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It is a well-known result that any formulation of unimodular gravity is classically equivalent to general
relativity (GR); however, a debate exists in the literature about this equivalence at the quantum level. In this
work, we investigate the UV quantum structure of a diffeomorphism-invariant formulation of unimodular
gravity using functional renormalization group methods in a Wilsonian context. We show that the effective
action of the unimodular theory acquires essentially the same form as that of GR in the UV, and that both
theories share similar UV completions within the framework of the asymptotic safety scenario for quantum
gravity. Furthermore, we find that in this context the unimodular theory can appear to be nonpredictive due
to an increasing number of relevant couplings at high energies, and we explain how this unwanted feature is
in the end avoided.
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I. INTRODUCTION

An old and at the same time simple method for attacking
the cosmological constant problem has been unimodular
gravity [1–8]. The fundamental idea underlying unimod-
ular gravity is to modify the classical gravitational dynam-
ics in a way that the cosmological constant is disentangled
from the equations of motion, by making the determinant of
the metric nondynamical, or equivalently by requiring that
its variation with respect to the metric field is equal to zero.
As we will also discuss later, the latter requirement restricts
the full diffeomorphism symmetries of general relativity
(GR) to only the transverse diffeomorphism ones.
Unimodular gravity does not succeed in eliminating the

cosmological constant term from the classical dynamics; a
cosmological constant term appears in the classical equa-
tions as a constant of integration, by use of the Bianchi
identities, and the classical dynamics turn out to be exactly
the same as those of GR. In this context, it is essentially
the conceptual problem of the cosmological constant that
changes; in unimodular gravity, the cosmological constant
problem accounts to tuning an integration constant to the
required value, instead of a coupling that appears in the
action through appropriate renormalization conditions. For
a detailed and recent discussion on the extent to which
unimodular gravity can provide a “new perspective” on the
cosmological constant problem see Ref. [9].
Unimodular gravity also attracted a lot of attention in the

context of quantum gravity, as a possible way of solving the
problem of time in this context [10–14], or as a way of
avoiding the conformal anomalies [15,16]. Although it has
been a well-known fact for a long time that, at the classical
level unimodular gravity is equivalent to standard GR with

a cosmological constant, the quantum-mechanical equiv-
alence between the two theories has been a matter of
debate, with contradicting results appearing in the liter-
ature. In particular, Ref. [17] studied the quadratic actions
of standard GR and its unimodular counterpart around flat
space-time, enforcing the constancy of the metric’s deter-
minant from the beginning, and argued that in principle
quantum effects can allow one to discriminate between the
two theories at the experimental level, while in a similar
setting Ref. [18] argued that at the quadratic level of
fluctuations around generic backgrounds the free energy of
unimodular gravity agrees with that of GR. Furthermore, in
Ref. [19] it was claimed that the two theories are equivalent
at the perturbative level for asymptotically flat space-times,
but inequivalence was found for semiclassical nonperturba-
tive quantities. Reference [9] introduced a diffeomorphism-
invariant unimodular formulation of GR, through the
introduction of appropriate Lagrange multiplier and
Stückelberg fields, and argued that quantum-mechanical
equivalence can be established provided that only the metric
field couples to external sources in the path integral. In a
different setup, Ref. [20] started from a version of the
Einstein-Hilbert action, without a cosmological constant,
which was made invariant under transverse diffeomorphism
symmetry by construction and in particular, by acting upon
the gauge-fixing sector of the effective action with an
appropriate transverse operator. Then, in the context of
the exact renormalization group (ERG), the author showed
that the action exhibited an attractive, nontrivial UV fixed
point for Newton’s coupling G. It is important to point out
that in the latter work the cosmological constant was left out
of the action, due to the enforcement of the transverse
diffeomorphism symmetry.
The aim of this work will be to analyze the UV structure
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with the starting point being a unimodular formulation of
GR which is by construction diffeomorphism invariant,
such as that introduced in Ref. [9]. In particular, the action
will consist of the usual Einstein-Hilbert sector, as well as a
new sector constructed from five new field variables apart
from the metric, namely a Lagrange multiplier and a set of
four appropriate Stückelberg fields, acting to restore the full
diffeomorphism symmetries of the theory. In this setup, the
unimodularity condition will appear as an on-shell con-
dition implemented through the Lagrange multiplier λðxÞ
and Stückelberg fields, while it is important to point out
that the quantum fluctuations we will compute will in
principle be of off-shell nature. What is more, since we will
be studying a fully diffeomorphism-invariant theory, the
cosmological constant will also be introduced in the action.
As mentioned earlier, in Ref. [9] an argument was pre-
sented for the quantum equivalence between GR and its
unimodular counterpart based on decoupling the Lagrange
multipler and Stückelberg fields from the sources in the
generating functional; in this work, our approach will be
different in this regard, since we shall treat all fields equally
at the quantum level allowing them to couple to appropriate
sources.
In this context, and using as our main tool the functional

RG, we will calculate the (nonperturbative) RG flow of the
effective action for the unimodular theory, and proceed
with studying the associated UV quantum structure,
assuming the scenario of asymptotic safety. Our analysis
will show that the unimodular effective action and that of
standard GR acquire a similar form at sufficiently high
energies in the UV. In particular, we will show that the
novel interactions in the unimodular action (compared to
standard GR), i.e. the interactions in the Stückelberg sector,
turn off at sufficiently high energies, while the Einstein-
Hilbert sector of the action, spanned by Newton’s constant
and the cosmological constant, acquires an appropriate
fixed point and eigenvalues sufficiently close to those of
GR. We should stress that the above results concern the
regime of sufficiently high energies, suggesting that the two
theories essentially share similar UV completions, and in
general do not imply the quantum-mechanical equivalence
between the unimodular theory and GR; in fact, and as we
will also discuss later on, as one moves towards lower
energies, the interactions in the Stückelberg sector will in
principle become important, leading to a different quantum
structure and phenomenology for the two theories.
Our analysis will further reveal that the unimodular

theory appears to be nonpredicitve, due to the apparent
increasing number of relevant couplings in the Stückelberg
sector. We will discuss the cause of this issue, and how this
undesired situation is finally avoided.
We structure the paper as follows. In Sec. II we review

some fundamental aspects of unimodular gravity at the
classical level, as well as introduce the unimodular action
that our quantum analysis will be based on. In Sec. III we

introduce our main tools for the quantum analysis, and then
proceed with calculating the (nonperturbative) RG flow
equation for the unimodular action.After presenting some of
its key properties in this context, we analyze how these
compare with those of standard GR, and discuss the
consequences about the equivalence between the two
theories. Our conclusions are discussed in Sec. IV, while
useful explicit formulas and calculations are presented in the
appendices.

II. ACTION SETUP

In this section we shall first review very briefly the
fundamental idea behind unimodular gravity, and we will
then introduce the diffeomorphism-invariant unimodular
action, first introduced in Ref. [9], which will be the starting
point for our quantum analysis.
The original motivation of unimodular gravity involved

disentangling the cosmological constant from the gravita-
tional equations of motion, or in other words forcing its
contribution to be zero, by requiring that the metric’s
determinant g≡ det gμν is nondynamical,

ffiffiffiffiffiffi
−g

p ¼ ϵ0; ð1Þ
with ϵ0 a constant scalar density. The unimodularity
condition (1) is equivalent to requiring that the variation
of the determinant g with respect to the metric yields zero,
disentangling this way the cosmological constant coupling
from the classical equations of motion. It is well known
that the enforcement of the unimodularity condition (1)
implies that the set of allowed diffeomorphism trans-
formations of the theory is now restricted only to the
transverse ones, i.e. the theory becomes transverse diffeo-
morphism invariant.
The condition (1) can be implemented at the level of the

action in a straightforward manner through the introduction
of a Lagrange multiplier λðxÞ, as was done in Refs. [3,4].
However, the resulting action is invariant under the
restricted group of transverse diffeomorphisms, since the
full symmetries will be broken through the quantity ϵ0.
In this work, the starting point for our analysis will be the

unimodular action introduced in Ref. [9], where the
unimodularity condition was implemented at the level of
the action, but in a way that the full diffeomorphism
symmetries are preserved. The action, which generalized
the actions introduced in Refs. [3,4,14], introduces apart
from a Lagrange multiplier λðxÞ, a set of four Stückelberg
fields ϕαðxÞ ¼ fϕ1ðxÞ;…;ϕ4ðxÞg, the latter acting in a
way as to restore the full diffeomorphism symmetry of the
theory. It reads as [9]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
þ λðxÞfðψÞ þ qðψÞ

�
; ð2Þ

where fðψÞ and qðψÞ are principle arbitrary functions, and
the scalar ψ is defined as
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ψðxÞ≡ jJαβjffiffiffiffiffiffi−gp : ð3Þ

jJαβj is the determinant of the Stückelberg Jacobian,
Jαβ ≡ ∂ϕαðxÞ

∂xβ , defined as

jJαβj ¼ 4!δ½αμ δβν δγκδ
δ�
λ J

μ
αJνβJκγJλδ: ð4Þ

The more familiar formulation of unimodular gravity
corresponds to the choice qðψÞ ¼ 0, and

ffiffiffiffiffiffi−gp
fðψÞ ¼ffiffiffiffiffiffi−gp ð1 − ψÞ, with the (dynamical) scalar ψ now playing

the role of ϵ0. The classical dynamics of the unimodular
action (2), have been discussed in Ref. [9], and as one
would expect, they are exactly the same as those of
standard GR with a cosmological constant. We refer to
Ref. [9] for more details.

III. QUANTUM UNIMODULAR GRAVITY

In this section we move on to study the UV quantum
structure of the diffeomorphism-invariant unimodular
theory (2), as well as how it compares with that of standard
GR. Our tool in this direction will be the functional RG in a
Wilsonian context, based on an exact RG equation (ERGE).
The power of the ERG is that it provides a unifying way to
study the (nonperturbative) quantum dynamics from arbi-
trarily small to arbitrarily high energy/cut-off scales. The
ERGE captures the essence of the Wilsonian approach to
the RG, where the quantum dynamics are studied by
integrating out quantum fluctuations shell by shell in
momenta. What is more, the ERGE being an exact
equation, is a nonperturbative equation and no requirement
about the smallness of the couplings has to be made.
Our starting point is the path integral given by

Z½J� ¼
Z

DgμνDϕαDλeiS½ΦA�þi
R

JAΦAþΔSk ð5Þ

where S½ΦA� corresponds to the action (2), ΦA ¼
fgμνðxÞ; λðxÞ;ϕαðxÞg are the field variables of the action,
and JAΦA implies a summation of the coupling of each of
the fields ΦA to appropriate external sources JA. Defining k
to be an infrared cutoff, the term ΔSk plays the role of a
scale-dependent infrared regulator, suppressing momenta
lower than k, and implementing the Wilsonian idea of
integrating out momenta shell by shell [21–24]. Denoting
with Φ any (matrix-valued) dynamical field of the theory in
the abstract, ΔSk has the form

ΔSk ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
ΦRkð−□ÞΦ; ð6Þ

with the form of Rk suitably chosen (see below) and
boldface denoting a potential matrix structure. □≡
gμν∇μ∇ν denotes the Laplacian.

The coupling of all fields in the path integral Z½J� to
appropriate sources implies that all fields are treated
equally and are dynamical at the quantum level. This
fact shows a fundamental difference between our
approach and the one suggested in Ref. [9]. There,
an argument was suggested for maintaining the quan-
tum-mechanical equivalence between the unimodular
theory (2) and GR, provided the Lagrange multiplier
and Stückelberg fields are not coupled to the sources.
From the path integral (5) one can define the generating
functional of connected correlators W½J� ¼ lnZ½J�, and
then—through an appropriate Legendre transform of
W½J�—the Euclidian, scale-dependent (coarse-grained)
effective action Γk. It can then be shown that the
effective action Γk satisfies an ERGE [25,26],

∂tΓk ¼
1

2
Tr½ðΓð2Þ

k þRkÞ−1∂tRk�; ð7Þ

with k an IR cutoff, ∂t ≡ k∂=∂k, “Tr” denoting a trace
over momenta, tensor indices and fields, and bold-faced

symbols denoting matrix quantities. What is more, Γð2Þ
k

denotes the full, inverse propagator defined as

Γð2Þ
k ½Φ� ¼ δ2Γk

δΦðxÞδΦðyÞ : ð8Þ

The regulator Rk ensures IR regularization and finite-
ness of the trace: momentum modes below k are
suppressed, while those above k are not, and are
therefore integrated out. The form of the cutoff function
is in principle arbitrary apart from some very generic
requirements it has to satisfy [21–24] to ensure that the
process of integrating out modes is performed consis-
tently and in the Wilsonian sense, i.e. shell by shell in
momentum space.
In principle, one would like to solve the ERGE (7) in an

exact manner, but at the practical level one has to resort to
the use of a (truncated) Ansatz for the effective action.
Given a particular Ansatz for the effective action, the
evaluation of the ERGE (7) yields the flow equation,
which describes the RG dynamics of Γk as a function of
the cutoff scale k. Our starting Ansatz for the Euclidian
effective action in this work will be based on the diffeo-
morphism-invariant unimodular action presented in
Eq. (2),

Γk½g;ϕ; λ� ¼ −
Z

d4x
ffiffiffi
g

p ½ZGðR − 2ΛÞ þ λfðψÞ þ qðψÞ�;
ð9Þ

where ψ ≡ jJαβj= ffiffiffi
g

p
and the Stückelberg Jacobian

defined in Eq. (4). Noting that the (inverse) Newton’s
coupling acts as an overall wave-function renormalization
for the graviton, we define ZG ≡ ZGðkÞ≡ 1=16πGðkÞ.
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Newton’s constant and the cosmological constant are
assumed to be scale-dependent renormalized couplings,
i.e. G≡GðkÞ and Λ≡ ΛðkÞ, respectively. What is more,
the functions fðψÞ and qðψÞ acquire a scale dependence
through their couplings ρi ≡ ρiðkÞ, σi ≡ σiðkÞ. When
solving the flow equation, we will assume for the
functions fðψÞ and qðψÞ an expansion in powers of ψ as

fðψÞ ¼
XNf

i¼0

1

i!
ρiψ

i; qðψÞ ¼
XNq

i¼1

1

i!
σiψ

i: ð10Þ

We are now in a position to start the evaluation of the
ERGE for the unimodular effective action (9). We begin by

calculating the inverse propagator, Γð2Þ
k , from the expansion

of the effective action up to second order in field fluctua-
tions, together with the appropriate gauge-fixing and ghost
terms1 (see below). In this regard, we first split the fields
gμνðxÞ; λðxÞ;ϕαðxÞ into a background and a perturbation
piece as

gμνðxÞ ¼ ḡμνðxÞ þ G1=2
0 hμνðxÞ;

λðxÞ ¼ λ̄ðxÞ þ G−1=2
0 δλðxÞ;

ϕαðxÞ ¼ ϕ̄αðxÞ þ G1=2
0 δϕαðxÞ; ð11Þ

withG0 ¼ GN=8π is related to Newton’s constant,GN , as it
is measured today. The metric and Stückelberg fields are
dimensionless and the Lagrange multiplier λ is of mass
dimension two, while all fields’ fluctuations are normalized
to mass dimension one. To diagonalize the inverse propa-
gator we split the metric perturbation into the trace and
trace-free parts hαβ ¼ ĥαβ þ 1

4
ḡαβh (ḡαβĥ

αβ ¼ 0), and the
Stückelberg fluctuation into the transverse and longitudinal
parts δϕα ¼ δϕ̂α þ G1=2

0 ∇̄αδϕ (∇̄αδϕ̂
α ¼ 0).

We choose to work with the de Donder gauge, which
amounts to the addition of the following gauge-fixing (GF)
term in the effective action:

SGF ¼ ZG

Z
d4x

ffiffiffī
g

p
ḡμνhαβF

αβ
μ F γδ

ν hγδ; ð12Þ

F αβ
μ ≡ δβμḡαγ∇̄γ −

1

2
ḡαβ∇̄μ: ð13Þ

What is more, there are two ghost contributions resulting
from the corresponding determinants in the path-integral

volume, SðghostÞ ¼ SðghostÞEH þ SðghostÞStück . The first contribution
comes from the gauge-fixing term (12) which introduces a
determinant in the path-integral measure ∼jF αβ

μ j, which in

turn can be represented in terms of Grassmann fields
according to the Fadeev-Poppov procedure as [32]

SðghostÞEH ¼ −
Z

d4x
ffiffiffī
g

p
C̄μ

�
−δμν□ −

1

4
δμνR

�
Cν; ð14Þ

where Cν and C̄ν are the ghost and antighost fields,
respectively. From now on, □≡ ḡμν∇̄μ∇̄ν will be denoting
the Laplacian with respect to the background metric.
In a similar fashion, the Stückelberg field decomposition

into a transverse and longitudinal part introduces a nontrivial
determinant which can also be exponentiated through
the Fadeev-Poppov recipe, contributing the following term
in the effective action (see Appendix B for an explicit
derivation):

SðghostÞStück ≡ −
1

2

Z
d4x

ffiffiffī
g

p
η̄ð−□Þη: ð15Þ

Notice that for both ghost actions we have assumed a
nonrunning wave-function renormalization, and we have

essentially set ZðghostÞ
Stück ¼ ZðghostÞ

EH ¼ 1. The expanded effec-
tive action supplemented with the appropriate gauge-fixing
and ghost terms reads schematically

Γð2Þ
k þ SGF þ SðghostÞ

¼
Z

d4x
ffiffiffī
g

p �
ĥμν½Γð2Þ

ĥ ĥ
�μν
ρσ
ĥρσ þ 1

4
h½Γð2Þ

hh �hþ h½Γð2Þ
hλ �δλ

þ δλ½Γð2Þ
λϕ �δϕþ δϕ½Γð2Þ

ϕϕ�δϕþ h½Γð2Þ
hϕ �δϕ

þ δϕ̂μ½Γð2Þ
ϕ̂ ϕ̂

�
μν
δϕ̂ν

�
; ð16Þ

with the cutof-dependent second functional derivatives of

the corresponding fields, Γð2Þ
AB, presented explicitly in

Eq. (A2) of Appendix A.
We will be restricting ourselves to a background

described by a Euclidean sphere S4, which will also allow
us to use the method of the heat kernel expansion for the
evaluation of trace integrals; see Appendix C. With this
choice, the background Riemann tensor can be expressed
as2 R̄αβγδ ¼ 1

12
R̄ðḡαγ ḡβδ − ḡβγ ḡαδÞ. For the background

value of the Stückelberg scalars we take ϕ̄α ¼ ϵxα with
ϵ an arbitrary real number, and for the Lagrange multiplier
we take λ ¼ λ̄ ¼ constant. This choice will in addition
lead to equations which are easier to deal with. In what

1The restriction to a particular gauge naturally introduces some
dependency of the quantitative results on the gauge. For dis-
cussions of gauge-invariant approaches for gauge theories within
the ERG see for example Refs. [27–31].

2For a recent explicit analysis of various subtleties of the
background field method within the ERG of scalar field theories
see Ref. [33], while for recent developments for the case of metric
gravity see Ref. [34]. In the same context, the dependency of the
background topology within the fðRÞ approximation has been
recently studied in Ref. [35].
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follows, we will drop the bar over background fields for
brevity.
We now turn to the scale-dependent cutoff functionsRk,

which will modify the inverse propagators in the ERG
equation as Γð2Þ

k þRk. Notice that Rk should carry the
same overall index structure with the corresponding
Hessian entry, so that it combines appropriately. We will
use a type Ia cutoff, which modifies the effective action at
quadratic order [Eq. (16)] by trading each Laplacian as
−□ → −□þ Rkð−□Þ [32]. The cutoff Rkð−□Þ is con-
structed such that it cuts off eigenvalues of the Laplacian
with value less than k, implementing this way an infrared
regularization. For our profile function Rkð−□Þ we will
make a choice that will allow us to evaluate the trace
integrals in closed form3; we choose Litim’s “optimised”
cutoff Rkð−□Þ ¼ ðk2 þ□ÞΘðk2 þ□Þ [37], where Θ is the
Heaviside step function.
In the evaluation of the trace on the rhs of the ERGE we

will set to zero those regulators RAB which correspond to
momentum-independent interactions, i.e. those which do
not involve any Laplacian −□. Looking at the explicit
expressions (A2) we set for the nonpropagating inter-
actions, Rϕ̂ ϕ̂ ¼ 0, Rhλ ¼ 0.
The lhs of the ERGE, Eq. (7), can be evaluated in a

straightforward way as

∂tΓk ¼ ~Vol½2ðηΛþηGÞ ~ZG
~Λ−ηG ~ZG

~R−ηffðψÞ~λ−ηqqðψÞ�;
ð17Þ

where ~ZG ¼ 1=16π ~G and ~Vol ¼ 8
3
π2
~R4, the latter correspond-

ing to the volume of the four-dimensional sphere in units of
the cutoff. The anomalous dimensions associated withG, Λ
and f; q, respectively, are defined as

ηG ≡ ∂tZG

ZG
; ηΛ ≡ ∂tΛ

Λ
; ηX ≡ ∂tX

X
; ð18Þ

for X ¼ ff; f0; f00; q; q0; q00g, while the tildes denote dimen-
sionless quantities with respect to the cutoff k, i.e.

~G≡ ~GðkÞ≡ k2GðkÞ; ~Λ≡ ΛðkÞ
k2

; ~R≡ R̄
k2

; ~λ ¼ λ̄

k
:

ð19Þ

Finally, on our choice of background, the field ψ acquires
the value ψ̄ ¼ ϵ4=

ffiffiffī
g

p
.

We are now in a position to put all the pieces together on
the rhs of the ERGE, and evaluate the trace over fields and
momenta. That would then allow us to extract the running
of the effective action by combining the result with
Eq. (17). We perform the momentum integration in the
trace integral asymptotically, using a small-scale heat
kernel expansion, where R̄=k2 ≪ 1 (see Appendix C for
more details.) After the trace evaluation, the contributions
on the rhs of the ERGE (7) coming from the tensor, scalar
and ghost fluctuations read as

ð ~VolÞ−1∂tΓk ¼ ∂tΓkjT þ ∂tΓkjScalar þ ∂tΓkjGhosts; ð20Þ

with

∂tΓkjGhosts ¼ −
5 ~Rþ 9

32π2
; ð21Þ

∂tΓkjT ¼ 9ðð ~Rþ 2ÞηG þ 4ð ~Rþ 3ÞÞ ~ZG

128π2ð3 ~U þ 3~λ ~Vþ ~ZGð2 ~R − 6 ~Λþ 3ÞÞ ; ð22Þ

for the ghost and tensor parts, respectively. The scalar
sector, resulting from the fluctuations of the fields h and ϕ,
is more involved. Defining 0 ≡ d=dψ , and omitting the
tildes above all dimensionful quantities (e.g. R; f; q) only
for this case in order to simplify the notation, the scalar
contribution can be expressed as

∂tΓkjScalar ¼
Sn
Sd

; ð23Þ

with

Sn ¼ V2½R2ð3ðλðηf0 þ 4Þf0 þ ðηq0 þ 4Þq0ÞÞ þ 2Rð3λðηf0 þ 6Þf0 − 8λψðηf00 − 6Þf00 þ 3ηq0q0 þ 18q0 − 8ψηq00q00 þ 48ψq00Þ
− 36ψðλðηf00 − 8Þf00 þ ðηq00 − 8Þq00Þ� þ 12ψf0V½Rð2ψðλðηf0 þ ηf00 þ 8Þf00 þ ðηf0 þ ηq00 þ 8Þq00Þ þ λðηf0 þ 4Þf0Þ
þ 2ð2ψðλðηf0 þ ηf00 þ 12Þf00 þ ðηf0 þ ηq00 þ 12Þq00Þ þ λðηf0 þ 6Þf0Þ�
þ 6ψf02½Rð4λψ2ðηf0 þ 4Þf00 þ 4ψ2ðηf0 þ 4Þq00 þ 2ηf0U þ 8U þ 2ηf0ZGð1 − 2ΛÞ þ ηGZG þ 4ZGð3 − 4ΛÞÞ
þ 2ð4λψ2ðηf0 þ 6Þf00 þ 4ψ2ðηf0 þ 6Þq00 þ 2ηf0U þ 12U þ 2ηf0ZGð1 − 2ΛÞ þ ηGZG þ ZGð3 − 4ΛÞÞ� ð24Þ

Sd ¼ 1152π2½ðλRf0 þ 4λψf00 þ Rq0 þ 4ψq00Þ þ 2ψf0ðλf0 þ 4ψðλf00 þ q00ÞÞ
þ 2ψf02ð2λψ2f00 þ 2ψ2q00 þ U þ ZGð1 − 2ΛÞÞ�: ð25Þ

3For an investigation of the cutoff dependency of the gravitational beta functions within the ERG see for example Ref. [36].
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Equation (20), combined with Eq. (17), is the first main
result of this work. It corresponds to the (nonperturbative)
RG flow equation of the effective action (9), under the
particular assumptions of background and gauge stated
earlier. In particular, it describes how the couplings ~G; ~Λ as
well as ~f; ~q flow under a change of the cutoff scale k.
Notice that the RG derivatives, ∂t, appear on both sides
of the flow equation in a rather complicated way through
the quantities ηi. Solving the flow equation without a
particular assumption about the form of the functions f
and q is, if possible at all, a very involved task. Here, we
will attempt to solve it using the method of truncation,
assuming a polynomial expansion for f and q, as presented
in Eq. (10).
We now set Eq. (17) equal to Eq. (20), and expand both

sides order by order in the background fields, ~R; ϵ4ffiffī
g

p and ~λ.

This gives a number of equations from which we can
extract the beta functions for the running of the dimension-
less couplings as functions of the dimensionless couplings
themselves,

∂t ~c ¼ β ~cð ~G; ~Λ; ~ρi; ~σiÞ≡ ~cð−dþ η~cð ~G; ~Λ; ~ρi; ~σiÞÞ; ð26Þ

where ~c ¼ f ~Λ; ~G; ~ρj; ~σjg, d the canonical mass dimension
and η~c is the associated anomalous dimension of the
corresponding coupling. The canonical dimension is the
trivial contribution expected from usual power-counting
arguments, while the anomalous one is nontrivial and takes
into account the effect of (off-shell) quantum corrections to
the running of the coupling.
Since the final step in our analysis will be to compare the

quantum structure of the unimodular action (9) with that of
standard GR, it is important to first define the properties we
will be comparing. Given the two theories and the asso-
ciated RG flows, we shall be comparing the following
properties.

(i) The UV-fixed point structure under the RG, i.e.
the asymptotic values of the (dimensionless) cou-
plings of the theory as the cutoff scale k is taken to
infinity;

(ii) The structure of the linearized RG flow around the
corresponding fixed points, or in other words the
structure of the critical manifold. In particular, we
will be interested in the nature of the associated
eigendirections (relevant/irrelevant), as well as the
dimensionality of the critical manifold.

In this sense, we will be comparing the UV completion
of the two theories. Our strategy will be to calculate the
above quantities first for the case of standard GR, and then
proceed by turning on the interactions in the Stückelberg
sector order by order.
Before we proceed with our analysis, let us review some

useful concepts from the RG and asymptotic safety. The
scenario of asymptotic safety in the context of GR was first

suggested by Weinberg [38],4 as a nonperturbative UV
completion of gravity. For metric theories of gravity,
there have been significant indications of the existence
of an appropriate UV fixed point associated with a three-
dimensional critical surface under the RG for GR, as well
as for actions with higher powers of curvature [32,51–72].
In the context of asymptotic safety, renormalization is
achieved if the essential couplings of the theory approach
asymptotically a fixed point under the RG, as the cutoff scale
k is taken to infinity. The fixed point, which we denote as
~g ¼ ~g�, corresponds to the vanishing of the associated beta
function β ~gið~g�Þ ¼ 0. A crucial point is that in the context of
asymptotic safety, the smallness of the coupling(s) in the
fixed-point regime is not required, which is an immediate
consequence of the nonperturbative character of the sce-
nario. For the theory to be predictive, there have to be only a
finite number of relevant (attractive) couplings in the UV, or
in other words, the associated critical manifold must be finite
dimensional. The latter requirement implies that only a finite
number of (relevant) couplings will have to be fixed in a
given experiment. The attractivity properties of the couplings
can be studied through the linearized flow around a given
fixed point, which is mathematically expressed by the
linearization matrix

∂t ~ci ¼
X
j

∂βið~cnÞ
∂ ~cj

				
~cj¼~cj�

× ð~cj − ~cj�Þ; ð27Þ

with ~cj denoting the couplings of the theory under study
measured in units of the cutoff k. The number of relevant
directions corresponds to the number of negative eigenvalues
of the matrix ∂βið~cnÞ∂ ~cj .

A. Minimal unimodular case

Let us now start with the general unimodular action, and
first consider what happens in the two most simple cases:
the Einstein-Hilbert truncation (f ¼ q ¼ 0), and the min-
imal unimodular truncation (f ¼ ρ0, q ¼ 0). The former
corresponds to the case of standard GR, while the latter
corresponds to a unimodular action where the Stückelberg
interactions are kept minimal.
For the Einstein-Hilbert truncation, i.e. with the

Stückelberg sector completely switched off from the
beginning, we find a Gaussian fixed point (GFP) at
ð ~Λ; ~GÞ ¼ ð0; 0Þ, and a single, attractive UV fixed point
at ð ~Λ; ~GÞ ¼ ð0.193; 0.707Þ with eigenvalues ðγΛ; γGÞ≃
ð−1.99� 3.829iÞ, which confirms previous findings in
the literature [73]. The negative real part of the eigen-
values implies that they correspond to relevant eigendir-
ections along which the couplings are attracted towards

4For reviews on the RG and asymptotic safety see
Refs. [21,22,24,39–42], while for applications in a cosmological
setting see Refs. [42–50].
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the fixed point. The GFP is a trivial fixed point and is the
one around which perturbation theory is usually applied,
i.e. the small-coupling regime. On the other hand, the
nontrivial UV fixed point corresponds to the limiting
value of the couplings as k → ∞.
We now turn on the Stückelberg sector in a minimal way,

by setting in Eq. (10)

qðψÞ ¼ 0; fðψÞ ¼ ρ0 þ ρ1ψ : ð28Þ
For this case, we find that the UV fixed point for the
cosmological andNewton couplings persists and is equals to

ð ~Λ; ~GÞ ¼ ð0.206; 0.661Þ; ð29Þ

while the two Stückelberg couplings of the unimodular
sector become trivial, i.e.

~ρ0 ¼ ~ρ1 ¼ 0: ð30Þ

The stability analysis around the fixed point (29)–(30)
reveals that all couplings are relevant with eigenvalues

γ ~Λ; ~G ¼ −1.611� 3.244i and γ ~ρ0 ¼ −6.066 and γ ~ρ1 ¼ −2,
respectively. Notice that the fixed-point structure of the
Einstein-Hilbert sector (fixed points and associated eigen-
values) around the fixed point is qualitatively the same as
that of standard GR. The actual numerical values of the
associated fixed point and eigenvalues are also very close for
both theories. It is also very interesting to notice that for the
dimensionless product G × Λ evaluated at the UV fixed
point we have that ð ~G� ~Λ�ÞUnimod ≃ ð ~G� ~Λ�ÞGR ≃ 0.136.
What is more, we also notice the non-rivial value of γ ~ρ0 ,
which as we shall see later will be a more general feature.
The results for higher truncations in the Stückelberg sector
are summarized in Table I.
We conclude that in this context, the minimal unim-

odular case has essentially the same UV features as its GR
counterpart. As we shall see later, the behavior found in the
minimal case persists to higher orders in the Stückelberg
sector; the cosmological and Newton couplings run to an
attractive nontrivial UV fixed point similar to that of
standard GR, while the Stückelberg couplings remain
trivial.

TABLE I. The UV fixed points and corresponding eigenvalues γi for different truncations in the Stückelberg sector of the action, for

the functions fðψÞ ¼ PNf

i¼0
1
i! ρiψ

i, qðψÞ ¼ PNq

i¼1
1
i! σiψ

i. Notice that when f ¼ 0, q has to be at least of second order in ψ , as explained
in the text. The Einstein-Hilbert sector, spanned by the couplings G and Λ is held fixed. The couplings G and Λ posses a nontrivial and
attractive UV fixed point, for all the truncations considered, with a value that appears to be stable and very close to that of GR. Notice
also that for all cases considered, including standard GR, the dimensionless product ~G� ~Λ� retains the same value up to two decimal
places. Furthermore, the couplings of the Stückelberg sector become trivial in the UV (i.e. flow to zero), and they all appear to be
attractive (i.e. relevant) as the truncation order is increased, as can be seen from the corresponding eigenvalues, which are calculated
from the linearization matrix (27). The attractivity properties of the Stückelberg sector change after canonically normalizing the
dimensionless field ψ to mass dimension one, as discussed in the text. In that case, the associated eigenvalues are shifted as
γ ~ρn; ~σn → γ ~ρn; ~σn þ n, and for all truncations studied it turns out that there is a point where the critical exponents turn from relevant to
irrelevant, suggesting a finite-dimensional critical manifold for the unimodular theory.

~Λ� ~G� ~ρ0� ~ρ1� ~ρ2� ~ρ3� ~ρ4� ~σ1� ~σ2� ~σ3� ~σ4�
0.193 0.707 � � � � � � � � � � � � � � � � � � � � � � � � � � �
0.206 0.661 0 0 � � � � � � � � � � � � � � � � � � � � �
0.206 0.661 0 0 0 � � � � � � � � � � � � � � � � � �
0.206 0.661 0 0 0 0 � � � � � � � � � � � � � � �
0.206 0.661 0 0 0 0 0 � � � � � � � � � � � �
0.201 0.674 � � � � � � � � � � � � � � � � � � 0 � � � � � �
0.202 0.670 � � � � � � � � � � � � � � � � � � 0 0 � � �
0.203 0.666 � � � � � � � � � � � � � � � � � � 0 0 0
0.206 0.661 0 0 � � � � � � � � � 0 � � � � � � � � �
0.206 0.661 0 0 � � � � � � � � � 0 0 � � � � � �
γ ~Λ γ ~G γ ~ρ0 γ ~ρ1 γ ~ρ2 γ ~ρ3 γ ~ρ4 γ ~σ1 γ ~σ2 γ ~σ3 γ ~σ4
−1.475þ 3.043i −1.475 − 3.043i � � � � � � � � � � � � � � � � � � � � � � � �
−1.611þ 3.244i −1.611 − 3.244i −6.066 −2 � � � � � � � � � � � � � � � � � �
−1.611þ 3.244i −1.611 − 3.244i −6.066 −2 −0.780 � � � � � � � � � � � � � � �
−1.611þ 3.244i −1.611 − 3.244i −6.066 −2 −0.780 −1.458 � � � � � � � � � � � �
−1.611þ 3.244i −1.611 − 3.244i −6.066 −2 −0.660 −1.458 −1.898 � � � � � � � � �
−1.644þ 3.119i −1.644 − 3.119i � � � � � � � � � � � � � � � � � � −2.797 � � � � � �
−1.624þ 3.139i −1.624 − 3.139i � � � � � � � � � � � � � � � � � � −3.131 −3.131 � � �
−1.630þ 3.159i −1.630 − 3.159i � � � � � � � � � � � � � � � � � � −3.465 −3.465 −3.465
−1.611þ 3.244i −1.611 − 3.244i −6.066 −2 � � � � � � � � � −4 � � � � � � � � �
−1.611þ 3.244i −1.611 − 3.244i −6.066 −2 � � � � � � � � � −4 −2.780 � � � � � �
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B. Higher-order Stückelberg sector

Wenowdiscuss the extension of the previous results to the
casewherewe include higher-order terms in the Stückelberg
sector through the expansion (10). In particular, we consider
three different cases; the case where q ¼ 0 and f ≠ 0 with
Nf ¼ 4, a second casewhere f ¼ 0 and q ≠ 0withNq ¼ 4,
and finally a third case where f; q ≠ 0 with Nf ¼ 1 and
Nq ¼ 2, respectively. Notice that, for the case with f ¼ 0,
the expansion in q has to be at least second order in ψ for the
classical equations of motion to be consistent, as explained
in Ref. [9]. For each case, we proceed by increasing the
interactions in the Stückelberg sector step by step. The
results, which are summarized in Table I, reveal that
the attractive, UV fixed point for the Einstein-Hilbert sector
persists and is stable, while the number of relevant couplings
in the Stückelberg sector increases with the order of the
truncation, with the latter issue endangering the predictive
power of the theory. We will explain later how this issue
could be resolved.
For the first case, i.e. q ¼ 0 and f ≠ 0 with Nf ¼ 4, the

truncation with Nf ¼ 2 corresponds to the minimal unim-
odular case discussed in the previous subsection. For
Nf > 2, more than one potentially acceptable fixed point
for ~Λ; ~G appears, depending on the way the Stückelberg
couplings ~ρi approach zero in the UV, a behavior which is a
direct result of the structure of the corresponding beta
functions. To understand this better, let us consider as an
example the case with Nf ¼ 3 (q ¼ 0). The beta functions
of ~Λ, for example, acquire schematically the form

β ~Λ ¼ −2 ~Λþ
P

4
n¼0 anð ~Λ; ~GÞ~ρn0 ~ρ8−2n1 ~ρn2P

4
m¼0 bmð ~Λ; ~GÞ~ρm0 ~ρ8−2m1 ~ρm2

; ð31Þ

where an; bm are nontrivial functions of ~Λ and ~G. β ~G
acquires a similar form as that above, with a different set of
an; bm. Notice that the second term of β ~Λ effectively
corresponds to the anomalous dimension associated with
the coupling ~Λ. Now, considering the limit of either ~ρ0 → 0
or ~ρ2 → 0 in the above equation, the fraction on the rhs
gives a1=b1, while the limit ~ρ1 → 0 gives a5=b5, respec-
tively. Obviously, these two cases, lead to two different
fixed-point equations for ~Λ; ~G. We will not be interested in
discussing this behavior here explicitly, and we leave it for
a possible future work. Our criterion for selecting only one
of them has been the existence of the correct IR limit, i.e.
that the UV fixed point is viably connected with the IR
regime along the RG flow, an issue we explored numeri-
cally for a sample of initial conditions.5

The other two truncation Ansätze we considered, i.e.
with f ¼ 0, q ≠ 0 and f, q;≠ 0 exhibit similar behavior as

the first case described above, with all of the corresponding
fixed points and eigenvalues appearing to be stable and
attractive (see also Table I). In particular, the fixed points
and eigenvalues of the Einstein-Hilbert sector appear to
be stable with respect to the previous cases, while the
Stückelberg-sector couplings remain trivial and attractive.
It is interesting to notice that the dimensionless product

~G� ~Λ� for all unimodular cases agrees with that of GR up
two decimal places. In particular, for all the unimodular
truncations presented in Table I, as well as the case of GR
we have that,

~G� ~Λ�jUnimod ≃ ~G� ~Λ�jGR ≃ 0.13: ð32Þ
Another important point which is common in all trunca-

tions we studied is the fact that in the Stückelberg sector, the
number of relevant (attractive) couplings increases with the
order of truncation (see also Table I), a behavior which is in
contrast with the requirements for an asymptotically safe
theory, since in that case the dimensionality of the critical
manifold increases with the truncation and the theory
becomes nonpredictive. This potentially problematic behav-
ior has its root in the fact that ψ already carries zero mass
dimension in the classical unimodular action. Remember
that, in the context of a standard scalar field theory with a
canonical kinetic term and a potential, the scalar couplings,
at least at the power-counting level, are relevant up to order
four in powers of the scalar self-interactions. However, as it
turns out, for the dimensionless scalar ψ considered in this
work, the nontrivial quantum interactions in the UV cannot
win against the canonical mass dimensions of the couplings
ρ and σ, respectively, leading to UV-attractive scalar
couplings only. Let us see what would happen if in the
spirit of usual scalar field theories we canonically normalize
the field ψ , by making the field redefinition ψ → ψ=Z1=2

ψ ,
where Zψ is a wave-function renormalization of mass
dimension two, which we assume to be independent of
the cutoff scale.6 The effect of the field redefinitionwould be
to shift the canonical mass dimension of the Stückelberg
couplings ρn and σn by n. For example, including a kinetic
term in the effective action, i.e. Zψð∂ψÞ2, and requiring that
it is canonically normalized, would lead to a redefinition of
ψ as explained before, and in fact, it is natural to expect that
in principle quantum effects would generate such a kinetic
term. To see therefore how the situation would change
according to the above discussion, one would have to shift
all of the Stückelberg eigenvalues in Table I by adding n, i.e.

γ ~ρn → γ ~ρn þ n; ð33Þ

with a similar shift for γ ~σn. It is then straightforward to see
that after doing this, and for all truncations considered, there

5Of course, we would not like to claim by any means that this
is a conclusive statement, as an exhaustive numerical analysis
would be needed. However, that would be far beyond the scope of
this work.

6The author is thankful to Astrid Eichhorn for bringing this
possibility to his attention, as well as for useful discussions
around this point.
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is a point after which the Stückelberg couplings become
irrelevant, or in other words the associated eigenvalues
become positive. For example, for the truncation with q ¼ 0
and f ≠ 0withNf ¼ 4, the couplings ρn with n ≥ 2 become
irrelevant (eigenvalues> 0), while those with n < 2 remain
relevant (eigenvalues < 0). Notice that, even if we had
included a kinetic term for ψ in the effective action from the
beginning, that would not be expected to affect any of our
conclusions, apart from the nature of the Stückelberg-sector
eigenvalues as discussed before.
The similarity found between the unimodular theory and

GR at sufficiently high energies should not be regarded as
any sort of general statement about the equivalence of the
two theories at the quantum level. In fact, although the
Stückelberg couplings turn off in the deep UV regime
(k → ∞), as the cutoff scale k is lowered towards the IR
the RG flow will in principle drive them away from zero,
leading to nontrivial interactions in the Stückelberg sector
of the theory. As a result, the nontrivial interactions in the
Stückelberg sector will lead to a different structure for the
respective effective actions of the two theories, as well as to
different phenomenologies at the quantum level. This should
come as no surprise, since by construction the Lagrange
multiplier and Stückelberg fields were allowed to couple to
appropriate sources in the generating functional (5).
Before we conclude this section, let us comment on the

nontrivial eigenvalues associated with the couplings ~ρ and
~σ, which are different from the corresponding mass
dimension that one would expect due to the triviality of
these couplings. In fact, a similar feature has also been
observed before in the literature, and in particular within
the context of scalar-tensor theories; see for example
Refs. [74,75]. The reason behind its occurrence is the
presence of terms linear with respect to these couplings in
the corresponding beta functions.
We conclude that for the unimodular theory, a nontrivial

and attractive UV fixed point for the Einstein-Hilbert sector,
spanned by the couplings G;Λ, always exists, while the
Stückelberg couplings become trivial. In this sense, the
unimodular effective action shares similar features with
the corresponding one of GR in the UV: since the
Stückelberg sector of the unimodular theory turns off at
sufficiently high energies, while the Einstein-Hilbert sector
exhibits essentially the same fixed-point structurewith that of
standard GR, the associated effective actions acquire similar
forms. In particular, the fixed-point values for the couplings
G;Λ in both theories were found to be similar, and the same
was true for the associated (complex-conjugate) eigenvalues.
Our analysis further revealed that the attractivity properties of
the Stückelberg sector are endangered by the dimensionless
nature of the field ψ in the original unimodular action,
leading to a critical manifoldwhose dimensionality increases
with the order of the truncation in the Stückelberg sector.
Canonically normalizing the field suggests that the theory
becomes predictive, with a critical manifold which is finite.

IV. DISCUSSION AND CONCLUSIONS

We studied the quantum dynamics of unimodular grav-
ity, starting from a unimodular formulation of GR which is
by construction invariant under diffeomorphism transfor-
mations. The action consisted, apart from the metric field,
of five new field variables, namely a Lagrange multiplier λ
and a set of four Stückelberg scalars ϕα. As expected, the
theory is equivalent to GR at the classical level.
By using the tool of the functional RG, and in particular

evaluating an exact RG equation, the UV properties of the
corresponding effective action were studied, under the
assumptions described in Sec. III. In particular, we allowed
the Lagrange multiplier and Stückelberg fields to couple
with appropriate sources in the generating functional,
therefore treating them on equal footing with the metric
field, which is a conceptually different approach than that
suggested in Ref. [9]. The Stückelberg interactions
expanded the theory space of the Einstein-Hilbert action
through the corresponding couplings. What is more, our
analysis included a cosmological constant, since not only
was there no symmetry to prevent its inclusion, but the in-
principle off-shell nature of quantum fluctuations calculated
would be expected to violate the on-shell unimodularity
condition. The first main result of this work is the RG flow
equation presented in Eq. (20), while the numerical results
for the fixed points and associated eigenvalues can be found
in Table I.
Let us summarize the key outcomes of our analy-

sis below.
(i) In the extreme UV (continuum) limit corresponding

to the IR cutoff taken to infinity, i.e. k → ∞, and
for the cases we considered in this work, the
Stückelberg sector of the unimodular theory became
trivial, i.e. f~ρi; ~σig → 0, while the Einstein-Hilbert
sector, spanned by the Newton and cosmological
constants, respectively, appeared to be asymptoti-
cally safe with an attractive fixed point very close in
value to that of standard GR, and the same turned out
to be true for the associated eigenvalues. The results
appeared to be stablewhen increasing the order of the
Stückelberg interactions. The quantitative similarity
between the two Einstein-Hilbert sectors, in combi-
nation with the vanishing of the Stückelberg sector in
the unimodular theory, suggests that at sufficiently
high energies the effective action of the unimodular
theory acquires essentially a similar form as that of
standard GR, and we can write

ΓUnimjk=k0≫1 ≃ ΓGRjk=k0≫1: ð34Þ

In this sense, the two theories appear to share
the same UV completion within the context of
asymptotic safety. What is more, for the dimension-
less product G × Λ evaluated at the fixed point, we
found that

UV STRUCTURE OF QUANTUM UNIMODULAR GRAVITY PHYSICAL REVIEW D 90, 124052 (2014)

124052-9



~G� ~Λ�jUnimod ≃ ~G� ~Λ�jGR: ð35Þ

Weshouldpoint out that the similaritybetween the two
theories in the UV found here is not to be a priori
expected; in fact, for the unimodular theory we
considered, the unimodularity condition appears as
an on-shell condition, while the quantum corrections
calculated through the exact RG equation are in
principle off-shell. What is more, the similarity be-
tween the two UV completions does not imply their
equivalence at the quantum level; in the Wilsonian
contextwe considered in thiswork, this can be seen by
the fact that the RG flow will in principle generate
nontrivial, novel interactions, compared to GR, in the
Stückelberg sector as the cutoff scale k is lowered
towards the IR. In this case, the relation (34) will break
downand the two effective actionswill no longer share
the same structure. This is an immediate result of
allowing the Lagrange multiplier and Stückelberg
fields to couple directly to the sources in the path
integral (5). We shall leave the phenomenological
implications of this issue for future work.

(ii) At the same time, we found that the predictivity of
the unimodular theory seems to be endangered by
the apparent increase of relevant couplings as the
truncation order of the Stückelberg sector is in-
creased. The root of this potentially problematic
behavior appears to be the dimensionless nature of
the field ψ in the original unimodular action. In fact,
and for all truncations we considered, it turns out
that canonically normalizing the field, which could
be further motivated by the inclusion of a kinetic
term for ψ in the effective action, introduces a point
in the truncation order where the critical exponents
turn from relevant to irrelevant, indicating the
existence of only a finite number of relevant cou-
plings in the Stückelberg sector, and at the same time
ensuring that the theory is predictive.
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APPENDIX A: HESSIAN ENTRIES ON S4

To calculate the expanded effective action up to second
order we expand the field variables into a background
and a longitudinal and transverse perturbation piece,
respectively, as

gμνðxÞ ¼ ḡμνðxÞ þ G1=2
0 ĥαβðxÞ þ

1

4
G1=2

0 ḡαβhðxÞ;

λðxÞ ¼ λ̄ðxÞ þ G−1=2
0 δλðxÞ;

ϕαðxÞ ¼ ϕ̄αðxÞ þ G1=2
0 δϕ̂αðxÞ þ G0∇̄αδϕðxÞ: ðA1Þ

Restricting the background to be that of a Euclidean
sphere S4, and using the above decompositions, the explicit
Hessian entries are given as follows:

½Γð2Þ
ðĥ ĥÞ�

μν

ρσ
¼Zĥĥ

�
−□−2Λþ2

3
R−Z−1

G ðλVðψÞþUðψÞÞ
�
Pμν
ρσ;

Γð2Þ
ðhhÞ ¼Zhh½−□−2Λ−Z−1

G ðλVðψÞþUðψÞÞ
−2Z−1

G ψ2ðλf00 þq00Þ�;

Γð2Þ
ðϕϕÞ ¼−G3

0

�
1

4

�
ψ

ϵ2

�
ðλf0 þq0ÞRð−□Þ

þ
�
ψ2

ϵ2

�
ðλf00 þq00Þð−□Þð−□Þ

�
;

½Γð2Þ
ðϕ̂ϕ̂Þ�μν¼−

G2
0

4

�
ψ

ϵ2

�
ðλf0 þq0ÞRgμν;

Γð2Þ
ðhλÞ ¼−

1

2
VðψÞ;

Γð2Þ
ðϕλÞ ¼G0

ψ

ϵ
f0ð−□Þ;

Γð2Þ
ðhϕÞ ¼−

1

2
G2

0

ψ2

ϵ
ðλf00 þq00Þð−□Þ; ðA2Þ

with the corresponding wave-function renormalizations
defined as

Zĥ ĥ ≡ 1

2
G0ZG; Zhh ≡ −

1

8
G0ZG; ðA3Þ

and the projector Pμν
ρσ given by

Pμν
ρσ ≡ δμνρσ −

1

4
gμνgρσ; ðA4Þ

with δμνρσ ≡ 1
2
ðδμρδμσ þ δμσδ

μ
ρÞ, and VðψÞ≡ fðψÞ − ψf0ðψÞ,

UðψÞ≡ qðψÞ − ψq0ðψÞ. Also, notice that the value of
the scalar ψ on the background is

ψ ¼ ϵ4ffiffiffī
g

p : ðA5Þ

We also remind the reader that the Laplacian □ is
constructed out of the background metric, □≡ ḡμν∇̄μ∇̄ν,
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and that Λ≡ ΛðkÞ, G≡ GðkÞ and f ≡ fðψ ; kÞ, qðψÞ≡
qðψ ; kÞ and 0 ≡ d=dψ .

APPENDIX B: STÜCKELBERG GHOST

To calculate the ghost term from the Stückelberg field
decomposition into transverse and longitudinal parts, we
first need to calculate the determinant associated with the
decomposition. We start with the Gaussian integral over the
Stückelberg fields ϕα and then perform the decomposition
in the exponential asZ

Dϕαe−
1
2
hϕα;ϕαi ¼ Jϕ

Z
Dϕ̂αDϕαe−

1
2
½ϕ̂αϕ̂α−ϕ□ϕ�

≡ Jϕ

Z
Dϕ̂αe−

1
2
ϕ̂αϕ̂α

Z
Dϕαe−

1
2
ð−ϕ□ϕÞ;

ðB1Þ
with the measure

R
Dϕα denoting summation over all field

configurations. We then find for the determinant Jϕ that

Jϕ ¼ ðdetð−□ÞÞ1=2: ðB2Þ
Introducing the scalar ghost and antighost η and η̄,
respectively, we can represent the Jacobian Jϕ according
to the Fadeev-Popov procedure [76] as

Jϕ ¼
Z

DηDη̄e−
1
2
η̄ð−□Þη; ðB3Þ

which implies that the associated ghost action is

SðghostÞη ≡ −
1

2

Z
η̄ð−□Þη: ðB4Þ

Notice that we have assumed that the wave-function
renormalization for the ghost action does not run and that
it is equal to one.

APPENDIX C: TRACE INTEGRALS

The ERGE requires us to calculate traces of functions
of the Lapacian operator, which we perform asymptoti-
cally making use of an appropriate heat kernel
expansion.
With the definitions z≡ −□, the modified Laplacian

PkðzÞ≡ zþ RkðzÞ, where RkðzÞ is the regulator profile
function, and U an operator independent of z, but in
principle depending on the curvature R and the (back-
ground) fields of the action, the trace integrals can be
asymptotically expanded in the small-scale regime where
R̄=k2, λ̄=k2 ≪ 1, with R̄ ¼ constant, λ̄ ¼ constant, as

Tr

�
k∂kgðzÞ

PkðzÞ þ U

�
¼ 1

ð4πÞ2
X∞
i

X∞
l¼0

Q2−i

�
k∂kgðzÞ
Plþ1
k ðzÞ

�
×ð−1Þl

×
Z

d4x
ffiffiffi
g

p
trðUÞlb2iðzÞ; ðC1Þ

where the function gðzÞ collectively denotes the different
cases gðzÞ≡ Rk and gðzÞ≡ k∂kRk, the regulator function is
chosen to be the “optimised” (Litim) one, RkðzÞ ¼
ðk2 − zÞΘðk2 − zÞ [37], and Θ is the Heaviside step
function. What is more, the symbol “Tr” stands for the
trace over space-time indices and momenta. The func-
tionals Q2−i in Eq. (C1) are defined as

Q2−i

�
k∂kgðzÞ
Plþ1
k ðzÞ

�
≡Q2−iðzÞ ¼

Z
∞

0

dse−zs ~gðzÞ: ðC2Þ

~gðzÞ denotes the anti-Laplace-transformed gðzÞ, and the
quantities b2iðzÞ are closely related to the heat kernel
coefficients of the Laplacian z≡ −□. For more explicit
details we refer to Refs. [22,32,53,57,73,77].
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