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Finsler geometry is a natural generalization of pseudo-Riemannian geometry. It can be motivated e.g. by
a modified version of the Ehlers-Pirani-Schild axiomatic approach to space-time theory. Also, some
scenarios of quantum gravity suggest a modified dispersion relation which could be phrased in terms of
Finsler geometry. On a Finslerian space-time, the universality of free fall is still satisfied but local Lorentz
invariance is violated in a way not covered by standard Lorentz invariance violation schemes. In this paper
we consider a Finslerian modification of Maxwell’s equations. The corrections to the Coulomb potential
and to the hydrogen energy levels are computed. We find that the Finsler metric corrections yield a splitting
of the energy levels. Experimental data provide bounds for the Finsler parameters.
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I. INTRODUCTION

A widely expected consequence of a (still-to-be-found)
theory of quantum gravity is a small modification of
general relativity. Such a modification may be encoded
in a scalar-tensor theory as it comes out from the low
energy limit of string theory leading e.g. to a violation of
the universality of free fall [1,2]. Other consequences might
be that, in addition to the metric, there could be a further
geometric field like torsion leading to an effective
Riemann-Cartan geometry.
Another modification of the usual peudo-Riemannian

geometry is Finsler geometry. It comes about naturally in
some scenarios inspired from quantum gravity. For exam-
ple, it was shown in [3] that a modified dispersion relation
suggested by quantum gravity can be interpreted in terms of
Finsler geometry. Further motivation comes from very
special relativity [4]: As demonstrated in [5], some defor-
mations of very special relativity lead in a natural way to
Finsler geometry. Finsler geometry has also been consid-
ered in the context of analogue gravity [6].
Finsler geometry is a framework which still respects the

universality of free fall but violates local Lorentz invari-
ance. The way in which local Lorentz invariance is violated
is beyond the usual Lorentz invariance violation schemes
like the χ − g formalism [7], the THϵμ framework [8] or the
Standard Model extension [9]. Furthermore, though the
universality of free fall is valid in a Finslerian setting,
gravity cannot be transformed away locally [10]; that is,
there is no Einstein elevator. On a more basic level, a

Finslerian geometry may result from a relaxed version of
the Ehlers-Pirani-Schild axiomatics [11] by not requiring
the world function to be twice differentiable.
Therefore, in view of considering all possible deviations

from standard Riemannian geometry reflecting effects from
quantum gravity, and in view of more fundamental issues, it
might be of general interest to study further consequences
of Finsler geometry. Since electromagnetic phenomena
provide very precise tools for exploring the geometry of
space-time, in this paper we will set up a generalization of
Maxwell’s equations in a Finslerian space-time and derive
possible consequences for atomic physics which can be
compared with experiments.

II. FINSLER GEOMETRY

A. Positive definite Finsler structures

The central idea of Finsler geometry was already
proposed by Riemann in his famous habilitation lecture
devoted to the geometry of curved manifolds [12]. In
parallel to the (Riemannian) geometry based on a second
rank symmetric nondegenerate metrical tensor gαβðxÞ with
the line element ds2 ¼ gαβðxÞdxαdxβ, Riemann briefly
discussed a geometry based on a fourth-rank totally
symmetric tensor gαβγδðxÞ with the line element

ds4 ¼ gαβγδðxÞdxαdxβdxγdxδ: ð2:1Þ

An intensive study and a further generalization of this type
of geometry was given by Finsler [13] in 1918 in his
dissertation. Finsler geometry is based on a Finsler function
Fðx; yÞ that assigns a length
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S ¼
Z

s2

s1

FðxðsÞ; _xðsÞÞds ð2:2Þ

to each curve. One requires that Fðx; yÞ is positively
homogeneous of degree one,

Fðx; λyÞ ¼ λFðx; yÞ for λ > 0; ð2:3Þ
to make sure that the length of a curve is independent of its
parametrization, and that the Finsler metric

gαβðx; yÞ ¼
∂2ðFðx; yÞ2Þ

∂yα∂yβ ð2:4Þ

is positive definite for all y ≠ 0.
The unparametrized geodesics of a Finsler geometry are

the extremals of the length functional (2.2) where the end
points are kept fixed. The affinely parametrized geodesics
are the extremals of the “energy functional”

E ¼
Z

s2

s1

FðxðsÞ; _xðsÞÞ2ds; ð2:5Þ

where the end points and the parameter interval are kept
fixed. Riemannian geometry is, of course, a special case of
Finsler geometry, characterized by the additional property
that the metric gαβ is independent of y.
The theory of positive definite Finsler metrics, which is

detailed e.g. in [14] and [15], has several applications to
physics, where the underlying manifold is to be interpreted
as three-dimensional space, so the greek indices take values
1,2,3. For example, the Lagrangian of a charged particle in
a magnetostatic field is given by a Finsler function of the
Randers form

Fðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hμνðxÞyμyν

q
þ AμðxÞyμ; ð2:6Þ

where hμνðxÞ is a Riemannian metric (i.e., positive definite)
and AμðxÞ is a one-form. It can be shown that the
corresponding Finsler metric (2.4) is, indeed, positive
definite for all y ≠ 0 provided that Fðx; yÞ > 0 for all
y ≠ 0; see [15], Sec. 11.1. To mention another example,
light propagation in an anisotropic medium that is time
independent is characterized by two positive definite spatial
Finsler metrics [16,17]. If these two metrics coincide (i.e., if
there is no birefringence), they are necessarily Riemannian
[18,19]. Positive definite Finsler metrics have also been
used for describing the propagation of seismic waves;
see e.g. [20].

B. Finsler structures of Lorentzian signature

In applications to space-time physics, the Euclidean
signature of the metric must be replaced by a Lorentzian
signature. Following Beem [21], this can be done
by considering, instead of the function Fðx; yÞ2, a

Lagrangian Lðx; yÞ that may take positive, zero and
negative values. [Notice that it is the square of the
Finsler function that enters into the definition of the
metric tensor (2.4).]
More precisely, a Finsler structure of Lorentzian sig-

nature is a function Lðx; yÞ that is positively homogeneous
of degree two,

Lðx; λyÞ ¼ λ2Lðx; yÞ for λ > 0; ð2:7Þ
and for which the Finsler metric

gijðx; yÞ ¼
∂2Lðx; yÞ
∂yi∂yj ð2:8Þ

is nondegenerate and of Lorentzian signature for all y ≠ 0.
(Actually, it is recommendable to relax the latter condition
by requiring the conditions on the Finsler metric to hold
only for almost all y ≠ 0; see [22].) In applications to
physics, the underlying manifold is to be interpreted as
space-time, so the Latin indices take values 0,1,2,3.
The homogeneity condition (2.7) implies that

Lðx; yÞ ¼ 1

2
gijðx; yÞyiyj: ð2:9Þ

The affinely parametrized geodesics of such a Finsler
structure are, by definition, the extremals of the “energy
functional”

E ¼
Z

s2

s1

LðxðsÞ; _xðsÞÞds: ð2:10Þ

The homogeneity condition assures that L is a constant of
motion, so the geodesics can be classified as timelike
(L < 0), lightlike (L ¼ 0) and spacelike (L > 0).

III. MAXWELL’S EQUATIONS ON A FLAT
FINSLER SPACE-TIME

In this section we discuss howMaxwell’s equations must
be modified if the underlying space-time is Finslerian. We
mention that there are different views on this issue; see e.g.
Pfeifer and Wohlfarth [23] for an alternative approach.
We follow a line of thought that was sketched already in
the appendix of [22]. Our guiding principles are that the
electromagnetic field strength should be a field on space-
time (and not on the tangent bundle, as in [23]), and that the
lightlike Finsler geodesics should be the bicharacteristics
(i.e., the “rays”) of Maxwell’s equations.

A. Flat Finsler space-times

As in this paper we are interested in laboratory experi-
ments, where space-time curvature plays no role, we
assume that the underlying Finsler structure is flat. We
prescribe this Finsler structure in terms of a Lagrangian,
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following Beem’s definition. The flatness assumption
means that we can choose the coordinates such that the
Lagrangian is independent of x,

LðyÞ ¼ 1

2
gijðyÞyiyj: ð3:1Þ

This is analogous to the pseudo-Riemannian case where the
flatness assumption means that the coordinates can be
chosen such that the gij are independent of x. Here and in
the following, Latin indices take values 0,1,2,3 and Greek
indices take values 1,2,3.
As a consequence of (2.7) and (2.8), the Finsler metric is

homogeneous of degree zero,

yk
∂gijðyÞ
∂yk ¼ 0; ð3:2Þ

and its derivative is totally symmetric,

∂gijðyÞ
∂yk ¼ ∂gkiðyÞ

∂yj ¼ ∂gjkðyÞ
∂yi : ð3:3Þ

Wewill later assume that gijðyÞ is a small perturbation of
the Minkowski metric, but in this section we will not need
this specification.

B. Hamiltonian vs Lagrangian formalism

Recall that the lightlike geodesics of our Finsler structure
are the extremals of the functional (2.5) with Lðx; yÞ ¼ 0.
In the case at hand, where L is assumed to be independent
of x, the lightlike geodesics are the straight lines xiðsÞ ¼
ai þ yis with LðyÞ ¼ 0. To characterize these curves in
terms of a Hamiltonian, rather than in terms of a
Lagrangian, we introduce the canonical momenta

pi ¼
∂LðyÞ
∂yi ð3:4Þ

and the Hamiltonian

HðpÞ ¼ piyi − LðyÞ: ð3:5Þ

In (3.5), the yi must be expressed in terms of the pj with the
help of (3.4). The nondegeneracy of the Finsler metric
guarantees that this can be done for all y ≠ 0.
With (3.1), (3.3) and (3.2) we see that (3.4) can be

written more explicitly as

pi ¼ ginðyÞyn þ
1

2

∂gmnðyÞ
∂yi ymyn ¼ ginðyÞyn: ð3:6Þ

Thereupon, the Hamiltonian (3.5) reads

HðpÞ ¼ 1

2
gijðpÞpipj; ð3:7Þ

where

gijðpÞ ¼ ∂2HðpÞ
∂pi∂pj

ð3:8Þ

is the inverse of gjkðyÞ, with the yi expressed in terms of the
pi by (3.4). In accordance with (3.2) and (3.3) we have

pk
∂gijðpÞ
∂pk

¼ 0; ð3:9Þ

∂gijðpÞ
∂pk

¼ ∂gkiðpÞ
∂pj

¼ ∂gjkðpÞ
∂pi

: ð3:10Þ

The Hamiltonian H is homogeneous of degree two with
respect to p, i.e.

pkHkðpÞ ¼ 2HðpÞ; ð3:11Þ

where we have introduced, as an abbreviation,

HkðpÞ ¼ ∂HðpÞ
∂pk

¼ gkjðpÞpj: ð3:12Þ

The lightlike Finsler geodesics (i.e., the lightlike straight
lines in the case at hand) are the solutions to Hamilton’s
equations with HðpÞ ¼ 0.

C. Modified Maxwell’s equations

If the space-time metric is the unperturbed Minkowski
metric, gjk¼ηjk where ðηjkÞ¼diagð−1;1;1;1Þ, Maxwell’s
equations read

∂lFjk þ ∂jFkl þ ∂kFlj ¼ 0: ð3:13Þ

ηkl∂lFkj ¼ −μ0Jj: ð3:14Þ

Here the two-form Fkj is the electromagnetic field strength,
Jj is the current density and μ0 is the permeability of the
vacuum. If the current is given, (3.13) and (3.14) give a
system of first-order partial differential equations for the
electromagnetic field strength.
If we replace the Minkowski metric ηkl with our flat

Finsler metric glkðpÞ, we see that there is no reason to
modify (3.13) because it does not involve the metric. As to
(3.14), it is most natural to replace

ηkl∂l ↦ gklð−i∂Þ∂l; ð3:15Þ

where i is the imaginary unit and gklð−i∂Þ stands for the
expression that results if in gklðpÞ the pj are replaced with
−i∂j ¼ −i∂=∂xj. As gklðpÞ is not in general a polynomial
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in the momentum coordinates, gklð−i∂Þ∂l is not in general
a differential operator but rather a pseudodifferential
operator. (For background material on pseudodifferential
operators see e.g. [24].) With the replacement (3.15), the
Maxwell equation (3.14) becomes a pseudodifferential
equation,

gklð−i∂Þ∂lFkj ¼ −μ0Jj: ð3:16Þ

By (3.12), this equation can be equivalently rewritten as

iHkð−i∂ÞFkj ¼ −μ0Jj: ð3:17Þ

As the current and the field strength are both real, the
operator iHkð−i∂Þ should map real functions to real
functions. This is the case if the Hamiltonian is even,
Hð−pÞ ¼ HðpÞ, i.e., if the homogeneity property (2.7) is
true also for negative λ. If this condition is satisfied, (3.13)
and (3.17) determine a perfectly reasonable dynamical
system for the field strength if the current is given. Note
that if H satisfies the property

Hð−ipÞ ¼ −HðpÞ; ð3:18Þ

we may write

iHkð−i∂Þ ¼ Hkð∂Þ; ð3:19Þ

and (3.17) is manifestly real. The Hamiltonians (4.2) and
(4.9) to be considered below both satisfy (3.18), where in
the case of (4.2) the correct branch of the square root,
i4=2 ¼ −1, has to be chosen.
To support our claim that (3.13) and (3.17) are the correct

Finsler versions of Maxwell’s equations, we apply the
operator ∂m to (3.17) for the case that Jj ¼ 0,

0 ¼ ∂mðHkð−i∂ÞFkjÞ ¼ Hkð−i∂Þð∂mFkjÞ: ð3:20Þ

By (3.13), this can be rewritten as

0 ¼ Hkð−i∂Þð∂kFjm þ ∂jFmkÞ
¼ ∂kðHkð−i∂ÞFjmÞ þ ∂jðHkð−i∂ÞFmkÞ: ð3:21Þ

The second term vanishes because of Jm ¼ 0. Using (3.11)
we find that Fjm satisfies a generalized wave equation,

Hð−i∂ÞFjm ¼ 0: ð3:22Þ

If we solve this equation with a plane-wave ansatz for the
electromagnetic field,

FjmðxÞ ¼ Reffjm expðiklxlÞg; ð3:23Þ

we find that the wave covector kl has to satisfy the equation

HðkÞ ¼ 0; ð3:24Þ

i.e., that in our flat Finsler space-time electromagnetic
waves propagate along lightlike straight lines. This obser-
vation supports our claim that (3.13) and (3.17) are the
correct Finsler versions of Maxwell’s equations.
To give further support to this claim, we now demon-

strate that (3.17) can be brought into a form which is
adapted to the formalism of premetric electrodynamics;
cf. [25]. To that end we have to show that (3.17) can be
rewritten as

∂lHml ¼ −Jm; ð3:25Þ

where the excitation Hml is related to the field strength Fkj
by a certain constitutive law. We write (3.17) in the
equivalent form of (3.16), and we apply the pseudodiffer-
ential operator gmjð−i∂Þ. Then we obtain

gmjð−i∂Þgklð−i∂Þ∂lFkj ¼ −μ0Jm ð3:26Þ

with Jm ¼ gmjð−i∂ÞJj. Since gkl is independent of the xi,
this can be rewritten as

∂lðκmlkjð−i∂ÞFkjÞ ¼ −Jm ð3:27Þ

with a constitutive operator

κmlkjð−i∂Þ ¼ 1

2μ0
ðgmjð−i∂Þgklð−i∂Þ − gmkð−i∂Þgjlð−i∂ÞÞ:

ð3:28Þ

This form is equivalent to the original equation (3.17). In
particular, for gij ¼ ηij we return to the standard Maxwell
vacuum electrodynamics on Minkowski space-time. We
have, thus, put our modified Maxwell equations in the
premetric form, where the constitutive law

Hml ¼ κmlkjð−i∂ÞFkj ð3:29Þ

involves the pseudodifferential operator (3.28). An impor-
tant advantage of the premetric formulation is that, quite
generally, (3.25) together with the antisymmetry of Hkl

immediately implies charge conservation, ∂mJm ¼ 0.
The homogeneous part of Maxwell’s equations (3.13) is

automatically satisfied if we express the electromagnetic
field in terms of a potential,

Fij ¼ ∂iAj − ∂jAi: ð3:30Þ

We mention in passing that then the inhomogeneous part
(3.27) can be derived from the action
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S ¼
Z �

1

4
κklijð−i∂ÞFklðxÞFijðxÞ − μ0AiðxÞJiðxÞ

�
d4x;

ð3:31Þ
where one has to take into account that the operator
κklijð−i∂Þ commutes with the variational derivative.
In the following we will be interested in static fields.

Then ∂0Ai ¼ 0 and (3.17) implies

iHkð−i∂Þ∂kA0 ¼ −μ0J0: ð3:32Þ
We denote the four components of the potential by
ðA0 ¼ −V=c; A1; A2; A3Þ and the four components of the
current density by ðJ0 ¼ −cρ; J1; J2; J3Þ. Then (3.32) can
be rewritten, with the help of (3.11), as

2Hð−i∂ÞV ¼ ρ

ε0
; ð3:33Þ

where ε0 is the permittivity of the vacuum and we have used
that c−2 ¼ ε0μ0. If the metric is the unperturbed Minkowski
metric, we have, of course, 2Hð−i∂ÞV ¼ −△V where△ is
the ordinary Laplacian. Equation (3.33) is the Finslerian
modification of the Poisson equation that determines the
electrostatic potential V of a static charge density ρ. This is
the only equation from Finslerian electrodynamics that we
will need in the following.

IV. THE FINSLERIAN MODIFICATION OF THE
COULOMB FIELD

A. A Finsler perturbation of Minkowski space-time

We further specify our Finsler structure by assuming that
the Hamiltonian (3.5) is a small perturbation of the standard
Hamiltonian on Minkowski space-time. The latter reads

H0ðpÞ ¼
1

2
ηijpipj ¼

1

2
ð−p2

0 þ δμνpμpνÞ: ð4:1Þ

We restrict to the case that the Finsler perturbation affects
the spatial part only. The simplest nontrivial ansatz for such
a perturbation is a square root of a fourth-order term,

HðpÞ¼1

2
ð−p2

0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδμνδρσþ4ϕμνρσÞpμpνpρpσ

q
Þ; ð4:2Þ

where ϕμνρσ is totally symmetric. (A similar perturbation of
Minkowski space-time was considered in [26].) We assume
that the Finsler perturbation is so small that we can linearize
all equations with respect to the ϕμνρσ. Then the
Hamiltonian simplifies to

HðpÞ¼ 1

2

�
−p2

0þδρσpρpσþ
2ϕμνρσpμpνpρpσ

δλκpλpκ

�
: ð4:3Þ

We will now demonstrate that the trace part of ϕμνρσ can be
eliminated with the help of a coordinate transformation. To
that end, we decompose ϕμνρσ in the form

ϕμνρσpμpνpρpσ ¼ ð ~ϕμνδρσ þ ~ϕμνρσÞpμpνpρpσ; ð4:4Þ
where ~ϕμνρσ is totally symmetric and trace-free. Then (4.3)
can be rewritten as

HðpÞ

¼ 1

2

�
−p2

0 þ δρσpρpσ þ 2 ~ϕρσpρpσ þ
2 ~ϕμνρσpμpνpρpσ

δλκpλpκ

�
:

ð4:5Þ

After a linear coordinate transformation,

~x0 ¼ x0; ~xσ ¼ ðδσμ − δμλ ~ϕ
σλÞxμ; ð4:6Þ

p0 ¼ ~p0; pμ ¼ ðδσμ − δμλ ~ϕ
σλÞ ~pσ; ð4:7Þ

the Hamiltonian reads

Hð ~pÞ ¼ 1

2

�
− ~p2

0 þ δρσ ~pρ ~pσ þ
2 ~ϕμνρσ ~pμ ~pν ~pρ ~pσ

δλκ ~pλ ~pκ

�
ð4:8Þ

up to terms of quadratic order with respect to the Finsler
perturbation. If we drop the tilde, we have found the final
form of our Hamiltonian,

HðpÞ ¼ 1

2

�
ηijpipj þ

2ϕμνρσpμpνpρpσ

δλκpλpκ

�
; ð4:9Þ

with ϕμνρσ totally symmetric and trace-free. A totally
symmetric fourth-rank tensor in three dimensions has 15
independent components. The trace-free condition allows
one to express 6 of them in terms of the other ones, e.g.

ϕ1122 ¼ 1

2
ðϕ3333 − ϕ1111 − ϕ2222Þ;

ϕ1133 ¼ 1

2
ðϕ2222 − ϕ3333 − ϕ1111Þ;

ϕ2233 ¼ 1

2
ðϕ1111 − ϕ2222 − ϕ3333Þ;

ϕ1123 ¼ −ϕ2223 − ϕ2333;

ϕ1223 ¼ −ϕ1113 − ϕ1333;

ϕ1233 ¼ −ϕ1112 − ϕ1222; ð4:10Þ
so we are left with 9 independent Finsler perturbation
coefficients.

B. The modified Coulomb field

With the Hamiltonian (4.9) inserted into (3.33), we want
to find the solution where the source is a point charge at
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rest. The equation we have to solve reads

△V þ 2
ϕαβγδ∂α∂β∂γ∂δ

△
V ¼ −

q
ε0

δð~rÞ: ð4:11Þ

Here and in the following we write

~r ¼ ðx1; x2; x3Þ; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δαβxαxβ

q
; △ ¼ δαβ∂α∂β:

ð4:12Þ
We look for a solution to (4.11) in the form

Vð~rÞ ¼ q
4πε0r

þ ψð~rÞ; ð4:13Þ

where the first term on the right-hand side is the standard
Coulomb solution of the unperturbed problem. As we
agreed to linearize all equations with respect to the Finsler
coefficients ϕαβμν, it is sufficient to determine ψ to within
this approximation. Then ψ must satisfy the equation

△ψ þ 2
ϕαβγδ∂α∂β∂γ∂δ

△

�
q

4πε0r

�
¼ 0: ð4:14Þ

Applying the Laplacian to this equation gives a linear
fourth order partial differential equation,

△2ψ ¼ −2qϕαβγδ∂α∂β∂γ∂δ

�
q

4πε0r

�
: ð4:15Þ

The right-hand side of this equation is easily calculated,

△2ψ ¼ −
210

4πε0

q
r9

ϕαβγδxαxβxγxδ; ð4:16Þ

where xα ¼ δαβxβ. Here we have used that ϕαβγδ is
trace-free.

The solution ψ of the biharmonic equation (4.16) must
(a) be asymptotically zero for r → ∞,
(b) be linear with respect to ϕαβγδ,
(c) have only one singular point located at the origin,
(d) be constructed from the ϕαβγδ and the xα.
Under these circumstances we can guess the solution of
(4.16) to be of the form

ψ ¼ C
ϕαβγδxαxβxγxδ

r5
: ð4:17Þ

Note that we cannot add terms proportional to ϕαβγδδαβxγxδ
or ϕαβγδδαβδγδ because these terms vanish.
The biharmonic operator applied to (4.17) gives

△2ψ ¼ 280C
r9

ϕαβγδxαxβxγxδ: ð4:18Þ

By comparing (4.18) with (4.16) we obtain C ¼
−3qð16πε0Þ−1. Thus the solution of (4.15) is

ψ ¼ −
3q

16πε0r5
ϕαβγδxαxβxγxδ: ð4:19Þ

Consequently, we have the scalar potential of the point
source in the form

V ¼ q
4πε0r

�
1 −

3

4r4
ϕαβγδxαxβxγxδ

�
: ð4:20Þ

In spherical coordinates this expression reads

V ¼ q
4πε0r

�
1 −

3

4
ϕαβγδfαβγδðθ;φÞ

�
; ð4:21Þ

where

ϕαβγδfαβγδðθ;φÞ ¼ ϕ1111sin4θcos4φþ ϕ1112sin4θcos3φ sinφþ ϕ1113sin3θ cos θcos3φ

þ ϕ1122sin4θcos2φsin2φþ ϕ1123sin3θ cos θcos2φ sinφ

þ ϕ1133sin2θcos2θcos2φþ ϕ1222sin4θ cosφsin3φþ ϕ1223sin3θ cos θ cosφsin2φ

þ ϕ1233sin2θcos2θ cosφ sinφþ ϕ1333 sin θcos3θ cosφþ ϕ2222sin4θsin4φþ ϕ2223sin3θ cos θsin3φ

þ ϕ2233sin2θcos2θsin2φþ ϕ2333 sin θcos3θ sinφþ ϕ3333cos4θ: ð4:22Þ

V. FINSLER CORRECTIONS OF THE HYDROGEN
ENERGY LEVELS

A. Finsler modified Schrödinger equation

For an electron (mass ¼ m and charge ¼ −e) in the
Coulomb field (4.21) of a proton (charge q ¼ e), the
Schrödinger equation reads

−
ℏ2

2m

�
△þ 2

ϕαβγδ∂α∂β∂γ∂δ

△

�
Ψð~rÞ

−
e2

4πε0r

�
1 −

3

4
ϕαβγδfαβγδðθ;φÞ

�
Ψð~rÞ ¼ EΨð~rÞ: ð5:1Þ

Here we have added to the potential term a Finsler
correction according to our results from the preceding
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section, and we have added to the Laplacian the same
correction as in the electrodynamic equations; cf. (4.11).
The latter assumption is based on the idea that the Finsler
perturbation modifies the underlying geometry such that
particles and light are affected in the same way. As an
alternative, one might speculate that there are two different
Finsler modifications of the space-time structure, one for
particles and one for light. This would come up to a
Finslerian bimetric theory. We will not investigate such a
more complicated theory here but rather stick with (5.1).
However, we mention that the order-of-magnitude esti-
mates of the following calculations remain true for the more
general (bimetric) theories as long as the perturbation of the
Laplacian term does not exceed the corresponding term in
(5.1) by several orders of magnitude.
To give further support to our Schrödinger equation (5.1),

we demonstrate that it comes about as the nonrelativistic
limit of a modified Klein-Gordon equation. The free
Klein-Gordon equation in a Finsler space-time is naturally
given by

2Hð−iℏ∂ÞΦþm2c2Φ ¼ 0; ð5:2Þ

where H is the four-dimensional Hamiltonian. This can
also be derived from an action principle. In our model,

2Hð−iℏ∂Þ ¼ ℏ2

�
1

c2
∂2
t − δμν∂μ∂ν −

2ϕαβγδ∂α∂β∂γ∂δ

δτλ∂τ∂λ

�
:

ð5:3Þ

Wewant to derive the nonrelativistic limit of this Finslerian
Klein-Gordon equation. For that we use the formalism
described in [27]. We make an ansatz where the wave
function is given by an exponential function of a sum of
terms of different orders of c−2,

ΦðxÞ ¼ exp

�
i
ℏ
ðc2S0ðxÞ þ S1ðxÞ þ c−2S2ðxÞ þ � � �Þ

�
:

ð5:4Þ

Here the functions SNðxÞ may take complex values. As we
are looking for solutions to (5.2) that are small perturba-
tions of plane harmonic waves ∼eikixi and, hence, have no
zeros, the ansatz (5.4) is no restriction of generality. We
insert this ansatz into the Klein-Gordon equation and
equate equal powers of c. The equation of leading order,
c4, is

ðδμνδρσ þ 2ϕμνρσÞ∂μS0∂νS0∂ρS0∂σS0 ¼ 0: ð5:5Þ

As the Finsler coefficients are small, this implies ∂μS0 ¼ 0,
i.e., S0 can only be a function of time, S0ðxÞ ¼ S0ðtÞ. The
next order, c2, yields the equation

�
dS0ðtÞ
dt

�
2

−m2 ¼ 0; ð5:6Þ

which possesses the solutions

S0ðtÞ ¼ �mtþ const ð5:7Þ
where, for physical reasons, we do not consider the plus
sign. The equation of next order, c0, gives for the function
Φ1ðxÞ ¼ e

i
ℏS1ðxÞ the equation of motion

iℏ
∂Φ1ðxÞ

∂t ¼−
ℏ2

2m

�
△þ2ϕαβγδ∂α∂β∂γ∂δ

△

�
Φ1ðxÞ: ð5:8Þ

This represents the free Schrödinger equation in our Finsler
space-time. Coupling to an electrostatic potential V will be
performed through

∂
∂t ↦

∂
∂t −

i
ℏ
eVðxÞ; ð5:9Þ

which gives us the time-dependent Schrödinger equation
with coupling to an electrostatic potential,

iℏ
∂Φ1ðxÞ

∂t ¼ −
ℏ2

2m

�
△þ 2ϕαβγδ∂α∂β∂γ∂δ

△

�
Φ1ðxÞ

− eVðxÞΦ1ðxÞ: ð5:10Þ

Upon inserting for V our expression for the perturbed
Coulomb potential, the time-independent Schrödinger
equation (5.1) results from a separation ansatz
Φ1ðxÞ ¼ Ψð~rÞe−iEt=ℏ. Note that in (5.1) the radial variable
r can be separated from the angular variables θ and φ
exactly as in the ordinary theory. The two angular variables,
however, cannot be separated from each other.

B. Finsler modified energy levels

We want to determine the bound states and the energy
levels by the perturbation method to within linear order in
the Finsler coefficients ϕαβγδ. This will give us the splitting
of the hydrogen spectral lines as produced by the Finsler
perturbation. Of course, as we are considering the simple
Kepler problem as the unperturbed situation, this splitting is
to be viewed on top of all the other (fine-structure and
hyperfine-structure) splittings of the hydrogen spectral
lines which are well understood.
We denote the unperturbed bound states of the Coulomb

potential by

Ψnlmð~rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23ðn − l − 1Þ!
n3a302nðnþ lÞ!

s
e−

r
na0

�
2r
na0

�
l

× L2lþ1
n−l−1

�
2r
na0

�
Ym
l ðθ;φÞ; ð5:11Þ

where
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a0 ¼
4πε0ℏ2

me2
ð5:12Þ

is the Bohr radius, the Lq
p are the generalized Laguerre

polynomials and the Ym
l are the spherical harmonics. The

quantum numbers n; l and m take the values

n ¼ 1; 2;…; l ¼ 0;…; n − 1; m ¼ 0;…;�l:

ð5:13Þ

The corresponding unperturbed eigenvalues are

En ¼ −
Ry
n2

; Ry ¼ e2

8πε0a0
: ð5:14Þ

The first-order corrections to the eigenvalues are deter-
mined by the matrix elements

Mnlm;n0l0m0 ¼ −
�
Ψnlm

����ℏ2ϕαβγδ∂α∂β∂γ∂δ

m△
Ψn0l0m0

�

þ
�
Ψnlm

���� 3e2

16πε0r
ϕαβγδfαβγδðθ;φÞΨn0l0m0

�
:

ð5:15Þ

The first scalar product on the right-hand side can be
calculated more easily in the momentum representation,

−
�
Ψnlm

����ℏ2ϕαβγδ∂α∂β∂γ∂δ

m△
Ψn0l0m0

�

¼ 1

m
hΨ̂nlmjϕαβγδfαβγδðθ;φÞp2Ψ̂n0l0m0 i; ð5:16Þ

where Ψ̂nlmð~pÞ is the Fourier transform ofΨnlmð~rÞwhich is
given by [28]

Ψ̂nlmð~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a30ℏnðn − l − 1Þ!

πðnþ lÞ!

s
22lþ2ðℏa0pÞl
ða20p2 þ ℏ2Þlþ2

× Clþ1
n−l−1

�
a20p

2 − ℏ2

a20p
2 þ ℏ2

�
Ym
l ðθ;φÞ; ð5:17Þ

where the Ck
s are the Gegenbauer polynomials.

We now calculate the necessary matrix elements one by
one to determine the perturbations of the lowest energy
levels.
The ground state, n ¼ 1, is nondegenerate. Under the

Finsler perturbation, its energy value is shifted in first-order
perturbation theory according to

E1 → E1 þ ΔE1; ð5:18Þ
where

ΔE1 ¼ M100;100: ð5:19Þ

Calculation of this matrix element yields

ΔE1 ¼
7Ry
12

ðϕ1111 þ ϕ2222 þ ϕ3333Þ; ð5:20Þ

where we have used the trace-free condition.
The next level, n ¼ 2, is fourfold degenerate in the

unperturbed situation. Under the Finsler perturbation, it
will in general split into four levels,

E2 → E2 þ ΔEA
2 ; A ¼ 1; 2; 3; 4; ð5:21Þ

where, in first-order perturbation theory, the ΔEA
2 are the

eigenvalues of the perturbation matrix ðM2lm;2l0m0 Þ. The
entries of this (4 × 4) matrix can be calculated. Using again
the trace-free condition, we find

M200;200 ¼
19Ry
48

ðϕ1111 þ ϕ2222 þ ϕ3333Þ; ð5:22Þ

M210;210 ¼
19Ry
112

ðϕ1111 þ ϕ2222 þ 5ϕ3333Þ; ð5:23Þ

M211;211 ¼ M21ð−1Þ;21ð−1Þ

¼ 19Ry
112

ð3ϕ1111 þ 3ϕ2222 þ ϕ3333Þ; ð5:24Þ

M200;210 ¼ M200;211 ¼ M200;21ð−1Þ ¼ 0; ð5:25Þ

M210;211 ¼ −M210;21ð−1Þ

¼ −
19Ryffiffiffi
2

p
140

ðϕ1113 þ ϕ1333 þ iðϕ2223 þ ϕ2333ÞÞ;

ð5:26Þ

M211;21ð−1Þ ¼
19Ry
56

�
−ϕ1111þϕ2222þ2i

5
ðϕ1112þϕ1222Þ

�
;

ð5:27Þ
where overlining means complex conjugation.
The perturbation matrix consists of a 1 × 1 block and a

3 × 3 block. Therefore, calculating the eigenvalues requires
solving a third-order equation. This can be done explicitly,
but the resulting expressions are rather awkward and will
not be given here.
The transition from the E2 level to the E1 level is known

as the Lyman-α line. Our Finsler perturbation causes a
splitting of this line into four lines in general, a singlet
(l ¼ 0) and a triplet (l ¼ 1). The Lyman-α line does not
split if and only if the perturbation matrix M2lm;2l0m0 is a
multiple of the unit matrix. This is the case if and only if

ϕ1111¼ϕ2222 ¼ϕ3333¼ 0;

ϕ1112þϕ1222¼ϕ1113þϕ1333 ¼ϕ2223þϕ2333 ¼ 0: ð5:28Þ
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[The six Finsler coefficients on the left-hand sides of (4.10)
are then all zero.] This demonstrates that observations of
the Lyman-α line alone cannot give us bounds on all Finsler
coefficients. Even if we observe, with a certain measuring
accuracy, that the Lyman-α line does not split, we could
have arbitrary Finsler coefficients ϕ1112 ¼ −ϕ1222, ϕ1113 ¼
−ϕ1333 and ϕ2223 ¼ −ϕ2333.
One may consider the transition from the E3 level to the

E1 level in addition which, in the unperturbed situation,
gives rise to the Lyman-β line. The Lyman-β line splits, in
general, into nine lines, a singlet (l ¼ 0), a triplet (l ¼ 1)
and a quintuplet (l ¼ 2). The energy shifts are determined
by the eigenvalues of the matrix ðM3lm;3l0m0 Þ. We calculate
only two of these matrix elements,

M322;32ð−2Þ ¼
13Ry
252

ð3ϕ1111 þ 3ϕ2222 − ϕ3333

þ 2iðϕ1222 − ϕ1112ÞÞ ð5:29Þ

and

M320;321 ¼ −M320;32ð−1Þ ¼ −
13Ryffiffiffi
6

p
42

ðϕ1333 þ iϕ2333Þ:

ð5:30Þ

The Lyman-β line does not split if and only if the matrix
ðM3lm;3l0m0 Þ is a multiple of the unit matrix. This requires, in
particular, vanishing of the two off-diagonal matrix ele-
ments we have calculated; hence,

ϕ1222 − ϕ1112 ¼ ϕ1333 ¼ ϕ2333 ¼ 0: ð5:31Þ

If neither the Lyman-α nor the Lyman-β line splits, both
(5.28) and (5.31) have to hold, so in this case all Finsler
coefficients must be zero. This demonstrates that we get
bounds on all Finsler coefficients if we observe, with a
certain measuring accuracy, that neither the Lyman-α line
nor the Lyman-β line splits.
As a special case, we consider a Finsler perturbation that

respects the symmetry about the z axis. This simplifying
assumption seems reasonable in a laboratory on Earth if
one believes that the Finsler anisotropy has a gravitational
origin. Then the expression ϕαβγδfαβγδðθ;φÞ in (4.21) must
be independent of φ. In combination with the trace-free
condition, this symmetry assumption requires that (4.22)
simplifies to

ϕαβγδfαβγδðθ;φÞ¼ϕ1111ð1−5cos2θþ10cos4θÞ; ð5:32Þ

i.e., there is only one independent Finsler coefficient left.
The perturbation of the E1 level (5.20) simplifies to

ΔE1 ¼
14Ry
3

ϕ1111: ð5:33Þ

The perturbation matrix ðM2lm;2l0m0 Þ becomes diagonal, so
that the eigenvalues can easily be calculated. For the singlet
we find

ΔE1
2 ¼

19Ry
6

ϕ1111; ð5:34Þ

whereas the triplet degenerates into two lines,

ΔE2
2 ¼

38Ry
7

ϕ1111; ð5:35Þ

ΔE3
2 ¼ ΔE4

2 ¼
57Ry
28

ϕ1111: ð5:36Þ

This demonstrates that, in this case, the Lyman-α line splits
into three lines. The spacing between the outermost lines is

ΔE2
2 − ΔE3

2 ¼
95Ry
28

ϕ1111: ð5:37Þ

If we observe, with a certain measuring accuracy δω of the
frequency, that the Lyman-α line does not split, we can
deduce that

jϕ1111j ≤ 28ℏδω
95Ry

≈ 1.4 × 10−17 δω=Hz: ð5:38Þ

In the general case, without the special symmetry
assumption, we get similar bounds for all Finsler coef-
ficients from the observation that neither the Lyman-α nor
the Lyman-β line splits. (Instead of 28=95, we get, of
course, other numerical factors.)

VI. CONCLUSIONS

We have calculated the Finsler perturbation of atomic
spectra for the simplest possible case, using the
Schrödinger equation with the standard Coulomb potential
for the unperturbed situation and a linearized metric
perturbation that derives from the square root of a
fourth-order term. We emphasize again that, if the results
are to be compared with measurements of the hydrogen
spectrum, the Finslerian splitting of the spectral lines has,
of course, to be viewed as coming on top of all the other
fine-structure and hyperfine-structure splittings that are
well understood. Also, more complicated atomic spectra
and more complicated Finslerian metric perturbations can
be considered. What we wanted to estimate was the order of
magnitude for the bounds on the Finsler perturbations that
can be achieved by atomic spectroscopy. We see from
(5.38) that these bounds are quite tight. Given the fact that,
nowadays, frequencies can be measured in the optical and
in the ultraviolet with an accuracy of up to δω ≈ 10−7 Hz,
with this kind of measurements it should be possible to get
an upper bound on the dimensionless Finsler coefficients of
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about 10−24. This bound is by several orders of magnitude
smaller than the bounds from Solar System tests; cf. [22].
Using nuclear spectroscopy, rather than atomic spectros-

copy, it might be possible to get even better bounds. The
Hughes-Drever experiment (see e.g. Will [29]) comes to
mind which gives the best bounds on anisotropic mass
terms to date. It is based on magnetic resonance measure-
ments of a Li-7 nucleus whose ground state of spin 3=2
splits into four levels when a magnetic field is applied.
Anisotropic mass terms would lead to an unequal spacing
between these levels. It was also shown that the Hughes-
Drever experiment gives very restrictive bounds on torsion;
see [30]. The Finsler perturbations discussed in this paper
are not exactly of the same mathematical form as aniso-
tropic mass terms or torsion terms, but they also introduce
some kind of spatial anisotropy. For this reason, it seems
likely that a careful reanalysis of the Hughes-Drever
experiment would also give some strong bounds on
possible Finsler perturbations, probably even stronger than
the bounds from atomic spectroscopy. However, there are
two difficulties with the Hughes-Drever experiment, one
from the theoretical side and one from the experimental
side. Theoretically, the analysis of the experiment would
have to be based on a wave equation for a particle with spin,
i.e., on a Finsler generalization of a Dirac-type equation or
on a nonrelativistic approximation thereof. The basic idea
of how such a Dirac-type equation could be found in a
Finsler setting is rather straightforward: One would have to
linearize the corresponding Klein-Gordon equation with
respect to the derivative operators; see e.g. [31]. However,
the procedure is considerably more complicated than in the
spinless case, and the details have not yet been worked out
for the kind of Finsler perturbation discussed in this paper.
Experimentally, a Hughes-Drever experiment in its

standard setting is performed by keeping the magnetic
field fixed in the laboratory and waiting for 24 hours so that
the Earth makes a full rotation with respect to the space-
time background geometry. In this way, one can detect
“cosmological” anisotropies, i.e, anisotropies in the back-
ground geometry, but not “gravitational” anisotropies
which would rotate with the Earth. If one thinks of a
Finsler perturbation as having a gravitational origin, it
would be of a type that could not be detected with a
Hughes-Drever experiment in its usual setting. One would
have to rotate the magnetic field with respect to the
laboratory which is technically more difficult.
For these two reasons, we have restricted in this paper to

a test with atomic spectrocopy, rather than with nuclear
spectroscopy of the Hughes-Drever type. It should be noted
that such an atomic spectroscopy test applies not only to
laboratory experiments on Earth, but to any situation where
(hydrogen) spectral lines are observed. So it can be used
also for estimating Finsler perturbations in the neighbor-
hood of distant stars or gas clouds.
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