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This paper proposes a systematic study of cosmological signatures of modifications of gravity via the
presence of a scalar field with a multiplicative coupling to the electromagnetic Lagrangian. We show that,
in this framework, variations of the fine structure constant, violations of the distance-duality relation,
evolution of the cosmic microwave background (CMB) temperature and CMB distortions are intimately
and unequivocally linked. This enables one to put very stringent constraints on possible violations of the
distance-duality relation, on the evolution of the CMB temperature and on admissible CMB distortions
using current constraints on the fine structure constant. Alternatively, this offers interesting possibilities to
test a wide range of theories of gravity by analyzing several data sets concurrently. We discuss results
obtained using current data as well as some forecasts for future data sets such as those coming from
EUCLID or the SKA.
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I. INTRODUCTION

The Einstein equivalence principle (EEP) is one of the
building block of general relativity (GR). This principle
allows one to identify the effects of gravitation with space-
time geometry. More precisely, it implies the existence
of a space-time metric gμν to which matter is minimally
coupled [1]. Mathematically, this implies that the action
related to matter can be written as

Smat ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lmatðgμν;ΨÞ; ð1Þ

where Lmat is the matter Lagrangian and Ψ represents the
matter fields.
The EEP is verified with very high accuracy within the

Solar System (see [2,3] and references therein). Amongst
all the tests of the EEP, the search for spatial and temporal
variations of the fundamental constants is a way to test the
local position invariance. Today, we have excellent con-
straints on the variations of the fine structure constant α
[4–30], on variations of the weak interaction constant αW
[4,31] and on the variation of the constants of strong
interaction [11,26–28,32,33] (for a review of all these tests,
see [34]).
In GR, the gravitational interaction is mediated

through one metric tensor only. Nevertheless, a lot of
GR extensions consider the presence of additional fields
(for a wide review of GR extensions, see [35]). In

particular, following the work of Jordan, Brans and
Dicke [36–38], scalar-tensor theories of gravity have been
widely studied in the literature. Originally, this type of
theory has been studied with a minimal coupling between
the matter fields and the scalar field. This means that there
exists a metric such that the matter action can be written
as (1), while the scalar field modifies the dynamics
of the metric1 [39–44].
One general way to break the EEP is to introduce a

nonminimal multiplicative coupling between the scalar
field and matter fields, e.g.

Smat ¼
X
i

Z
d4x

ffiffiffiffiffiffi
−g

p
hiðϕÞLiðgμν;ΨiÞ; ð2Þ

where the hiðϕÞ are functions of the scalar field2 and Li are
the Lagrangians of the different matter fields. The dynam-
ics of the scalar field and of the metric tensor are not
important here and are encoded in the other part of the
action named Sgravðgμν;ϕÞ.
Such a nonminimal coupling is motivated by several

alternative theories such as the low energy action of string
theories [45–48], in the context of axions [49–51], of
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1The representation in which the coupling (1) appears is called
the Jordan frame. Another representation widely used to study
this kind of theory is the Einstein frame where the scalar and
the tensor modes are kinematically decoupled. The Jordan and
Einstein frame metrics are related by a conformal transformation
[39].

2All the functions hi can eventually be equal. Note that such
universality allows the occurrence of an important cosmological
convergence mechanism [45].
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generalized chameleons [52–55],3 by Kaluza-Klein theo-
ries with additional compactified dimensions [57,58], in
the Bekentein-Sandvik-Barrow-Magueijo theory of varying
α [59–62]4 or in extended fðR;LmÞ gravity [64]. This type
of coupling also appears in the context of the pressuron
theory [65] characterized by hi ∝

ffiffiffiffi
ϕ

p
.5

It is straightforward to show that this kind of coupling
implies a variation of the fundamental constants. For
example, since the fine-structure constant is related to
the scalar field by α ∝ h−1EMðϕÞ, its temporal variation is
given by [34,45,46,67,68]

_α

α
¼ −

h0EMðϕÞ
hEMðϕÞ

_ϕ; ð3Þ

where the dot corresponds to the temporal derivative, the
prime corresponds to the derivative with respect to the
scalar field ϕ and hEM is the coupling function appearing in
front of the electromagnetic Lagrangian.
In addition to variations of the fine structure constant, a

coupling of the form (2) in the electromagnetic sector implies
a nonconservation of the photon number along geodesics
[69]. Such a nonconservation can have several observational
consequences. First of all, the expression of the luminosity
distance is modified with respect to its GR expression [66].
Hence, one expects the distance-duality relation [70–74] to
bemodified accordingly. Therefore, there is a nonambiguous
relation between fine structure constant variations and
violation of the distance-duality relation.
On the other hand, a nonconservation of the photon

number should also modify the evolution of the cosmic
microwave background (CMB) radiation [75,76]. In par-
ticular, the cosmological evolution of the CMB temperature
is affected by the coupling (2). Therefore, there is also a
link between variations of the fine structure constant and
temperature-redshift relation violations. Moreover, the
coupling (2) also implies that the CMB radiation does
not obey the adiabaticity condition [76], so that the CMB is
not an equilibrium blackbody radiation. This situation is
similar to what is obtained in tensor-scalar theory with
disformal couplings [77,78]. As a consequence, the cou-
pling (2) produces a distortion of the CMB spectrum
parametrized by a chemical potential μ. This nonvanishing
chemical potential can also be related to variation of the

fine structure constant or to violation of the distance-duality
relation.
In the framework of the action (2), the four effects

described previously (temporal variation of the fine struc-
ture constant, violation of the distance-duality relation,
modification of the evolution of the CMB temperature and
CMB spectral distortions) are closely related and are all
linked to the evolution of hEMðϕÞ. In this paper, we will
explore these links and show how they can be used to
improve current constraints on some deviations from GR
using constraints on other effects, and/or to explicitly test
couplings of the form (2), i.e. a wide range of different
theories of gravity (including GR).
The paper is organized as follows. In Sec. II, we derive

the expression of the violation of the cosmic distance
duality from the action (2), and we show that it can be
expressed directly in terms of the coupling hEMðϕÞ. We also
briefly review the experimental constraints on the violation
of the distance duality. In Sec. III, we show how the
temporal variation of the fine-structure constant is also
related to the evolution of hEMðϕÞ, and we review the
current experimental constraints on the variation of the fine
structure constant. In Sec. IV, we derive the evolution of the
CMB temperature and the expression of the CMB chemical
potential from first principles solving the Boltzmann
equation for the distribution function. We also review
the experimental constraints on the evolution of the
CMB temperature and the limits on the chemical potential.
In Sec. V, we use the relations between the different
observables in order to transform constraints on one type
of observations into constraints on other types of obser-
vations. This is valid only for theories with a coupling (2).
We also use the different set of data simultaneously in order
to test the coupling (2). Indeed, any inconsistency between
the data from two types of observations can be interpreted
as a violation of the coupling (2). We show that currently no
inconsistency is detected, and we also discuss the improve-
ments expected from the SKA or from EUCLID.

II. MODIFICATION OF THE COSMIC
DISTANCE-DUALITY RELATION

A. Theoretical derivation

The luminosity distance DL is operationally defined by
DL ¼ ð L

4πFÞwhere L is the luminosity of the source and F is
the observed flux of energy (see for example [79]). On the
other hand, the angular distance DA is defined by DA ¼ l

Δθ
where l is the proper size of the source and Δθ is the
angular size of its observation [79]. In any space-time
geometry and for any theory of gravity in which the
reciprocity relation holds and the numbers of photons is
conserved [70–74], these two distances are related by the
distance-duality relation

DLðzÞ ¼ ð1þ zÞ2DAðzÞ; ð4Þ

3We use the term “generalized” to make the difference between
the original chameleon papers [56] where the couplings are made
through conformal transformations and not through a multipli-
cative coupling like the one considered here and in [52].

4Although in this theory, the multiplicative coupling is not
“universal” and is restricted either to the kinetic part of the
Lagrangian (see, e.g. [60]) or to its interaction part (see, e.g. [59]),
depending on the representation used (see [63] for more details);
but fermion masses are considered as independent of the scalar
field [59–62].

5In the pressuron theory, the scalar field naturally decouples in
regions where the pressure is negligible [65,66] and therefore
naturally satisfies all Solar System tests of gravity.
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where z is the redshift of the source. The reciprocity
relation is a purely geometric relation connecting area
distances up and down the past light cone. This relation
holds as long as photons propagate along null geodesics
and the geodesic equation holds [73,74]. Then, the
assumption that the number of photons is conserved leads
to the distance-duality relation (4).6 Violation of the
distance-duality relation are parametrized by7

ηðzÞ ¼ DLðzÞ
DAðzÞð1þ zÞ2 : ð5Þ

We will show that a coupling between a scalar field and
the electromagnetic Lagrangian of the type (2) modifies the
distance-duality relation (4). Introducing the electromag-
netic Lagrangian into the action (2) and varying it with
respect to the 4-potential Aμ leads to modified Maxwell
equations8

∇νðhðϕÞFμνÞ ¼ 0; ð6Þ
where Fμν is the standard Faraday tensor.
The use of the geometric optics approximation

consisting in expanding the 4-potential Aμ ¼ ℜfðbμþ
ϵcμ þOðϵ2ÞÞeiθ=ϵg (see for example [82]) leads to the
usual null geodesic equation and to a modified conservation
equation for the number of photons (the derivation of these
expression can be found in [66,69])

kμ∇μkα ¼ 0; ð7aÞ

kμkμ ¼ 0; ð7bÞ

∇νðb2kνÞ ¼ −b2kν∂ν ln hðϕÞ; ð7cÞ

where kμ ¼ ∇μθ is the wave vector and b the norm of bμ.
The fact that photons propagate on null geodesic means that
the reciprocity relation holds [73,74] but the violation of the
conservation of the number of photons implies a violation
of the distance-duality relation.
The integration of Eqs. (7) in a flat Friedmann-Lemaître-

Robertson-Walker (FLRW) space-time leads to the expres-
sion of the luminosity distance (see [66] for a detailed
derivation)

DLðzÞ ¼ cð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕ0Þ
hðϕðzÞÞ

s Z
z

0

dz0

Hðz0Þ ; ð8Þ

where z is the cosmological redshift 1þ z ¼ a0
a with a

the cosmic scale factor and the subscript 0 stands for the

present epoch [ϕ0 ¼ ϕðz ¼ 0Þ]. On the other hand, the
angular distance is a purely geometric feature that can be
computed from the geodesic equation (see [79] for
example). Therefore its expression is the same as in GR
and is given by

DAðzÞ ¼
c

1þ z

Z
z

0

dz0

Hðz0Þ : ð9Þ

The η parameter characterizing scalar-tensor theories with a
coupling (2) is therefore given by

ηðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðϕ0Þ
hðϕðzÞÞ

s
: ð10Þ

Hence, the constraints on ηðzÞ can directly be interpreted
as a constraint on the cosmological evolution of the
scalar field.

B. Experimental constraints

Different kinds of observations have been used in order
to constrain ηðzÞ: Supernovae Ia data and observations of
radio galaxies [80], observations of clusters of galaxies
[81,83–93], baryon acoustic oscillations and the CMB
[94,95], the CMB spectrum [74] or gamma-ray bursts [96].
Different parametrizations of ηðzÞ have been used in the

literature in order to analyze cosmological observations.
The most widespread ones are

ηðzÞ ¼ η0; ð11aÞ

ηðzÞ ¼ 1þ η1z; ð11bÞ

TABLE I. Observational estimations of the parameters entering
the expressions of ηðzÞ (11) for 0≲ z≲ 8 (depending on the
study) and derived estimation of the temporal variation of the fine
structure constant.

Reference Parameter Estimation
Derived est. of
_α=α½×10−11 yr−1�

[94] η0 0.95� 0.025 � � �
[84] η0 0.97þ0.05

−0.06 � � �
[84] η1 −0.01þ0.15

−0.16 0.16� 2.6
[95] η1 −0.273� 0.125 4.4� 2.01
[83] η1 −0.06� 0.08 0.97� 1.3
[93] η1 0.02þ0.2

−0.17 −0.32� 3.2
[84] η2 −0.01þ0.21

−0.24 0.16� 3.9
[83] η2 −0.07� 0.12 1.1� 1.9
[84] η3 −0.01þ0.22

−0.19 0.16� 3.5
[85] ε 0.066þ0.037

−0.035 −1.1� 0.6
[97] ε −0.01þ0.08

−0.09 0.16� 1.42
[98] ε −0.04þ0.08

−0.07 0.63� 1.26
[96] ε 0.020� 0.055 −0.32� 0.89

6This term was first introduced in [80] to point out the
difference with reciprocity in gravitation theories other than GR.

7All the papers in the literature used the definition of the
parameter η given by (5) except in [74,81] where the inverse is
used, ~η ¼ DAð1þ zÞ2=DL.8From now on, we will note hðϕÞ the coupling function related
to electromagnetism hEMðϕÞ.
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ηðzÞ ¼ 1þ η2
z

1þ z
; ð11cÞ

ηðzÞ ¼ 1þ η3 lnð1þ zÞ; ð11dÞ

ηðzÞ ¼ ð1þ zÞε: ð11eÞ

In Table I, we present the latest observational constraints on
the parameters parametrizing ηðzÞ.

III. TEMPORAL VARIATION OF THE FINE
STRUCTURE CONSTANT

A. Theoretical derivation

Since α ∝ h−1ðϕÞ [45,67], the temporal variation of α
can be related to the function ηðzÞ. More precisely, one has

ΔαðzÞ
α

¼ αðzÞ − α0
α0

¼ hðϕ0Þ
hðϕÞ − 1 ¼ η2ðzÞ − 1: ð12Þ

This shows that for the class of theory considered in this
paper, a violation of the distance-duality relation is directly
linked to a violation of the EEP. In particular, experimental
constraints on the function ηðzÞ can be transposed into a
constraint on the temporal variation of α and inversely.
Taking the derivative at the current epoch of (12) leads to

_α

α

����
0

¼ −2H0

dη
dz

����
0

; ð13Þ

where H0 is the Hubble constant at the present time. If
one uses the parametrizations of ηðzÞ from (11), the last
expression becomes

−
1

2H0

_α

α

����
0

¼ η1 ¼ η2 ¼ η3 ¼ ε: ð14Þ

B. Experimental constraints

Currently, the best laboratory constraint on the time
variation of the fine-structure constant is given by [22]

_α

α

����
0

¼ ð−1.6� 2.3Þ × 10−17 yr−1: ð15Þ

Now, variations of α over a longer time can also be
considered. Bounds onΔα=α can be derived from the CMB
data at z ≈ 103 [99] and from Big Bang Nucleosynthesis
(BBN) at z ≈ 109 [100] but are not very stringent (see
Table II). Observational searches for varying α have also
used absorption systems in the spectra of distant quasars
[7,15]. Evidence of a variation of α has been found using
the Keck telescope [7] for z between 0.2 and 4.2. A null
result has been obtained considering observations from the
Very Large Telescope (VLT) [15] but this conclusion might
suffer from biases in the data analysis [101,102]. A review

of the constraints on Δα=α can be found in [34,103].
Some of the important results are summarized in Table II.
More recently, further evidence of a deviation of α
from its current value has been found [13,16] using
Keck and VLT observations. Nevertheless, two different
values have been found for the two data sets: for the
VLT, it is found that Δα=α ¼ ð0.208� 0.124Þ × 10−5 [13]
while for the Keck observations, it is found that Δα=α ¼
ð−0.6� 0.22Þ × 10−5 [13]. The results seem to depend on
which hemisphere is considered, suggesting a dipolar
dependence of α in the sky [13,16].

IV. CMB TEMPERATURE AND DISTORTIONS

A. Theoretical derivation

In this section, we will derive the evolution of the
temperature of the CMB using an approach based on the
kinetic theory (see Chap. 4 of [106] and Chap. 4 of [107]).
First of all, let us notice that Eq. (7c) in a flat FLRW

space-time can be written in terms of the number of photons
n ∝ k0b2 [82]

_nþ 3Hn ¼ −n
∂ ln hðϕðtÞÞ

∂t ; ð16Þ

where t is the proper time along matter worldlines. This
equation gives the evolution of the number of photons
along a single light ray.
From a microscopic perspective, we define the distribu-

tion function f of a fluid of photons. The evolution of this
distribution function satisfies a Boltzmann equation (see
Sec. 4.1 of [107])

Lf ¼ df
dλ

¼ ~pα ∂f
∂xα þ

d ~pi

dλ
∂f
∂ ~pi ¼ C½f� ð17Þ

with L the Liouville operator, ~pμ the coordinates of the
4-impulsion in the coordinate basis and C½f� an effective
collision term present because of the coupling between the
scalar field and the electromagnetic Lagrangian. Since we

TABLE II. Observational constraints on the temporal variations
of the fine structure constant.

Observation Reference z Estimation

Oklo reactor [104] 0.16 ð6.5� 8.7Þ × 10−8

Quasar abs. lines [8] 0.5–3.5 ð−0.72� 0.18Þ × 10−5

Quasar abs. lines
(VLT)

[15] 0.4–2.3 ð−6� 6Þ × 10−7

Quasar abs. lines
(Keck)

[11] 0.2–4.2 ð−5.7� 1.1Þ × 10−6

Quasar abs. lines
(VLT)

[13] 0.2–3.6 ð2.08� 1.24Þ × 10−6

CMB [99] 103 ð8� 20Þ × 10−3

BBN [105] 1010 ð−7� 5Þ × 10−3
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have shown that at the eikonal approximation, photons still
follow null geodesics (7a), we have

Lf ¼ df
dλ

¼ ~pα ∂f
∂xα − Γi

μν ~pμ ~pν ∂f
∂ ~pi ¼ C½f�: ð18Þ

In the case of the FLRW geometry, the last equation is
standard (see for example Sec. 4.1 of [107]) and becomes

Lf ¼ df
dλ

¼ p0
∂f
∂t −Hp0p

∂f
∂p ¼ C½f�; ð19Þ

where pμ are the coordinates of the 4-impulsion in a local
tetrad. In particular, since pμpμ ¼ 0 for photons, in a local
tetrad we have p0 ¼ p where p is the standard Euclidean
norm of the 3-vector ðp1; p2; p3Þ.
The integration of (19) in the case of a directional

radiation characterized by f ∝ δð3Þð~p − ~p0Þ should lead to
the equation of nonconservation of the number of photons
in a electromagnetic radiation (16). This allows one to
identify the collision term which is given by

C½f� ¼ −pf∂t ln hðϕÞ: ð20Þ

The Liouville equation becomes

Lf ¼ df
dλ

¼ p
∂f
∂t −Hp2

∂f
∂p ¼ −pf∂t ln hðϕÞ: ð21Þ

In a homogeneous and spherically symmetric case, the
distribution function depends only on t and p: fðt; pÞ.
The number of massless particles and their mean energy

density are defined from a microscopic perspective as [107]

n ¼ NB

ð2πÞ3
Z

fðt; pÞd3p; ð22aÞ

ρ ¼ NB

ð2πÞ3
Z

pfðt; pÞd3p; ð22bÞ

with NB the degeneracy factor for the particles which is 2
in the case of photons. Therefore, the integration of the
Liouville equation (21) leads to equations of conservation
of the number of photons and of the energy density of the
photons

_nþ 3Hn ¼ −n∂t ln hðϕÞ ¼ Ψ; ð23aÞ

_ρþ 4Hρ ¼ −ρ∂t ln hðϕÞ ¼ Cx; ð23bÞ

where the terms Ψ and Cx are introduced to compare our
results with [75,76]. As one can see, any theory with a
coupling like the one considered in the action (2) does not
satisfy the adiabaticity condition [given by Eq. (11) of [76]]

Cx ¼
ρ

n
Ψ ≠

4ρ

3n
Ψ: ð24Þ

Therefore, making the assumption of adiabaticity as, for
example, in [108] for couplings of the form (2) is not
justified. The coupling (2) implies that the CMB radiation
is not an equilibrium blackbody radiation. This is similar to
what appears in tensor-scalar theory with disformal cou-
pling [77,78]. This is due to the fact that the distribution
function f is not conserved (21). A way to parametrize the
deviation from the blackbody spectrum is to introduce a
chemical potential μ (see Sec. 8.2 of [107]). The distribu-
tion function can be written as

fðt; pÞ ¼ 1

ep=Tþμ − 1
; ð25Þ

where the temperature and the chemical potential depend
on the cosmological evolution. If we introduce this
expression in the definition of the number of particles n
and the energy density ρ (22), we get, at first order in μ (we
will see that experimental limits on μ impose μ < 10−4),

n ¼ 2ζð3ÞT3

π2

�
1 −

π2

6ζð3Þ μ
�
; ð26aÞ

ρ ¼ π2T4

15

�
1 −

90ζð3Þ
π4

μ

�
; ð26bÞ

where ζðxÞ is the Riemann zeta function. Since the
deviations from the GR case induced by the coupling
hðϕÞ are expected to be small, we can use an expansion of
the quantities

T ¼ Tð0Þ þ δT; ð27aÞ

n ¼ nð0Þ þ δn; ð27bÞ

ρ ¼ ρð0Þ þ δρ; ð27cÞ

where xð0Þ refers to the value of x in GR [when hðϕÞ ¼ 1]
while μ is already a first-order term. Introducing this
expansion and solving the Eqs. (26) at first order leads
to (for a detailed derivation, see Sec. 8.2 of [107])

Tð0Þ0 ¼
�
15ρð0Þ
π2

�
1=4

¼
�
π2nð0Þ0
2ζð3Þ

�1=3

; ð28aÞ

δT
Tð0Þ

¼
δρ
ρð0Þ

− 540ζð3Þ2
π6

δn
nð0Þ0

4
�
1 − 405ζð3Þ2

π6

� ; ð28bÞ

μ ¼ 3ζð3Þ
2π2

3 δρ
ρð0Þ

− 4 δn
nð0Þ0

1 − 405ζð3Þ2
π6

: ð28cÞ
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In particular, we can see that μ ¼ 0 is obtained in the case
where the adiabaticity condition (24) is satisfied. The exact
solutions of Eqs. (23) are given by

na3hðϕÞ ¼ nia3i hðϕiÞ; ð29Þ

ρa4hðϕÞ ¼ ρia4i hðϕiÞ; ð30Þ

where the indices i refer to some initial conditions. At
zeroth order, this gives the usual GR behavior nð0Þ ∝ a−3

and ρð0Þ ∝ a−4. At first order, we have

δn
nð0Þ0

¼ δρ

ρð0Þ
¼ hðϕCMBÞ

hðϕÞ − 1≡ δhðϕÞ: ð31Þ

The choice of initial conditions at ti ¼ tCMB concording
with the CMB is required if we want the chemical potential
to vanish at that time. This is consistent with assuming
that the CMB radiation is initially emitted as a blackbody.
Using (12), we can express δh as

δhðϕÞ ¼ η2ðzÞ
η2ðzCMBÞ

− 1 ¼ ΔαðzÞ
α

−
ΔαðzCMBÞ

α
: ð32Þ

Inserting this result in Eqs. (28) gives

Tð0Þ ¼
Tiai
a

¼ Ti
1þ z
1þ zi

; ð33aÞ

δT
Tð0Þ

¼ 1 − 540ζð3Þ2=π6
1 − 405ζð3Þ2=π6

δhðϕÞ
4

≈ 0.1204δhðϕÞ; ð33bÞ

μ ¼ 3ζð3Þ
2π2

δhðϕÞ
405ζð3Þ2

π6
− 1

≈ −0.4669δhðϕÞ: ð33cÞ

Therefore, the temperature is given by

T ¼ Ti
1þ z
1þ zi

ð1þ 0.12δhðϕðzÞÞÞ

¼ T0ð1þ zÞ½1þ 0.12ðδhðϕðzÞÞ − δhðϕð0ÞÞ�;

where the subscript 0 stands for values at z ¼ 0. Using (32)
and keeping the leading term in Δα=α and in η2 − 1, one
gets

TðzÞ ¼ T0ð1þ zÞ
�
1þ 0.12

ΔαðzÞ
α

	
ð34aÞ

¼ T0ð1þ zÞ½0.88þ 0.12η2ðzÞ�: ð34bÞ

This relation makes a very precise link between a deviation
of the cosmic evolution of the CMB temperature, a
temporal evolution of the fine structure constant and a
violation of the cosmic distance duality. This relation is

different from the one obtained in [62]. The reason comes
from the fact that in [62], the density is supposed to be
related to the temperature as ρ ∝ T4. This means that they
implicitly suppose that μ ¼ 0 as can be seen from Eq. (26b)
or equivalently that the CMB radiation still follows a
blackbody spectrum which is not the case since the
adiabaticity condition is violated (24).
Similarly, we have a direct concordance between the

CMB spectral distortions parametrized by μ, the variation
of the fine structure constant and the corresponding
violation of the distance-duality relation

μ ¼ 0.47

�
1 −

1

η2ðzCMBÞ
�

¼ 0.47
ΔαðzCMBÞ

α

¼ 3.92

�
TðzCMBÞ

T0ð1þ zCMBÞ
− 1

�
: ð35Þ

This expression differs from the one found in [78]. The
reason comes from the fact that in [78], the temperature is
supposed to follow the standard evolution T ∝ ð1þ zÞ in
the calculation of μ.

B. Experimental constraints

First of all, a constraint on the CMB distortions has been
obtained by COBE/FIRAS [109],

jμj < 9 × 10−5 ð36Þ
at 95% confidence level.
Usually, the experimental constraints on the evolution of

the temperature are expressed in function of the parameter β
defined by

TðzÞ ¼ T0ð1þ zÞ1−β: ð37Þ
Observations of the Sunyaev-Zel’dovich effect and mea-
surements of molecular species absorptions have led to
estimations of β given in Table III.

V. EXPERIMENTAL CONSTRAINTS

In the previous section, we have shown that four
important cosmological observables are directly related
to each other in the framework of the coupling (2).
Basically, temporal variations of the fine-structure constant,
violation of the cosmic distance-duality relation and the
evolution of the CMB temperature are all related to the
evolution of the function hðϕÞ through

TABLE III. Observational estimations of β which parametrizes
the evolution of the CMB temperature (37).

Reference Estimation of β

[110] 0.006� 0.013
[111] 0.005� 0.012
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hðϕ0Þ
hðϕðzÞÞ ¼ η2ðzÞ ¼ ΔαðzÞ

α
þ 1 ¼ 8.33

TðzÞ
T0ð1þ zÞ − 7.33:

ð38Þ

Furthermore, the actual chemical potential μ of the
CMB spectrum is also related to the previous quantities
at z ¼ zCMB by the relation (35).
There are two different ways of using these relations.

First, if we assume that the coupling between the scalar
field and the EM Lagrangian can be written as (2), we can
use the relations between the different observables to
constrain some of them by using measurements of other
types of observations. As we will see below, the constraints
on the variations of the fine structure constant are the most
competitive. Therefore, we can transform them to obtain
improved constraints on violations of the distance duality
and on the evolution of the temperature. We stress out that
this procedure applies only if the coupling (2) is correct.
In particular, this is thus valid for GR [where hðϕÞ ¼ 1],
but also for all theories conformally coupled to a metric.
On the other hand, the observations from different data

sets can be combined together in order to search for a
hypothetical violation of the coupling (2). Indeed, a
violation of the relations (38) observed with two different
data sets would imply that the coupling (2) is not the
one that describes Nature. One such evidence would be
particularly important since it would rule out all the theories
of gravity where this coupling appeared, including GR and
many others.

A. Transformations of the experimental constraints
assuming a multiplicative coupling holds

In this section, we will assume that the coupling (2)
holds, and we will use the different relations between the
observables in order to improve the constraints on some
of them.

1. Transformation between η and Δα=α

First of all, the relation between η and Δα=α (12) allows
one to transform constraints on η into constraints on
variations of the fine structure constant and inversely.
We transform the experimental constraints on η into a
constraint on the current variation of the fine structure
constant _α=αj0. For this, we use the relation (14) and the
estimation of the Hubble constant provided by the Planck
data H0 ¼ 78.8� 0.77 km=s=MPc [99]. The resulting
estimations of _α=α are given in Table I. One can see that
the obtained constraints are 6 orders of magnitude larger
than the current constraint on _α=α obtained by a laboratory
experiment (15).
On the other hand, we can use the laboratory constraint

(15) in order to estimate the parameters entering the
standard parametrization of ηðzÞ. This leads to

η1 ¼ η2 ¼ η3 ¼ ε ¼ ð10� 14Þ × 10−8: ð39Þ

This means that the current null result on a temporal
variation of the fine structure constant locally constrains the
present derivative of ηðzÞ by 6 orders of magnitude better
than using cosmological observations. Note that the con-
straint (39) also applies for parametrizations where η0 is
not forced to be 1 [i.e. for ηðzÞ ¼ η0 þ ηifiðzÞ, instead of
ηðzÞ ¼ 1þ ηifiðzÞ as in (11)].
The constraint (39) is very impressive but it relies on

only one observation at z ¼ 0. Therefore, it is also
interesting to apply the same procedure using constraints
on variations of the fine structure constant at different
redshifts. We used observations of absorption lines of
quasars to estimate the parameters characterizing ηðzÞ
(11). We used values of Δα=α from 154 absorbers observed
with the VLT (this data set can be found in [13]) and values
from 128 absorbers observed at the Keck observatory (this
data set can be found in [12]). We have performed a
Bayesian estimation of the parameters ηi and ε that are
parametrizing the ηðzÞ function (11) using the relation (12).
The posterior probability densities are presented on Fig. 1.
Table IV lists the corresponding estimations using the
different data sets. Evidence of deviations of the parameters
from their GR values are found with the two data sets
separately. Nevertheless, the two data sets are incompatible.
This is due to the fact that the variation of the fine structure
constant is different in the Northern and in the Southern
Hemispheres [13,16] (see also the discussion in Sec. III B).
Therefore, if the electromagnetic Lagrangian is coupled
to a scalar field by a coupling of the type (2), Δα=α
observations predict a violation of the distance-duality
relation at the 10−6 level, which should, however, be
different in both hemispheres (independently of the
coupling function).

2. Transformation between Δα=α and the
CMB temperature

As shown in the previous section, the constraints on the
variations of the fine structure constant are far more
stringent than the ones on the violations of the distance-
duality relation. We can thus use the constraints on the
current temporal variation of the fine structure constant
to constrain β which parametrizes the evolution of the
CMB temperature (37). For this, we need to derive the
relation (34a)

dT
dz

����
z¼0

¼ T0

�
1 − 0.12H0

_α

α

����
0

�
; ð40Þ

which becomes, after introducing the parametrization (37),

β ¼ 0.12
H0

_α

α

����
0

: ð41Þ
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Using this equation, the value and uncertainty on H0

from the Planck data [99] and the laboratory constraint
on _α=α (15), we get

β ¼ ð−2.4� 3.4Þ × 10−8: ð42Þ

This constraint improves the one coming from current
direct observations of the CMB temperature (see Table III)
by 7 orders of magnitude.

The last constraint is very impressive but, once again, it
relies on only one observation at z ¼ 0. One can also look
at constraints on variations of the fine structure constant at
different redshift z. We use the same VLT and Keck data as
in the previous section in order to do a Bayesian estimation
of β from Δα=α data by using the relation

ð1þ zÞ−β ¼ 1þ 0.12
ΔαðzÞ
α

: ð43Þ

The posterior probability density is presented in Fig. 1
(bottom right) and the corresponding estimations are given
in Table V. Once again, the obtained estimations present a
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4 3 2 1 0 1 2

1 10 6
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Keck

10 8 6 4 2 0 2 4

2 10 6

VLT
Keck

8 6 4 2 0 2 4

3 10 6

VLT
Keck

8 6 4 2 0 2 4

10 6

VLT
Keck

10 5 0 5 10 15

10 7

VLT
Keck

FIG. 1 (color online). Posterior probability densities of the parameters ηi, ε that are parametrizing ηðzÞ (11) and β that is parametrizing
the evolution of the temperature (37). The Bayesian inversion is done from Δα=α data coming from VLT (Southern Hemisphere) and
Keck observatory (Northern Hemisphere) assuming the relations (12) and (34a) hold. The dotted lines represent the 68% confidence
intervals, while the dashed lines represent the 95% confidence intervals.

TABLE IV. Values of the parameters entering the expression of
ηðzÞ (11) estimated using Δα=α data from VLT [13] and from the
Keck Observatory [12] assuming relation (12) holds.

Estimation ½×10−7�
Parameter VLT Keck

η0 − 1 10� 6 −29� 10
η1 8.4� 3.5 −16� 6
η2 20� 10 −49� 17
η3 14� 6 −30� 11
ε 14� 6 −30� 11

TABLE V. Values of the parameters entering the expression of
TðzÞ (37) estimated using Δα=α data from VLT [13] and from the
Keck Observatory [12] assuming the relation (43) holds.

Estimation ½×10−7�
Parameter VLT Keck

β −3.3� 1.5 7.2� 2.5
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deviation from the GR values at the level of 10−6 but the
two data sets are not compatible. This is due to the fact that
the variation of the fine structure constant is different in
both hemispheres [13,16]. Therefore, if the coupling (2)
holds, the observations of temporal variations of the fine
structure constant suggests a deviation of the evolution
of the CMB temperature 5 orders of magnitude smaller
than current direct observation of the CMB temperature
capabilities.

3. CMB distortions

Finally, the relation (35) allows one to transform the
constraint on μ into a constraint on ΔαðzCMBÞ=α. Using the
constraint (36) and the relation (35), we derive a constraint
on the temporal variation of the fine structure constant����ΔαðzCMBÞ

α

���� < 1.91 × 10−4: ð44Þ

Let us remember that the constraint on ΔαðzCMBÞ=α
coming from an analysis of the CMB anisotropies with
Planck data is at the level of 10−3 only (see Table II).

B. Test of the multiplicative coupling

In the previous section, we have shown how to use
the relations between the variations of the fine structure
constant, violation of the distance-duality relation, evolu-
tion of the CMB temperature and the CMB distortions
in order to translate the measurements from one type of
observations into the other types. As clearly stated, this can
be done only if the coupling (2) holds.
We can also use the different sets of data to assess the

validity of the coupling (2). Indeed, if the measurements
coming from two different types of observations (e.g.
between Δα=α and TCMB or between Δα=α and η) indicate
a violation of their corresponding relation, this would be an
indication of a violation of the coupling (2). This kind of
test is able to rule out couplings of the form (2) and is
therefore quite important since this kind of coupling
generically appears in numerous alternative theories of
gravity such as in perturbative string theory [45–47],
Kaluza-Klein theories [57,58], axion theory [49–51] and
BSBM theory [59–62].
In this work, to assess if the different observations are

consistent with a coupling of the type (2), we use the
relations (38). Basically, we transform constraints onΔα=α,
on ηðzÞ and on the CMB temperature into a constraint on
hðϕÞ=hðϕ0Þ. We therefore suppose implicitly that the
coupling (2) holds. Then, we compare the different con-
straints on hðϕÞ=hðϕ0Þ coming from different types of
observations to see if they are consistent. Any inconsis-
tency would be a signature of a deviation from the type of
coupling (2) independently of the coupling function hðϕÞ.
We analyze the different data using Gaussian processes

(GP) with the software GaPP (Gaussian processes in

Python) [112]. GP provide a model-independent smoothing
technique.9 They are described in detail in [112] (see also
[113–116] for other uses of GaPP in a cosmological
context). Instead of assuming a particular form of the
reconstructed function, GP consider typical changes of the
function. They are parametrized by a covariance function
which depends on two hyperparameters: l which corre-
sponds to a typical distance one needs to move in the input
space to observe a significant change in the function and σ2f
which is a typical change of the function. In this paper, the
covariance function used is the standard squared exponen-
tial function (other covariance functions have been tried,
and they do not significantly alter the results).
First of all, we transform Δα=α observations on estima-

tions of the evolution of hðϕÞ=hðϕ0Þ using the relation (12).
We have used two sets of data: values from 154 absorbers
observed with the VLT (this data set can be found in [13])
and values from 128 absorbers observed at the Keck
observatory (this data set can be found in [12]). For both
of these data sets, we have applied a GP, marginalized over
the hyperparameters using a Markov chain Monte Carlo
(MCMC) technique [117] which has produced a sample of
the data at each reconstructed redshift z. These samples are
then transformed into samples of hðϕÞ=hðϕ0Þ using (12)
and confidence intervals have been estimated. The left part
of Fig. 2 represents the confidence intervals obtained by
using the two sets of data analyzed by using a GP.
The second type of observations we use is related to

violations of the distance-duality relation ηðzÞ. Indeed, the
evolution of hðϕÞ=hðϕ0Þ can also be estimated from ηðzÞ
using (10). Two types of observations are needed in order
to estimate η (5): observations of luminosity distance DL
and of angular distance DA. In this paper, we use the
Supernovae Ia luminosity data from the Union 2.1 compi-
lation [118]. The luminosity distance is directly related to
the distance modulus μ provided in [118] by DL ¼ 10μ=5−5

where DL is expressed in Mpc. Regarding the angular
distance, we use data from x rays and Sunyaev-Zel’dovich
observations of galaxy clusters. Two sets of data have been
used [119,120] which provide Dobs

A for different values of
the redshift. As mentioned in [81] (see also [83,84]), if a
violation of the distance-duality relation is considered, then
the Sunyaev-Zel’dovich and x-ray observations measured
Dobs

A ðzÞ ¼ DAðzÞη2ðzÞ. Therefore, an estimation of ηðzÞ
from Dobs

A ðzÞ reads

ηðzÞ ¼ Dobs
A ðzÞð1þ zÞ2

DLðzÞ
: ð45Þ

The analysis procedure is similar to the one followed for the
Δα=α data. We have analyzed the DL and DA data with a

9In this sense they do not introduce any uncontrolled physical
assumptions. They do, however, suppose that data follow
Gaussian distributions.
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GP, we have marginalized over the hyperparameters with a
MCMC technique which has produced a sample of the data.
This sample is then transformed into ηðzÞ and then to
hðϕÞ=hðϕ0Þ by using (10). From these, we can determine
the confidence intervals that are represented on the right of
Fig. 2. These estimations are 5 orders of magnitude larger
than the ones obtained by using Δα=α observations (that
are represented by dashed lines). The estimation done using
the set of data from [120] shows a small deviation from the
estimations done using a temporal variation of the fine
structure constant between z ¼ 0.4 and z ¼ 0.8. If con-
firmed, this can be an indication of a violation of the
coupling (2) but at this stage, we believe it is the result of a
lack of statistics. On the other hand, the estimation done
using the set of data from [119] is in total agreement with
the one from the variations of the fine structure constant.
Concerning the CMB temperature, we use data coming

from Sunyaev-Zel’dovich observations at low redshifts
[111,121] and from observations of spectral lines at high
redshift [122–130]. In total, this represents 38 observations

of the CMB temperature at redshift between 0 and 3. We
also use the estimation of the current CMB temperature
T0 ¼ 2.725 K [131]. The analysis procedure is similar
to the ones used for the other observations. We have
analyzed the temperature data using a GP, we have
marginalized over the hyperparameters by using a
MCMC technique which has provided a sample of the
data. Then, we have transformed this sample into a sample
of hðϕÞ=hðϕ0Þ using the relation (38), and we have
determined the confidence intervals. Figure 3 represents
the estimation on the evolution of hðϕÞ=hðϕ0Þ obtained
from the CMB temperature observations. At low redshift,
this estimation is roughly 2 times better than the one
obtained by using the observations of the distances (see
right of Fig. 2). In addition, the temperature measurements
allow one to constrain the evolution of the scalar field at
higher redshift. On the other hand, the constraints coming
from the analysis of the observations of the temporal
variation of the fine structure constant are 5 orders of
magnitude better (see left of Fig. 2).
As a conclusion, all the data used seem to be consistent at

the level of 10%. The observations of the variation of the
fine structure constant are currently 5 orders of magnitude
better than observations of the violation of the cosmic
distance duality and of the evolution of the CMB temper-
ature. An improvement of the measurements of ηðzÞ and of
the CMB temperature would be particularly useful in order
to improve the test of the coupling (2).

C. Expected improvements with future experiments

In this section, wewill assess the improvements expected
from future experiments focusing on the Square Kilometer
Array (SKA) [132] and on EUCLID [133].
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FIG. 2 (color online). Estimation of hðϕÞ=hðϕ0Þ derived from constraints on Δα=α (left) and on ηðzÞ (right) using Gaussian processes.
Top left: estimation done using Keck observations [12]. Bottom left: estimation done using VLT observations [13]. Right: estimations
done from observations of luminosity distance [118] and angular distance. Top right: the angular distances used are from [119]. Bottom
right: the angular distances used are from [120].
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FIG. 3 (color online). Estimation of hðϕÞ=hðϕ0Þ derived from
constraints on TCMBðzÞ observations using GP.
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SKA will measure the angular distance DAðzÞ with
baryon acoustic oscillations (BAO) observations between
z ¼ 0.3 and z ¼ 2 [134]. The expected accuracy of
SKA is given in Fig. 6 of [134] and is roughly 2%
(σDA

=DA ∼ 0.02). Therefore, we simulated DA data from
a standard scenario in GR, and we reconstructed the
estimation of hðϕÞ obtained assuming a 2% relative
accuracy on DA. Figure 4 represents the obtained estima-
tion. First of all, it is important to notice that the range of
redshifts is larger than the one currently available (see the
right of Fig. 2). In Fig. 4, we are now limited by the DL
measurements that span z ¼ 0–1.4 only. Moreover, there is
roughly 1 order of magnitude of improvement between
current observations (right of Fig. 2) and what is expected
with SKA. Nevertheless, this accuracy is still 4 orders of
magnitude larger than the one obtained by using Δα=α
data (see left of Fig. 2).
EUCLID also expects to improve the constraint on the

violation of the cosmic distance-duality relation thanks to
measurements of the BAO [133]. In particular, EUCLID
expect to constrain the parameter ε from the parametriza-
tion (11e) at a level better than 10−2 improving the current
constraints by a factor of 5 (see Table I).
Therefore, with these observations, we expect to improve

the test of the coupling (2) by 1 order of magnitude.
Nevertheless, the observations of ηðzÞ will still remain 4
orders of magnitude less accurate than the one coming from
the variations of the fine structure constant.

VI. CONCLUSION

In this paper, we focused on cosmological signatures
of modifications of gravity generated by a multiplicative
coupling of a scalar field to the electromagnetic Lagrangian
(2). As mentioned in the Introduction, this kind of coupling
arises in various hypothetical alternative theories of gravity
such as the low energy action of string theories [45–48], in
the context of axions [49–51], of generalized chameleons
[52–55] in Kaluza-Klein theories with additional compac-
tified dimensions [57,58], in the Bekentein-Sandvik-
Barrow-Magueijo theory of varying α [59–62], in extended

fðR;LmÞ gravity [64] or in the context of the pres-
suron [65].
We have shown that this kind of coupling produces a

temporal variation of the fine structure constant, a violation
of the cosmic distance-duality relation, a modification of
the evolution of the CMB temperature and CMB distor-
tions. All these effects are intimately related to each other
and to the cosmic evolution of the coupling hðϕÞ, and
we have derived relations between all these different
observations.
Therefore, assuming that the coupling (2) holds, which is

the case for GR, for standard tensor-scalar theories with
conformal coupling and for a large class of alternative
theories of gravity, one can use the obtained relations to
transform the constraints on one type of observation into
constraints on another type of observation. We have used
observations of variations of the fine structure constant to
estimate the parameters of a violation of the distance-
duality relation and the evolution of the CMB temperature.
The obtained constraints are 5 orders of magnitude better
than what is found in the literature but only hold for
theories with a multiplicative coupling (2) between the
scalar field and the electromagnetic Lagrangian. These
correspondences also allow us to transform the constraint
on the chemical potential of the CMB into a constraint on
the variation of the fine structure constant between the
CMB and the present epoch.
On the other hand, comparing the different sets of

observations allow one to test the coupling (2). Indeed, a
violation of the relation between Δα=α and ηðzÞ or
between Δα=α and TCMBðzÞ would invalidate the multi-
plicative coupling independently of the form of the
coupling function hðϕÞ. To produce such a test, we
transformed all the available observations into an esti-
mation of the evolution of hðϕÞ. This analysis was done
by using Gaussian processes. Then, we have compared
the estimations provided by the different types of
observations to detect any inconsistency that could result
from a violation of the coupling (2). We have shown that
no inconsistency is currently detected. Moreover, obser-
vations from variations of the fine structure constant are
currently 5 orders of magnitude better than observations
from ηðzÞ and from the CMB temperature. The obser-
vations of the variations of the fine structure constant
also predict a deviation of the distance-duality relation at
the level of 10−6 in the case where the coupling (2) is
valid. For these reasons, it is particularly interesting to
improve our constraints on ηðzÞ and on the evolution of
the CMB temperature. One step to achieve this goal will
be provided by planned future observations that will be
done with the SKA or with EUCLID. In particular, the
observations of the BAO will improve our measurements
of the angular distance that will be reflected in an
improvement on the constraint on ηðzÞ by 1 order of
magnitude.
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FIG. 4 (color online). Expected sensitivity by using Supernovae
distance luminosity data [118] and angular distance data from
observations of BAO with SKA.
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