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There is a considerable amount of evidence to suggest that the field equations of gravity have the same
status as, say, the equations describing an emergent phenomenon like elasticity. In fact, it is possible to
derive the field equations from a thermodynamic variational principle in which a set of normalized vector
fields are varied rather than the metric. We show that this variational principle can arise as a low-energy
[LP ¼ ðGℏ=c3Þ1=2 → 0] relic of a plausible nonperturbative effect of quantum gravity, viz. the existence of
a zero-point length in the spacetime. Our result is nonperturbative in the following sense: If we modify the
geodesic distance in a spacetime by introducing a zero-point length, to incorporate some effects of quantum
gravity, and take the limit LP → 0 of the Ricci scalar of the modified metric, we end up getting a nontrivial,
leading order (LP-independent) term. This term is identical to the expression for entropy density of
spacetime used previously in the emergent gravity approach. This reconfirms the idea that the microscopic
degrees of freedom of the spacetime, when properly described in the full theory, could lead to an effective
description of geometry in terms of a thermodynamic variational principle. This is conceptually similar to
the emergence of thermodynamics from the mechanics of, say, molecules. The approach also has important
implications for the cosmological constant which are briefly discussed.
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I. INTRODUCTION, MOTIVATION
AND SUMMARY

Recent work has gone a long way in demonstrating that
gravitational field equations can be thought of as having
the same conceptual status as equations in emergent
phenomena like fluid dynamics or elasticity [1,2]. The
two strongest pieces of evidence, among many, which
support this point of view are the following:

(i) It is possible to obtain [3,4] the field equations of a
large class of gravitational theories including, but
not limited to, Einstein’s theory from an alternative,
thermodynamic variational principle. In this appro-
ach, one starts with a well-defined thermodynamic
potentialS[∇n; n] which depends on a vector field ni

of constant norm and has [2] the interpretation as the
gravitational heat density of spacetime:

S ∝ ½ð∇iniÞ2 −∇inj∇jni�
¼ Rabnanb þ ðtotal divergenceÞ: ð1Þ

Extremizing S with respect to all vector fields ni

simultaneously leads to a constraint on the back-
ground metric which turns out to be identical to the
field equations. (Adding the appropriate matter heat
density and extremizing the total heat density will

lead to field equations with source; in this paper, we
will be mainly concerned about pure gravity.)

(ii) The time evolution of the spacetime geometry can be
described through an equation which is mathemati-
cally equivalent to, say, Einstein’s equation but can
be written and interpreted entirely in terms of surface
(Nsur) and bulk (Nbulk) degrees of freedom [2,5].
When the metric is independent of time [5] we get
Nsur ¼ Nbulk (“holographic equipartition”) and—in
the most general context—the time evolution of the
metric is driven by [2] the difference (Nsur − Nbulk).
Thus, not only the variational principle but even
the resulting field equation can be expressed in a
thermodynamic language that brings to the fore the
importance of microscopic degrees of freedom in the
bulk and in the boundary.

These results suggest that one should interpret the
standard gravitational dynamics as the thermodynamic
limit of some underlying statistical physics which deals
with the (as yet unknown) atoms of spacetime. Eventually,
when we discover the fundamental laws governing the
dynamics of these microscopic degrees of freedom, we will
also discover and understand the limiting process by which
the thermodynamic variational principle, based on S, can
be obtained. While this possibility sounds natural, there are
a couple of puzzling features related to this issue.
First, it seems reasonable to assume that classical

equations of gravity should arise in the LP → 0 limit of
the full quantum dynamics. In that case, one would
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(naively, as it turns out) expect the leading order action
functional of classical gravity to be the standard Einstein-
Hilbert action with higher order (LP-dependent) correc-
tions. But, this does not seem to be the direction which is
suggested by the emergent gravity paradigm. There are
strong conceptual reasons to believe (including the problem
of the cosmological constant) that the metric should not be
the dynamical variable which is varied in the low-energy
effective action of the theory and ipso facto Einstein-
Hilbert action will not be the correct, LP → 0 limit, of the
microscopic variational functional. Instead, the emergent
gravity paradigm suggests using Sð∇n; nÞ and varying ni.
It is not clear how this transmutation in the variational
principle (from R to Rabnanb) arises.
Let us elaborate on this point which suggests a radical

departure from the conventional wisdom. The usual
approaches to quantum gravity presuppose that the metric
will continue to be a dynamical degree of freedom in the
quantum gravitational domain (in some form or the other)
because it is the dynamical variable in the classical limit.
But the emergent gravity paradigm suggests something
different. In the classical limit, it does not treat the usual
metric as the degree of freedom to be varied in an extremum
principle and hence there is no reason to expect this
metric to play a direct role in the quantum theory either.
If Einstein’s equations are like equations of elasticity,
treating the metric as a quantum variable is like quantizing
elasticity; we will then get gravitons as analogues of
phonons but the real microscopic degrees of freedom will
be quite different—in a solid or in a spacetime.
Second, the variational principle based on S uses a vector

field of constant norm. It is not clear, a priori, how a
quantum gravitational variational principle will produce
such a vector field which survives in the low-energy limit of
LP → 0. Where does it come from and why should it be
varied in the low-energy limit rather than the metric (which
is the conventional point of view) are the questions that
need to be answered in a microscopic theory.
We will answer these questions in this paper.
We will show that there exists a natural variational

principle which could have a microscopic origin and can
lead to the variational principle based on S in the LP → 0
limit. As we will see, the limiting process introduces in a
natural fashion a normalized vector field ni and the field
equations of the low-energy theory can be obtained by
varying this vector field. This demonstrates the possibility
that the thermodynamic variational principle can indeed
have a microscopic origin. We will see that the limiting
process is subtle and mathematically nontrivial. It is
this nontriviality which leads to a leading order (LP → 0)
variational principle that is quite different from the
Einstein-Hilbert action.
The key new idea is to work with the biscalar σ2ðp;PÞ,

which is the geodesic distance between two events p and
P in any spacetime [with Ω≡ ð1=2Þσ2 being the so-called

Synge world function]. Locally, this function is related
to the metric by the usual Hamilton-Jacobi equation,
ð1=2Þgab∇aΩ∇bΩ ¼ Ω, which takes the form

gabðxÞ∇aσ
2ðx; x0Þ∇bσ

2ðx; x0Þ ¼ 4σ2ðx; x0Þ: ð2Þ
Indeed, all the information about the spacetime geometry

can be shown to be encoded in σ2. This is because the
metric can be obtained [6] from the coincidence limit of
covariant derivatives of σ2 by

gab ¼ lim
x0→x

½∇a∇bΩðx; x0Þ�; ð3Þ

and, of course, all other geometrical properties can be
obtained from the metric. In other words, all of classical
gravity and all of spacetime dynamics can be described
entirely in terms of the biscalar function σ2ðp;PÞ.
Therefore, one can trade off the (local) degrees of freedom
associated with the metric for the degrees of freedom
represented by the (nonlocal) object σ2ðp; PÞ.
The major advantage of using the geodesic distance

instead of the metric is the following. We have no clue how
quantum gravitational effects modify the notion of the
metric at short distances and what kind of effective
description is called for in the quasiclassical domain.
However, there is a significant amount of evidence [7,8]
to suggest that quantum gravity introduces a zero-point
length to the spacetime in the sense of

lim
p→P

hσ2ðp; PÞi ¼ L2
P; ð4Þ

where the h…i denotes averaging over metric fluctuations
and LP is a fundamental length scale, of the order of
the Planck length (≈10−33 cm). This suggests that one
can capture the lowest order quantum gravitational effects
by introducing a zero-point length to the spacetime by
modifying

σ2 → σ2 þ L2
P: ð5Þ

For example, this changes the coincidence limit of Green’s
functions and serves as a Lorentz-invariant UV regulator.
The Euclidean propagator for the massless scalar field, for
example, gets replaced by

Gðσ2Þ ∝ ðσ2Þ−ðD−2Þ=2 → ðσ2 þ L2
PÞ−ðD−2Þ=2 ð6Þ

near the coincidence limit [7] (and the same holds for the
massive propagator as well). The logic and justification
for such a result have been presented in several previous
papers [7–9] and will not be repeated here. But the key
point to note is that the correction to σ2 in Eq. (5) is
universal and captures some basic features of quantum
gravity. Equations (4) and (5) should be considered as
purely nonperturbative results in quantum gravity arising
from the quantum gravitational averaging of σ2ðp;PjgabÞ
over the fluctuations of the metric gab.
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We have, of course, no clear idea as to how to describe the
spacetime at Planck scales where the notions of differential
manifold, metric, etc., may break down completely. On the
other hand, these features emerge in the long-wavelength
limit, at scales much larger than LP. It seems reasonable to
assume that there could exist an in-between, quasiclassical
domain, that interfaces classical and quantum gravity, in
which we can still talk about a metric, spacetime interval,
etc., but with some modifications arising from the quantum
gravity. The results in Eqs. (4) and (5) motivate one to
proceed along the following lines to describe physics in the
quasiclassical domain:
(1) Supposeweare interested in a classical spacetimewith

a given metric gab or, equivalently, a given biscalar
σ2ðp;PÞ corresponding to that metric. Assume for
a moment that we can find another second rank,
symmetric, bitensor qabðp;P;L2

PÞ (which we will
call “qmetric” for reasons which will be clear soon)
such that its geodesic distance is σ2ðp; PÞ þ L2

P.
(2) Since it can be argued that σ2 → σ2 þ L2

P captures
the quantum gravitational effects in the quasiclassical
domain, it seems reasonable to think of a variational
principle based on qabðp; P;L2

PÞ to achieve the same.
This, in turn, motivates us to consider the Einstein-
Hilbert action functional for qabðp; P;L2

PÞ which is
constructed from the Ricci biscalar for the qmetric
qabðp;P;L2

PÞ using the standard formula which
connects Ricci scalar to the metric.

(3) The qmetric is, of course, a nonlocal bitensor
depending on two events p and P (and on L2

P).
Hence the Ricci biscalar Rðp; P;L2

PÞ obtained from
it will also depend on two events p and P and on L2

P.
Obviously, we need to take a suitable limit of p → P
as well as LP → 0 to obtain a local expression
analogous to the Ricci scalar for the geometry. The
resulting scalar

Leff ≡ lim
LP→0

lim
p→P

Rðp; P;L2
PÞ ð7Þ

can then be interpreted as the correct, low-energy,
functional to be used in the variational principle.

Incredibly enough, strange—but nice—things happen
along the way when we attempt to carry out the logical
steps of the above program.
To begin with, the qmetric is not a metric in the standard

sense of differential geometry. This should be obvious
because any geodesic interval obtained from a genuine
metric, by integrating along a geodesic from event p to
event P, is guaranteed to vanish when we take the
coincidence limit of p → P. We are never going to get
the zero-point-length modification of the geodesic interval
in Eq. (5) if the qmetric is a genuine, local, metric and the
limiting process is nonsingular. As we shall show, the
qmetric depends explicitly on both p and P (making it a
nonlocal bitensor) and has a singular structure in the

coincidence limit—which allows the geodesic interval
constructed from the qmetric to be nonvanishing in the
coincidence limit. The fact that this result arises in a very
natural fashion is noteworthy.
Second—and the most surprising feature—is the form of

the coincidence limit of the Ricci biscalar. It turns out that
when the coincidence limit p → P is taken in the Ricci
biscalar for the qmetric, the leading term is precisely S
given in Eq. (1) and not the Ricci scalar for the original
metric. That is, we get

Leff ≡ lim
LP→0

lim
p→P

Rðp;P;L2
PÞ ∝ SðPÞ: ð8Þ

In other words, starting from the Ricci biscalar for the
qmetric, taking the p → P limit and then taking LP → 0
limit does not lead to the Ricci scalar for the original metric
but to S used in the emergent gravity paradigm. The final
result depends on an extra vector field of constant norm
arising from the derivatives of the geodesic interval.
The entire process involves taking the limits in a

particular order so that the local quantities are defined
from the nonlocal entities in a specific manner. Such
operations are well justified by physical considerations
at this stage and will probably acquire a firmer mathemati-
cal basis when we understand quantum gravity better. What
is obvious from our result—and is quite significant—is the
following conceptual fact: Quantum gravitational structures
which depend on LP can lead to unexpected semiclassical
relics when the LP → 0 limit is taken, if quantum gravity
is nonanalytic in LP. There is a considerable amount of
evidence that this could indeed be the case.
An analogy may be useful to clarify this point. We know

that the classical theory of elasticity should be obtainable
from the quantum dynamics of a solid by taking an
appropriate continuum limit. One would have thought that
such a classical limit of a continuum solid can be obtained
by taking the ℏ → 0 limit of the quantum theory. This is
however too naive. If we take the (mathematically) strict
ℏ → 0 limit of a quantum solid, each atom will collapse to a
singularity because atoms cannot exist in the ℏ → 0 limit.
To get the proper limit, we have to keep “the ℏ inside the
atoms” to be nonzero (ensuring the existence of atoms) and
let “all other ℏ’s” to vanish. The real classical world cannot
be described as a sum of a leading order, ℏ-independent,
phenomenon with ℏ-dependent corrections. Figuratively
speaking, the classical world is nonanalytic in ℏ because
matter made of atoms cannot exist in the strict ℏ → 0 limit.
In a similar manner, one could argue that ℏ → 0 limit is

nontrivial in proceeding from the quantum to classical limit
of spacetime. There is a fair amount of evidence that what is
fundamental in quantum gravity is the quantum of area,
L2
P ∝ AP ¼ ðGℏ=c3Þ. If we write Newton’s law of gravi-

tation in two equivalent forms as

F ¼ G
m1m2

r2
¼ APc3

ℏ
m1m2

r2
; ð9Þ
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it is clear that the limit ℏ → 0 can have widely different
behavior depending on which form we use. Conventionally,
one thinks of G as independent of ℏ and the first form of
the equation is oblivious to the process of taking ℏ → 0.
But if G is an emergent constant, like Young’s modulus
or conductivity of a solid, then it can have a nontrivial,
implicit, dependence on ℏ. If we further assume, based on
Eq. (5), that AP is the quantity which is independent of ℏ,
and characterizes quantum spacetime, then a completely
different picture emerges [10]. Now we need to use the
second form of the equation to study, say, planetary motion.
The ℏ → 0 limit does not exist and Newton’s law of
gravitation is nonanalytic in ℏ; there is no such thing as
classical gravity just as there is no such thing as classical
solid since neither could exist in the strictly ℏ → 0 limit.
Most of our conventional intuition about quantum

gravity is built on the idea that classical gravity can
be obtained as a “Taylor series expansion” in L2

P starting
from quantum gravity. This, in turn, assumes that all
quantum gravitational effects are analytic in L2

P and will
lead to some sensible classical limits when the LP → 0
limit is taken. Some thought shows that this is a highly
questionable assumption and we should take seriously
the possibility that quantum gravity could have features
which are nonanalytic in LP. In that case, the process of
taking limits will involve manipulating singular quantities
leading to unexpected (but interesting) results. The
emergent nature of gravitational field equations can arise
from such a nontrivial limiting process which we
illustrate here.
There is a different conceptual bonus from this analysis.

There are, arguably, three areas of contact and conflict
between the principles of quantum theory and gravity:
(i) thermodynamics of spacetime horizons; (ii) the singu-
larity problem in classical gravity, especially in cosmology
and black hole physics; (iii) the problem of the cosmo-
logical constant. There have been repeated suggestions in
the literature that quantum gravity will have something
nontrivial to say about all these three issues. It is already
known that the emergent gravity paradigm provides deep
insights into items (i) and (iii) but has been silent about the
singularity problem. On the other hand, the prescription in
Eq. (5) has the potentiality of tackling the singularity
problem by making the coincidence limit finite due to the
fluctuations of the metric. We show here that the prescrip-
tion in Eq. (5)—which has been discussed in the past in
connection with the singularity resolution and as a UV
regulator—can also lead to the variational principle in
emergent gravity. So the present work provides a unifying
thread linking the three issues listed above which is
conceptually rather pleasing.
We shall now describe some of the mathematical details

of this procedure. The rest of the sections of the paper
are organized as follows. In Sec. II, we present the exact
form of the Ricci biscalar for the qmetric and obtain from

it a local scalar which is the natural candidate for the
quantum-corrected Ricci scalar. We then compare this
object with the Ricci scalar of the original spacetime,
which reveals the nontriviality of the LP → 0 limit. In
Sec. III, we analyze our result in the context of the emergent
gravity paradigm and discuss how various pieces fit nicely
to demonstrate the naturalness and inevitability of this
paradigm. In particular, we discuss how our results strongly
suggest that the cosmological constant might be related to a
nonlocal relic of the small scale structure of spacetime.
Finally, in Sec. IV, we discuss some important conceptual
points which deserve a deeper investigation.
Notation.—We work in D dimensions and use the sign

convention ð−;þ;þ;…Þ for Lorentzian spaces. Most of
our analysis is best viewed as done in a Euclidean space,
with analytic continuation done right in the end. This is
implicit in the calculations even when we do not state it
explicitly. In this sense, the parameter ϵ which is the norm
of the normalized tangent vector ni to geodesics is simply
þ1. We have nevertheless kept it in the equations to help
keep track of sign issues arising for timelike geodesics
after analytic continuation.

II. THE QMETRIC AND THE CORRESPONDING
RICCI BISCALAR

We will now carry out the steps described in items 1–3
after Eq. (6). Our starting point is the result derived in [11].
This result allows us to associate a second rank, symmetric,
bitensor qabðp; PÞ with a spacetime having the metric gab
and the geodesic distance σ2ðp;PÞ such that the following
two properties are satisfied: (i) The modified geodesic
distance

σðqÞ2 ¼ σ2 þ L2
P ð10Þ

[where σðqÞ2 ≡ σ2ðp; PjqabÞ and σ2 ≡ σ2ðp; PjgabÞ for
simplifying the notation] satisfies the analogue of Eq. (2)
with the metric replaced by the qmetric. That is,

qab∇aσðqÞ2∇bσðqÞ2 ¼ 4σðqÞ2: ð11Þ

(ii) The Euclidean propagator for the massless scalar field,
with the modification in Eq. (6), satisfies the usual Green
function equation

ffiffiffiffiffiffi−gp
□G ¼ δðx; x0Þ with the qmetric

replacing the metric in the operator on the left-hand side.
These two conditions allow us to determine the form of the
qmetric to be

qabðp;P;L2
PÞ ¼ A½σ;LP�gabðpÞ

− ϵ

�
A½σ;LP�−

1

A½σ;LP�
�
naðp;PÞnbðp;PÞ

ð12Þ

with
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A½σ;LP� ¼ 1þ L2
P

σ2
; na ¼

∇aσ
2

2
ffiffiffiffiffiffiffi
ϵσ2

p : ð13Þ

In fact, it is possible to generalize the notion of qmetric for an
arbitrarymodification of the geodesic interval σ2 → Sðσ2Þ;
an outline of derivation for this general case is given in
Appendix Awhich covers the above result as a special case.
Derivation of the above result, for the modification of the
geodesic interval in Eq. (10), and its implications (such as
the effect on short-distance behavior of Green’s functions
and on spacetime singularities) are discussed in Ref. [11].
One can think of Eq. (12) as associating a qmetric with

every metric such that the geodesic distance computed from
the qmetric is ðσ2 þ L2

PÞ if the geodesic distance computed
from the original metric is σ2. Throughout the paper we
think of P as a fixed “base event” and p as the variable
“field event.” All derivatives, covariant or partial, are taken
at the spacetime event p. We see that when the geodesic
distance between the two events is much larger than the
Planck length [σ2ðp; PÞ=L2

P ≫ 1], the qmetric reduces to
the background metric qabðp; P;L2

PÞ → gabðpÞ. In this
sense we can think of the qmetric as describing the
nonlocal, quantum gravitational effects near the Planck
scale, arising from the existence of a zero-point length.
We will now attempt to relate the curvature bi-invariants

(obtained by the usual formulas treating it like a metric) of
the qmetric q with those of the original metric g. Needless
to say, this is a formidable task, since the qmetric is a sum
of two terms: (i) a piece which is conformal to g and (ii) a
piece depending on the tangent vector n connecting P to p.
This complicates the evaluation of the full curvature tensor
of q in terms of that of g. Fortunately, for the purpose of this
paper, we only need the Ricci biscalar corresponding to the
qmetric which can be derived by a few tricks involving the
Gauss-Codazzi relation.1

To begin with, note that the deformation is characterized
by the function A½σ;LP� which is only a function(al) of σ2.
Further, as was shown in [11], the induced geometry on
the σ2 ¼ const surface undergoes a conformal deformation
hab → A½σ;LP�hab which leads to a rather simple relation
for the induced Ricci scalars which appear in the
Gauss-Codazzi equations. The two facts above suggest
that it might be mathematically convenient to consider the
foliation defined by σ2 ¼ const surfaces. The extrinsic
curvature for this foliation can be derived using the
identities satisfied by the geodesic distance function which
have been summarized, for example, in [13]. Using this
procedure we can compute the explicit form of the Ricci
scalar for the qmetric. The outline of the steps for the

general case is given in Appendix B and the explicit
derivation of the final result for the special case are given
in Appendix C.
Thus, after some lengthy but straightforward algebra, the

final expression is found to be

Rðp;P; LPÞ ¼ RðpÞ −
�
1 −

1

A

�
Y − ϵð1 − AÞZ ð14Þ

with

Y ¼ RΣ −
D1D2

σ2
ð15Þ

and

Z ¼ 2Rabnanb þ KabKab − K2 þD1D2

ϵσ2

þ 2D−1ffiffiffiffiffiffiffi
ϵσ2

p
�
K −

D1ffiffiffiffiffiffiffi
ϵσ2

p
�
; ð16Þ

where

ffiffiffiffiffiffiffi
ϵσ2

p
Kab ¼

ffiffiffiffiffiffiffi
ϵσ2

p
∇anb ¼ ∇a∇bðσ2=2Þ − ϵnanb ð17Þ

is the extrinsic curvature of the σ2 ¼ const foliation, RΣ is
its induced scalar curvature:

RΣ ¼ R − ϵð2Rabnanb þ KabKab − K2Þ; ð18Þ
and we have introduced the convenient notationDk ¼D−k.
Also, ϵ¼ gabnanb ¼�1with na ¼ gabnb. (See Appendix D
for a more geometrical form of the above expression.)
Equation (14) is a nonlocal expression for the biscalar

Rðp;P; LPÞ. The final step of the analysis is to extract a
local scalar object from this biscalar by taking the coinci-
dence limit. In general, to study any particular curvature
invariant KðPÞ obtained from the qmetric (using the same
algebraic expression that connects the corresponding scalar
with the original metric), we start from the modified
biscalar curvature invariant KðqÞðp;P;LPÞ evaluated for
the qmetric and take the coincidence limit σ2 → 0 to obtain
the corresponding quantity. We shall focus on spacetime
regions with regular curvature. Then we can use for
∇a∇bσ

2 the well-known expansion in a covariant Taylor
series around the base point P given (see, e.g., [13]) by

1

2
∇a∇bσ

2 ¼ gab −
λ2

3
Sab þ

λ3

12
∇nSab

−
λ4

60

�
∇2

nSab þ
4

3
SiaSi

b

�
þOðλ5Þ; ð19Þ

where λ is the arc length along the geodesic which, of
course, is numerically the same as λ ¼

ffiffiffiffiffiffiffi
ϵσ2

p
, ∇n ≡ ni∇i

and Sab ¼ Racbdncnd. It is convenient to define a few
related quantities as well:

1This analysis also sheds some light on more general aspects of
intrinsic and extrinsic geometries of metrics related in a manner
similar to Eq. (12), which might be relevant in their own right
from a purely differential geometric point of view; these will be
presented in a separate paper [12].
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S ¼ gabSab ¼ Rabnanb; _S ¼ ∇nS; S̈ ¼ ∇nð∇nSÞ:
ð20Þ

Note that S is the functional used in the variational
principle in the emergent gravity paradigm.
Carrying out this operation for the Ricci biscalar in D

dimensions (see Appendix C for the details in a special
case), we find that we get an object which depends not only
on local tensorial objects such as gab, Rabcd, etc., at P, but
also on a vector na which, apart from being normalized,
becomes arbitrary in the coincidence limit:

RðP;LPÞ ¼ lim
p→P

Rðp;P;LPÞ

¼ α½Rabnanb�P|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Oð1Þ term

−
L2
P

15

�
1

3
SabSab þ 3

2
S̈ þ 5

3
S2

�
P|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

OðL 2
P Þ term

;

ð21Þ
where α ¼ 2ϵðDþ 1Þ=3. [In general, there is also a
divergent Oðλ−1Þ term which is well known in the context
of point-splitting regularization. This term can be regular-
ized and dropped; one way to do so formally is described in
Appendix E.] This is our final result.
Note that, after the coincidence limit has been taken, the

vector na on the right-hand side above must be treated as
an arbitrary (normalized) vector. In other words, the object
RðP;LPÞ at any event P must be treated as a quantity
which depends on local tensorial objects at P, such as gab,
Rabcd, etc., as well as on arbitrary normalized vectors na.
In this sense, we end with an object which depends, in
addition to standard geometric objects such as gab,
Rabcd, etc., on arbitrary vector degrees of freedom at each
spacetime event. These vectors have to be thought of as the
vestige of the small scale structure of spacetime and will
allow us to connect up with the emergent gravity paradigm;
we will come back to this point, in a broader context,
shortly.
The most important aspect of the result, as far as this

paper is concerned, is the following: When we carry out
the last step (3) of the procedure outlined after Eq. (6), by
taking the LP → 0 limit of Eq. (21), we obtain the grin of
the Cheshire cat:

lim
LP→0

lim
p→P

Rðp;P;L2
PÞ ¼ αRabðPÞnanb ∝ SðPÞ: ð22Þ

In other words,

RðP; LP ¼ 0Þ ≠ RðPÞ: ð23Þ

That is, we start with the Ricci biscalar for the qmetric
(which bears the same algebraic relation to the qmetric as
the usual Ricci scalar does to the usual metric), take the
coincidence limit p → P and then take the “classical limit”

of LP → 0, only to find that the resulting expression is not2

the Ricci scalar for the background metric.
On the other hand, it is easy to see from Eq. (14) that if

we take the classical limit first, we get

Rðp;P;LP ¼ 0Þ ¼ RðPÞ: ð24Þ

Clearly, the limits σ2 → 0 and LP → 0 do not commute:

lim
LP→0

lim
σ2→0

Rðp;P; LPÞ ≠ lim
σ2→0

lim
LP→0

Rðp;P; LPÞ: ð25Þ

The origin of this noncommutativity of the limits can be
traced back to the factor ð1 − A−1Þ in the second term of
Eq. (14); in fact, the function

fðσ; LPÞ ¼ 1 − A−1 ¼ 1 −
1

1þ L2
P=σ

2
ð26Þ

has no limit at ðσ; LPÞ ¼ ð0; 0Þ, since

lim
LP

~0
lim
σ2→0

fðσ; LPÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼1

≠ lim
σ2~0

lim
LP→0

fðσ; LPÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

: ð27Þ

In the spirit of conventional regularization techniques (in
our case, the most natural one is, of course, point-splitting
regularization), we must take the coincidence limit p → P
first, which results in the structure of RðPÞ given by
Eq. (21). The resulting expression in Eq. (22), arising as the
leading order term, is our key result.
Given the rather surprising and counterintuitive nature

of the result, we give an explicit demonstration of the same,
in a simpler context, in Appendix C. This is done by using
the synchronous coordinate system for the background
metric and taking p and P along the radial direction in
the Euclidean space. This is, of course, not the most general
case but this captures much of the subtleties in the calcu-
lation. The interested reader is referred to Appendix C for
the details as to how the noncommuting nature of the limits
leads to this result.
We shall now discuss the implications of our result for

the emergent gravity paradigm.

III. IMPLICATIONS

A. The emergent gravity variational principle

The standard action for general relativity is based on the
Einstein-Hilbert Lagrangian: LEH ¼ R. The usual belief is
that one has to somehow quantize the theory based on this

2As a curious aside we mention the following: The condition
αRabnanb ¼ R numerically requires the rather peculiar relation
Rab ¼ 3=½2ðDþ 1Þ�gabR to be satisfied by the background
metric. Even the maximally symmetric space(time)s satisfy this
relation only for the special case D ¼ 2; this includes, e.g., the
2-sphere.
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Lagrangian. But if gravity is an emergent phenomenon like
elasticity, this effort is like quantizing a theory based on a
Lagrangian describing elastic vibrations. Obviously, this
will not lead to lasting progress.
The problem with the emergent gravity program, on the

other hand, is that it is a “top-down” approach (in length
scales) and the next logical step of the program is some-
thing like trying to discover statistical mechanics from
thermodynamics. One simply cannot do this without addi-
tional postulates. Further, what we are really interested in is
the quasiclassical limit in which ideas like differential
manifold, metric, etc., remain valid and only the dynamical
description changes. In this limit, the modification in
Eq. (5) captures some of the key aspects of quantum
gravity. This modification, in turn, is equivalent to using the
qmetric in place of the original metric.
Given such a replacement, the most natural extremum

principle will be the one based on the Ricci biscalar
Rðp;P;L2

PÞ for the qmetric, just as we think of the
extremum of the usual Ricci scalar R (for the usual metric)
as the natural choice in general relativity. To obtain a local
variational principle from this biscalar we take the limit of
p → P in Rðp;P;L2

PÞ, obtaining the result in Eq. (21).
That is, in the limit of p → P, the extremum principle based
on R is equivalent to the extremum principle based on the
limiting expression [viz. the first term in Eq. (21) when
LP → 0], which is just S ∝ RabðPÞnanb. The variation of
the metric, which is equivalent to the variation of geodesic
distance, translates into varying na in this expression since
we treat the base point P as fixed. In other words, there is a
natural transmutation of the variational principle when we
carry out steps 1–3 outlined after Eq. (6). We see that

LEH ¼ R → Leff ¼ αRabnanb; ð28Þ

where n is a vector of constant norm. The Leff has precisely
the form of the thermodynamic functional S first suggested
by Padmanabhan and Paranjape [3] as a basis for an alternate
variational principle for describing emergent gravitational
dynamics, motivated by thermodynamics of causal horizons
[14]. One can treat this as a functional of the normalized
vector field na and the extremum must now hold for
variations of all na. As demonstrated in several previous
papers [2,3], this leads to standard field equations of gravity
with the cosmological constant arising as an undetermined
integration constant.3

The results in Eqs. (21) and (22) are highly nontrivial
and we could not have guessed them from any simple

consideration. These results highlight the robustness of the
framework for the emergent gravity paradigm based on an
alternate variational principle by demonstrating that such a
principle could be enforced upon us by the existence of a
fundamental length scale in spacetime. The conceptual loop
closes nicely since the emergent gravity paradigm was
itself largely motivated by the existence of thermal attrib-
utes of causal horizons. One of these attributes, the horizon
entropy, however, turns out to be divergent when viewed
as entanglement entropy due to tracing over the vacuum
fluctuations of fields beyond a causal horizon. It was
argued in [16] that this divergence can be removed by
the very same introduction of a minimal length scale which
renders the two-point correlators of the quantum fields
finite. Our result shows that incorporating such a minimal
length scale in turn leads to an extremum principle which
incorporates the thermodynamic features of gravity in a
natural manner.

B. Implications for the cosmological constant problem

One major conceptual bonus we obtain from the emer-
gent gravity paradigm is the possibility of understanding
the cosmological constant. It has been argued [2,17] that a
clean solution to the cosmological constant problem can be
obtained only if the metric is not treated as a dynamical
variable in a local extremum principle. The thermodynamic
variational principle motivated by the emergent gravity
paradigm satisfies this condition and obtains the equations
by varying a vector field of constant norm. In this approach,
the cosmological constant arises as an undetermined
integration constant in the solution [2,17].
Here, we have shown that such a variational principle

can indeed arise as a nontrivial limit of a calculation that
incorporates the zero-point length. The emergent gravity
paradigm also suggests a particular approach towards
determining the numerical value of the cosmological
constant [17]. This, in turn, depends on the existence of
a minimal area L2

P in quantum gravity so that the number of
surface degrees of freedom of a sphere with radius LP is
given by Nsur ¼ ð4πL2

P=L
2
PÞ ¼ 4π. The existence of a zero-

point length, on which the entire analysis of this paper is
based, ties in nicely with the existence of a minimal area
and a minimal count for the surface degrees of freedom.
This gives the hope that a more sophisticated model will be
able to put these results on a firmer footing.

IV. DISCUSSION AND OUTLOOK

Table I summarizes the results of the paper in a thematic
manner. The analysis involves four key steps, which are
given in the middle column as steps 1–4 and described in
detail in the paper.
Step 1.—We choose to describe a classical spacetime,

not in terms of a metric, but in terms of its geodesic
interval, which is a biscalar and contains exactly the same

3The idea of gravity being described fundamentally by a
nonlocal object with the geodesic distance playing the key role
(which was recently emphasized in [11]) seems to be concep-
tually in tune with some earlier work by Alvarez, Cespedes, and
Verdaguer [15]. In our framework, the geodesic distance appears
naturally if spacetime has a built in zero-point length which does
not violate Lorentz invariance.
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information as the metric. Upgrading the role of σ2ðP; pÞ as
the descriptor of geometry is a key new aspect of this paper.
Step 2.—We recall that certain aspects of quantum

gravity can be incorporated by the ansatz σ2ðqÞðP; p; L2
PÞ ¼

σ2ðP; pÞ þ L2
P. This description is valid in the quasiclass-

ical region between the full quantum gravity domain
(in which we do not know what replaces a differential
manifold, metric, etc.) and the classical domain (in which
conventional general relativity holds). We expect the
quasiclassical region to admit a description in terms of
effective geometrical variables built from the qmetric.
Step 3.—We next determine the form of a symmetric,

second rank, bitensor qabðP; p; L2
PÞ which corresponds to

the modified geodesic interval σ2ðqÞðP; p; L2
PÞ. (See Sec. II.)

It bears the same relation to σ2ðqÞ as the background metric

gab bears to σ2 and serves as the analogue of the metric in
the quasiclassical domain.
Step 4.—We compute the Ricci biscalar RðP; p; L2

PÞ
for the qmetric qabðP; p; L2

PÞ. The local object RðP;L2
PÞ

obtained by p → P limit on this biscalar is a good
candidate for the variational principle in the quasiclassical
domain. We find that the leading order, LP-independent
term in RðP; L2

PÞ is given by the functional S used
previously in the thermodynamic variational principle in
the emergent gravity paradigm. This is our key result.
In the right column, we have given the coincidence limit

p → P of various quantities keeping L2
P nonzero. To begin

with, we see that in the coincidence limit σ2 → 0 while
σ2ðqÞ → L2

P, by design of our ansatz. It is this difference
which is at the foundation of our result. The coincidence
limit of qab is divergent, which is easy to understand
because we do not expect notions like metric to survive
when σ2 ≲ L2

P; this is encoded in the factor ðL2
P=σ

2Þ in qab.
Finally, when we take the coincidence limit of the Ricci
biscalar RðP; p; L2

PÞ for the qmetric, we get the final result
shown in the boxed equation at bottom right. Just as a
cross-check, we have given the L2

P → 0 limits on the left
column which are trivial and behave as expected.

Our analysis raises several important points which need
further investigation, and their clarification will provide
further insights into the effects of minimal length on small
scale structure of spacetime. We will now describe some
of them.
1. Can one trust the grins of the Cheshire cats?
The key step which leads to this result is the possibility

that effects of a minimal length scale are not necessarily
“small” and vanish when LP → 0 limit is taken. While this
might appear rather surprising, we do know of such results
in other areas of physics. We shall briefly describe a few
such examples to present this concept in a broader context.
The simplest example of such a result arises in the study

of electrons in, say, a helium atom. If one solves the exact
nonrelativistic Schrödinger equation for the two electrons
in a helium atom, one will, in general, obtain a wave
function ψðx1;x2Þ. We will, however, find that among all
such functions which satisfy the Schrödinger equation,
only half of them—viz., those which satisfy the antisym-
metric condition ψðx1;x2Þ¼−ψðx2;x1Þ—occur in nature.
No amount of study of the Schrödinger equation for a
helium atom will explain the peculiar phenomena related
to the Fermi statistics. The actual explanation lies deeply
buried in the relativistic quantum field theory from which
we can obtain the Schrödinger equation by a suitable
limiting process involving the c → ∞ limit. In this limit, c
disappears from the relevant equations but a peculiar
feature of the relativistic quantum field theory remains
as a leading order (i.e., c ¼ 0 limit) relic in the non-
relativistic helium atom. What is more, this effect is quite
different from, say, the usual relativistic “corrections” to the
Schrödinger equation which will admit a Taylor series
expansion in ð1=cÞ; we cannot say that Fermi statistics is
obeyed with increasing accuracy in a similar Taylor
series expansion in ð1=cÞ. It is a completely different kind
of low-energy relic from the high-energy theory.
Amoment of thought will show that this is very similar to

what happens in our case.When theLP → 0 limit is taken in
a result incorporating certain quantum gravitational effects,

TABLE I. Summary of the paper. The strategy adopted in the paper is described in the middle column with the logical flow being from
the top to the bottom. We take the coincidence limit to obtain local quantities from bitensors, biscalars, etc. These limits are shown in the
right column. As a cross-check, we have included a left column showing what happens when we set L2

P ¼ 0. (The results in this column
are trivial and as expected.) See the text for more discussion.

Let L2
P → 0 with p ≠ P

(no surprises here) The strategy of this paper

Let p → P with L2
P ≠ 0 (leads to

entropy density of the emergent
gravity paradigm)

σ2 → σ2ðP; pÞ (1) Start with the geodesic interval σ2ðP; pÞ for a metric gab σ2 → 0

σ2ðqÞ → σ2ðP; pÞ (2) Incorporate some quantum gravity effects by the ansatz
σ2ðqÞðP; p; L2

PÞ ¼ σ2ðP; pÞ þ L2
P

σ2ðqÞ → L2
P

qabðP; p; L2
PÞ → gabðPÞ (3) Find the qmetric qabðP; p; L2

PÞ related to σ2ðqÞðP; p; L2
PÞ Diverges as ðL2

P=σ
2Þjσ→0

RðP; p; L2
PÞ → RðPÞ (4) Compute the Ricci biscalar RðP; p; L2

PÞ for the
qabðP; p; L2

PÞ
RðP; p; L2

PÞ → S þOðL2
PÞ
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we obtain a residual relic, viz., the transmutation of the
variational principle indicated in Eq. (28) which survives
with no trace of Planck length.Moreover, we cannot think of
this as a Taylor series in L2

P because the leading order term
itself is different. But, this should not be conceptually any
more surprising than the behavior of wave functions of
helium atoms. In neither case can one guess, staring at the
low-energy theory, the origin of the relic.
A slightly more technical result of this kind was

discussed in Ref. [18]. It was shown that, when one
proceeds from the action functional for a relativistic particle
to the action functional for the nonrelativistic particle, in the
path integral approach to quantum theory, a relic term arises
in the c → ∞ limit leading to a well-defined phase factor in
the nonrelativistic wave function. Once again, the origin
of this phase factor (which is independent of c though it
arises as a relativistic relic) in the nonrelativistic limit is
completely mysterious if one did not know the relativistic
version of the relevant expressions.
Mathematically, our result arises from the noncommu-

tativity of the limits in Eq. (25). Such effects are also known
in the literature and we give two examples. The first arises
in computing curvature tensors of some rather simple
metrics. Consider a metric gabðx; εÞ which depends on
some parameter ε, from which we compute the curvature
tensor Rabcdðx; εÞ and then take the limit ε → 0. We now
compare this result with the one obtained by first taking the
limit ε → 0 in the metric and then computing the curvature.
While these two procedures will usually give the same
result, it is possible to construct [19] several simple metrics
in which they do not, with the difference being a singular
term (usually a Dirac delta function).
A more technical result of similar nature arises due to

interplay between loop divergences in conventional quan-
tum field theory, and attempts to regularize them using
regulators which break Lorentz symmetry, as was first
highlighted in Ref. [20]. These authors pointed out the
inevitability of Oð1Þ effects arising due to Lorentz viola-
tions (LV) at higher energies, whose effects can generically
get dragged to lower energies unsuppressed, due to inter-
play between radiative corrections, which involve large
loop momenta k, and the fact that the LV terms are also
expected to regulate the UV divergences. In a sense, this
result is also a consequence of the noncommutativity of the
two limits, corresponding to whether one sets the regulating
function to zero before or after evaluating the loop integral.
Our result points to something similar in the context of
small scale “geometry” of spacetime, where we have
retained Lorentz invariance but have abandoned locality.
[The key difference, of course, is that in our case the Oð1Þ
term we obtain turns out to have important physical
implications.]
Finally, even the familiar conformal anomaly, arising in

theories which are classically conformal invariant—and, in
fact, many other symmetry-breaking anomalies—can be

thought of as quantum residues of similar nature. If we
regularize a theory by dimensional regularization, we use
expressions in D dimensions and finally take, say, the D →
4 limit. The theory which is conformally invariant inD ¼ 4
will not, in general, be conformally invariant in D ≠ 4 and
when we eventually take the limit D → 4, we get an
anomalous result. This result, again, is difficult to under-
stand working entirely in the D ¼ 4 situation but is clear
when we think of it as a limiting process leaving a residue.
These examples show that when certain limits are taken

in a theoretical model the resulting theory could contain
relics of the more exact description. In all such cases no
amount of study of the approximate theory will give us a
clue as to where the relic came from (e.g., the study of
Schrödinger equation for the helium atom can never lead us
to the Fermi statistics for the electrons). We believe the
transmutation of the variational principle in Eq. (28) is of
similar nature which is nearly impossible to understand
within the context of classical gravity itself. Our analysis
throws light on this and shows that it could be a valid relic
of quantum gravity.
2. How valid is the assumption that quantum gravity

effects would modify length scales as σ2 → σ2 þ L2
P?

This was the key input for deriving the qmetric in [11] and
forms the starting point of the entire analysis. There has been
a good deal of evidence in favor of this modification, from
several independent lines of analyses dating back to 1960s.
The two aspects which need scrutiny in this regard are the
following: (a) Can a c-number description with the replace-
ment σ2 → σ2 þ L2

P capture some of the quantum gravita-
tional effects? (b) Howunique is such a replacement to bring
in Eq. (4) which probably is a more precisely stated result?
The first issue is similar to what is encountered in other

contexts as well. As a simple example, consider a harmonic
oscillator with the Hamiltonian Hðp; qÞ ¼ ð1=2Þ½p2 þ q2�
(in convenient units). Classically H has a minimum at
p ¼ 0 ¼ q corresponding to the ground state in which the
oscillator sits at the minimum of the potential with zero
velocity. Quantum mechanically, the uncertainty principle
prevents us from giving precise values to q and p
simultaneously and hence this cannot be the description
of the ground state. The exact analysis of this problem, of
course, will involve treatingH as an operator and finding its
lowest eigenvalue, etc. However we can take the point of
view that when q is close to zero, the uncertainty in the
momentum is ℏ=q and the relevant c number to minimize is
a “quantum-corrected” Hamiltonian Hqc≡ ð1=2Þ½ðℏ=qÞ2þ
q2� with the minimum value being OðℏÞ. We can indeed
capture the essential feature by just making the replacement
H → Hqc. We consider the replacement σ2 → σ2 þ L2

P to
be similar in spirit, getting us some quantum results at a
c-number price. Note that the existence of the zero-point
length can be demonstrated by considering the effect of the
uncertainty principle on spacetime measurements [8], so
the analogy above is conceptually quite close.
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As regards question (b), one could say the following: The
ansatz σ2 → σ2 þ L2

P, of course, is not the onlymodification
possible to incorporate Eq. (4), and in fact we show in
Appendix A how to get the corresponding results for a more
general modification σ2 → Sðσ2Þ. But in general, the result-
ing formof the qmetricwill not reduce to flat spacetime if the
original spacetime is flat. The specific choice σ2 → σ2 þ L2

P
has the additional advantage that it reduces the qmetric to
flat spacetime when the original metric is flat. In this sense,
the modification we have worked with is indeed special
(and might even be unique). Consider, e.g., another modi-
fication [21]: σ2 → σ2F ðσ2=L2

PÞ, where F ðxÞ ¼ e1=x (a
naive expansion in L2

P gives σ2 ∼ σ2 þ L2
P). This is another

example of a deformation which is nonanalytic at x ¼ 0.
It would be interesting to see if there exists a specific
subclass of such functions which leaves an Oð1Þ effect on
curvature invariants; work along these lines is in progress.
3. Does analytic continuation from the Euclidean to

Lorentzian spacetime lead to special difficulties?
Not really, in the mathematical sense. In the Euclidean

sector a constant norm vector is always “spacelike” [we use
the signature ð−;þ;þ;þ;…Þ in the Lorentzian spacetime]
while in the Lorentzian spacetime it can be timelike,
spacelike or null. The previous results in the emergent
gravity paradigm are usually presented for null vectors but
the results continue to hold for any constant norm vector.
The introduction of the zero-point length and its manip-
ulations are best done, however, in the Euclidean space
which is what we have done. It is easy to see that the results
hold without any ambiguity for both spacelike and timelike
vectors in the Lorentzian space. Therefore one can take the
null limit by a continuity argument after straddling the null
surface by spacelike and timelike vectors on the two sides
with some care in working with the affine distance along a
null ray.
4. To what extent can we think of the qmetric qabðp; PÞ

as a metric?
This issue is somewhat irrelevant to our results and—

more generally—when one treats a distance function
dðx; yÞ ¼

ffiffiffiffiffiffiffi
ϵσ2

p
defined on a manifold as more funda-

mental than the metric, and the metric gabðxÞ as a derived
quantity which enables us to construct geometric invar-
iants for a manifold. As explained in detail in [11], the
nonlocal character of the qmetric is simply a physical
characterization of quantum fluctuations which leave their
imprint (in this approach) in the form of a lower bound on
the intervals: dðx; yÞ ≥ LP. At the smallest of the scales,
we do not expect any local tensorial object to describe
the quantum spacetime geometry accurately anyway, and
hence it is not unexpected that more general mathematical
objects must replace the conventional ones. The ideas here
can be thought of as a first step in this direction. In fact,
nonlocal effective actions have been considered for quite
some time in the context of quantum gravity (e.g., DeWitt
proposed such an action in [22]), and qabðp;PÞ might

serve as an important mathematical object to build such
actions.
5. What are the implications for spacetime singularities?
Some preliminary results along these lines were given in

[11]. But to answer the question in full generality, one
needs to obtain the full curvature tensor for the qmetric and
then study typical curvature invariants. (We expect to do
this in a future work.) Even restricting to the Ricci scalar
(which we do have), one needs to revert to the general
equation, Eq. (14), instead of Eq. (21) which is arrived at by
assuming that one is working in regions of finite curvature.
The transition from Eq. (14) to Eq. (21) makes use of the
covariant Taylor series expansions of various bitensors
involved, and the coefficients of such series depend on the
curvature and its derivatives. If the latter blow up, as they
are expected to near spacetime singularities, then one must
be careful about using such series. Efforts are ongoing to
evaluate Eq. (14) for some physically relevant singular
spacetimes using valid expressions for the world function.
6. What about the OðL2

PÞ term?
Since the leading order term in Eq. (21) gives the entropy

functional of emergent gravity (leading to classical
Einstein’s equations), one might be tempted to consider
the next term as some kind of quantum gravitational
correction and explore its consequences. This temptation
must be resisted for the following reason: The entire
philosophy behind the analysis was that classical spacetime
is a nonperturbative limit of quantum spacetime and it is
incorrect to do a perturbative model of quantum gravity.
So, when the leading order (L2

P ¼ 0) term itself is not the
classical term, it is inconsistent to study quantum correc-
tions perturbatively, order by order in L2

P. The second,
rather technical reason, for not pursuing this line of attack
has to do with the fact that we are so far dealing with pure
gravity. We do not know how to get the matter stress tensor
from a corresponding quantum calculation by taking a
suitable limit. (In emergent gravity one can simply add the
thermodynamic potential of matter Tabnanb and get the
correct result but we do not have, yet, the corresponding
quantum version.) So it is rather useless to compute
quantum gravitational corrections in source-free space-
times. (If one does this, in spite of these reservations,
one finds that Rab ¼ 0 continues to be a solution even with
the lowest order quantum correction terms.)
The key insight coming from our analysis, going beyond

the specifics, is the following: It seems likely that nonlocal
but (hopefully) Lorentz in(co)variant deformation of the
spacetime geometry at small scales will be a consequence
of quantum fluctuations of the (as yet unknown) micro-
scopic degrees of freedom of quantum gravity. This leads to
an inevitable Oð1Þ modification due to a minimal space-
time length. Regardless of the precise form of the defor-
mation, the results will now essentially depend on the two
limits ξ → 0 and ξ → ∞ (with ξ ¼ σ2=L2

P) being inequi-
valent. Any dimensionless deformation function A½σ;LP�
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can only depend on ξ; A½σ;LP� ¼ A½ξ�. Hence, unless A½ξ�
has the same limit at ξ → 0 and ξ → ∞, (e.g., it is
symmetric under ξ → ξ−1), one will generically obtain
the kind of nontrivial result that we have obtained. The
precise form of the Oð1Þ term would depend on the form
of A½ξ�; our choice, A½ξ� ¼ 1þ 1=ξ, yields a residual term
which happens to connect up with certain key ideas
concerning emergent gravity and cosmological constant
that have been developed over the past decade.
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APPENDIX A: DETERMINATION OF QMETRIC
ASSOCIATED WITH ARBITRARY

MODIFICATIONS OF GEODESIC INTERVALS

It is possible to generalize the qmetric approach to the
cases in which the geodesic intervals are modified in an
arbitrary manner. We briefly comment on this possibility
in this Appendix, leaving a detailed analysis of such a
generalization for future work.
Let us consider the case inwhich the geodesic intervals are

modified as σ2 → Sðσ2Þ and the scalar propagator is corre-
spondingly modified as ðσ2Þ−ðD−2Þ=2 → ðSðσ2ÞÞ−ðD−2Þ=2,
where Sðσ2Þ is a given function. [The choice SðxÞ ¼ xþ
L2
P will reproduce the results of this paper.] We want

to determine the form of a qmetric qabðp; PÞ (which is a
second rank, symmetric, bitensor) built out of σ2ðp;PÞ; gab
and na ¼ gabnb, such that the following two conditions are
satisfied: (i) Themodified geodesic intervalS satisfies Eq. (2)
with the metric replaced by the qmetric, and (ii) the modified
propagator ðSðσ2ÞÞ−ðD−2Þ=2 will satisfy the Green function
equation with the metric replaced by the qmetric. This is
indeed possible and we outline the steps here.
Let us assume that such a qmetric has the form

qab ¼ A−1gab þ ϵQnanb ¼ A−1hab þ ϵðA−1 þQÞnanb;
ðA1Þ

where A and Q are (as yet arbitrary) functions of σ2 and
hab ¼ gab − ϵnanb is the induced metric on the hypersur-
face with normals na. This ansatz is motivated by the fact
that qmetric qab is a second rank, symmetric, bitensor built
from gab and na. Note that the corresponding covariant
components are given by

qab ¼ Agab − ϵBnanb; B ¼ QA2ð1þQAÞ−1: ðA2Þ

Wewant S to be the geodesic interval for qab, and hence we
substitute this ansatz in the Hamilton-Jacobi equation:

qab∂aS∂bS ¼ 4S: ðA3Þ
This gives, on using gab∂aσ

2∂bσ
2 ¼ 4σ2, the following

relation between coefficients A;Q in the metric and the
function S:

A−1 þQ ¼ 1

σ2
S
S02

; ðA4Þ

where S0 ¼ dS=dσ2. Obviously, the condition in Eq. (A3)
can only fix the projection of the qmetric in the subspace
spanned by nanb; so we have

qab ¼ A−1hab þ ϵ

�
1

σ2
S
S02

�
nanb: ðA5Þ

To fix the form of A we use the condition on the Green
function. For an arbitrary function Sðσ2Þ, it is readily shown
that the flat space propagator Gðσ2Þ will be modified to
GðSðσ2ÞÞ provided that A ¼ Sðσ2Þ=σ2. To establish this,
one uses the above form of the qmetric and the relation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det qj

p
¼ A

D−1
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A−1 þQ
p ffiffiffiffiffi

jgj
p

; ðA6Þ

which follows from the matrix determinant lemma:

det ðMþ uvTÞ ¼ ðdetMÞ × ð1þ vTM−1uÞ; ðA7Þ

where M is an invertible square matrix and u; v are
column vectors (of the same dimension as M). Subsequent
computation of □ðqÞGðSðσ2ÞÞ is straightforward (although
lengthy). Enforcing the condition that □ðqÞGðSðσ2ÞÞ ¼ 0
for p ≠ P gives the differential equation

d lnA
d ln σ2

¼ σ2S0

S
− 1; ðA8Þ

which has the solution: A ¼ Sðσ2Þ=σ2. [The multiplicative
constant is fixed by the condition that A ¼ 1 when
Sðσ2Þ ¼ σ2.]
This fixes the final form of the qmetric to be

qab ¼ σ2

Sðσ2Þ h
ab þ ϵ

�
1

σ2
S
S02

�
nanb: ðA9Þ

For the choice made in this paper, S ¼ σ2 þ L2
P, one

recovers Eq. (12). For an arbitrary Sðσ2Þ, the resultant
qmetric can (generically) yield a nonzero curvature even
when gab represents a flat spacetime, which does not
happen for the choice S ¼ σ2 þ L2

P. The above formulation
is quite promising in yielding a considerable generalization
of the results in [11] and is currently being pursued.
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APPENDIX B: EVALUATION OF RICCI SCALAR
FOR THE QMETRIC

One can employ a nice trick based on the Gauss-Codazzi
decomposition to obtain the Ricci scalar for the modified
metric. In fact, the same trick works also for the con-
formally related metrics, and we outline this case first since
the logic remains the same.
Suppose two metrics are related by a conformal trans-

formation: ~gab ¼ FðxÞgab. Then, one can imagine foliating
the spacetime by vector fields normal toF ¼ const surfaces,
given by ni ¼ ∇iFðxÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ∇aF∇aF

p
. The conformal trans-

form of this vector field will be ~ni ¼
ffiffiffiffi
F

p
ni, whereas

~ni ¼ ni=
ffiffiffiffi
F

p
where ni ¼ gijnj. (Note that one needs to be

careful about indices; all indices on ~n are raised or lowered
using ~gab.)
The advantage of doing this is that the induced geom-

etries of this foliation in the two metrics are related in a
simple manner. The relation between the extrinsic curva-
tures ~Kab and Kab is easy to establish and turns out to be

~Kab ¼
ffiffiffiffi
F

p
Kab þ ðnk∇k

ffiffiffiffi
F

p
Þhab; ðB1Þ

where hab is the induced metric. It is easy to show that
~hab ¼ Fhab. We now use the Gauss-Codazzi relation

RðqÞ ¼ RΣ;q − ϵð ~K2 þ ~K2
ab þ 2~ni ~∇i

~KÞ þ 2ϵ ~∇i ~ai; ðB2Þ

where ~ai ¼ ~nk ~∇k ~ni. Again, it can shown by straightforward
computation that ~ai ¼ ai and ~ai ¼ ai=F. Most importantly,
since we are considering F ¼ const foliation, the induced
Ricci scalars are related by a simple scaling: RΣ;q ¼ RΣ=F.
Putting all these together, it can be shown that one recovers
the well-known relation between the Ricci scalars of
conformally related metrics.
The above procedure can be generalized for the qmetric.

This case is more complicated due to the presence of the
nanb term in the metric, but otherwise the steps remain
the same. One first shows that, even for this general case, the
induced metrics are related by a conformal transformation as
above, and the extrinsic curvature ~Kab can be written easily
in terms of Kab and hab. (These relations are quoted in [11].)
Therefore, one again has RΣ;q ¼ RΣ=F. However, the
extrinsic curvature terms in the Gauss-Codazzi relation
produce a more complicated relation, although there are
no new conceptual points involved. The algebraic details,
however, are a bit longer and will be presented in [12].

APPENDIX C: EXPLICIT DEMONSTRATION OF
OUR RESULT IN A SPECIAL CASE

In this Appendix, we will provide an explicit demon-
stration of how our key result arises in a special case which
captures all the key features of the general case. We
consider a Euclidean spacetime described in the synchro-
nous coordinates with the line element:

ds2 ¼ dt2 þ hμνðt; xαÞdxμdxν: ðC1Þ

This spacetime possesses a geodesic interval function
σðx; x0Þ from which all the metric coefficients can be
obtained using Eq. (3). It is, however, well known (see,
e.g., [24], p. 288) that xμ ¼ const are geodesics in this
spacetime and the geodesic interval between two points in
such a geodesic is just ðt − t0Þ. So, if we confine our attention
to two pointsp andP along the “radial” direction [for which
xμ ¼ const], then we can take the t coordinate as numeri-
cally equal to the geodesic interval and write the metric as

ds2 ¼ dσ2 þ hμνðσ; xαÞdxμdxν: ðC2Þ

Note that we have now downgraded the function σðx; x0Þ to a
coordinate label and this will work only for the radial
geodesics. Our aim is to confine ourselves to points p and P
along the σ direction and illustrate our results when σ → 0.
(This is the difference between the general case and the case
we have taken up here for the illustration.)
The qmetric in this case is given by Eq. (12) with

nadxa ¼ dσ and the resulting line element is

ds2ðqÞ ¼
dσ2

A
þAhμνðσ;xαÞdxμdxν; A¼

�
1þL2

P

σ2

�
: ðC3Þ

Our task is now straightforward: Compute R for this metric,
expand everything related to the background in a Taylor
series in σ assuming the background spacetime is non-
singular, take the limit of σ → 0 and identify the leading
order term (which we expect to be proportional to
Rabnanb), identify the divergent term (which we expect
to be proportional to 1=σ) and identify the OðL2

PÞ term
thereby demonstrating our result. We will now outline the
key algebraic steps in this calculation.
Computing RðqÞ for the line element in Eq. (C3) is

straightforward using the formulas in, say, Ref. [24] (after
making the sign switch hμν → −hμν to go from Lorentzian
to Euclidean signature). This gives

RðqÞ ¼ A−1Rþ ð1 − A−1ÞðR − RΣÞ
þ ðA − 1Þð2S þ K2

ab − K2Þ

−
�
5KA0 −

3

2

A02

A
− 3A00

�
; ðC4Þ

where R is the Ricci scalar of the background metric
(viz. the one with A ¼ 1), RΣ is the three-dimensional Ricci
scalar of σ ¼ const surface, S ≡ Rabnanb, Kab ≡∇anb is
the extrinsic curvature of σ ¼ const surface and primes
denote derivative with respect to σ. Obviously RðqÞ ¼ R
when A ¼ 1.
We now need to take the σ → 0 limit when A → L2

P=σ
2

diverges and the limit needs to be taken with care. In
particular, since R (and all other curvature invariants) for
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the background (A ¼ 1) metric is assumed to be well
defined in the σ → 0 limit, we see that the A−1 in the first
term in Eq. (C4) kills the background Ricci scalar. Since
this is the only term that survives when LP ¼ 0; A ¼ 1,
we can see the first signs of why the two limits do not
commute. To take the limit, we need a Taylor series
expansion of various quantities. We start with the general
result, valid in any spacetime:

1

2
∇a∇bðσ2Þ ¼ gab −

1

3
λ2Sab þ

λ3

12
∇nSab

−
λ4

60

�
∇n∇nSab þ

4

3
SiaSi

b

	
þOðλ5Þ;

ðC5Þ

where λ is the arc length of the geodesic connecting p and
P which is numerically equal to σðp;PÞ and we use the
notation ∇n ¼ nj∇j. Further using the definition of na in
terms of σðx; x0Þ [see the second equation in Eq. (13)], it is
easy to show that

λKab ¼ λ∇anb ¼
1

2
∇a∇bσ

2 − ϵnanb: ðC6Þ

Using Eq. (C5) in this we can get the corresponding
expansion for Kab as

λKab ¼ hab −
1

3
λ2Sab þ

1

12
λ3∇nSab −

1

60
λ4Fab þOðλ5Þ;

ðC7Þ
where

Fab ¼ ∇n∇nSab þ ð4=3ÞSiaSi
b: ðC8Þ

Taking the trace we get

λK ¼ D1 −
1

3
λ2S þ 1

12
λ3∇nS −

1

60
λ4F; ðC9Þ

where we use the notation Dk ¼ D − k and

F ¼ Fabgab ¼ ∇2
qS þ ð4=3ÞSabSab: ðC10Þ

Using these two results we can calculate the useful
combination:

λ2ðK2
ab − K2Þ ¼ −D1D2 þ

2

3
λ2D2S −

1

6
λ3D2

_S

þ λ4F1 þOðλ5Þ; ðC11Þ

where we have defined, for ease of notation, the quantity

F1 ≡ 1

15

��
2Dþ 1

3
S2
ab þ

D2

2
S̈ −

5

3
S2

��
ðC12Þ

and use an overdot to denote the operation of ni∇i. Finally,
we compute the Taylor series expansion of RΣ:

RΣ ¼ R − 2ϵS − ϵðK2
ab − k2Þ

¼ R − 2ϵS −
ϵ

λ2

�
−D1D2 þ

2

3
λ2D2S þOðλ3Þ

�
:

ðC13Þ

We are now in a position to evaluate all the terms which
appear in the right-hand side of Eq. (C4). Note that, for our
special case, we can set λ ¼ σ in the expansions. We will
also set D ¼ 4. Starting with the results

1 − A−1 ¼ 1 −
σ2

42
þOðσ4=L4

pÞ ðC14Þ

and

R − RΣ ¼ 10

3
S −

6

σ2
þOðσÞ; ðC15Þ

we get the term ð1 − A−1ÞðR − RΣÞ in Eq. (C4) to be

ð1 − A−1ÞðR − RΣÞ ¼
10

3
S −

6

σ2
þ 6

L2
p
þOðσÞ: ðC16Þ

Next consider the term ðA − 1Þð2S þ K2
ab − K2Þ in

Eq. (C4). Using

K2
ab − K2 ¼ −

6

σ2
þ 4

3
S −

1

3
σ _S þ σ2F1 þOðσ3Þ; ðC17Þ

we get

ðA − 1Þð2S þ K2
ab − K2Þ ¼ −

6L2
p

σ4
þ 10

3

L2
p

σ2
S −

1

3

L2
p

σ
_S

þ F1L2
p þOðσÞ: ðC18Þ

Similarly, using

K ¼ 3

σ
−
1

3
σS þ 1

12
σ2 _S −

1

60
Fσ3 þOðσ4Þ; ðC19Þ

the last bunch of terms ½−5KA0 − ð3=2ÞðA02=AÞ − 3A00� in
Eq. (C4) evaluates to

− 5KA0 − ð3=2ÞðA02=AÞ − 3A00

¼ 6L2
p

σ4
−
10

3

L2
p

σ2
S þ 5

6

L2
p

σ
_S

þ 6

σ2
−

6

L2
p
þ F3L2

p þOðσÞ; ðC20Þ

where F3 ¼ −ð1=6ÞF. We now substitute these expressions
in Eqs. (C16), (C18) and (C20) into Eq. (C4) to obtain
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RðqÞ ¼ A−1Rþ
�
10

3
S −

6

σ2
þ 6

L2
p
þOðσÞ

	

þ
�
−
6L2

p

σ4
þ 10

3

L2
p

σ2
S −

1

3

L2
p

σ
_S þ F1L2

p þOðσÞ
	

þ
�
6L2

p

σ4
−
10

3

L2
p

σ2
S þ 6

σ2
−

6

L2
p
þ 5

6

L2
p

σ
_S

þ F3L2
p þOðσÞ

	
: ðC21Þ

Miraculously, the terms diverging as σ−4 and σ−2 nicely
cancel leaving only a σ−1 divergence which we know how
to regularize in the point-splitting approach. Further, the
nonanalytic terms in Planck length 1=L2

P also cancel out.
Finally, the A−1 factor kills the background Ricci scalar
term, leading to the final result:

RðqÞ →
10

3
S þ ðF1 þ F3ÞL2

p þ
� _SL2

p

2σ

�
σ→0

: ðC22Þ

The prefactor is indeed ð2=3ÞðDþ 1Þ ¼ 10=3 for D ¼ 4
we are working in. Once the divergent expression is
regularized and eliminated, the leading term is proportional
to S ¼ Rabnanb as advertised.
Exactly the same kind of analysis works in the most

general background when we work in an arbitrary coor-
dinate system. The above approach shows that taking
σ → 0 first, as we should, picks out the correct combination
of terms, finally leading to the entropy density.

APPENDIX D: ASIDE ON THE GEOMETRICAL
STRUCTURE OF THE MODIFIED

CURVATURE SCALAR

Equation (14) gives the full expression for the modified
Ricci scalar, and as is evident, its evaluation requires the
knowledge of the geodesic interval biscalar. Nevertheless, it
is instructive to rewrite it in a slightly different manner
which highlights the elegant geometrical structure of the
whole setup and might be helpful in further developments
on purely geometric grounds. After a few algebraic
manipulations, Eq. (14) can be written as

Rðp;P; LPÞ ¼ AR − ðA − A−1ÞðRΣ − R0
ΣÞ

þ 2ϵðA − 1Þ
�
Dþ 1

D − 1

�
ðK − K0ÞK0; ðD1Þ

where R0
Σ ¼ D1D2=σ2 and K0 ¼ D1=

ffiffiffiffiffiffiffi
ϵσ2

p
are the

induced and extrinsic curvatures of the σ2 ¼
const surfaces in the flat spacetime (which are maximally
symmetric spaces with positive or negative curvature).
Note that the first two terms mimic the relationship
between gab and qab. It is worth investigating the
geometrical structure of the above expression in detail,
since it might hold the key to a generic study of the
behavior of the modified curvature scalar near the
spacetime singularities in terms of the focusing of geo-
desics. This work is currently in progress.

APPENDIX E: THE DIVERGENT
TERM IN EQ. (21)

As mentioned in the paper, there is a divergent term in
(21) which is given by

lim
λ→0þ

þ L2
P

2λ
_SðpÞ: ðE1Þ

This term has an odd number of factors of ni, since
_S¼ni∇iðRjknjnkÞ¼ninjnk∇iRjk. (Recall that ni∇inj¼0.)
Therefore, if one defines the coincidence limit by consid-
ering the limits p; p0 → P where p; p0 are diametrically
opposite, i.e.,

RregðP;LPÞ ¼
1

2

�
lim
p→P

Rðp;P;LPÞ þ lim
p0→P

Rðp0;P;LPÞ
�
;

the divergent term will cancel out. (Other terms have an
even number of factors of ni, so their contribution
remains unchanged.) This way of taking the limit was
discussed by Christensen and Davies (among others)
in some older works related to the point-splitting
regularization in curved spacetime [13,25]. We, there-
fore, obtain

RregðP;LPÞ ¼ α½Rabnanb�P
−
L2
P

15

�
1

3
SabSab − 6S̈ þ 5

3
S2

�
P
:

Note that the coefficient of the S̈ gets modified [see
Eq. (21)] since λ−1 _SðpÞ ¼ λ−1½ _SðPÞ þ λS

__

ðPÞ þOðλ2Þ�
has an Oðλ0Þ contribution.
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