second and third columns exhibit
the range of the coupling parameter α and the integration constant
a for which the entropy is positive. Here a� ¼ ð3þ αÞ=ð1þ 3αÞ.
We observe that a large negative α ensure a well-defined entropy
without extra conditions. As is explained in the text, these
conditions also ensure that the mapped solutions, using (58),
correspond to black holes in the Einstein frame.

Horizon conditions α a

c > 0 0 < α ≤ 1 0 < α ≤ 1 a < a�
1 < a ≤ 1=

ffiffiffi
α

p
α ≤ 0 −1=3 < α ≤ 0 a < a�
a > 1 −∞ < α ≤ −1=3 No condition

c < 0 α < 0 −3 < α < −1=3 a < a�
a < 0 −∞ < α ≤ −3 No condition

FIG. 3 (color online). The behavior of the temperature T as a
function of the horizon radius rþ is shown. For all possible values
of the integration constant c, the temperature is a monotonically
increasing function of rþ. For large values of rþ, T approaches a
linear function of rþ with a slope 1=ð2πl2Þ, which matches the
straight line describing the case c ¼ 0. Note that for a given
temperature, three possible black hole configurations of different
sizes can exist.
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It is worth noting that the asymptotic behavior of the
metrics satisfies the Brown-Henneaux asymptotic condi-
tions even in the case of a nontrivial scalar and gauge fields.
This means that these are asymptotically AdS spacetimes.
However, the entire configuration is endowed with the
asymptotic AdS invariance only if the scalar field allows it.
The conserved charges, mass and the electric charge,

were determined under the Regge-Teitelboim approach.
It was found that boundary conditions on the leading and
subleading terms of the asymptotic form of the scalar
field are necessary in order to obtain the mass. This fact is
in accordance with the physical statement which says that
the mass is well defined after boundary conditions are
imposed.
Remarkably, the scalar fields presented in Secs. II B and

II C have an asymptotic behavior allowing us to analyze a
wide class of boundary conditions, even including those
that break the asymptotic AdS symmetry. This is possible
because the scalar field contains two independent integra-
tion constants unlike other exact solutions as far we know,
which are defined with only one integration constant and
hence no other boundary condition is required. These black
holes could be considered in the context of the so-called
Designer Gravity theories [32], in which general boundary
conditions were numerically studied. However, since the
black holes shown here are exact solutions, these could be
very useful for those models.
The temperature of the black holes is a monotonically

increasing function of the horizon radius rþ, which
approaches the linear one for large rþ as it happens in
general for the AdS black holes. On the other hand, the
factor appearing in the modified entropy area law is not

necessarily positive definite. Hence the positiveness of the
entropy requires extra conditions on the integration con-
stants and the coupling parameter α as shown in Table I. We
note that for a large enough negative coupling constant the
entropy is positive without other conditions apart from
those necessary for the existence of black holes. Since in
the Einstein frame the entropy is a positive definite
quantity, one may think that negative entropy configura-
tions could have a well-defined thermodynamic description
in that frame as well. However, this class of solutions is
mapped to naked singularities in the Einstein frame. It is
worth pointing out the exact correspondence between
the positiveness of the entropy in the conformal frame
and the cosmic censorship principle in the Einstein frame.
The black holes in the Einstein frame, and their geometrical
and thermodynamic properties deserve further attention
and they are interesting enough as to be considered in a
future work. Finally, in three dimensions adding angular
momentum is not a difficult task, and it would be
interesting to study the spinning versions of the black
holes introduced here.
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