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We analyze the frequency shift of photons propagating on an asymptotically flat spacetime describing a
collapsing, spherical dust cloud. We focus on the case where the interaction of the photons with the matter
can be neglected. Under fairly general assumptions on the initial data characterizing the collapse, we show
that photons with zero angular momentum which travel from past to future null infinity, crossing the
collapsing cloud through its center, are always redshifted with respect to stationary observers. We compute
this redshift as a function of proper time of a distant stationary observer and discuss its dependency on the
mass distribution of the cloud. Possible implications of this redshift effect for weak cosmic censorship and
light propagation in cosmological spacetimes are also briefly discussed.
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I. INTRODUCTION

The study of electromagnetic radiation emitted from the
surface of a collapsing object is an important topic. Much
information about the object can be obtained by the
observable characteristics of this radiation, such as the
redshift, the bending of angles and the observable flux of
radiation as a function of time, see for example [1–5] and
references therein.
Recently, it was argued in [6] that a significant fraction of

photons which are emitted from particles inside a collaps-
ing object might be detected by distant observers as
blueshifted rather than redshifted. This effect, which was
explicitly verified for radial light rays traversing a spheri-
cal, marginally bound dust cloud, is due to the fact that
the photons are blueshifted inside the collapsing region
and that, for some of these photons, this blueshift can
actually be larger than the redshift in the outside region.
The spectrum of the radiation emitted by a collapsing
spherical dust cloud for a simple emissivity function has
also been computed in [6], and in [7] the possibility of
using this spectrum in order to distinguish the formation of
a black hole from the formation of a naked singularity was
discussed.
In this article, we consider a related but different

scenario, in which photons from a distant emitter traverse
a collapsing object without interacting with its matter
content and are detected by a distant observer. As an
example, we may think of radiation emitted from a bright
electromagnetic source such as a distant galaxy or super-
nova and which crosses a collapsing dust cloud before it is
detected on earth. For sufficiently large wavelengths the

photons do not interact significantly with the dust cloud.
Such photons are only affected by the gravitational field of
the collapsing object, and thus they may provide direct
information on its mass distribution. Here, we focus our
attention on the frequency shift of such photons, assuming
that both the emitter and the observer are located very far
from the object and are stationary. Note that for stationary
objects, such as stars in equilibrium, there is no frequency
shift in this scenario since the photon’s energy is conserved
along its trajectory. However, as we show, for the case of a
collapsing object, the dynamics of the spacetime implies a
nontrivial frequency shift of the photons, which, for the
simplest case of spherical symmetry and pressureless
matter satisfying weak assumptions is always towards
the red.
In order to model this problem, we consider the idealized

situation of an isolated object which collapses in an
asymptotically flat vacuum exterior spacetime. Here, we
are thinking about astrophysical situations in which both
the light source and the observer are located at distances
which are large compared to the Schwarzschild radius of
the object but small on cosmological scales. Therefore, we
study light rays sent by an asymptotic emitter and detected
by an asymptotic observer described by null geodesics
propagating from past to future null infinity. In this work,
we compute the frequency shift of photons traveling on
such geodesics for the simple case of a spherical dust cloud
and radial geodesics traversing the cloud through its center.
We start in Sec. II with the case of a homogeneous

density distribution, for which the interior spacetime is
modeled by a (contracting) Friedmann-Robertson-Walker
(FRW) spacetime. When traveling from past null infinity
towards the cloud, the photons are blueshifted since they
approach a region of stronger gravity. In the interior region
the same photons are also blueshifted as they propagate
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inside a collapsing universe. However, we show by explicit
calculation that this blueshift is overcompensated by red-
shift effects, so that the total frequency shift is always a
redshift. These effects consist of the gravitational redshift
experienced by the photons when they travel from the
surface of the cloud to future null infinity and to Doppler
effects due to the motion of the surface of the cloud
with respect to static observers. In this sense, photons
lose energy each time they cross a collapsing dust cloud.
In Sec. II we also discuss the dependency of this redshift
effect on the compactness ratio of the cloud at the moment
it is penetrated by the light ray, and we derive bounds on
the blueshift effect discussed in [6]. In contrast to the work
in [6] we do not restrict ourselves to the marginally
bound case.
Next, in Sec. III we derive a geometric identity, valid for

any spherically symmetric spacetime, which provides an
interesting relation between the redshift factor along in- and
outgoing radial null rays, the velocity field of the collapsing
shells, and the radial pressure. For the particular case of
dust collapse, the radial pressure vanishes and the identity
yields a direct relation between the redshift factor and the
compactness ratio of the shells. Based on this identity, we
derive in Sec. IV an explicit upper bound on the frequency
shift for photons with zero angular momentum which travel
from past to future null infinity through the center of a
spherical, collapsing, inhomogenous dust cloud. We derive
this bound first in the marginally bound case and then in the
bounded case, assuming only a positive mass density, the
absence of shell-crossing singularities, and assuming that
the total energy of the shells is a nonincreasing function of
the areal radius. The importance of our bound is that it
reveals that such photons are always redshifted with respect
to asymptotic stationary observers.
In Sec. V we compute the total frequency shift by

numerical means for a particular family of time-symmetric
inhomogeneous initial data for the collapsing dust cloud.
This family is described by the initial density profile of the
cloud which is parametrized by the central density, the
initial radius of the cloud, and an additional parameter
which measures how flat the density profile is. By choosing
this last parameter very large, we recover the homogeneous
case discussed in Sec. II to arbitrary accuracy. In this way,
we can verify the validity of our code by comparing the
frequency shift computed numerically with the results from
Sec. II. We also show that the upper bound for the
frequency shift derived in Sec. IV is consistent with our
numerical results. Then, we focus our attention on a
particular subfamily with constant total mass and initial
radius, and we compare the total redshift measured by a
distant observer as a function of its proper time. We show
that this function depends on the inner mass distribution of
the collapsing cloud, a fact that could in principle be
exploited to infer the density profile of the cloud from the
measurement of the redshift function. Finally, conclusions

are drawn in Sec. VI, where we also discuss implication of
the total redshift effect to the weak cosmic censorship
conjecture and potential applications to cosmological
scenarios.
Throughout this work we use geometrized units, where

the gravitational constant and the speed of light are set
equal to one. Vector and tensor fields are denoted by bold
face symbols, for instance u ¼ uμ∂μ. The application of a
vector field u on a function f is written as u½f� ¼ uμ∂μf.

II. THE HOMOGENEOUS CASE

In this section, we derive the total redshift effect in the
simplest case of a spherical, homogeneous collapsing dust
cloud of finite radius. The interior spacetime corresponds to
a contracting FRW universe and, as a consequence of
our assumptions and Birkhoff’s theorem, the exterior is
described by a Schwarzschild spacetime of mass m1. The
matching is performed by identifying a comoving sphere
containing mass m1 and of areal radius r1ðτÞ in the FRW
spacetime with the sphere of equal areal radius in
Schwarzschild spacetime whose world sheet is spanned
by freely falling radial geodesics. Consequently, the usual
matching conditions are automatically satisfied [8]. We
consider a photon with zero angular momentum traveling
from past (ℐ−) to future null infinity (ℐþ) through the
center of the cloud, see Fig. 1. The frequency shift of this
photon has three different contributions. The first one
consists of a combined effect of a gravitational blueshift
fromℐ− to the surface of the cloud with a Doppler redshift

FIG. 1 (color online). Conformal diagram illustrating the path
of a photon traveling from past (ℐ−) to future null infinity (ℐþ).
The ν’s refer to the frequencies of the photons at the indicated
events. Also shown are the four-velocity of stationary (û) and free
falling observers (u) at the surface of the cloud.
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due to the motion of the surface relative to static observers.
The second contribution consists of a blueshift due to the
contraction of the universe. The third contribution is similar
to the first one but in this case both the Doppler and the
gravitational effect result in a redshift. Let us now explicitly
compute these three contributions. The gravitational blue-
shift measured by static observers when the photon travels
from ℐ− to the surface of the cloud is given by
ð1–2m1=r−1 Þ−1=2, where m1 is the total mass of the cloud
and r−1 its areal radius at the time the photon penetrates it.
The Doppler shift due to the motion of the surface is given
by gðu;k−Þ=gðû;k−Þ, where g is the spacetime metric, u
and û are, respectively, the four-velocities of comoving and
static observers at the surface of the cloud, and k− is a
radial incoming null vector, proportional to the four-
momentum of the photon. In terms of the unit outgoing
radial vector field w orthogonal to u, we define
k− ¼ u − w. In order to determine the vector field û,
we first note that the motion of the surface of the cloud is
given by the free fall equation

1

2
_r2 −

m1

r
¼ E1; ð1Þ

with E1 the total energy of the trajectory and _r ≔ u½r�. For
the following, we assume that −1=2 < E1 ≤ 0, which
means that the trajectory is bounded (E1 < 0) or marginally
bound (E1 ¼ 0) and that 2m1=r < 1 in the region where _r2

is small, so that there are no trapped surfaces lying inside
this region. Combining Eq. (1) with the requirement
that û½r� ¼ 0 and the invariant definition of the Misner-
Sharp mass function [9] mðrÞ ¼ r½1 − gðdr; drÞ�=2 ¼
rð1þ u½r�2 − w½r�2Þ=2, which yields w½r� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E1

p
,

we obtain

û ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m1

r

q ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p
u − _rwÞ: ð2Þ

Therefore, the Doppler shift is

gðu;k−Þ
gðû;k−Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m1

r

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p
− _r

������
r¼r−

1

; ð3Þ

and the frequency shift between a static observer atℐ− and
a free falling observer at the surface of the cloud is

ν−1
ν−∞

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C−1 þ 2E1

p : ð4Þ

Here and in the following, C ≔ 2m=r denotes the compact-
ness ratio. Note that in the particular case of marginally
bound collapse, for which E1 ¼ 0, the frequency shift
simplifies to ν−1 =ν

−
∞ ¼ ð1þ ffiffiffiffiffiffi

C−1
p Þ−1=2 < 1, which shows

that in this case the Doppler redshift dominates the
gravitational blueshift.
In the interior of the collapsing cloud, the photon

experiences a blueshift due to the contraction of the
FRW universe given by (see, for instance, [10])

νþ1
ν−1

¼ aðτ−1 Þ
aðτþ1 Þ

¼ Cþ1
C−1

; ð5Þ

where we have used the fact that the scale factor aðτÞ is
proportional to the areal radius r along the surface of the
cloud, and τ denotes proper time along a radial observer
comoving with the surface.
Finally, as a calculation similar to the one leading to

Eq. (4) shows, the redshift between the surface of the cloud
and a static observer at ℐþ is given by

νþ∞
νþ1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ1 þ 2E1

q
< 1: ð6Þ

A. The total redshift

From the results so far, we conclude that the total
frequency shift experienced by the photon is

νþ∞
ν−∞

¼ Cþ1
C−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ1 þ 2E1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C−1 þ 2E1

p : ð7Þ

This formula can be simplified by finding the explicit
relation between the compactness ratios Cþ1 and C−1 . For
this, we integrate the light rays inside the cloud. In order to
do so, we first note that the areal radius is proportional to
the scale factor, and thus r ¼ r0aðτÞ for some constant r0
independent of τ. Substituting this relation into Eq. (1) one
obtains the Friedmann equation

_a2 ¼ λ

a
− k; ð8Þ

with λ ≔ 2m=r30 and the spatial curvature parameter
k ≔ −2E1=r20. Following the usual convention, we choose
r0 such that k ¼ 1 when E1 < 0 in which case the spatial
geometry is S3. In the marginally bound case, k is zero,
corresponding to a flat spatial geometry and r0 is unde-
termined. The FRW spacetime metric is

g ¼ −dτ2 þ aðτÞ2ðdR2 þ sin n2ðRÞdΩ2Þ; ð9Þ

with sin nðRÞ ¼ sinðRÞ for k ¼ 1 and sin nðRÞ ¼ R for
k ¼ 0, and it follows that r0 ¼ sin nðRÞ. Integrating along
the radial null ray inside the cloud gives

2R1 ¼
Z

τþ
1

τ−
1

dτ
aðτÞ : ð10Þ
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Using the Friedmann equation (8) yields

R1 ¼

8>><
>>:

ffiffiffiffiffiffiffiffi
aðτ−

1
Þ

λ

q
−

ffiffiffiffiffiffiffiffi
aðτþ

1
Þ

λ

q
; k ¼ 0;

arccos

� ffiffiffiffiffiffiffiffi
aðτþ

1
Þ

λ

q �
− arccos

� ffiffiffiffiffiffiffiffi
aðτ−

1
Þ

λ

q �
; k ¼ 1.

ð11Þ
This leads to the following relation between the compact-
ness ratios Cþ1 and C−1 :ffiffiffiffiffiffi

C−1
Cþ1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C−1 þ 2E1

p
or

ffiffiffiffiffiffi
Cþ1
C−1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ1 þ 2E1

q
: ð12Þ

Using these relations to eliminate Cþ1 in Eq. (7) yields,
finally,

νþ∞
ν−∞

¼ 1

1 − C−1

�
1 −

C−1
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C−1 þ 2E1

p Þ2
�
: ð13Þ

Since we are interested in the collapsing case, for which
_r < 0, and since we assume that the light ray lies outside
the event horizon, such that Cþ1 < 1, the compactness ratio
C−1 at the moment of penetration is restricted to the interval

−2E1 < C−1 <
1

4ð1þ 2E1Þ
: ð14Þ

This in turn restricts E1 to the interval −1=4 < E1 ≤ 0.
When the light ray penetrates the cloud at the instant it is

at rest (_r ¼ 0), C−1 ¼ −2E1 > 0, and the total frequency
shift is

νþ∞
ν−∞

¼ 1þ 4E1

1þ 4E1 þ 4E2
1

< 1; ð15Þ

implying a redshift. When C−1 approaches its upper value
½4ð1þ 2E1Þ�−1, the frequency ratio νþ∞=ν−∞ converges to
zero. This is expected since in this case the light ray exits
the cloud at a point which lies very close to the event
horizon, implying a large redshift in the Schwarzschild
region. In order to analyze the behavior of the frequency
shift inside the interval (14) it is convenient to introduce
the dimensionless quantities x ≔ −_r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
and

ε1 ≔ −2E1=ð1þ 2E1Þ, 0 < ε1 < 1, in terms of which
Eq. (13) can be rewritten as

νþ∞
ν−∞

¼ ð1þ ε1Þ
1 − ε1 − 2x−1

ð1þ x−1 Þð1 − x−1 Þ3
ð16Þ

with 0 < x−1 < ð1 − ε1Þ=2. By explicitly differentiating the
right-hand side with respect to x−1 it is not difficult to prove

that the frequency ratio νþ∞=ν−∞ is a monotonously decaying
function of x−1 inside the interval of interest 0 < x−1 <
ð1 − ε1Þ=2, so that this ratio is always smaller than one.
This leads to our first important conclusion: a radial light
ray traversing a collapsing, homogeneous dust cloud
through its center is always redshifted.
In the limit ε1 → 0, corresponding to the marginally

bound case, Eq. (16) simplifies to

νþ∞
ν−∞

¼ 1 − 2x−1
ð1þ x−1 Þð1 − x−1 Þ3

¼ 1 − 2ðx−1 Þ3 þO4ðx−1 Þ; ð17Þ

and the redshift factor z ≔ ν−∞=νþ∞ − 1 ¼ 2ðx−1 Þ3 þO4ðx−1 Þ
scales like the compactness ratio to the power of 3=2 for
small x−1 .

B. On the blueshift of photons emitted from
inside the cloud

As mentioned in the Introduction, in recent work [6] it
has been shown that photons emitted from dust particles
inside the cloud may be blue- instead of redshifted when
observed by a distant, stationary observer. Here we analyze
this effect for a homogeneous dust cloud. The particular
case of marginally bound collapse has already been
analyzed in [6]; here we generalize the discussion to the
more generic bounded collapse.
Since photons are blueshifted inside the cloud, an upper

bound for the frequency ratio of photons emitted from the
dust particles is provided by the ratio corresponding to
those photons which are emitted from the surface of the
cloud, travel inwards through the center of the cloud and
escape to ℐþ. From the results derived above we easily
obtain the following expression for the frequency shift of
such photons:

νþ∞
ν−1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε1

p 1 − ε1 − 2x−1
ð1 − x−1 Þ3

: ð18Þ

In the marginally bound case, corresponding to the
Oppenheimer-Snyder model [11], this expression simpli-
fies to νþ∞=ν−1 ¼ ð1 − 2x−1 Þ=ð1 − x−1 Þ3 ¼ 1þ x−1 þO2ðx−1 Þ,
showing that a blueshift is possible for small enough x−1 .
In general, the expression on the right-hand side of

Eq. (18) has a local maximum at x−1 ¼ ð1–3ε1Þ=4, where

νþ∞
ν−1

����
max

¼ 32

27

1

ð1þ ε1Þ3=2
:

Therefore, photons which emanate from the surface of the
cloud with x−1 ≃ ð1 − 3ε1Þ=4 are blueshifted provided that
ε1 < ε�1 ≔ 8 · 21=3=9 − 1≃ 0.1199. Above this threshold
the frequency shift is always smaller than one. Therefore,
photons with zero angular momentum which are emitted by
dust particles in a bounded, homogeneous dust collapse for
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which ε1 > ε�1 are always redshifted when observed by a
distant stationary observer.

III. RELATION BETWEEN THE COMPACTNESS
RATIO AND THE REDSHIFT FACTOR

In this section, we derive a geometric identity which is
valid for any spherically symmetric spacetime ðM;gÞ
satisfying Einstein’s field equations with the stress-energy
tensor T of a fluid. Such a spacetime has the form M ¼
~M × S2 with metric g ¼ ~gþ r2ðdϑ2 þ sin2ϑdφ2Þ, where
~g ¼ ~gabdxadxb is a two-dimensional Lorentzian metric on
~M and r is a positive function on ~M describing the areal
radius of the invariant two sphere fpg × S2 for each
p ∈ ~M. The stress-energy tensor has the form

T ¼ ðρuaub þ p⊥wawbÞdxadxb þ r2pjjðdϑ2 þ sin2ϑdφ2Þ;
ð19Þ

with u ¼ ua∂a the four-velocity of the fluid and w ¼ wa∂a
the outward radial unit vector orthogonal to u. Here, ρ, p⊥
and pjj denotes the energy density, radial and tangential
pressure of the fluid. Einstein’s field equations imply (see,
for instance, Ref. [12])

ð ~∇a
~∇brÞtf ¼ −2πrðρþ p⊥Þðuaub þ wawbÞ; ð20Þ

~Δr ¼ 2m
r2

− 4πrðρ − p⊥Þ; ð21Þ

where ~∇ is the covariant derivative associated with ð ~M; ~gÞ,
~Δr ≔ ~gab ~∇a

~∇br, and (tf) denotes the trace-free part.
The vector fields u and w give rise to the in- and

outgoing radial null vector fields k− ≔ u − w and
kþ ≔ uþ w. Although they are tangent to null geodesics,
their integral curves are not necessarily affinely parame-
trized. For the following, we introduce the quantities β�,
defined by

∇k�k� ¼ −β�k�; ð22Þ

which determine the frequency shift along in- and outgoing
radial null geodesics as measured by comoving observers
with four-velocity u. Specifically, if ν is the frequency of a
radial light signal measured by an observer with four-
velocity u, then ν satisfies the differential equation

k�½log ν� ¼ β�

along incoming (−) and outgoing (þ) null geodesics.
Using the fact that k� are radial and null, and using their
relative normalization gðkþ;k−Þ ¼ −2, it is not difficult to
see that

∇k�k∓ ¼ β�k∓; ð23Þ

and that the acceleration of the fluid elements satisfies

a ≔ ∇uu ¼ −
βþ − β−

2
w: ð24Þ

Next, we introduce the (absolute value of the) velocity of
the free falling fluid elements: V ≔ −u½r�, where the minus
sign indicates that the fluid elements are moving towards
the center. Our key identity is obtained by applying the null
vector fields k� on V. Using the fact that 2u ¼ kþ þ k−
and Eqs. (22), (23), we obtain

k�½V� ¼ −k�u½r�

¼ −
1

2
½ka�kb�ð ~∇a

~∇brÞtf − ~Δr� � β�w½r�: ð25Þ

At this point we use Einstein’s field equations (20), (21) in
order to eliminate the second derivatives of r and obtain
from Eq. (25) the identity

k�½V� ¼ 4πrp⊥ þ m
r2

� β�w½r�: ð26Þ

In order to explain the relevance of this identity, we restrict
ourselves to the particular case of marginally bound dust
collapse, in which case p⊥ ¼ 0, a ¼ 0, w½r� ¼ 1, and V ¼
−u½r� ¼ ffiffiffiffiffiffiffiffiffiffiffi

2m=r
p

is the square root of the compactness
ratio, due to the fact that each collapsing shell has zero total
energy. Under these assumptions Eq. (26) simplifies con-
siderably and yields

k�½log ν� ¼ β� ¼ � k�½V�∓ m
r2

: ð27Þ

This is our key identity which gives a direct relation
between the frequency shift along radial null rays and
the compactness ratio. Consequences of this identity and its
generalization to the bounded dust collapse case will be
discussed in the next section.

IV. THE TOTAL REDSHIFT EFFECT FOR THE
INHOMOGENEOUS COLLAPSE

The spherically symmetric solutions of the field equa-
tions describing a self-gravitating dust configuration can be
explicitly parametrized in terms of comoving, synchronous
coordinates ðτ; R;ϑ;φÞ. Here, R ¼ const. describes the
world sheet of the collapsing dust shells, where the label
R is chosen such that it coincides with the shells’ areal
radius at initial time τ ¼ 0. τ is the proper time measured by
a radial observer moving along a collapsing dust shell, and
ðϑ;φÞ are standard polar coordinates on the invariant two-
spheres. The metric is determined by the function rðτ; RÞ
which describes the areal radius at the event ðτ; R;ϑ;φÞ.
Therefore, for fixed R, the function τ↦rðτ; RÞ describes
the evolution of the dust shell labeled by R, and according
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to the definition of R, rð0; RÞ ¼ R. This function is
determined by the free fall equation (1) with m1 replaced
with mðRÞ, the (conserved) mass contained inside the dust
shell R, and E1 replaced with EðRÞ, the total energy of the
dust shell R.
In terms of the coordinates ðτ; RÞ the radial metric ~g, the

four-velocity u, and the vector field w are (see [8] and
references therein)

~g ¼ −dτ2 þ r0ðτ; RÞ2
1þ 2EðRÞ dR

2; u ¼ ∂
∂τ ;

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EðRÞp
r0ðτ; RÞ

∂
∂R ;

ð28Þ

where the prime denotes partial differentiation with respect
to R. The causal structure of the resulting spacetime has
been studied extensively, see for example [13–16], and the
final state of the collapse may be a black hole or a naked
singularity. Here, we focus mainly on the black hole case.
In the remaining of this section, we prove the total

redshift effect under the following assumptions:
(i) The mass density is non-negative, such that m ≥ 0

and m0 ≥ 0.
(ii) E0 ≤ 0.
(iii) r0 > 0, so that there are no shell-crossing singu-

larities.
See [14] for conditions on the functions mðRÞ and EðRÞ
characterizing the collapse which guarantee the fulfillment
of assumption (iii).

A. The marginally bound case

As explained in the previous section, the particular case
of marginally bound collapse is characterized by zero total
energy for all the dust shells, EðRÞ ¼ 0, and in this case we
have the simplified identity (27) which relates the fre-
quency change with the change of x ≔ V ¼ ffiffiffiffiffiffiffiffiffiffiffi

2m=r
p

along
in- and outgoing radial null geodesics. In the outgoing case,
integration of Eq. (27) from the center to the surface of the
cloud (see Fig. 1) yields the following frequency shift:

νþ1
ν0

¼ exp

�
xþ1 −

Z
R1

0

m
r2
r0dR

�
; ð29Þ

where we have parametrized the light ray by the coordinate
R, used the fact that kþ½R� ¼ 1=r0, and the fact that x → 0
as R → 0 along the light ray. Similarly in the ingoing case,
integration of Eq. (27) from the surface of the cloud to its
center yields

ν0
ν−1

¼ exp

�
x−1 þ

Z
R1

0

m
r2
r0dR

�
; ð30Þ

which, in contrast to νþ1 =ν0 is manifestly larger than one,
implying a blueshift. Therefore, the frequency shift of

photons emitted from the surface of the cloud towards
its center and received by a comoving observer at a
diametrically opposite point on the surface of the cloud
is given by

νþ1
ν−1

¼ exp

�
x−1 þ xþ1 þ

Z
R1

0

mðRÞ
�
r0

r2

����
−
−
r0

r2

����
þ

�
dR

�
;

ð31Þ
where the subscripts − and þ indicate evaluation along the
in- and outgoing null rays, respectively.
Next, we add to this the contributions from the frequency

shift between a static observer at ℐ− and a free falling
observer at the surface of the cloud, and the one from the
redshift between an observer at the surface of the cloud and
a static observer at ℐþ. These contributions are indepen-
dent of the interior of the cloud and have been discussed in
detail in Sec. II. The result for the total frequency shift for a
radial light ray extending from ℐ− to ℐþ is

νþ∞
ν−∞

¼ 1−xþ1
1þx−1

exp

�
xþ1 þx−1 þ

Z
R1

0

mðRÞ
�
r0

r2

����
−
−
r0

r2

����
þ

�
dR

�
:

ð32Þ
In order to find an upper bound for this frequency shift, we
first note that along radial null rays

d
dR

1

r
¼ �r0k�

�
1

r

�
¼ −

r0

r2
∓ r0

_r
r2
;

so that we can rewrite the integral on the right-hand side of
Eq. (32) as

−
Z

R1

0

mðRÞ
�

d
dR

1

r

����
−
−

d
dR

1

r

����
þ

�
dR

þ
Z

R1

0

mðRÞ
�
r0 _r
r2

����
þ
þ r0 _r

r2

����
−

�
dR:

Using integration by parts in the first term leads to the
following result:

νþ∞
ν−∞

¼ fþðxþ1 Þf−ðx−1 Þ exp
�Z

R1

0

m0ðRÞ
�
1

r

����
−
−
1

r

����
þ

�
dR

þ
Z

R1

0

mðRÞ
�
r0 _r
r2

����
þ
þ r0 _r

r2

����
−

�
dR

�
; ð33Þ

with the functions f� defined as

fþðxÞ ≔ ð1 − xÞ expðxþ x2=2Þ;
f−ðxÞ ≔ ð1þ xÞ−1 expðx − x2=2Þ; x ≥ 0:

ð34Þ

Next, we claim that the expression inside the square
parenthesis on the right-hand side of Eq. (33) is negative
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or zero. In order to see this, we first note that the functions
m and m0 are non-negative because we assume a non-
negative mass density. Next, since we assume a collapsing
cloud, it is evident that for a given mass shell parametrized
by a fixed value of R, its areal radius r is larger at the
moment it is penetrated by the light ray than at the moment
when the light ray exits it, so that r− > rþ. Finally, we use
again the fact that _r < 0, and the assumption that there
are no shell-crossing singularities, which is guaranteed
by r0 > 0. With these observations in mind we conclude
that the total frequency shift is bounded from above
according to

νþ∞
ν−∞

≤ fþðxþ1 Þf−ðx−1 Þ; ð35Þ

with the functions f� defined in Eq. (34). It is not difficult
to verify that these functions are monotonically decreasing
and satisfy fþð0Þ ¼ f−ð0Þ ¼ 1, with f�ðxÞ ≤ 1 for all
x ≥ 0. This proves that the total frequency shift is towards
the red, as in the homogeneous case.
Since xþ1 ≥ x−1 and fþ is monotonously decreasing, we

can further estimate fþðxþ1 Þ ≤ fþðx−1 Þ and obtain the
following bound in terms of x−1 only:

νþ∞
ν−∞

≤ fþðx−1 Þf−ðx−1 Þ ¼
1 − x−1
1þ x−1

expð2x−1 Þ: ð36Þ

For small values of x−1 we obtain, in particular,

νþ∞
ν−∞

≤ 1 −
2

3
ðx−1 Þ3 þO5ðx−1 Þ: ð37Þ

Comparison with the result from the homogeneous case in
Eq. (17) reveals the same dependency of ðC−1 Þ3=2 of the
redshift factor z ¼ ν−∞=νþ∞ − 1 in terms of the compactness
ratio C−1 ¼ ðx−1 Þ2, but with the constant −2=3 instead of −2.
Therefore, for small C−1 , our upper bound reproduces
correctly the scaling in terms of the compactness ratio,
but with a larger constant.

B. The bounded case

Next, we generalize the bound (35) to the case where
each dust shell has zero or negative total energy, EðRÞ ≤ 0.
In this case, we follow the same lines of arguments as in the
marginally bound case starting from the identity (26) with
p⊥ ¼ 0 and w½r� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p

. Introducing the dimension-

less variable x ≔ V=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r þ 2E

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
, as

in Sec. II, and integrating Eq. (26) along in- and outgoing
radial light rays, one finds the generalization of Eqs. (29)
and (30),

νþ1
ν0

¼ exp

�
xþ1 −

Z
R1

0

m
1þ 2E

r0

r2
dRþ

Z
R1

0

xþE0

1þ 2E
dR

�
;

ð38Þ

ν0
ν−1

¼ exp

�
x−1 þ

Z
R1

0

m
1þ 2E

r0

r2
dRþ

Z
R1

0

x−E0

1þ 2E
dR

�
;

ð39Þ

where we have used the fact that k�½R� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
=r0.

This leads to the following generalization of Eq. (32) for the
total frequency shift:

νþ∞
ν−∞

¼ 1− xþ1
1þ x−1

exp

�
xþ1 þ x−1 þ

Z
R1

0

m
1þ 2E

�
r0

r2

����
−
−
r0

r2

����
þ

�
dR

þ
Z

R1

0

E0

1þ 2E
ðxþ þ x−ÞdR

�
: ð40Þ

Using the following identity along in- and outgoing radial
null rays:

d
dR

1

r
¼ � r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p k�

�
1

r

�
¼ −

r0

r2
∓ r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p _r

r2
;

integration by parts finally leads to

νþ∞
ν−∞

¼ fþðxþ1 Þf−ðx−1 Þ exp
�Z

R1

0

m0

1þ 2E

�
1

r

����
−
−
1

r

����
þ

�
dR

þ
Z

R1

0

m

ð1þ 2EÞ3=2
�
r0 _r
r2

����
þ
þ r0 _r

r2

����
−

�
dR

þ
Z

R1

0

E0

1þ 2E
½xþ þ x− þ ðxþÞ2 − ðx−Þ2�dR

	
;

with the same functions f� as defined in Eq. (34). The
same arguments as in the marginally bound case imply that
the first two integrals on the right-hand side are negative or
zero. As for the third integral, it is also negative or zero
according to our assumption E0 ≤ 0 and the fact that
xþ ≥ x−. Therefore, we arrive at exactly the same estimate
for the frequency ratio νþ∞=ν−∞ as in the marginally bound
case, see Eq. (35). In particular, there is a total redshift, and
for small x−1 the redshift factor scales as ðx−1 Þ3.

V. NUMERICAL EXAMPLES

In this section, we give some numerical examples for the
redshift of a photon with zero angular momentum traveling
fromℐ− toℐþ. For this, we consider the following family
of initial data, corresponding to a dust cloud which is
initially at rest and whose density profile is given by [17]

ρ0ðRÞ ¼ ρc

�
1 −

�
R
R1

�
2n
�
; 0 ≤ R ≤ R1; ð41Þ
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where R1 is the initial areal radius of the cloud, ρc > 0 is
the central density, and n ≥ 1 measures the flatness of the
profile, the limit n → ∞ corresponding to the homo-
geneous case discussed in Sec. II. Note that ρ0ðR1Þ ¼ 0
so that the density is a continuous, monotonously decreas-
ing function on ð0; R1Þ. In the following, we focus on
configurations with fixed initial radius R1 and fixed total
mass given by

m1 ¼
4π

3
R3
1ρc

2n
2nþ 3

: ð42Þ

Accordingly, we restrict ourselves to initial density profiles
of the form (41) for different values of n ≥ 1, where the
central density is given by

ρc ¼ ρ̄

�
1þ 3

2n

�
; ð43Þ

with ρ̄ ≔ 3m1=ð4πR3
1Þ the mean initial density of the cloud.

The initial density profile for different values of n is shown
in Fig. 2.
As a numerical test, in Fig. 3, corresponding to the

profile given in Eq. (41) with n ¼ 50 and 2m1=R1 ¼ 1=10,
we show the total frequency shift νþ∞=ν−∞ as a function of
the compactness ratio Cþ1 at which the light ray exits the
cloud, and we compare this shift to the upper bound
obtained in Eq. (35) in Sec. IV. For this particular initial
density profile, the condition E0 ≤ 0 fails to be valid
everywhere inside the cloud. Nevertheless, Fig. 3 shows
that the bound remains valid even though the condition
E0 ≤ 0 does not. The numerical integration of radial light
rays was performed using a fourth-order Runge-Kutta
algorithm. In the case of homogeneous density, where
exact expressions for the frequency shift are known (see
Sec. II), we have checked that our numerical solutions
converge to the exact ones to fourth-order accuracy. In the

inhomogeneous case our numerical solutions were checked
to be auto-convergent to fourth-order accuracy also.
In Fig. 4 we show the change of the frequency ratio ν=ν−∞

along a radial light ray when photons travel from past to
future null infinity. The frequency ν is measured by free
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R/R
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0.4

0.8

1.2

1.6

2

ρ 0 / 
ρ

n = 1.5
n = 2.5
n = 10
n = 50
n = 150
Homogeneous profile

FIG. 2 (color online). The initial density profile ρ0ðRÞ=ρ̄
described in Eqs. (41)(43) as a function of R=R1 for
n ¼ 1.5; 2.5; 10; 50; 150.
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+
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∞
/ν

- ∞

Upper bound
Total redshift

FIG. 3 (color online). Comparison of the total frequency shift
νþ∞=ν−∞ with its upper bound given by Eq. (35) in Sec. IV. The
initial density profile corresponds to the one described in Eq. (41)
with n ¼ 50 and 2m1=R1 ¼ 1=10. The bound remains valid even
though in this case E0 > 0 in a region inside the cloud close to the
surface. Notice that the upper bound is exact in the limit Cþ1 → 1,
corresponding to a light ray exiting the cloud very close to the
event horizon.

-1 -0.5 0 0.5 1
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0.5 0.5
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1.5 1.5

2 2

2.5 2.5

ν/
ν- ∞

First light ray
Intermediate light ray
Last light ray

FIG. 4 (color online). The frequency ratio ν=ν−∞ as a function of
an arbitrary parameter λ which runs from −1 at ℐ− to þ1 atℐþ.
The cloud corresponds to the parameter range −0.5 ≤ λ ≤ þ0.5.
The results for three different light rays are displayed, the first one
is the light ray penetrating the cloud at the moment of time
symmetry while the last one exits the cloud very close to the event
horizon. The initial density profile corresponds to the one
described in Eq. (41) with n ¼ 10 and 2m1=R1 ¼ 1=10. Note
that the redshift in the region −1 ≤ λ ≤ −0.5 is due to the fact that
we display the ratio ν=ν−∞ measured by free falling observers
instead of static ones.
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falling observers (inside and outside the cloud). This plot
shows how the photons acquire a blueshift inside the cloud,
but then this blueshift is overcompensated by a redshift
outside the cloud.
In Fig. 5 we show the numerically computed frequency

shift νþ∞=ν−∞ experienced by a photon along a light ray γ
extending fromℐ− toℐþ through the center of a cloud for
different density distributions and fixed initial compactness
ratio 2m1=R1 ¼ 1=10. This frequency shift is shown as a
function of proper time τ of an arbitrarily distant static
observer which starts his chronometer (τ ¼ 0) when he
encounters the radial light ray γ0 that entered the cloud at
the moment of time symmetry. This proper time τ can be
related to the areal radius rþ1 at which the photon exits the
cloud in the following way. In terms of standard
Schwarzschild coordinates we have

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m1

robs

s
ðt − t0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m1

robs

s
ðu − u0Þ;

where robs is the radius of the static observer, t and t0 are
the Schwarzschild times at the moment the observer
crosses the light rays γ and γ0, and u ¼ t − r −
2M logðr=2M − 1Þ is retarded time which is constant
along the outgoing parts of γ and γ0. On the other hand,
at the surface of the cloud, u is given by (see, for instance,
Appendix C in Ref. [16])

uðyÞ ¼ −4m1 logð−UðyÞÞ

where in the time-symmetric case

UðyÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffi

1− y2
q

−
y
a1

ffiffiffiffiffiffiffiffiffiffiffiffi
1−a21

q �

×exp

�
y2

2a21
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1−a21

p
2a21

�
1þ 2a21

a1
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffi
1− y2

p
y

�

þ y
a1

ffiffiffiffiffiffiffiffiffiffiffiffi
1− y2

q �	
;

with a1 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1=R1

p
and y ≔

ffiffiffiffiffiffiffiffiffiffi
r=R1

p
. Since u ¼ const.

along outgoing radial null rays, we obtain, for observers
located at many Schwarzschild radii of the collapsing
cloud (robs ≫ 2m1),

τ ¼ 4m1 log

�
Uðy0Þ
Uðyþ1 Þ

�
; ð44Þ

where yþ1 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ1 =R1

p
and y0 is the value of yþ1 for the

light ray γ0. Note that τ ¼ 0 for the light ray γ0, while
τ → ∞ when rþ1 → 2m1, corresponding to the case when γ
exists the cloud very close to the event horizon.
The results in Fig. 5 lead to the following interesting

observation. For fixed total mass m1 and radius R1 the
redshift effect is larger for clouds whose density profile is
concentrated near the center than for clouds with a nearly
flat density profile. Therefore, the redshift is sensitive to
the inner mass distribution of the cloud and measuring
the frequency shift as a function of time could reveal
information about the inner constitution of the cloud.
Notice that even though the observer has to wait an
infinite time (τ → ∞) to approach the horizon, the
redshift effect already becomes manifest after time scales
of the order of

30 × 2m1 ≈ 3 × 10−4
�

M
M⊙

�
s

for the example displayed in the figure, with M⊙ the
solar mass.
Finally, we discuss the blueshift effect studied in

Ref. [6], where it was argued that photons emitted from
dust particles inside the collapsing dust cloud could be
blueshifted for distant static observers. In order to discuss
this point, in Fig. 6, we show the frequency shift νþ∞=ν−1 for
photons traveling on a radial light ray emanating from the
surface of the cloud and traveling through the center of the
cloud. As we see, for our family of initial data, there exist
indeed photons which are blueshifted. However, we also
see that this blueshift effect only occurs for nearly flat
density profiles. For nonflat profiles ðn < 10Þ none of the
photons are blueshifted, suggesting that this effect might be
difficult to detect in practice.
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FIG. 5 (color online). The total frequency shift νþ∞=ν−∞ expe-
rienced by a photon traveling from ℐ− to ℐþ through the center
of a cloud with fixed initial compactness ratio 2m1=R1 ¼ 1=10,
as a function of proper time τ measured by a distant, static
observer. This frequency shift is shown for the different density
distributions displayed in Fig. 2. We observe that for fixed mass,
the redshift effect is larger for clouds whose density profile is
concentrated near the center than for clouds with a nearly flat
density profile.
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VI. CONCLUSIONS

We have studied the frequency shift of light rays
traveling on an asymptotically flat dynamical spacetime
describing the complete gravitational collapse of a spheri-
cally symmetric dust cloud. As a first approximation to the
problem, we have assumed that the photons have zero
angular momentum and do not disperse or experience any
other effect due to interactions with the matter. Specifically,
we have considered photons propagating from past to
future null infinity through the center of the collapsing
cloud and discussed the information that can be obtained
from their frequency shift relative to stationary observers.
The assumption that the photons do not interact with the
dust particles essentially changes the conception of [6,7],
where the photons are supposed to be emitted from the
collapsing matter, involving complex processes which have
to be simplified by assuming a particular spectrum of
emission. In this sense, our approach is simpler and clearer,
since we assume that the photons come from known
sources such as supernovae explosions at small cosmo-
logical redshifts, for example.
First, we have analyzed the simple situation in which the

cloud possesses an homogeneous density distribution. In
this model, the collapsing cloud is described by a con-
tracting FRW spacetime while the spacetime in the exterior
is given by the Schwarzschild metric. In this scenario, we
have considered photons propagating from past to future
null infinity through the center of the collapsing cloud.
Their frequency shift has three contributions: the first one
consists of a gravitational blueshift between the static
emitter near ℐ− and the surface of the cloud, combined
with a Doppler redshift due to the motion of the surface

relative to static observers. The second contribution is a
blueshift due to the contraction of the FRW spacetime. The
third contribution is a combination of a Doppler redshift at
the surface of the cloud with the gravitational redshift
between the surface and a static observer near ℐþ. When
combined together, the explicit computation of these
contributions reveals that photons propagating from
ℐ− to ℐþ through the center of the collapsing cloud
are always redshifted with respect to stationary observers.
Furthermore, we have written the frequency shift as a
function of the compactness ratio of the cloud at the
moment it is penetrated by the light ray. Additionally,
we have explicitly calculated the frequency shift of photons
which are emitted from the surface of the cloud, propagate
inwards through its center and escape to ℐþ. Our results
confirm that some of these photons can be blueshifted as
shown in Ref. [6] for the particular case of marginally
bound collapse. However, we demonstrate that in the
bounded case, there is a certain threshold for the total
energy below which all the photons are redshifted.
Next, we took a step beyond the homogeneous density

cloud and considered the Tolman-Bondi collapse model for
generic initial data. Based on a geometric identity which
relates the redshift factor along in- and outgoing radial null
geodesics with the compactness ratio of the collapsing
shells, we found an upper bound on the frequency shift
factor of photons with zero angular momentum traveling
from ℐ− to ℐþ. Assuming only a non-negative mass
density, the absence of shell-crossing singularities, and the
condition that the total energy of the shells is a non-
increasing function of the areal radius, this bound can be
expressed in terms of the compactness ratios of the light ray
at the moments it penetrates and exits the cloud. This bound
implies, in particular, that these photons are always
redshifted. In this context, it is also interesting to notice
that the photons always experience a redshift on their trip
from the center of the cloud to a distant stationary observer,
as can be easily inferred from the arguments in Sec. IV.
Therefore, the blueshift inside the cloud is dominated by
the redshift in the exterior region. Although we have
considered only photons with zero angular momentum
in this work, we conjecture that our result is also valid for
other photons traversing the dust cloud, since in this case
the blueshift in the interior should be smaller. In fact, a
preliminary numerical study indicates that the total fre-
quency shift towards the red seems to prevail for photons
with nonvanishing angular momentum.
We have also computed the frequency shift experienced

by the photons as a function of proper time of an arbitrarily
distant stationary observer and exhibited its dependency on
the mass distribution of the collapsing object. This leads to
an inverse problem, consisting of the determination of the
mass distribution from the observed frequency shift as a
function of time. The solution of this problem and its
implications should be interesting.
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FIG. 6 (color online). Numerical computation of the frequency
shift νþ∞=ν−1 experienced by photons traveling from the surface of
a cloud through its center to ℐþ, as a function of proper time τ
measured by a distant, static observer. In all cases the initial
compactness ratio is equal to 2m1=R1 ¼ 1=10. For almost flat
density profiles, some of the photons experience a blueshift.
However, for nonflat profiles, there is no blueshift.
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We end this article by mentioning three further appli-
cations of the present work. The first one is related to the
validity of the weak cosmic censorship conjecture. As
indicated previously, the spherical dust collapse may give
rise to a naked singularity even for reasonable initial data.
In this case, a Cauchy horizon appears before the event
horizon, extending from the first singular point of the naked
singularity toℐþ. As a consequence, future null infinity of
the resulting spacetime is incomplete. Then, a relevant
question is whether or not the naked singularity and its
associated Cauchy horizon are stable under perturbations.
A first test for the stability of the Cauchy horizon is to
check whether or not photons traveling arbitrarily close to
the Cauchy horizon undergo an infinite blueshift, which
would indicate an instability. In fact, the bound on the
frequency shift derived in this article is also valid for a
collapsing spherical dust cloud forming a naked singularity,
as long as the compactness ratio 2m=r converges to zero
when the center is approached along in- and outgoing light
rays. Under reasonable, generic assumptions on the initial
data characterizing the dust collapse this condition holds
for radial light rays which pass arbitrarily close to the first
singular point (see the discussion in Sec. II of Ref. [18]). As
a consequence, our bound excludes the possibility that
photons traveling on such light rays are blueshifted by an
arbitrary large amount, an effect that would have indicated
an instability of the Cauchy horizon. This result strengthens
and clarifies our earlier result in [18], where boundedness
of the blueshift in the vicinity of the singularity was shown
(see also [19] for the marginally bound case).
The second application is again related to weak cosmic

censorship and considers the possibility of testing it
observationally. The idea is to compare the behavior of
the redshift function found in this article for the black hole
case to the case of a naked singularity. This comparison will
be discussed in detail in future work [20].
Finally, the total redshift effect we have discussed here

could also have interesting implications in cosmology. For
instance, we might consider photons emitted by distant
supernova explosions or photons from the cosmic micro-
wave background which cross several collapsing dust
regions before being detected on earth. A relevant question

is whether or not such photons could be redshifted by a
significant amount compared to their redshift due to the
expansion of the Universe. In fact, there has been much
recent work (see for example Refs. [21–25]) addressing
related questions in the context of “swiss cheese” type
cosmologies, where the effects of inhomogeneities on
light propagation in the Universe have been analyzed. It
would be interesting to analyze the case in which all the
inhomogeneous regions are described by massive collaps-
ing dust clouds surrounded by an underdense region. Such
regions could be modeled by a spherical dust cloud
collapsing in a Schwarzschild exterior, which is precisely
the situation considered in the present article except that
instead of propagating from past to future null infinity, the
photons would be emitted and detected within the FRW
spacetime. Provided each inhomogeneous region is small
compared to the Hubble scale but large compared to the
extension of the collapsing cloud, such that the effects from
the expansion can be neglected inside the region, the
photons undergo a redshift as described in this work.
Assuming that the clouds have nonrelativistic compactness
ratios (C ¼ 2m=r ≪ 1), the calculations in Secs. II and IV
reveal that the redshift factor z due to our effect scales as

z ¼ ν−∞
νþ∞

− 1 ∼ C3=2: ð45Þ

It should be interesting to compare this factor to the
cosmological redshift factor due to the expansion inside
the region. This will be explored in future work.
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