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We present a model for studying the formation and evaporation of nonsingular (quantum corrected)
black holes. The model is based on a generalized form of the dimensionally reduced, spherically symmetric
Einstein-Hilbert action and includes a suitably generalized Polyakov action to provide a mechanism for
radiation backreaction. The equations of motion describing self-gravitating scalar field collapse are derived
in local form both in null co-ordinates and in Painleve-Gullstrand (flat slice) co-ordinates. They provide the
starting point for numerical studies of complete spacetimes containing dynamical horizons that bound a
compact trapped region. Such spacetimes have been proposed in the past as solutions to the information
loss problem because they possess neither an event horizon nor a singularity. Since the equations of motion
in our model are derived from a diffeomorphism invariant action they preserve the constraint algebra and
the resulting energy momentum tensor is manifestly conserved.
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I. INTRODUCTION AND BACKGROUND

General relativity predicts the existence of singularities
at the center of all black holes, while Hawking’s famous
quantum calculation implies that event horizons shrink by
emitting thermal radiation. These two properties of black
holes, combined with the fact that special relativity forbids
information from escaping from an event horizon, lead to
one of the deepest puzzles of modern theoretical physics:
the so-called information loss paradox. In its simplest
form, the question is: What is the endpoint of black hole
formation and evaporation and what happens to the
information about the state of the matter that formed the
black hole?
A variety of end states have been suggested over the

years. Among them:
(1) The black hole evaporates completely via

thermal radiation so that the information is lost
to the outside world (asymptotic region of the
black hole spacetime) forever. This scenario
entails a breakdown of the unitarity of quantum
mechanics.

(2) At late stages the radiation is no longer thermal
and the information emerges via quantum
gravity related, presumably causality violating, cor-
rections.

(3) The black hole stops emitting radiation when it nears
the Planck scale, leaving behind a microscopic
remnant that hides forever an enormous amount
of information.

(4) Most recently it has been suggested [1,2]1 that a
firewall of as yet unknown origin exists just outside
the event horizon that destroys the entanglement
between infalling particles and outgoing radiation,
effectively eliminating the information loss problem,
albeit at a significant cost.

The purpose of the present paper is to set up a semi-
classical model that explicitly realizes an alternative proposal
to resolve the information loss problem. This proposal is
based on the principle that there are no true singularities in
nature. This idea is not new. It was first put forward by
Frolov and Vilkovisky [5,6] and discussed more recently by
[7].2 We start with the assumption that in the correct theory
the classical singularity will be replaced by a semi-classical
nonsingular region. Moreover, we assume that the dynamics
of gravitational collapse and evaporation in this region can
be described by effective semi-classical equations of motion.
Our first goal is to construct a suitable “quantum corrected”3

Lagrangian, potentially relevant to four-dimensional black
holes, from which to derive these semi-classical equations.
Such an action must have three key attributes:
(1) It must incorporate modifications to Einstein gravity

at short distances that resolve the singularity.
(2) It must have a radiation backreaction term.

*http://www.cecs.cl
†http://ion.uwinnipeg.ca/~gkunstat

1See also [3,4] where this issue is addressed in a canonically
quantized model of dust collapse.

2See also Varadarajan [8].
3These quantum corrections ultimately derive from the under-

lying, as yet unknown, quantum gravity theory. Later on we will
discuss corrections to the action which mimic Hawking radiation.
These corrections are derived from quantization of matter fields
but, to avoid confusion, we will refer to them as radiation
corrections or radiation terms.
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(3) At large distance scales it must accurately reproduce
Einstein’s theory.

The expectation is that the resulting gravitational collapse
and subsequent evaporation will produce neither an event
horizon nor a singularity. Instead the result will be a
completely nonsingular spacetime that contains a closed
dynamical horizon bounding a compact trapped region. At
late times there will therefore be no impediment to infor-
mation about the collapsed matter escaping to null infinity.
Such a scenario was discussed in [5,6] and first made explicit
by Sean Hayward [9]. More recently, a compact, dynamical
trapping horizon was realized via the numerical simulation
of the spherical collapse of a massless scalar field in [10].
In this paper the singularity resolution and energy loss were
modeled by introducing explicit modifications to the gravi-
tational potential in the equations of motion. Since the
equations were not derived from a diffeomorphism invariant
action, they did not preserve the constraint algebra and
were nonconservative. A more systematic energy conserving
model was later constructed [11] and used to show that
nonsingular black holes could indeed be formed via gravi-
tational collapse4 provided that the effective quantum
corrections to the gravitational potential were introduced
within the framework of a (spherical symmetry preserving)
diffeomorphism invariant action. The equations in this model
were derived from a variational principle and hence are
conservative, but they did not contain a mechanism for
describing Hawking radiation.
In the following, we continue the above program by

constructing a set of dynamical equations for four-
dimensional (and higher) gravity that lead to nonsingular
collapse, are energy conserving and include radiation
backreaction. Modeling the effect of Hawking radiation
is difficult and so far it is not well understood in more than
two dimensions. In two dimensions, however, the con-
formal anomaly can be calculated at one-loop order and
integrated to derive the nonlocal Polyakov action [15],

IPoly ∼ −
Z

d2x
ffiffiffiffiffiffi
−g

p
R

1

D2
R; ð1Þ

where g is the determinant of the two-dimensional metric,
gμν, R is the Ricci scalar calculated with gμν and D is the
covariant derivative compatible with gμν. This one-loop
effective action is exact in the large N limit, where N is the
number of conformally coupled scalar fields. It has been
studied extensively in the context of two-dimensional
models for black hole evaporation [16–19]. It has also
been used in a toy model to simulate Hawking radiation in
four-dimensional, spherically symmetric Einstein gravity
[20,21]. This is the approach we will adopt. The new, and
crucial features of our analysis are twofold: first we will

formulate the theory in terms of a local, diffeomorphism
invariant effective action. Our equations are therefore
energy conserving and allow for the use of slicings that
extend into the horizon. Second, the action which is our
starting point is a generalization of the spherically sym-
metric Einstein action that allows us to use quantum
motivated corrections that resolve the singularity in the
vacuum solution. Since the class of Lagrangians we
consider obey a Birkhoff theorem, this guarantees that
gravitational collapse will yield an exterior spacetime that
asymptotes to the corresponding nonsingular solution.
We therefore expect a complete absence of singularities
in the dynamical evolution of the collapsing matter as
found in [11]. This will in turn permit us to examine via
rigorous calculations, albeit in a simplistic model, the
question posed above: How does singularity resolution
affect the end point of gravitational collapse and Hawking
radiation?
Recently several other models have been proposed to

investigate nonsingular, radiating black holes [22–25]
using different methods to model the radiation and singu-
larity resolution than those used in this paper. Using the
Polyakov term to model the radiation backreaction has the
advantage that it is rigorous, at least in two dimensions. It is
also useful to have a variety of plausible models to hunt for
generic features of the formation and evaporation process.
In the present paper, we describe the model and derive

the equations of motion both in conformal gauge and in
P-G–type coordinates. The organization is as follows:
Sec. II discusses the classical action (without radiating
terms). Section III discusses the addition of the radiation
corrections via the generalized Polyakov action in local
form. Section IV derives the equations of motion in
conformal gauge and discusses singularity resolution in
the energy momentum tensor while Sec. V presents the
Hamiltonian analysis and the equations of motion in
P-G–type coordinates. Section VI closes with conclusions
and prospects. The numerical simulations of these equa-
tions are relegated to a subsequent paper.

II. EFFECTIVE GRAVITATIONAL ACTION

We start from Einstein gravity in n spacetime dimensions
minimally coupled to a massless scalar field, whose
action is:

IðnÞ ¼
1

16πGðnÞ

Z
dnx

ffiffiffiffiffiffi
−ḡ

p ðRðḡÞ − 8πGðnÞðD̄ψÞ2Þ ð2Þ

where GðnÞ is the higher-dimensional gravitational con-
stant, RðḡÞ is the Ricci scalar calculated using the
n-dimensional metric, ḡ, D̄ is the derivative compatible
with ḡ and ψ is a scalar field. After imposing spherical
symmetry, integrating out the angular variables and absorb-

ing a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGðnÞp

into the scalar field to make it
dimensionless, this action takes the form [26,27]:

4See also [12] and [13] for closely related work and [14] for
early work on singularity resolved black holes.
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Ið2Þ ¼
1

ln−2

Z
d2x

ffiffiffiffiffiffi
−g

p ½Rn−2R

þ ðn − 2Þðn − 3ÞRðn−4ÞðDRÞ2
þ ðn − 2Þðn − 3ÞRðn−4Þ − Rn−2ðDψÞ2�; ð3Þ

where R is the areal radius,R is the Ricci scalar of g which
is the ðt; xÞ part of the higher-dimensional metric,

ds2 ¼ gμνdxμdxν þ R2dΩðn−2Þ; ð4Þ

and we have defined the length parameter

lðn−2Þ ≔
16πGðnÞ

Aðn−2Þ
; ð5Þ

with Aðn−2Þ being the invariant volume of a unit n − 2-
sphere. In terms of these parameters the well known
Schwarzschild-Tangherlini solution is:

ds2 ¼ −
�
1 −

lðn−2ÞM
ðn − 2ÞRn−3

�
dt2

þ
�
1 −

lðn−2ÞM
ðn − 2ÞRn−3

�−1
dR2 þ R2dΩðn−2Þ ð6Þ

where M is the ADM mass in the vacuum case.
We now generalize the above allowing the coefficients of

each of the three terms in (3) to be arbitrary functions of the
areal radius RðxÞ, as

Igeneral ¼
1

ln−2

Z
d2x

ffiffiffiffiffiffi
−g

p

× fϕðRÞRþhðRÞðDRÞ2 þ VðRÞþ BðRÞðDψÞ2g:
ð7Þ

The above is the most general action that contains at most
two derivatives of the metric and areal radius and yields a
Hamiltonian that is quadratic in their conjugate momenta.
It can in principle be further generalized to take the general
form of a dimensionally reduced higher curvature Lovelock
gravity, whose equations of motion are second order, but
higher order in momenta. See [28–30] for a Hamiltonian
analysis of spherically symmetric Lovelock gravity. We
relegate the investigation of such theories to future work.
For (7) to reduce to the GR case, two conditions must be

satisfied,

ϕ ¼ −B ¼ Rn−2 ð8Þ

h ¼ V ¼ ϕ00; ð9Þ

where a prime means differentiation with respect to the
areal radius. In this paper we are concerned with the case
where (9) is obeyed reducing the number of free functions

by two (although, for the purpose of generality we do not
substitute (9) into our equations until we discuss important
physical results). As we will show, (9) will be necessary to
remove the singularity in the vacuum solution while
simultaneously removing another one in the radiating term.
It will also become important when defining a mass
function (see Appendix B) and when finding boundary
terms at infinity which make the variational principal well
defined (see Appendix C).
The action (7) belongs to the class of theories called

generic two-dimensional dilaton gravity (see [31] and [32]
for reviews). These theories obey a Birkhoff theorem [33].
The most general vacuum solution can be found by
defining a new metric ~gμν ≔ ω2gμν which puts the action
in the form

I ¼ l−ðn−2Þ
Z

d2x
ffiffiffiffiffiffi
−~g

p
ðϕRð~gÞ þ V=ω2Þ ð10Þ

whose equations of motion can readily be solved [33]. The
corresponding metric in the current parametrization is

ds2 ¼ j
ω2

�
−
�
1 −

lðn−2ÞM
j

�
dt2

þ
�
1 −

lðn−2ÞM
j

�−1�ϕ0

j

�
2

dR2

�
þ R2dΩ2; ð11Þ

where

lnðω2Þ ≔
Z

h
ϕ0 dR ð12Þ

j ≔
Z

ðϕ0V=ω2ÞdR: ð13Þ

The solution contains a single parameter,M, and has at least
one Killing vector (∂=∂t). There are horizons whenever
j ¼ lðn−2ÞM, and the Killing vector is timelike in the
asymptotic region, j > lðn−2ÞM. Most importantly, the
arbitrary functions of the areal radius ϕðRÞ, hðRÞ and
VðRÞ can, as we shall see, be chosen so that the resulting
vacuum solutions are nonsingular.
As an example of a nonsingular metric that can be

obtained as a solution to the equations derived from an
action of the form (7) consider the following metric that
was originally proposed by Poisson and Israel [34]:

ds2 ¼ −
�
1 −

l2MR2

2ðR3 þ ν3Þ
�
dt2

þ
�
1 −

l2MR2

2ðR3 þ ν3Þ
�−1

dR2 þ R2dΩ2: ð14Þ

This is of the same form as (11) with the following
identifications:
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ϕ0 ¼ j ¼ 2
R3 þ ν3

R2
ð15Þ

ϕ ¼ R4 − 2ν3R
R2

ð16Þ

ω2 ¼ j ¼ 2
R3 þ ν3

R2
ð17Þ

h ¼ lnðω2Þ0ϕ0 ¼ j0 ¼ 2
R3 − 2ν3

R3
ð18Þ

V ¼ ω2j0=ϕ0 ¼ 2
R3 − 2ν3

R3
: ð19Þ

In the above ν is the parameter that determines the scale of
the quantum corrections. The above metric approaches a de
Sitter metric as R → 0 and hence is manifestly nonsingular.
The resulting spacetime has two horizons and the effective
stress energy tensor violates the weak energy condition at
short length scales (of the order of ν). The properties of this
metric are discussed more fully in [11]. They can easily be
generalized to higher dimensions with

jðRÞ ¼ ðn − 2ÞR
n−1 þ νn−1

R2
: ð20Þ

A qualitatively different example of a nonsingular static
spacetime was derived from polymer quantum gravity in
[35] and [36]. This spacetime contains a single bifurcative
horizon that surrounds an infinite Kasner type universe on
the interior. It describes, in effect, a wormhole whose
minimum throat radius shrinks to the polymerization scale
before reexpanding to infinity. Details of how it fits into the
current formalism are given in Appendix A.

III. RADIATION TERMS: THE GENERALIZED
POLYAKOV ACTION

The radiation term (1) assumes that the matter under
consideration is minimally coupled to gravity, i.e. B is a
constant in (7). We will use a more general version that
allows for more general matter couplings [37–40],

IPoly ∼ −
Z

d2x
ffiffiffiffiffiffi
−g

p �
R

1

D2
R

þ bðRÞ
�

1

D2
R − ln μ2

�
ðDRÞ2 þ cðRÞR

�
; ð21Þ

where μ is a constant related to the renormalization
procedure used to obtain the Polyakov action. The forms
of b and c have been suggested by [40] to be b ¼
−3ðB0Þ2=B2 and c ¼ −6 lnB. Since it may be interesting
to also investigate the case where b ¼ c ¼ 0 (as done by
[20]) we perform the algebra without making any

assumptions about b and c until we discuss important,
physical results (see Appendix C).
The nonlocal character of the actions (1) and (21) is often

dealt with by working in double-null coordinates,

ds2 ¼ e2fdudv; ð22Þ

where f is a scalar function and the Ricci scalar takes
the form

R ¼ −8e−2ff;uv ¼ 2D2f: ð23Þ

It is sometimes advantageous, however, to work in other
coordinate systems, particularly when performing numeri-
cal simulations that go past horizon formation (see
numerics section of [41]). In this case auxiliary fields, z1
and z2 can be used to write the action as [40,42,43]

IPoly ∼ −
Z ffiffiffiffiffiffi

−g
p ½Rðz1 þ z2Þ þDAz2DAz1

þ bðDRÞ2ðz1 − ln μ2Þ þ cR�; ð24Þ

where A ¼ 0, 1. The equations of motion for z1 and z2 are
given by

D2z1 −R ¼ 0; ð25Þ

D2z2 −R − bðDRÞ2 ¼ 0: ð26Þ

Inserting (25) and (26) into (24) gives (21).
Inspired by (7) and (24) we define the action that we will

consider for the rest of this paper as

I ¼ 1

ln−2

Z
d2x

ffiffiffiffiffiffi
−g

p fϕðRÞRþ hðRÞðDRÞ2 þ VðRÞ

þW½Rðz1 þ z2ÞþDAz2DAz1þbðRÞðDRÞ2ðz1 − ln μ2Þ
þ cðRÞR� þ BðRÞðDψÞ2g; ð27Þ

where W is a coupling constant.
It is worth noting here that Ayal and Piran [20] (see also

[21]) considered a model similar to this one. In fact they
considered the equations of motion, in null gauge, that
would come from varying (27) with the fields given as
those for the four-dimensional GR case with b ¼ c ¼ 0
and z1 ¼ z2. They eventually modified those equations of
motion to remove a singularity at R ¼ 0 in the effective
stress energy tensor. The subsequent equations, however,
did not obey the Bianchi identities, since they altered the
equations of motion directly and not their corresponding
action.
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IV. DOUBLE NULL COORDINATES

In this section we derive the covariant equations of
motion, constraints and effective energy momentum tensor
from the action (27) in null gauge.

A. Action

We start with the metric

gμν ¼
�

0 e2f=2

e2f=2 0

�
ð28Þ

from which the Ricci scalar is given by (23). Using (28) the
action, (27) becomes

I ¼
Z

d2x

�
−4ϕðRÞf;uv þ 2hðRÞR;uR;v þ

1

2
e2fVðRÞ

þW½−4f;uvðz1 þ z2Þ þ ðz1;uz2;v þ z2;uz1;vÞ
þ 2bðRÞR;uR;vðz1 − ln μ2Þ − 4cðRÞf;uv�

þ 2BðRÞψ ;uψ ;v

�
; ð29Þ

where we have absorbed the factor of ln−2 into the action.

B. Equations of motion

Varying (29) gives the equations of motion

δI
δR

¼ 0 ¼ −4ϕ0f;uv − 2h0R;uR;v − 4hR;uv þ ðe2f=2ÞV 0

þ 2B0ψ ;uψ ;v þW½−2ðb0R;uR;v þ 2bR;uvÞðz1 − ln μ2Þ
− 2bðR;uz1;v þ R;vz1;uÞ − 4c0f;uv�; ð30Þ

δI
δf

¼ 0 ¼ −4R;uvϕ
0 − 4R;uR;vϕ

00 þ e2fV

þW½−4z1;uv − 4z2;uv − 4R;uvc0 − 4R;uR;vc00�; ð31Þ

δI
δψ

¼ 0 ¼ −2B0R;uψ ;v − 4Bψ ;uv − 2B0R;vψ ;u; ð32Þ

δI
δz2

¼ 0 ¼ −4Wf;uv − 2Wz1;uv ð33Þ

and

δI
δz1

¼ 0 ¼ −4Wf;uv − 2Wz2;uv þ 2WbR;uR;v: ð34Þ

Equations (33) and (34) can be used to write (30) and (31)
with out any dependence on z1 or z2 as

− 4ϕ0f;uv − 2h0R;uR;v − 4hR;uv þ ðe2f=2ÞV0 þ 2B0ψ ;uψ ;v

þW½−2ðb0R;uR;v þ 2bR;uvÞð−2f − ln μ2Þ
þ 4bðR;uf;v þ R;vf;uÞ − 4c0f;uv� ¼ 0 ð35Þ

and

− 4R;uvϕ
0 − 4R;uR;vϕ

00 þ e2fV

þW½16f;uv − 4bR;uR;v − 4R;uvc0 − 4R;uR;vc00� ¼ 0

ð36Þ

Using the GR values for ϕ, h, V and B as well as
W ¼ −α=8π, b ¼ c ¼ 0, n ¼ 4 and u → −u (due to differ-
ent sign conventions) we find that (35) and (36) reduce to
(11a) and (11b) of [20] (where α is the coupling constant
used in that paper).

C. Constraint equations

To find the constraint equations we use the most general
metric,

gμν ¼
�

A e2f=2

e2f=2 C

�
; ð37Þ

which corresponds to the Ricci scalar

R ¼ ð−gÞ−2fA½ðC;uÞ2=2þ C;vA;v=2 − e−2fC;vf;u�
þ C½ðA;vÞ2=2þ C;uA;u=2 − e−2fA;uf;v�
þ ðe2f=2Þ½−e2fA;vf;v − e2fC;uf;u

þ A;uC;v=2 − C;uA;v=2þ 8ACf;uf;v�g
þ ð−gÞ−1fA;vv − 2e2ff;uv þ C;uug: ð38Þ

From (38) we can see the following useful relationships (up
to boundary terms)

�
δ

δA

Z
d2x

ffiffiffiffiffiffi
−g

p
ϕR

				
				
A¼C¼0

¼ ð2ϕ;vv − 4f;vϕ;vÞe−2f

¼ ð2ϕ00ðR;vÞ2 þ 2ϕ0R;vv − 4f;vϕ0R;v

�
e−2f ð39Þ

�
δ

δA

Z
d2x

ffiffiffiffiffiffi
−g

p
hðDRÞ2

				
				
A¼C¼0

¼ −2he−2fðR;vÞ2: ð40Þ

This gives the constraint
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δI
δA

				
				
A¼C¼0

¼ 0 ¼ 2e−2f½ϕ00ðR;vÞ2 þ ϕ0R;vv − 2ϕ0f;vR;v�

− 2e−2fhðR;vÞ2 − 2e−2fBðψ ;vÞ2
þWf2e−2f½z1;vv þ z2;vv − 2f;vz1;v − 2f;vz2;v�
− 2e−2fz1;vz2;v − 2e−2fbðz1 − ln μ2ÞðR;vÞ2
þ 2e−2f½c00ðR;vÞ2 þ c0R;vv − 2c0f;vR;v�g:

ð41Þ

Note from (33) that z1ðu;vÞ¼−2fðu;vÞþpuðuÞþpvðvÞ,
where pu and pv are some functions. If we assume that pu
and pv are constants and rearrange (41) and use (33) and
(34) we get

− R;vv þ 2f;vR;v

¼
~ϕ00 þ 2Wbðf þ ln jμjÞ − h

~ϕ0 ðR;vÞ2

−
B
~ϕ0 ðψ ;vÞ2 −

4W
~ϕ02 ff;vv − ðf;vÞ2 − b̄;v=4g; ð42Þ

where we define

~ϕ ≔ ϕþWc ð43Þ

b̄ðvÞ ≔
Z

duðbR;uR;vÞ; ð44Þ

and we have used (34) to write

z2;vv ¼ −2f;vv þ b̄;v: ð45Þ

There is also a second constraint equation which can be
found by swapping u and v in (42).

D. Effective stress energy tensor

We now use the equations of motion and Einstein’s
equations to calculate the energy momentum tensor. Using
(2.18) of [27] we find that the nonangular components of
the Einstein tensor in n dimensions are given by

GðnÞ
uu ¼ ðn − 2Þ

R
ð−R;uu þ 2f;uR;uÞ ð46Þ

GðnÞ
vv ¼ ðn − 2Þ

R
ð−R;vv þ 2f;vR;vÞ ð47Þ

GðnÞ
uv ¼ ðn − 2Þ

R

�
R;uv −

ðn − 3Þ
R

�
e2f

4
− R;uR;v

��
: ð48Þ

Concentrating on the u − v component, using the equation
of motion (36) to solve for R;uv and the expression for the
mass (B8),

ðDRÞ2 ¼ jω2

ϕ02

�
1 −

M
j

�
ð49Þ

¼ 4e−2fR;uR;v; ð50Þ
(where a factor of ln−2 has been absorbed intoM) gives the
following expression for the effective stress tensor:

GðnÞ
uv ¼ ðn − 2Þ

~ϕ0R

�
e2f

4

M
j

�
~ϕ00 −

ðn − 3Þ ~ϕ0

R

�

þW
�
4f;uv −

e2f

4

�
c00 þ b

�
1 −

M
j

����
: ð51Þ

In the above we have assumed only that (9) is satisfied,
which also implies that j ¼ ϕ0 ¼ ω2. This is necessary in
order to eliminate terms in the stress energy tensor that
are singular at R ¼ 0. These conditions are satisfied for the
two horizon quantum corrected black hole described by
(15)–(19). Assuming reasonable regularity conditions on the
mass function and c and b at the origin, the singularity
observed by Piran and Ayal in the effective stress tensor is
resolved as long as the singularity in 1=j is resolved. Similar
statements apply to the diagonal components of the energy
momentum tensor as we can see by comparing (47) to (42).

V. HAMILTON’S EQUATIONS IN
NON-NULL COORDINATES

To find the equations of motion in non-null coordinates.
We start with the general, ADM metric [44],

ds2 ¼ −N2dt2 þ Λ2ðNrdtþ dxÞ2: ð52Þ
For later use, we compute the following quantities:

ðDRÞ2 ¼ −Ry
2 þ Λ−2R;x

2; ð53Þ
ffiffiffiffiffiffiffiffiffiffi
−gð2Þ

p
D2R ¼ − ∂tðΛR;yÞ þ ∂xðΛNrR;y þ Λ−1NR;xÞ;

ð54Þ

where we define the operator y acting on some field β by

β;y ≔ N−1ðβ;t − Nrβ;xÞ: ð55Þ

Using the metric (52) the Ricci scalar can be written as

ffiffiffiffiffiffi
−g

p
R ¼ 2fNr;xN;yΛN−1 − 2Nr;xΛ;y − ΛðNr;xÞ;y

þ N−1ΛðNr;xÞ2 þ NΛ;yy − ðN;xΛ−1Þ;xg: ð56Þ

To write the action in a form that lends itself to
Hamiltonian analysis we define

ΦðRðt; xÞ; t; xÞ ≔ ϕðRÞ þWðz1 þ z2Þ þWcðRÞ
¼ ~ϕðRÞ þWðz1 þ z2Þ ð57Þ
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and

hzðRðt; xÞ; z1ðt; xÞÞ ≔ hðRÞ þWbðRÞðz1 − ln μ2Þ: ð58Þ

With these definitions the action looks like

I ¼ 1

ln−2

Z
d2x

ffiffiffiffiffiffi
−g

p fΦRþ hzðDRÞ2 þ V þWDAz2DAz1 þ BðDψÞ2g: ð59Þ

We first work with the term containing the Ricci scalar. From (56) we can calculate this term up to total derivatives
(t.d.) to be

ffiffiffiffiffiffi
−g

p
RΦ ¼ 2Φ;yðNr;xΛ − NΛ;yÞ − 2NðΦ;xΛ−1Þ;x þ t:d: ð60Þ

Using this the action (59) becomes

I ¼ 1

ln−2

Z
d2xf2N−1ðΦ;t − NrΦ;xÞðNr;xΛ − ðΛ;t − NrΛ;xÞÞ − 2NðΦ;xΛ−1Þ;x þ NΛV

þ hz½−N−1ΛR;t
2 þ 2NrN−1ΛR;tR;x þ ðNΛ−1 − N2

rN−1ΛÞR;x
2�

þW½−N−1Λz1;tz2;t þ NrN−1Λðz1;xz2;t þ z1;tz2;xÞ þ ðNΛ−1 − N2
rN−1ΛÞz1;xz2;x�

þ B½−N−1Λψ ;t
2 þ 2NrN−1Λψ ;tψ ;x þ ðNΛ−1 − N2

rN−1ΛÞψ ;x
2�g: ð61Þ

We can see from (61) that the conjugate momenta corre-
sponding to N and Nr are zero, PN ¼ PNr

¼ 0. The
remaining conjugate momenta, corresponding to Λ, R,
z1, z2 and ψ are given by

PΛ ¼ −l−ðn−2Þ2N−1ðΦ;t − NrΦ;xÞ
¼ −l−ðn−2Þ2ð ~ϕ0R;y þWðz1 þ z2Þ;yÞ; ð62Þ

PR ¼ l−ðn−2Þ½2N−1 ~ϕ0ðNr;xΛ − ðΛ;t − NrΛ;xÞÞ
− 2ΛhzN−1ðR;t − NrR;xÞ�

¼ l−ðn−2Þ½2N−1 ~ϕ0Nr;xΛ − 2 ~ϕ0Λ;y − 2ΛhzR;y�; ð63Þ

Pz1 ¼ l−ðn−2Þ½2N−1WðNr;xΛ − ðΛ;t − NrΛ;xÞÞ
þWð−N−1Λz2;t þ NrN−1Λz2;xÞ�

¼ l−ðn−2ÞW½2N−1Nr;xΛ − 2Λ;y − Λz2;y�; ð64Þ

Pz2 ¼ l−ðn−2Þ½2N−1WðNr;xΛ − ðΛ;t − NrΛ;xÞÞ
þWð−N−1Λz1;t þ NrN−1Λz1;xÞ�

¼ l−ðn−2ÞW½2N−1Nr;xΛ − 2Λ;y − Λz1;y�; ð65Þ

and

Pψ ¼ l−ðn−2ÞB½−2N−1Λψ ;t þ 2NrN−1Λψ ;x�
¼ −2l−ðn−2ÞBΛψ ;y; ð66Þ

respectively. By combining (62)–(65) we get

z1;y ¼
−ΛPΛ=2 − Λ ~ϕ0R;y þ Pz1 − Pz2

2WΛ

¼ −S3 −
Pz2

WΛ
; ð67Þ

z2;y ¼
−ΛPΛ=2 − Λ ~ϕ0R;y − Pz1 þ Pz2

2WΛ

¼ −S3 −
Pz1

WΛ
ð68Þ

and

R;y ¼
~ϕ0ð−ΛPΛ=2þ Pz1 þ Pz2Þ − 2WPR

Λð ~ϕ02 þ 4WhzÞ

¼ − ~ϕ0S1 − 2WPR

S2
; ð69Þ

where, for ease of notation we have defined

S1 ≔ ΛPΛ=2 − Pz1 − Pz2; ð70Þ

S2 ≔ Λð ~ϕ02 þ 4WhzÞ ð71Þ

and
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S3 ≔
2hzS1 − ~ϕ0PR

S2
; ð72Þ

and we have absorbed a factor of ln−2 into all of the
conjugate momenta. Plugging (67)–(69) as well as (63) and
(66) into the action (61), it can be shown that the
Hamiltonian density, H, can be written as a sum of two
constraints,

H ¼ NH þ NrHr þ t:d:; ð73Þ

where the constraints are given by

H ¼ 2

�
~ϕ0R;x

Λ

�
;x
−
hzR;x

2

Λ
− ΛV

þW

�
−
z1;xz2;x

Λ
þ 2

�
z1;x þ z2;x

Λ

�
;x

�

þ hzS21 − ~ϕ0PRS1 −WP2
R

S2
−
Pz1Pz2

WΛ

−
P2
ψ

4ΛB
−
Bψ ;x

2

Λ
ð74Þ

and

Hr ¼−PΛ;xΛþPRR;xþPz1z1;xþPz2z2;xþPψψ ;x: ð75Þ

Note that we absorbed a factor of ln−2 intoHðMÞ,HðMÞ
r ,HðGÞ

and HðGÞ
r (in addition to all of the conjugate momenta).

From (73) we can write down the equations of motion as

R;t ¼ NR;y þ NrR;x ð76Þ

PR;t ¼ −
�
2N;x

Λ

�
;x

~ϕ0 −
�
2NhzR;x

Λ

�
;x

þ Nh0zR;x
2

Λ
þ NΛV 0

þ N
−2 ~ϕ00S1R;y − Λ½2 ~ϕ0 ~ϕ00 þ 4Wh0z�R;y

2

4W

−
NP2

ψB0

4ΛB2
þ NB0ψ ;x

2

Λ
þ ðNrPRÞ;x ð77Þ

Λ;t ¼ NΛ
S3
2
þ ðNrΛÞ;x ð78Þ

PΛ;t ¼ −
2N
Λ

�
~ϕ0R;x

Λ

�
;x
−
2N;x

~ϕ0R;x

Λ2
þ 2NV

− 2W
�
N
Λ

�
z1;x þ z2;x

Λ

�
;x
þ N;x

�
z1;x þ z2;x

Λ2

��

−
NPΛS3

2
þ NH

Λ
þ PΛ;xNr ð79Þ

ψ ;t ¼ −
NPψ

2ΛB
þ Nrψ ;x ð80Þ

Pψ ;t ¼
�
−
2NBψ ;x

Λ
þ NrPψ

�
;x

ð81Þ

z1;t ¼ −NS3 −
NPz2

WΛ
þ Nrz1;x ð82Þ

Pz1;t ¼
�
−
WðNz2;x þ 2N;xÞ

Λ
þ NrPz1

�
;x

− NΛWb

�
R;y

2 −
R;x

2

Λ2

�
ð83Þ

z2;t ¼ −NS3 −
NPz1

WΛ
þ Nrz2;x ð84Þ

Pz2;t ¼
�
−
WðNz1;x þ 2N;xÞ

Λ
þ NrPz2

�
;x;

ð85Þ

where we used the following useful identity,

S21=Λ − S2R;y
2

4W
¼ hzS21 − ~ϕ0PRS1 −WPR

2

S2
: ð86Þ

Since our Hamiltonian is the sum of two first class
constraints we must now pick two gauge choices. We will
pick

χ ≔ R − x ¼ 0; ð87Þ

which makes the spatial coordinate the areal radius.
Before choosing the second gauge notice that the mass

function (see Appendix B) is given by

M ¼ j

�
1 −

ðϕ0Þ2
jω2

ðDRÞ2
�

¼ j

�
1 −

ðϕ0Þ2
jω2

��
R;x

Λ

�
2

−
�
− ~ϕ0S1 − 2WPR

S2

�2��
;

ð88Þ

where we used (69). This inspires the choice of gauge

Λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕ0R;xÞ2
jω2

s
¼ 0: ð89Þ

We are interested in the case where (9) is satisfied (which
implies ð ~ϕ0R;xÞ2j−1ω−2 ¼ 1) For this reason we choose

ξ ≔ Λ − 1 ¼ 0: ð90Þ

For both the GR case and the case of (15)–(19) the mass
function is well defined and is the boundary term which
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must be added to the Hamiltonian to make the variational
principle well defined (see Appendix C). For our gauge
choices [and assuming (9)] the mass function is given by

M ¼ j

�
− ~ϕ0S1 − 2WPR

S2

�2

: ð91Þ

By comparing (87) and (90) to (52) we can also see that this
gauge choice is regular and spatially flat at horizon
formation, i.e. when

ðDRÞ2 ¼ 0: ð92Þ

The consistency conditions on these two gauge choices
can be obtained by setting _R ¼ 0 and _Λ ¼ 0 in (76) and
(78). Note that we now use a dot to represent differentiation
with respect to our time, T, in this choice of gauge and
that a prime still represents differentiation with respect to
the areal radius, R, which is now our spatial coordinate.
The consistency conditions are given by

Nr

N
¼ −R;y ð93Þ

and

ð−NR;yÞ0 þ N
S3
2
¼ 0; ð94Þ

from which we can write Nr as

Nr ¼ − exp

�Z
dR

S3
2R;y

�
; ð95Þ

where we used (87) and (90) to redefine

S1 ≔ PΛ=2 − Pz1 − Pz2; ð96Þ

S2 ≔ ~ϕ02 þ 4Whz; ð97Þ

S3 ≔
2hzS1 − ~ϕ0PR

S2
ð98Þ

and

R;y ¼
− ~ϕ0S1 − 2WPR

S2
: ð99Þ

R and Λ are no longer phase space variables and neither
are their conjugate momenta. PR and PΛ must be written in
terms of the remaining phase space variables by setting the
Hamiltonian and momentum constraints to zero; i.e., we
must solve

H ¼ 0 ¼ 2 ~ϕ00 − hz − V þW½−z01z02 þ 2ðz001 þ z002Þ�

þ hzS21 − ~ϕ0PRS1 −WP2
R

S2
−
Pz1Pz2

W
−
P2
ψ

4B
− Bψ 02

ð100Þ

and

Hr ¼ 0 ¼ −P0
Λ þ PR þ Pz1z01 þ Pz2z02 þ Pψψ

0 ð101Þ

for PR and PΛ.
At this point we can consider singularity resolution at

the origin in both the metric, (52), (95), (93) and the
higher- dimensional generalization of the energy momen-
tum tensor, (46)–(48). Consider first the metric: we can
set N to be a constant at the origin and so (93) tells us
that if R;y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln−2M=j

p
is not singular at R ¼ 0 then

neither is the metric. So, we can resolve both the
singularity in the energy momentum tensor and the
one in the metric (in the case where (9) is satisfied)
by choosing the functions VðRÞ, ϕðRÞ and hðRÞ in the
action so that the factors containing j ð¼ ϕ0Þ are not
singular at the origin. Note that this choice will not
violate the Bianchi identities since we derived our
equations of motion from a variational principal.
With the gauge choices, (87) and (90), the equations of

motion for the remaining phase space variables can now be
written as

_ψ ¼ −N
Pψ

2B
þ Nrψ

0; ð102Þ

_Pψ ¼ ð−2NBψ 0 þ NrPψÞ0; ð103Þ

_z1 ¼ −NS3 −
NPz2

W
þ Nrz01; ð104Þ

_Pz1 ¼ ð−WðNz02 þ 2N0Þ þ NrPz1Þ0
− NWbðR;y

2 − 1Þ; ð105Þ

_z2 ¼ −NS3 −
NPz1

W
þ Nrz02 ð106Þ

and

_Pz2 ¼ ð−WðNz01 þ 2N0Þ þ NrPz2Þ0: ð107Þ

These equations of motion, (102)–(107) along with the
consistency conditions, (95), (93), the constraints, (100),
(101) and the definitions, (96)–(99) can be used to evolve
appropriate initial conditions forward in time to show the
formation of a black hole with a radiating term.
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VI. CONCLUSIONS

In this paper we defined an action which mimics
spherically symmetric, dimensionally reduced gravity with
a radiating term. Although the radiating term was borrowed
from the conformal anomaly and is only valid in two-
dimensional physics we incorporated terms which account
for the nonminimal coupling (in two dimensions) of the
matter field. We derived Lagrange’s equations in null gauge
and found (in agreement with [20]) that the energy
momentum tensor is singular at the origin. We found,
however, that we could remove this singularity (as well as
the singularity in the vacuum solution) by appropriate
choice of coefficients in the action without violating the
Bianchi identities since our equations of motion were
derived from a variational principal. We then performed
a detailed Hamiltonian analysis, including a prescription of
the boundary conditions and corresponding boundary terms
needed to make the variational principle well defined. From
this Hamiltonian we imposed suitable gauge fixing con-
ditions and derived the equations of motion in a family of
non-null coordinates. The fact that these are first order in
time derivatives makes them well suited to numerical
simulations of black hole formation. We then chose a
gauge such that the metric is well defined at horizon
formation, which is well suited to the investigation of the
dynamics past horizon formation.
At first glance the Lagrangian (27) that is our starting

point contains many arbitrary functions. However, as we
saw, the requirement that singularities be removed is quite
restrictive. As shown in Sec. IV. D in order for the
effective stress energy tensor to be regular it is necessary
that j ¼ ω2 ¼ ðϕ0Þ2 at R ¼ 0. In addition, ϕ0 must go to
zero at the origin at least as fast as R2, as can be seen from
(51). Finally, the remaining freedom in j, ϕ and V can be
fixed so that the vacuum solution approaches the form
derived via general arguments in [34]. This leaves the
freedom in the matter coupling BðRÞ. The simplest choice
is BðRÞ ¼ Rn−2, i.e. the classical form obtained by dimen-
sional reduction which, as shown in [11] yields non-
singular collapse. bðRÞ and cðRÞ are normally taken to be
zero in two- dimensional models, but, when the coupling
is not conformal these functions are determined by our
choice of BðRÞ. It would be interesting to see what effect
these terms have on the structure of the evaporating,
nonsingular black hole spacetime. In an upcoming paper
we will present the results of numerical simulations using
these equations.
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APPENDIX A: LOOP QUANTUM GRAVITY
BLACK HOLE

An example of a nonsingular, single horizon black hole
in four dimensions that can be derived as a solution to (7) is
that of [36]. See also [35] for an earlier treatment.

ds2 ¼ −

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

k2

R2

r
−
l2M
2R

!
dt2

þ
 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
k2

R2

r
−
l2M
2R

!−1
dR2

1 − k2

R2

þ R2dΩ2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

k2

R2

r " 
1 −

2GM

R
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

R2

q
!
dt2

þ
 
1 −

l2M

2R
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

R2

q
!−1 

dR

1 − k2

R2

!
2
#

þ R2dΩ2; ðA1Þ

where k is the polymerization (quantum gravity) length
scale. This is of the same form as (11) with the following
identifications:

jðRÞ ¼ 2R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

k2

R2

r
ðA2Þ

ϕ0ðRÞ ¼ jðRÞ
1 − k2

R2

¼ 2Rffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

R2

q ðA3Þ

ϕðRÞ ¼


R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − k2

p
þ k2 ln



Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − k2

p ��
ðA4Þ

ω2 ¼ jðRÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

R2

q ¼ 2R ðA5Þ

hðRÞ ¼ lnðω2Þ0ϕ0ðRÞ ¼ ϕ0ðRÞ
R

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2=R2

p ðA6Þ

VðRÞ ¼ ω2
j0ðRÞ
ϕ0 ¼ 2: ðA7Þ

As shown in [36] the above metric can be analytically
continued to describe a complete nonsingular spacetime
containing a single bifurcative horizon. The areal radius is
bounded below by k and reexpands to infinity in the interior
of the horizon. Note that for this black hole the conditions
(9) are not satisfied, so that there are in principle terms in
the effective stress tensor that are singular at R ¼ 0. In the
present case this is not an issue because, as previously
mentioned, R ¼ 0 is excluded from the complete, regular
spacetime.
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APPENDIX B: MISNER-SHARPE
MASS FUNCTION

The following analysis describes the mass function used
in this paper.

1. General relativity

In general relativity with no radiation terms the Misner-
Sharp mass function is defined by [30]:

ln−2M ¼ ðn − 2ÞRn−3ð1 − ðDRÞ2Þ
¼ ðn − 2ÞRn−3ð1 − ½Λ−2R2

;x − R2
;y�Þ ðB1Þ

where, from now on we absorb a factor of ln−2 into the
mass function. In the case of four-dimensional GR,
i.e., ~ϕ ¼ ϕ ¼ R2, hz ¼ h ¼ 2 ¼ V, the mass function is
given by

M ¼ 2R

�
1 −

��
R;x

Λ

�
2

−
�
PΛ

4R

�
2
��

: ðB2Þ

It is then easy to verify that:

− ~H ≔ −
R;x

Λ
H −

PΛ

4ΛR
Hr ¼ M;x ðB3Þ

It therefore makes sense to write the Hamiltonian in
terms of the new Hamiltonian constraint:

H ¼ ~N ~Hþ ~NrHr ¼ − ~NM;x þ ~NrHr ðB4Þ

with suitably redefined lagrange multipliers:

~N ≔
Λ
R;x

N ðB5Þ

~Nr ≔ Nr −
PΛ

4RR;x
N ðB6Þ

Note that with asymptotically flat boundary conditions the
only boundary terms that arise in the variation are of the
form ~NðδMÞ;x. The boundary term that needs to be added to
the Hamiltonian in order to make the variational principle
well defined is therefore:

HB ¼ ~N∞M∞ ðB7Þ

assuming that the mass function vanishes on the inner
boundary: MR¼0 ¼ 0. This is discussed for the radiating
case in Appendix C.

2. General ϕ, h and V with no radiation

The mass function for general ϕ, h and V with no
radiating terms is given by

M ¼ j

�
1 −

ðϕ0Þ2
jω2

ðDRÞ2
�

¼ j

�
1 −

ðϕ0Þ2
jω2

��
R;x

Λ

�
2

−
�
PΛ

2ϕ0

�
2
��

: ðB8Þ

This is a mass function in the sense that it can be written as
a combination of constraints,

− ~H ≔ −
ϕ0R;x

ω2Λ
H −

PΛ

2ω2Λ
Hr ¼ M;x: ðB9Þ

and it reduces to the Misner-Sharp mass function for the
appropriate values of ϕ, h and V. As in the GR case we
define

H ¼ ~N ~Hþ ~NrHr ¼ − ~NM;x þ ~NrHr ðB10Þ

with suitably redefined Lagrangian multipliers:

~N ≔
ω2Λ
ϕ0R;x

N ðB11Þ

~Nr ≔ Nr −
PΛ

2ϕ0R;x
N: ðB12Þ

3. General ϕ, h and V with radiation

In the most general radiating case that we consider, the
derivative of the mass function (88) cannot be written as a
linear combination of the constraints. In the GR case where
ϕ00 ¼ h ¼ V (and therefore ϕ02=jω2 ¼ 1) it is shown in
Appendix C that the boundary term which must be added to
the Hamiltonian is of the form (B7) with M given by (B1).
In terms of phase space variables, (69) can be used to give,

M ¼ ðn − 2ÞRn−3

×

�
1 −

��
R;x

Λ

�
2

−
�
− ~ϕ0S1 − 2WPR

S2

�2��
ðB13Þ

The derivative of this mass function also cannot in general
be written as a combination of the constraints in the full
radiating case. Nonetheless, the analysis of Appendix C
applies to the non-GR case as long as the conditions
ϕ00 ¼ h ¼ V are satisfied in the asymptotic region. In this
case, as R → ∞,

M → j

�
1 −

��
R;x

Λ

�
2

−
�
− ~ϕ0S1 − 2WPR

S2

�2��
ðB14Þ

and this provides the boundary term needed to make the
variational principle well defined, as well as the corre-
sponding conserved energy.
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APPENDIX C: BOUNDARY CONDITIONS AND
BOUNDARY TERM

Here we derive the boundary conditions at x → ∞
which give a finite Hamiltonian. For this to happen the
Hamiltonian density (73) must go to zero faster than x−1.
For the nonradiation fields we adopt the boundary con-
ditions used in [30] and [29] for slices which approach flat
slice coordinates as x → ∞,

N ≃ N∞ðtÞ þOðx−ϵN Þ; ðC1Þ

Nr ≃ N∞
r ðtÞx−ðn−3Þ=2; ðC2Þ

Λ≃ 1; ðC3Þ

R≃ xþ R1ðtÞx−ϵR ; ðC4Þ

where ϵN > 0, ϵR > 1 for n ¼ 4 and ϵR > n − 4 for n > 4.
In this derivation we ignore the matter terms which are
treated in [45]. For the radiation fields we assume the form

z1 ≃ z∞10ðtÞ þ z∞1 ðtÞx−ϵz1 ðC5Þ

z2 ≃ z∞20ðtÞ þ z∞2 ðtÞx−ϵz2 : ðC6Þ

Wewill use the fact that the Hamiltonian should be finite to
find the conditions on z∞10, z

∞
20, ϵz1 and ϵz2.

In this appendix we assume that the fields ϕ, h, V and B
are those of GR case and that b and c go to zero at least as
fast as (grow at least as slowly as)

b ¼ −3ðB0=BÞ2 ðC7Þ

c ¼ −6 lnB; ðC8Þ

although we will discuss the applicability of this analysis to
the singularity resolved case of (16), (18) and (19).
We can write down the asymptotic form of the conjugate

momenta, up to dominant terms, using (62)–(64)
and (65),

PΛ ≃ 2ðn − 2ÞN−1
∞ ð−R1;txn−3−ϵR þ N∞

r xðn−3Þ=2Þ
− 2WN−1

∞ ðz∞10;t þ z∞20;t þ z∞1;tx
−ϵz1 þ z∞2;tx

−ϵz2Þ; ðC9Þ

PΛ;x ≃ 2ðn − 2ÞN−1
∞ ð−ðn − 3 − ϵRÞR1;txn−4−ϵR

þ N∞
r ððn − 3Þ=2Þxðn−5Þ=2Þ

þ 2WN−1
∞ ðϵz1z∞1;tx−ϵz1−1 þ ϵz2z∞2;tx

−ϵz2−1Þ; ðC10Þ

PR ≃ 2ðn − 2ÞN−1
∞ ð−ðn − 3ÞR1;txn−4−ϵR

þ N∞
r ððn − 3Þ=2Þxðn−5Þ=2Þ

þ 6Wðn − 2Þ2N−1
∞ ðz∞10 þ z∞1 x

−ϵz1 − ln μ2Þ
× ðR1;tx−ϵR−2 − N∞

r x−ðnþ1Þ=2Þ; ðC11Þ

Pz1 ≃ −WN−1
∞ ððn − 3ÞN∞

r x−ðn−1Þ=2 þ z∞20;t þ z∞2;tx
−ϵz1Þ;
ðC12Þ

Pz2 ≃ −WN−1
∞ ððn − 3ÞN∞

r x−ðn−1Þ=2 þ z∞10;t þ z∞1;tx
−ϵz2Þ:
ðC13Þ

At this point it is advantageous to consider the
NPz1Pz2=WΛ term in (73). The relevant, radiation terms
in this term go as

z∞10;tz
∞
20;t þ z∞1;tz

∞
20;tx

−ϵz1 þ z∞2;tz
∞
10;tx

−ϵz2 þ z∞1;tz
∞
2;tx

−ðϵz1þϵz2Þ;

ðC14Þ

which are not canceled by any of the other terms in (73).
The form of (C14) means that ϵz1þϵz2>1 and z∞10;tz

∞
20;t¼0.

In the case where b¼c¼0→z1¼z2≔z=2, Pz1 ¼ Pz2 ≔ Pz
we can show that z ∼ xϵz where ϵz > 1=2. In the spirit of
this limit we take

ϵz1 > 1=2; ϵz2 > 1=2; z∞10 ¼ 0; z∞20 ¼ 0:

ðC15Þ

Using these conditions and keeping only the biggest terms
we then find

PΛ ≃ 2ðn − 2ÞN−1
∞ ð−R1;txn−3−ϵR þ N∞

r xðn−3Þ=2Þ ðC16Þ

PΛ;x ≃ 2ðn − 2ÞN−1
∞ ð−ðn − 3 − ϵRÞR1;txn−4−ϵR

þ N∞
r ððn − 3Þ=2Þxðn−5Þ=2Þ ðC17Þ

PR ≃ 2ðn − 2ÞN−1
∞ ð−ðn − 3ÞR1;txn−4−ϵR

þ N∞
r ððn − 3Þ=2Þxðn−5Þ=2Þ ðC18Þ

Pz1 ≃ −WN−1
∞ z∞2;tx

−ϵz1 ðC19Þ

Pz2 ≃ −WN−1
∞ z∞1;tx

−ϵz2 : ðC20Þ

Plugging these and (C15) into (74) and (75) and dropping
all nondominant terms we can see that the Hamiltonian
density reduces to the nonradiating case and the rest of
the proof that the Hamiltonian is finite can be found in
Appendix A.2 of [30].
It is important to note that there are some cancelations in

the rest of the derivation which require 2ϕ00 − hz − V → 0
as x → ∞. This occurs in the GR case as well as for (15),
(18) and (19) assuming that b and c go to zero fast enough.
These must be satisfied in order to use the boundary
conditions given by (C1)–(C4).
We now take the variation of the action to find which

boundary terms do not approach zero as x → ∞. The
variation of the action is given by
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δI ¼
Z

dt
Z

dxð∂tðδΛPΛÞ − δΛ _PΛ þ _ΛδPΛ

þ ∂tðδRPRÞ − δR _PR þ _RδPR

þ ∂tðδz1Pz1Þ − δz1 _Pz1 þ _z1δPz1

þ ∂tðδz2Pz2Þ − δz2 _Pz2 þ _z2δPz2

− δNH − NδH − δNrHr − NrδHrÞ: ðC21Þ

Assuming that all variations vanish at the time end points
the only contributions to the boundary term come from the
last line of (C21). Using the boundary conditions (C1)–
(C6) and (C15) we calculate the boundary term. This
calculation is tedious but straight forward and can be
found in Appendix A.2 of [30] for the nonradiating case.
The only boundary term which does not approach zero as
x → ∞ is

NrΛδPΛ ≃ N∞
r x−ðn−3Þ=2½2ðn − 2ÞδðN∞

r =N∞Þxðn−3Þ=2�
¼ ðn − 2ÞN∞δðN∞2

r =N2
∞Þ: ðC22Þ

The Misner-Sharp mass in this case (see (1.35) of [30]),
with l set to 1, is given by

M ¼ ðn − 2ÞRn−3ðNr=NÞ2; ðC23Þ

which goes to ðn − 2ÞðN∞
r =N∞Þ2 as x → ∞ and so the

variation of the action is

δI ¼
Z

dtdxðdynamical termsÞ þ
Z

dt½NδM�x¼þ∞
x¼−∞ :

ðC24Þ

This requires the addition of NMjR¼∞ to the Hamiltonian.
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