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We discuss the quantum dynamics of a Dirac fermion particle in the Poincaré gauge gravitational field.
The minimal as well as the Pauli-type nonminimal coupling of a fermion with external fields is studied,
bringing into consideration the notions of the translational and the Lorentz gravitational moments. The
anomalous gravitomagnetic and gravitoelectric moments are ruled out on the basis of the covariance
arguments. We derive the general Foldy-Wouthuysen transformation for an arbitrary configuration of the
Poincaré gauge gravitational field without assuming it is weak. Making use of the Foldy-Wouthuysen
Hamiltonian for the Dirac particle coupled to a magnetic field in a noninertial reference system, we analyze
the recent experimental data and obtain bounds on the spacetime torsion.
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I. INTRODUCTION

Poincaré gauge theory of gravity is a natural extension of
Einstein’s general relativity (GR) theory based on the
gauge-theoretic ideas; see a comprehensive review in
[1–4]. The geometrization of the gravitational physics
using the principles of covariance and equivalence is
similar to the geometrization of the three physical inter-
actions (electromagnetic, weak, and strong) using the
Yang-Mills type of approach. There is a difference though
in that the Standard Model deals with the fundamental
symmetry groups acting in the internal spaces, whereas the
gravity has to do with the symmetry of the spacetime.
The group of the local spacetime translations (diffeo-

morphisms) plays the central role in GR. This is manifest in
the well-known fact [5] that the gravitational field couples
to the corresponding translational Noether current—the
energy-momentum tensor. On the other hand, the high
energy physics is based on the Poincaré group which is a
semidirect product of the translation group times the
Lorentz group. The fundamental particles are classified
by mass and spin which arise in the representation theory of

the Poincaré group. The Noether theorem gives rise to the
two currents, in accordance with the semidirect structure
of the Poincaré group: the energy-momentum tensor
(translational current) and the tensor of spin (rotational
current). In the gauge theories of the Yang-Mills type, the
principle of the local symmetry relates the existence of
the gauge fields to the corresponding Noether currents. In
the gauge-theoretic framework, there exists a natural
extension of GR based on the Poincaré group, with
the energy-momentum and spin currents as the sources of
the gravitational field [6–9]. The spacetime geometry is
then characterized by a nontrivial torsion which is
coupled to spin current, along with the metric coupled
to the energy-momentum current.
The theory of gravity with torsion has a long history

going back to 1922 when Elie Cartan came up the first
gravitational model [10]. Later it attracted much attention
in attempts to construct the unified field theories (with
the notable efforts of Weyl, Einstein, Eddington, and
Schrödinger, among others [11]). Another important step
was the development of physical models of elastic media
with microstructure by Cosserats et al. [12]. The modern
understanding of the torsion and of its relation to the
gravitational physics was achieved in the framework of
the Poincaré gauge theory [2–4,6–8]. The Einstein-Cartan
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gravitational theory [1,9] is the closest viable extension
of GR. It is consistent with experiments on the macro-
scopic scales and, in particular, with all classical gravity
tests within the Solar System. A possible deviation from
the GR due to the contact spin-torsion interaction is only
expected at extremely high densities during the early
stages of the Universe’s evolution or on the microscopic
scales in the high energy particle experiments.
The post-Riemannian geometry of spacetime can be

probed with the help of detectors built of the matter with
microstructure. The classical point particles with spin and
spinning continuous media (fluids) were extensively
studied in this context [13–17]. The analysis of the
equations of motion of extended bodies [18,19] has
shown that the torsion can be measured only when the
matter possesses intrinsic spin. Mechanically rotating
gyroscopes do not feel the torsion when matter couples
minimally to the gravitational field; there is, however, a
loophole for the nonminimal coupling case [20]. In the
efforts to detect the spacetime torsion, the polarized
material bodies and media are systematically used in
the recent experiments [21,22].
On the cosmological scales, the modern observations can

be used to place limits on the possible torsion effects [23]
which may qualitatively modify the early stage of the
Universe’s evolution [24–26]; for an overview of cosmol-
ogy with spin and torsion, see [27].
The general discussion of the spin-torsion classical and

quantum effects can be found in Ref. [28]; see Ref. [29] for
a more recent review.
In the present paper, we consider the quantum

dynamics of a Dirac fermion particle, taking into account
possible spin-torsion coupling in the framework of the
Poincaré gravity. Earlier, this problem was analyzed for
special gravitational field configurations in the semiclass-
ical approximation [30–36]. Here we generalize our pre-
vious results [37–43] obtained for the dynamics of fermion
spin in an arbitrary torsionless gravitational field.
The structure of the paper is as follows. In Sec. II we

recall the basic facts about the gauge-theoretic approach to
gravity and describe in full detail the coupling of a fermion
Dirac particle to the electromagnetic and the Poincaré
gauge gravitational field. The Foldy-Wouthuysen trans-
formation is performed in Sec. III for an arbitrary spacetime
geometry with the curvature and torsion. The possible
nonminimal coupling of the Dirac particle to the Poincaré
gauge field is discussed in Sec. IV, where we demonstrate
the importance of the Gordon decomposition of the
Noether currents. We then specialize in Sec. V to the
dynamics of a Dirac fermion particle in the magnetic field
in a rotating reference frame. In Sec. VI we use the
theoretical findings to obtain the new bounds on the
spacetime torsion from the experimental data. Finally,
we summarize our conclusions in Sec. VII. In the
Appendix we describe our notations and conventions.

II. SPIN-TORSION COUPLING IN POINCARÉ
GAUGE GRAVITY

Let us give a brief summary of the corresponding gauge-
theoretic formalism, without going into the subtleties of
constructing the gauge theory for the Poincaré group
(technical details can be found in Refs. [2–4,6–8]).
At first, we recall the essential points of the Yang-Mills

theory. Let ΦA denote the matter field, and G is the
N-parameter symmetry group. Under its action, the field
transforms covariantly

δΦA ¼ εIðρIÞABΦB: ð2:1Þ

Here, ðρIÞAB are the generators in the corresponding repre-
sentation of G (with I; J; K¼ 1;…; N; the range of the
indices A;B;C;… is not important). When the infinitesi-
mal parameters εI are constant, the derivatives transform
covariantly δ∂iΦA ¼ εIðρIÞAB∂iΦB. However, for the local
symmetry with εI ¼ εIðxÞ, one needs the gauge field AI

i to
define

DiΦA ¼ ∂iΦA − AI
iðρIÞABΦB: ð2:2Þ

This covariant derivative transforms homogeneously,
δDiΦA ¼ εIðρIÞABDiΦB, provided the gauge field potential
changes δAI

i ¼ ∂iε
I þ fIJKεJAK

i under the group’s action.
The structure constants fIJK determine the Lie algebra of
the gauge group G, so that the generator commutator
reads ðρJÞACðρKÞCB − ðρKÞACðρJÞCB ¼ fIJKðρIÞAB.
The gauge potential gives rise to the gauge field strength

tensor

Fij
I ¼ ∂iAI

j − ∂jAI
i − fIJKAJ

i A
K
j ; ð2:3Þ

from which the Yang-Mills-type Lagrangian is constructed
as a quadratic invariant.
Specializing to the theory of gravity, we now identify the

gauge symmetry group G with the ten-parameter Poincaré
group. As a semidirect product of the group of translations
times the Lorentz group, it is conveniently parametrized by
the set εI ¼ ðεα; εαβ ¼ −εβαÞ; hence, we have the multi-
index I ¼ α; ½αβ�. The corresponding Poincaré gauge
potentials

AI
i ¼ ðeαi ;Γi

αβ ¼ −Γi
βαÞ ð2:4Þ

are then naturally interpreted as the coframe (tetrad) and the
local Lorentz connection, respectively. They introduce the
covariant derivative for the matter fields

DαΦA ¼ eiα

�
∂iΦA −

1

2
Γi

βγðρβγÞABΦB

�
: ð2:5Þ

Here, ðρβγÞAB ¼ −ðργβÞAB are the generators of the Lorentz
transformations, and the factor 1=2 removes the double
counting in the sum of the skew-symmetric objects.
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The Poincaré gauge field strength tensors using the
Yang-Mills pattern (2.3) read

Tij
α ¼ ∂ieαj − ∂jeαi þ Γiβ

αeβj − Γjβ
αeβi ; ð2:6Þ

Rij
αβ ¼ ∂iΓj

αβ − ∂jΓi
αβ þ Γiγ

βΓj
αγ − Γjγ

βΓi
αγ: ð2:7Þ

The anholonomic (Greek) indices are raised and lowered
with the help of the Minkowski metric gαβ. We identify the
translational gauge field strength (2.6) and the rotational
gauge field strength (2.7) with the torsion and curvature
tensors, respectively. The first two terms on the right-
hand side of (2.6) form the anholonomity object
Cij

α ¼ ∂ieαj − ∂jeαi . This is not a tensor under the local
gauge group. The “mixed” form of (2.6) is explained by the
semidirect product (not direct product) structure of the
Poincaré group.
In view of the skew symmetry of the connection, we can

verify that the covariant derivative of the metric vanishes,
Digαβ ¼ 0. One can solve the algebraic equation (2.6) with
respect to the connection (by cyclic permutation of indices)
to find explicitly

Γiαβ ¼ ~Γiαβ − Kiαβ: ð2:8Þ

Here the Riemannian connection is denoted by the tilde,
and the post-Riemannian contortion tensor is determined
by the torsion,

~Γiαβ ¼
1

2
ðCαβi − Ciαβ þ CiβαÞ; ð2:9Þ

Kiαβ ¼
1

2
ðTαβi − Tiαβ þ TiβαÞ: ð2:10Þ

Greek and Latin indices are converted into each other by
means of the coframe: for example, Cαβ

i ¼ ejαekβe
i
γCjk

γ. In
particular, we thus find the components of the metric with
respect to the local coordinate basis: gij ¼ eαi e

β
j gαβ. Hence,

the spacetime interval

ds2 ¼ gijdxidxj ¼ gαβϑαϑβ ð2:11Þ

is equivalently written either in terms of the holonomic
coframe dxi or in terms of the anholonomic one
ϑα ¼ eαi dx

i.

A. Dirac particle in Poincaré gravitational field

Let Ψ be a Dirac spinor field. The corresponding
generators of the Lorentz group are well known:

ðραβÞ ¼ −
i
2
σαβ; σαβ ¼

i
2
ðγαγβ − γβγαÞ: ð2:12Þ

The four Dirac matrices γα, α ¼ 0, 1, 2, 3 satisfy the
standard anticommutation condition γαγβ þ γβγα ¼ 2gαβ.
In addition to the local Poincaré symmetry, we assume the
local Uð1Þ phase symmetry, which is responsible for the
electromagnetic gauge field Ai. Accordingly, the total
covariant derivative (2.5) reads

DαΨ ¼ eiα

�
∂iΨ −

iq
ℏ
AiΨþ i

4
Γi

βγσβγΨ

�
; ð2:13Þ

where, making use of (2.2), we took into account that the
generator of a one-dimensional Abelian Uð1Þ group is
ðρÞ ¼ i. The conventional q=ℏ factor (where q has the
dimension of the electric charge) is needed to provide the
correct dimension for the electromagnetic potential Ai and
for the (Maxwell) field strength Fij ¼ ∂iAj − ∂jAi.
The dynamics of a fermion particle with spin-1=2 and

mass m minimally coupled to the Poincaré gauge gravi-
tational and electromagnetic field is described by the
invariant action

I ¼
Z

d4xL; L ¼ ffiffiffiffiffiffi
−g

p
L; ð2:14Þ

where the Lagrangian reads

L ¼ iℏ
2
ðΨ̄γαDαΨ −DαΨ̄γαΨÞ −mcΨ̄Ψ: ð2:15Þ

The Dirac conjugate spinor is defined by Ψ̄ ¼ Ψ†β (with
β ¼ cγ0̂), and its covariant derivative reads

DαΨ̄ ¼ eiα

�
∂iΨ̄þ iq

ℏ
AiΨ̄ −

i
4
Γi

βγΨ̄σβγ

�
; ð2:16Þ

B. Hermitian Hamiltonian for the Dirac fermion

Let xi ¼ ðt; xaÞ be the local coordinates on the spacetime
manifold.
The study of the dynamics of the Dirac particle in an

arbitrary Poincaré gauge field ðeαi ;Γi
αβÞ can be simplified

for a convenient parametrization of the gravitational
variables.
We describe the translational gauge potential (coframe

eαi ) in the Schwinger [44–46] gauge e0̂a ¼ 0 (also e0â ¼ 0),
a ¼ 1, 2, 3, as follows:

e0̂i ¼ Vδ0i ; eâi ¼ Wâ
bðδbi − cKbδ0i Þ; a ¼ 1; 2; 3:

ð2:17Þ
We assume that the functions V and Ka, as well as the
components of the 3 × 3 matrix Wâ

b, may depend arbi-
trarily on t; xa.
One straightforwardly verifies that the coframe (2.17)

gives rise to a general form of the spacetime line element
(2.11)
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ds2 ¼ V2c2dt2

− δâ b̂W
â
cWb̂

dðdxc − KccdtÞðdxd − KdcdtÞ:
ð2:18Þ

This is a slightly modified version of the well-known
parametrization of a metric proposed by Arnowitt et al. [47]
and DeWitt [48] in the context of the canonical formulation
of the quantum gravity theory; the off-diagonal metric
components g0a ¼ Ka=V2c are related to the effects of
rotation.
The components of rotational gauge potential (local

Lorentz connection Γi
αβ) are assumed to be completely

arbitrary functions of t; xa, too.
A direct check shows that the Schrödinger equation

derived from the action (2.14) has a non-Hermitian
Hamiltonian. To avoid this difficulty, we define a new
wave function by

ψ ¼
�
1

c
ffiffiffiffiffiffi
−g

p
e0
0̂

�1
2

Ψ: ð2:19Þ

Substituting the coframe (2.17) into (2.13), (2.16), and
(2.14), we rewrite the fermion action as

I ¼ 1

2

Z
dtd3x½iℏðψ†∂tψ − ∂tψ

†ψÞ − ψ†Hψ þ ðHψÞ†ψ �:
ð2:20Þ

Here the Hermitian Hamiltonian reads

H ¼ βmc2V þ qΦþ c
2
ðπbF b

aα
a þ αaF b

aπbÞ

þ c
2
ðK · π þ π · KÞ þ ℏc

4
ðΞ · Σ −ϒγ5Þ; ð2:21Þ

where the kinetic 3-momentum operator πa ¼ −iℏ∂a −
qAa ¼ pa − qAa accounts of the interaction with the
electromagnetic field Ai ¼ ð−Φ; AaÞ, and we denoted

F b
a ¼ VWb

â; ð2:22Þ

ϒ ¼ Vϵâ b̂ ĉΓâ b̂ ĉ; ð2:23Þ

Ξa ¼ V
c
ϵâ b̂ ĉðΓ0̂ b̂ ĉ þ Γb̂ ĉ 0̂ þ Γĉ 0̂ b̂Þ: ð2:24Þ

As usual, αa ¼ βγa (a; b; c;… ¼ 1; 2; 3) and the spin
matrices Σ1 ¼ iγ2̂γ3̂;Σ2 ¼ iγ3̂γ1̂;Σ3 ¼ iγ1̂γ2̂, and γ5 ¼
iα1̂α2̂α3̂. Boldface notation is used for 3-vectors
K ¼ fKag; π ¼ fπag;α ¼ fαag;Σ ¼ fΣag. The three-
dimensional totally antisymmetric Levi-Civita tensor
ϵâ b̂ ĉ has the only nontrivial component ϵ1̂ 2̂ 3̂ ¼ 1.
As a result, from the action (2.20) we derive the

Schrödinger equation for the Dirac fermion particle in
an arbitrary Poincaré gauge field ðeαi ;Γi

αβÞ:

iℏ
∂ψ
∂t ¼ Hψ : ð2:25Þ

C. Spin-torsion coupling

In order to make the coupling of spin and torsion explicit,
we now use the decomposition of the connection into
the Riemannian and post-Riemannian parts (2.8)–(2.10).
Substituting (2.8) into (2.23) and (2.24), we find

ϒ ¼ ~ϒþ VcT
̬
0̂; Ξâ ¼ ~Ξâ − VT

̬ â: ð2:26Þ

The tilde, as usual, denotes the Riemannian quantities

~ϒ ¼ Vϵâ b̂ ĉ ~Γâ b̂ ĉ ¼ −Vϵâ b̂ ĉCâ b̂ ĉ; ð2:27Þ

~Ξâ ¼
V
c
ϵâ b̂ ĉ ~Γ0̂

b̂ ĉ ¼ ϵâ b̂ ĉQ
b̂ ĉ; ð2:28Þ

which are constructed in terms of the following auxiliary
objects:

Câ b̂
ĉ ¼ Wd

âWe
b̂∂ ½dWĉ

e�; Câ b̂ ĉ ¼ gĉ d̂Câ b̂
d̂; ð2:29Þ

Qâ b̂ ¼ gâĉWd
b̂

�
1

c
_Wĉ

dþKe∂eWĉ
dþWĉ

e∂dKe

�
: ð2:30Þ

The dot ⋅ denotes the derivative with respect to the
coordinate time t. As we see, Câ b̂

ĉ ¼ −Cb̂ âĉ is the reduced
anholonomity object for the spatial triad Wâ

b.
The non-Riemannian parts in (2.26) are constructed from

the components of the axial torsion vector

T
̬
α ¼ −

1

2
ηαμνλTμνλ; ð2:31Þ

where ηαμνλ is the totally antisymmetric Levi-Civita tensor.
As a result, we can explicitly identify the spin-torsion

coupling

−
ℏcV
4

ðΣ · T
̬
þ cγ5T

̬
0̂Þ; ð2:32Þ

which comes from the last terms of the Dirac Hamiltonian
(2.21). As usual, T

̬
¼ fT

̬ ag.

III. FOLDY-WOUTHUYSEN TRANSFORMATION
FOR DIRAC PARTICLE

At first, let us consider the purely gravitational case
without the electromagnetic field. In order to reveal the
physical contents of the Schrödinger equation (2.25), we
need to go to the Foldy-Wouthuysen (FW) representation.
We can apply a general method for constructing the FW
transformation developed in Ref. [49] to the exact Dirac
Hamiltonian (2.21).
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Omitting the technical details (see [41–43]), we then find for the FW Hamiltonian:

HFW ¼ Hð1Þ
FW þHð2Þ

FW þHð3Þ
FW: ð3:1Þ

The three terms read, respectively,

Hð1Þ
FW ¼ βϵ0 þ ℏc2

16

�
1

ϵ0
; ð2ϵcaeΠefpb;F d

c∂dF b
ag þ Πafpb;F b

a
~ϒgÞ

�
þ ℏmc4

4
ϵcaeΠe

�
1

T
; fpd;F d

cF b
a∂bVg

�
; ð3:2Þ

Hð2Þ
FW ¼ c

2
ðKapa þ paKaÞ þ ℏc

4
Σa

~Ξa þ ℏc2

16

�
1

T
;

�
Σafpe;F e

bg;
�
pf;

�
ϵabc

�
1

c
_F f

c − F d
c∂dKf þ Kd∂dF f

c

�

−
1

2
F f

dðδdb ~Ξa − δda ~ΞbÞ
����

; ð3:3Þ

Hð3Þ
FW ¼ ℏ

2
ΣaΩðTÞ

a : ð3:4Þ

Here the curly brackets f, g denote anticommutators and we introduced the operators

ΩðTÞ
a ¼ −

c
2
VδabT

̬ b̂ þ β
c3

8

�
1

ϵ0
; fpb;F b

aVT
̬
0̂g
�
þ c2

16

�
1

T
;

�
fpe;F e

bg;
�
pf;F f

dVðδdbT
̬ â − δdaT

̬ b̂Þ
���

; ð3:5Þ

ϵ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4V2 þ c2

4
δacfpb;F b

agfpd;F d
cg

r
; T ¼ 2ϵ02 þ fϵ0; mc2Vg: ð3:6Þ

The first two terms (3.2) and (3.3) determine the dynamics
of the Dirac fermion on the Riemannian spacetime mani-
fold, whereas (3.4) with (3.5) gives the general description
of the contribution of torsion field to the FW Hamiltonian.
In the absence of torsion, we recover the previous results
[37–43].
The equation of spin motion is obtained from the

commutator of the FW Hamiltonian with the polarization
operator Π ¼ βΣ:

dΠ
dt

¼ i
ℏ
½HFW;Π� ¼ Ω ×Π: ð3:7Þ

As a special case, let us consider the flat Minkowski
metric with V ¼ 1; Ka ¼ 0;Wâ

b ¼ δab. The spin precesses
under the action of the torsion with the angular velocity
Ω ¼ ΩðTÞ, where

ΩðTÞ ¼−
c
2
T
̬
þ β

c3

8

�
1

ϵ0
;fp;T

̬
0̂g
�

þ c
8

�
c2

ϵ0ðϵ0 þmc2Þ ; ðfp
2;T

̬
g−fp; ðp ·T

̬
ÞgÞ

�
: ð3:8Þ

For slow nonrelativistic particles, this reduces to the earlier
results of [30–36].

IV. NONMINIMAL COUPLING: COVARIANT
DIRAC-PAULI EQUATION

The conventional covariant Dirac equation disregards the
anomalous magnetic moment and the electric dipole
moment. Experimental search of the dipole moments of
leptons and proton [50–52] (in particular, in the study of
physics beyond the Standard Model) calls forth the exten-
sions of this equation, admitting a nonminimal coupling to
the electromagnetic field. Taking into account the efforts to
check the validity of the fundamental equivalence principle
for particles with mass and spin (e.g., see Refs. [53–64]), it is
necessary to investigate the possible nonminimal coupling to
the gravitational field. For example, a possible violation of
Einstein’s equivalence principle can be manifest in the spin
coupling to the Earth’s rotation. In Ref. [65], the bound on
the anomalous gravitomagnetic moment has been obtained
from the reanalysis of the earlier experimental data. In order
to develop a theoretical framework for the discussion of
these issues, we consider here the covariant extension of the
Dirac equation by going beyond the minimal coupling
principle which is encoded in Eq. (2.13).

A. Anomalous magnetic moment
and electric dipole moment

In simple terms, the minimal coupling means that a
gauge field enters the matter Lagrangian only via the
covariant derivatives of the matter field. The nonminimal
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coupling is featured by the presence of explicit “Pauli
terms” proportional to the gauge field strength. Let us
discuss the electromagnetic interaction first. As one knows,
the nonminimal term

μ0

2c
FijΨ̄σijΨ ð4:1Þ

added to the Dirac Lagrangian (2.15) accounts for the
possible anomalous magnetic moment (AMM) of a fermion
particle coupled directly to the electromagnetic field
strength tensor Fij ¼ ∂iAj − ∂jAi.

Noticing that σij ¼ eiαe
j
βσ

αβ, we conclude that physi-
cally important are the anholonomic components of the
field Fαβ ¼ eiαe

j
βFij. Introduce now the dual tensor by

Gαβ ¼ 1
2
ηαβμνFμν. The Lagrangian (2.15) modified by

nonminimal coupling terms

μ0

2c
FαβΨ̄σαβΨþ δ0

2
GαβΨ̄σαβΨ ð4:2Þ

describes the general case of a fermion with AMM and
an electric dipole moment. The two coupling parameters
have the dimension ½μ0� ¼ ½qℏ=2m� of the magnetic
dipole (nuclear magneton) and ½δ0� ¼ ½ql� of the electric
dipole (charge times length), respectively.
Taking into account the nonminimal coupling (4.2), we

find from (2.15) an extended Schrödinger equation with a
modified Hamiltonian

H ¼ βmc2V þ qΦþ c
2
ðπbF b

aα
a þ αaF b

aπbÞ

þ c
2
ðK · π þ π · KÞ þ ℏc

4
ðΞ · Σ −ϒγ5Þ

− βðΣ ·Mþ iα ·PÞ: ð4:3Þ

Here we defined

Ma ¼ Vðμ0Ba þ δ0EaÞ; ð4:4Þ

Pa ¼ Vðcδ0Ba − μ0Ea=cÞ; ð4:5Þ

in terms of the electric Ea ¼ Fâ 0̂ and magnetic Ba ¼
1
2
ϵâ b̂ ĉFb̂ ĉ fields (measured with respect to the anholonomic

reference frame).

B. Gordon decomposition of Noether currents

Before we turn to the analysis of the structure of the
possible nonminimal coupling of a Dirac fermion to the
Poincaré gauge field, it is instructive to recall the Gordon
decomposition of the Noether currents [66–71].
For the sake of maximal clarity, let us consider the

dynamics of a free Dirac particle for which the Lagrangian
(2.15) reduces to LD¼ iℏ

2
ðΨ̄γαeiα∂iΨ−∂iΨ̄γαeiαΨÞ−mcΨ̄Ψ,

with the trivial coframe eiα ¼ δiα. This model, as it is well
known, is invariant under the group Uð1Þ of the phase
transformations of the wave function and under the
Poincaré group of motion of the underlying flat
Minkowski spacetime. These symmetries give rise, via
the Noether theorem, to the three dynamical currents: the
electromagnetic current, the canonical energy-momentum
tensor, and the spin tensor, respectively,

Ji ¼ qΨ̄γiΨ; ð4:6Þ

Σα
i ¼ iℏ

2
½Ψ̄γi∂αΨ − ð∂αΨ̄ÞγiΨ�; ð4:7Þ

Sαβi ¼
ℏ
4
Ψ̄ðγiσαβ þ σαβγ

iÞΨ: ð4:8Þ

These dynamical currents satisfy the conservation laws

∂iJi ¼ 0; ∂iΣα
i ¼ 0; ∂iSαβi ¼ Σαβ −Σβα: ð4:9Þ

The form of the last conservation law (of the total angular
momentum) reflects the structure of the Poincaré group as a
semidirect product of translations times the Lorentz group.
A remarkable feature of the Dirac dynamical currents is

that one can decompose them into two pieces, namely, into
the convective and polarizational parts as follows:

Ji ¼ J
c
i þ ∂jMij; ð4:10Þ

Σα
i ¼ Σ

c

α
i þ ∂jM

̬
α
ij; ð4:11Þ

Sαβi ¼ S
c

αβ
i þ ∂jMαβ

ij þM
̬
αβ

i −M
̬
βα

i: ð4:12Þ
For the electromagnetic current (4.10), this was noticed by
Gordon [66] shortly after Dirac established his relativistic
wave equation for a spin-1=2 particle, and later [67–71] this
decomposition was demonstrated for the particles of any
spin and generalized for the gravitational currents (4.11)
and (4.12).

The convective parts J
c
i;Σ

c

α
i; S

c

αβ
i turn out to be

the Noether currents [corresponding to Uð1Þ and
Poincaré symmetries] for the convective Lagrangian
LC ¼ ℏ2

2mc ∂jΨ̄∂jΨ − mc
2
Ψ̄Ψ. It is worthwhile to notice that

the field equation for LC coincides with the squared Dirac
equation □Ψ − m2c2

ℏ2 Ψ ¼ 0.
The polarizational currents (4.10)–(4.12) are expressed

in terms of the dipole moments

Mij ¼ qℏ
2mc

Ψ̄σijΨ; ð4:13Þ

Mα
ij ¼ iℏ2

4mc
ðΨ̄σij∂αΨ − ∂αΨ̄σijΨÞ; ð4:14Þ

Mαβ
ij ¼ ℏ2

8mc
ðΨ̄σijσαβΨþ Ψ̄σαβσ

ijΨÞ; ð4:15Þ
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and the modified moment M
̬
α
ij ¼ Mα

ij þ eiαMk
jk −

ejαMk
ik. The complex structure of the Gordon decompo-

sitions (4.11) and (4.12) is again related to the semidirect
product nature of the Poincaré group.
The physical interpretation of the moments (4.13)–(4.15)

is crystal clear: these are Ampère dipoles generated by the
matter currents [72] that carry electric charge, gravitational
translational charge (mass), and gravitational rotational
charge (spin), respectively. As we can see, the correspond-
ing generators of Uð1Þ and Poincaré groups explicitly
determine the structure of the respective dipole moment.
One can generalize these observations to the curved

spacetime [67–71]. Qualitatively, this amounts to the
replacement of the partial derivatives by the covariant ones
in the equations above. However, the important point is that
the form of the dipole moments (4.13)–(4.15) remains the
same for any spacetime geometry.

C. Poincaré gravitational moments

We are now in position to discuss the possible form of
the nonminimal coupling of a Dirac fermion to the Poincaré
gauge gravitational field. The key is provided by the Pauli
term (4.1) which has the transparent structure of a product
of the electromagnetic field strength times the electromag-
netic moment (4.13): ∼FijMij.
Therefore, taking into account the existence of a dipole

moment (4.13)–(4.15) for every symmetry generator, we
come to the natural conclusion that possible nonminimal
coupling to the Poincaré gauge follows the same electro-
dynamical pattern. Namely, the corresponding gravitational
Pauli-type terms have the same product structure of the
translational gauge field strength (2.6) times the transla-
tional moment (4.14) plus the rotational gauge field strength
(2.7) times the rotational moment (4.15): ∼Tij

αMα
ijþ

Rij
αβMαβ

ij.
Explicitly, in addition to (4.1) the possible covariant

gravitational nonminimal coupling terms read as follows:

ρ0

2
Tij

αðΨ̄σijDαΨ −DαΨ̄σijΨÞ

þ τ0

2
Rij

αβΨ̄ðσijσαβ þ σαβσ
ijÞΨ: ð4:16Þ

The two new coupling parameters have the same physical
dimension ½ρ0� ¼ ½τ0� ¼ ½ℏl� (spin times length).
We can simplify the second term in (4.16) by making use

of the Dirac algebra to

−τ0RΨ̄Ψþ iτ0PΨ̄γ5Ψ; ð4:17Þ

where R ¼ Rij
αβejαeiβ is the curvature scalar, and P ¼

Rαβγδη
αβγδ is the pseudoscalar of the Riemann-Cartan

curvature. When the torsion is zero, the nonminimal

coupling (4.16) reduces to −τ0 ~R Ψ̄Ψ. This is a typical
curvature-dependent term which arises naturally in the
squared Dirac equation.
It is worthwhile to mention that the field-theoretic

models with the nonminimal coupling of the type (4.16)
were discussed not only in the framework of the Poincaré
gauge theory [28,55] but also in the context of the search of
the possible signatures of the Lorentz-violating effects
[73–75].

D. On gravitomagnetic and gravitoelectric moments

There is a formal analogy between gravitational and
electromagnetic phenomena known as the gravitoelectro-
magnetism [76–78] that can be established for the weak
gravitational fields.
In the Riemannian framework of Einstein’s GR (no

torsion), it was observed in Ref. [42] that the squared Dirac
equation features—in the weak-field approximation—a
common effect that is produced on the spin by the
electromagnetic and the gravitational (or inertial)
fields via the term σαβðqFαβ=cþmΦαβÞ, where Φαβ ¼
fπi;Γiαβg=ð2mÞ.
In the semiclassical approximation, momentum is pro-

portional to the velocity πi ¼ mUi, and Φαβ coincides with
the spin transport matrix in a gravitational field (see
[41,79]). Making this observation, one could expect that
a Dirac particle may have a nontrivial gravitomagnetic
moment along with the magnetic moment. The theoretical
analysis [65] established a strong bound on the anomalous
gravitomagnetic moment from experiment [80].
However, such weak-field considerations are not covar-

iant. The electromagnetic field strength Fij is tensor, and,
hence, σαβFαβ ¼ σijFij is invariant under arbitrary coor-
dinate and Lorentz frame transformations. In contrast, the
local Lorentz connection Γiαβ is not a tensor; hence, σαβΦαβ

is not an invariant object. An attempt to extend σαβΦαβ via
the identity [42]

gijðℏ2DiDj þ πiπjÞ

¼ ℏm
2

�
σαβΦαβ−

ℏ
8m

ð2Γi
αβΓi

αβ þ iγ5ηαβμνΓi
αβΓiμνÞ

�

ð4:18Þ

also fails since both sides are noncovariant in view of the
noncovariance of πi.
We thus conclude that the anomalous gravitomagnetic

moment is not allowed in the covariant Dirac-Pauli theory
with a nonminimal coupling of a fermion to the Poincaré
gauge gravitational field. This demonstrates a limited
nature of analogies between gravitational and electromag-
netic interactions observed in the weak-field approxima-
tion. The same conclusion is valid for the anomalous
gravitoelectric moment. It is worthwhile to recall that the
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analysis of the gravitational form factors of Dirac fermions
by Kobzarev and Okun [81] (see, also, [82,83]) have shown
that the anomalous gravitomagnetic and gravitoelectric
moments should be strictly zero.
For the Riemann-Cartan geometry, the terms (4.16) open

a different possibility for a nonminimal coupling of the
Poincaré gauge gravitational field with the gravitational
moments of a fermion particle.

V. SPIN-1=2 PARTICLE IN MAGNETIC FIELD
AND ROTATING FRAME

In the next section wewill estimate the possible effects of
the spacetime torsion on the basis of the experimental data
for the cold neutrons and atoms affected by the gravita-
tional field of the rotating Earth. Here we provide the
necessary theoretical framework for this analysis. The
reference frame rotating with the angular velocity ω is
given by [84]

V ¼ 1; Wâ
b ¼ δab; Ka ¼ −

ðω × rÞa
c

: ð5:1Þ

Substituting this into the Hamiltonian (2.21), we find the
Schrödinger description of a Dirac particle in the uniform
magnetic field B and rotating frame

H ¼ βmc2 þ cα · π − ω · λ −
ℏ
2
ω · Σ

−
ℏc
4
ðT

̬
0̂cγ5 þ T

̬
· ΣÞ: ð5:2Þ

Here, λ ¼ r × π ¼ −π × r denotes the orbital angular
moment operator, and the torsion effects are encoded in
the last term.
Applying the FW transformation to the Hamiltonian

(5.2), we find

HFW ¼ H0 þH1; ð5:3Þ
where

H0 ¼ βϵ − ω · λ −
ℏ
2
ω · Σþ ℏc3

16

�
1

ϵ
;

�
π ·Π; T

̬
0̂

��
−
ℏc
4
T
̬
· Σ

þ ℏc
16

�
c2

ϵðϵþmc2Þ ;
�
fπ2;T

̬
· Σg − 1

2
fΣ · π; ðπ · T

̬
þ T

̬
· πÞg

��
; ð5:4Þ

H1 ¼ − eℏc
8

�
1

ϵðϵþmc2Þ ;Σ⋅ðG × π − π × GÞ
�
: ð5:5Þ

Here we take into account that q ¼ e and denote

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ c2π2 − eℏc2Σ · B

p
; G ¼ B × ðω × rÞ:

ð5:6Þ

In what follows, we identify ω with the angular velocity
of the Earth. Evidently, ω × r is the particle velocity in
the inertial system related to the center of the Earth.
Note that G ¼ fEag is the electric field in a rotating
frame. Equation (5.5) describes the main correction to
the Hamiltonian. Next-to-leading-order corrections to
H0 are of order of ℏ2 and, moreover, they do not
depend on spin. H1 is much less than H0 and can be
neglected since the kinetic momentum π is usually zero
on average. The corrections to H0 are of the same order
for Dirac particles both in uniform and nonuniform
magnetic fields.
For the actual experimental conditions, we have jeℏBj ≪

m2c2 in (5.5); that is, the magnetic field is much smaller
than the critical field jBj ≪ Bc ¼ m2c2=eℏ. This allows us
to take into account only terms linear in the magnetic field.
In this approximation,

ϵ ¼ ϵ0 −
�
eℏc2

4ϵ0
;Σ · B

�
¼ ϵ0 −

�
μ0
2γ

;Σ · B

�
;

ϵ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ c2π2

p
; ð5:7Þ

where μ0 ¼ eℏ
2m is the Dirac magnetic moment and γ ¼ ϵ0

mc2 is
the Lorentz factor.
Let us now consider the spin dynamics described by the

precession equation (3.7). Using the FWHamiltonian (5.3),
we then find the corresponding operator of the angular
velocity of the spin rotation:

Ω ¼ −β
nμ0
ℏγ

;B
o
− ω −

c
2
T
̬
þ β

c3

8

n1
ε0
; fπ; T

̬
0̂g
o

þ c
8

n c2

ε0ðε0 þmc2Þ ;
h
fπ2;T

̬
g

−
1

2
fπ; ðπ · T

̬
þ T

̬
· πÞg

io
: ð5:8Þ

Here the contribution of H1 is neglected. The resulting
expression is sufficiently precise for a realistic magnetic
field in the actual experiment.
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For a more general case of a fermion spin-1=2 particle
with a nontrivial magnetic moment (μ0 ≠ 0 and δ0 ¼ 0) in a
magnetic field and in rotating frame, the dynamics is
described by the Hermitian Hamiltonian (4.3). It reads
explicitly

H ¼ βmc2 þ cα · π − ω · λ −
ℏ
2
ω · Σ − μ0Π · B

−
ℏc
4
ðT

̬
0̂cγ5 þ T

̬
· ΣÞ: ð5:9Þ

As compared to Eq. (5.2), this equation includes the
contribution of the AMM.
When the magnetic field is uniform, the FW trans-

formation of (5.9) results in

HFW ¼ H0 þH1 þH2; ð5:10Þ

where H0 and H1 are defined by (5.4) and (5.5), whereas
the last term is equal to

H2 ¼−μ0Π ·B

þμ0

4

�
c2

ϵ0ðϵ0 þmc2Þ ; ½ðB ·πÞðΠ ·πÞþðΠ ·πÞðπ ·BÞ�
�
:

ð5:11Þ

Taking this term into account, the angular velocity of spin
rotation (5.8) is modified:

Ω¼ −ω− β

�
μ0mc2

ℏε0
;B

�
− 2β

μ0

ℏ
B

þ μ0

2ℏ

�
c2

ε0ðε0 þmc2Þ ; ½ðB · πÞπþ πðπ ·BÞ�
�
−
c
2
T
̬

þ β
c3

8

�
1

ε0
;fπ; T

̬
0̂g
�

þ c
8

�
c2

ε0ðε0 þmc2Þ ; ½fπ
2;T

̬
g− ðT

̬
· πÞπ− πðπ ·T

̬
Þ�
�
:

ð5:12Þ

Evaluating the anticommutators in Eqs. (5.11) and (5.12),
we can find the effects of a possible nonuniformity of the
magnetic field.

VI. EXPERIMENTAL BOUNDS
ON SPIN-TORSION COUPLING

The theoretical analysis of the dynamics of spin underlie
the discussion of possible verifications of the Poincaré
gauge gravity [85–91]; see, also, [28,30–32]. As compared
to the extensive theoretical research, only few experimental
studies were directly devoted to the search of the

spin-torsion coupling [22,29,92]. However, we can use
the theoretical framework established in our paper to find
observational bounds on spin-torsion coupling from the
experimental data available in the literature.
In a large class of experiments, the dynamics of freely

precessing nuclear spins in a uniform magnetic field was
investigated by making use of comagnetometers with two
different kinds of atoms in S states. Ratios of their nuclear g
factors were either defined with a needed precision
or measured during an experiment. More specifically,
the relevant measurements were reported [80] for the
experiment with 199Hg and 201Hg atoms devoted to the
search of a hypothetical scalar-pseudoscalar interactions.
The atoms were at rest. The experimental data [80] were
earlier used in [65] to derive estimates for the anomalous
gravitomagnetic moment. Here we exclude the latter from
our consideration since the anomalous gravitomagnetic
moment cannot be introduced in a fully consistent covariant
way. To determine bounds on the spacetime torsion, we
also disregard the scalar-pseudoscalar interactions and
present the spin-dependent part of the FW Hamiltonian
as follows:

HFW ¼ −ðμ0 þ μ0ÞB ·Π −
ℏ
2
ω · Σ −

ℏc
4
T
̬
· Σ: ð6:1Þ

It has been demonstrated in [93] that the classical limit of
relativistic FW Hamiltonians can be obtained by a simple
replacement of quantum mechanical operators with corre-
sponding classical quantities. Therefore, the classical limit
of Hamiltonian (6.1) reads

H ¼ −gN
μN
ℏ

B · s − ω · s −
c
2
T
̬
· s; ð6:2Þ

where gN is the nuclear g factor and μN is the nuclear
magneton.
Let us denote two kinds of atoms by the subscripts

1 and 2. The measured ratio of Zeeman frequencies for
transitions between neighboring atomic levels R ¼ ν2=ν1
depends on the direction of the magnetic field B and on the
spin-torsion coupling. Two opposite directions of the
magnetic field were used in experiment [80]. The calcu-
lation of the difference of these ratios for the two opposite
directions (labeled by� subscripts below) of magnetic field
is similar to the derivations done in Ref. [65] and the result
reads

Rþ − R− ¼ � 1 − G
2πν1

½2ω cos θ þ cjT
̬
j cosΘ�: ð6:3Þ

Here, G ¼ g2
g1
is the ratio of g factors; θ is the angle between

the direction of magnetic field B and the Earth’s rotation

axis, whereas Θ is the angle between B and the torsion T
̬
;
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ω is the magnitude of the Earth’s angular velocity, and ν1 is
the Zeeman frequency for atoms of the first kind. The
experimental conditions of [80] for 199Hg and 201Hg atoms
correspond to the angle θ ≈ 0, and the ratio of g factors is
G ¼ −0.369139. Using the experimental data from [80], we
then obtain the restriction on the absolute value of the
spacetime torsion:

ℏc
4
jT
̬
j · j cosΘj < 2.2 × 10−21 eV;

jT
̬
j · j cosΘj < 4.3 × 10−14 m−1: ð6:4Þ

In the same manner, we can reanalyze the similar
experiments [94–97] where the difference of the weighted
Zeeman frequencies was measured for He and Xe
atoms:

jΔνj ¼ jν2 − Gν1j ¼
				 1 − G

2π

�
ω cos θ þ c

2
jT
̬
j cosΘ

�				:
ð6:5Þ

Making use of the experimental data presented in Sec. 4.3
of Ref. [94], we can extract the new restriction on the
minimal coupling of torsion [with the g-factor ratio
G ¼ gHe=gXe ¼ 2.75408159ð20Þ and ð1 − GÞω cos θ ¼
−6.87263 × 10−5 rad=s]:

ℏc
2
jT
̬
j · jð1 − GÞ cosΘj < 4.1 × 10−22 eV;

jT
̬
j · j cosΘj < 2.4 × 10−15 m−1: ð6:6Þ

Equations (6.4) and (6.6) present the strong new bounds on
the spacetime torsion.

VII. DISCUSSION

In this paper, we have studied the dynamics of the Dirac
fermion particle in the framework of the Poincaré gauge
gravity theory. This problem is of considerable interest
because one cannot probe the possible deviations of the
spacetime structure from the Riemannian geometry with
the help of the spinless matter (massive test particles or
extended test bodies) even if the latter is characterized by a
macroscopic angular momentum. Only matter with intrin-
sic spin is affected by the spacetime torsion [18,19], and in
this sense, a Dirac fermion appears to be a natural
measuring device for the torsion experiments.
The quantum dynamics of the spin-1=2 particle mini-

mally coupled to an arbitrary Poincaré gauge field
ðeαi ;Γi

αβÞ was analyzed in detail in Secs. II A–III and
the Foldy-Wouthuysen Hamiltonian was derived with no
assumptions about the weakness of the fields. This central
result underlies the subsequent study of the behavior of the

spin under the influence of the external fields (electromag-
netic, inertial, Riemannian gravitational, and non-
Riemannian torsion).
Possible covariant extensions of the Dirac theory to the

nonminimal Pauli-type coupling were discussed in Sec. IV,
where the important role of the gravitational moments
(translational and Lorentz) was clarified. They are intro-
duced on the basis of the fundamental Gordon decom-
position technique of the Noether currents [66–71].
These gravitational moments (together with their Hodge
duals) provide a regular way to construct a consistent
covariant theory of a Dirac fermion particle with an
intrinsic dipole structure induced by the physical
Noether charges.
It is worthwhile to mention that the analysis in Sec. IV D

proved that the anomalous gravitomagnetic and gravito-
electric moments cannot be introduced in a covariant way
for Dirac fermions. The earlier results of Kobzarev and
Okun [81] relate the validity of the equivalence principle to
the absence of both the anomalous gravitomagnetic and the
gravitoelectric dipole moment defined as the formal gravi-
tational analogs of the anomalous magnetic moment and
the electric dipole moment, respectively. This important
point is apparently underappreciated in the literature (for
example, it is not mentioned in the nice recent review [29]).
Relations obtained by Kobzarev and Okun predict equal
frequencies of the precession of all classical and quantum
spins in any curved spacetimes [64]. In the weak-field
approximation, the analysis [65] of the earlier experimental
data has put a bound of about 4% on the anomalous
gravitomagnetic moment. As mentioned in Ref. [29], the
experimental data by Kornack et al. [98] give the restriction
of 3%, whereas a stronger restriction of 0.9% has been
obtained in Ref. [99] on the basis of the experimental data
of Ref. [94].
In Sec. VI, we have established new strong bounds

on the possible background spacetime torsion for the
minimally coupled Dirac fermion. The results obtained
are consistent with the earlier estimates of the torsion
derived from the Hughes-Drever-type experiments
[100], and with the experimental limits found in the
framework of the search of the Lorentz symmetry
violations [101].
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APPENDIX: CONVENTIONS AND SYMBOLS

Our main conventions and notations are the same as in
Refs. [8,41–43]. In particular, the world indices are labeled
by Latin letters i; j; k;… ¼ 0; 1; 2; 3 (for example, the local
spacetime coordinates xi and the holonomic coframe dxi),
whereas we reserve Greek letters from the beginning of the
alphabet for tetrad indices, α; β;… ¼ 0; 1; 2; 3 (e.g., the
anholonomic coframe ϑα). Furthermore, spatial indices are
denoted by Latin letters from the beginning of the alphabet,

a; b; c;… ¼ 1; 2; 3. In order to distinguish separate tetrad
indices, we put hats over them.
We use the standard symbols ∧ and � to denote the

exterior product and the Hodge duality operator, respec-
tively. The metric of the Minkowski spacetime reads
gαβ ¼ diagðc2;−1;−1;−1Þ; the totally antisymmetric
Levi-Civita tensor ηαβμν has the only nontrivial component
η0̂ 1̂ 2̂ 3̂ ¼ c.
For Dirac matrices as well as for the gauge-theoretic

notions and objects (including electrodynamics), we use the
conventions of Bogoliubov and Shirkov [102].
A directory of symbols used throughout the text can be

found in Table I.

TABLE I. Directory of symbols.

Symbol Explanation

Spacetime geometry
gαβ, gij Metricffiffiffiffiffiffi−gp

Determinant of the metric
δab Kronecker symbol
ηαβμν Levi-Civita tensor
xi ¼ ðt; xaÞ Coordinates (time, space)
dxi, ϑα Coframe one-form
eαi Tetrad
Γiβ

α Connection
Kiβ

α Contortion
Cij

α Anholonomity object
Tij

α Torsion
Rijβ

α Curvature
T
̬
α, T

̬
0̂, T

̬
Axial torsion

V, Wâ
b, Ka, F b

a Metric constituents
ϒ, Ξa, Qâ b̂, Câ b̂

ĉ Connection constituents
∂i, Di, Dα (Partial, covariant) derivative

Matter and gauge fields
ΦA General matter field
AI
i Gauge field (potential)

Fij
I Gauge field strength

Ai, Fij, Ea, Ba Electromagnetic field
ðρIÞAB Gauge algebra generators
fIJK Structure constants

(Table continued)

TABLE I. (Continued)

Symbol Explanation

εI , εα, εαβ Gauge group parameters
Ji, Σα

i, Sαβ i Noether currents
J
c
i, Σ

c

α
i, S

c

αβ
i Convective currents

Mij, Mα
ij, Mαβ

ij Dipole moments
L, L, LD, LC Lagrangian
γα, β, αa, γ5, σαβ Dirac matrices
Ψ, ψ Dirac fermion field

Operators
H, HFW Hamiltonian
ϵ, ϵ0 Energy operator
r Position operator
p, π Momentum operator
λ Orbital moment
Σ, Π Spin, polarization matrix
Ω, ΩðTÞ Precession angular velocity

Auxiliary quantities
μ0, μN , μ0 Magnetic moment
δ0, ρ0, τ0 Coupling constants
m Fermion mass
q, e Electric charge
ω Angular velocity
γ Lorentz factor
ν1, ν2 Zeeman frequencies
gN , g1, g2 g factor
G Ratio of g factors
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