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We analyze different claims on the role of the coupling constant λ in so-called λ-R models, a minimal
generalization of general relativity inspired by Hořava-Lifshitz gravity. The dimensionless parameter λ
appears in the kinetic term of the Einstein-Hilbert action, leading to a one-parameter family of classical
theories. Performing a canonical constraint analysis for closed spatial hypersurfaces, we obtain a result
analogous to that of Bellorín and Restuccia, who showed that all nonprojectable λ-R models are equivalent
to general relativity in the asymptotically flat case. However, the tertiary constraint present for closed
boundary conditions assumes a more general form. We juxtapose this with an earlier finding by Giulini and
Kiefer, who ruled out a range of λ-R models by a physical, cosmological argument. We show that their
analysis can be interpreted consistently within the projectable sector of Hořava-Lifshitz gravity, thus
resolving the apparent contradiction.

DOI: 10.1103/PhysRevD.90.124050 PACS numbers: 04.50.Kd, 04.60.-m, 04.20.Fy

I. INTRODUCTION

In absence of a reliable phenomenology for probing
physics at the Planck scale, one of the few tests we have for
nonperturbative candidate theories of quantum gravity is
whether or not they can reproduce (aspects of) general
relativity in a suitable low-energy limit. Depending on how
the quantum theory is given, one needs to apply some care
when comparing it to a continuum formulation of classical
gravity, because the latter typically carries a redundancy as
a result of its invariance under spacetime diffeomorphisms.
For example, if the quantum theory effectively contains a
(partial) gauge fixing, it may not be appropriate to compare
the functional form of its action with the standard action of
general relativity in terms of metric variables, say. Of
course, to avoid such complications any comparison should
be phrased in terms of observables, but in gravity these are
often difficult to come by.
This consideration is relevant in Hořava-Lifshitz gravity

[1], whose action in terms of metric variables differs from
the Einstein-Hilbert action even in the infrared limit, that
is, considering only terms at most quadratic in spatial
derivatives. The difference occurs because the action of
Hořava-Lifshitz gravity is not invariant under four-
dimensional diffeomorphisms. This reflects the theory’s
key assumption of the existence of an ultraviolet fixed point
at which time and space scale differently, leading to a
reduced symmetry group that can accommodate this prop-
erty. The simplest choice of such a group, implemented in
[1], is given by the foliation-preserving diffeomorphisms,
consisting of three-dimensional spatial diffeomorphisms

together with time reparametrizations.1 Under this symmetry,
the kinetic term of the action acquires an extra coupling—the
“little lambda” of our title—since both the square KijKij of
the extrinsic curvature tensor and its trace-squared K2 are
separately invariant under the reduced symmetry group,
whereas in general relativity only the precise linear combi-
nation KijKij − K2 is invariant under four-diffeomorphisms.
Despite having a different symmetry group, Hořava-

Lifshitz gravity (HLG) is formulated in terms of the usual
metric degrees of freedom of gravity, written in the ADM
formulation [3]. Comparing its low-energy limit with that
of general relativity (GR) is therefore relatively straightfor-
ward, if one keeps in mind our earlier remark that a
different functional form of the action does not necessarily
signal an inequivalent theory. There are two apparently
contradictory results [4,5] on the equivalence or otherwise
of the low-energy limits of HLG and GR, which the present
paper aims to resolve. As we will see, they are due to some
subtleties in the comparison, including the fact that there
are several versions of Hořava-Lifshitz gravity, whose
classical limits are not the same.
Our presentation will proceed as follows. To make the

treatment self-contained, we recap in Sec. I A the ingre-
dients of Hořava-Lifshitz gravity that will be necessary in
our classical investigation of the λ-R models. Section II
contains our analysis of the constrained structure of the λ-R
model derived from nonprojectable HLG, for closed spatial
slices. This involves a careful reexamination of all steps
made in the asymptotically flat case, which in [5] was
shown to be equivalent to GR in a maximal slicing. We
show that the tertiary constraint appearing in the spatially
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1In principle, other choices for the initial field content and
symmetry group are possible, see [2] for an example.
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closed case has the general solution π ¼ a
ffiffiffi
g

p
, where π is

the trace of the momentum conjugate to the three-metric
gij, g denotes the determinant of the metric and aðtÞ is a
function of time. The special choice a ¼ 0 reproduces a
gauge-fixed version of GR, but the equivalence proof does
not generalize in an easy way to a ≠ 0. In the following
Sec. III, attempting to interpret the result of Giulini and
Kiefer in terms of the nonprojectable λ-R model leads
to inconsistencies. We therefore turn in Sec. III B to a
discussion of the projectable λ-R model, and argue that it
exhibits violations of GR as long as λ ≠ 1, in agreement
with the argument put forward in Ref. [4]. Our conclusions
are contained in Sec. IV.

A. Some elements of Hořava-Lifshitz gravity

Hořava-Lifshitz gravity has the ambition to yield a
theory of gravity which at high energies remains finite
and well defined, while reproducing GR in its classical
regime. As mentioned in the Introduction, HLG realizes a
scenario where the renormalization group has a fixed point
in the UV, at which time (“t”) and space distances (“x”)
behave asymmetrically under scale transformations. More
precisely, solutions of the theory at the Planck scale should
be compatible with the scaling relations

t → bzt; xi → bxi; ð1Þ
where b is a scaling parameter, z the critical exponent
characterizing the fixed point and the spatial index takes the
values i ¼ 1, 2, 3 here and in what follows. Specific
choices of z characterize different models. To obtain a
pure gravity theory in d spatial dimensions, with up to
second-order time derivatives, which is invariant under
foliation-preserving diffeomorphisms and power-counting
renormalizable, one needs z ≥ d (see [1] for details).
The spacetime manifold in this setting naturally is of the

form of a product R × Σ, where R represents the time
direction and Σ is a three-dimensional spatial manifold. Let
t be the time defining the foliation and xi some coordinates
on the spatial hypersurfaces labeled by t. In the presence of
a foliation it is convenient to work in a (3þ 1)-formulation
and use the ADM decomposition of the Lorentzian
four-metric in terms of the three-metric gij on spatial
hypersurfaces of constant t, the lapse function N and the
shift vector Ni, see [3] for details. The generators of
foliation-preserving diffeomorphisms are given by

δt ¼ fðtÞ; δxi ¼ ζiðx; tÞ; ð2Þ
and act on the ADM field variables according to

δgij ¼ ζk∂kgij þ f _gij þ ð∂iζ
kÞgjk þ ð∂jζ

kÞgij;
δNi ¼ ð∂iζ

jÞNj þ ζj∂jNi þ _ζjgij þ _fNi þ f _Ni;

δN ¼ ζj∂jN þ _fN þ f _N: ð3Þ

Since the infinitesimal generator fðtÞ of time reparametriza-
tions in (2) depends only on t and not on xi, one possible
choice is to let the associated lapse field N also depend on
time only. This is different from GR, where the lapse is a
general (positive and nowhere vanishing) function on
spacetime. This ambiguity gives rise to two different
versions of Hořava-Lifshitz gravity, projectableHLG, where
N ¼ NðtÞ, and nonprojectable HLG with N ¼ Nðx; tÞ.
If one adopts an effective field theory perspective, the latter
is more complicated to write down since one needs to
include in the Lagrangian terms depending on the field
ai ≔

∂iN
N , which turns out to transform like a vector under

foliation-preserving diffeomorphisms.
In the present paper, instead of considering all possible

higher-order terms in spatial derivatives (in dþ 1 space-
time dimensions, derivatives up to order 2d of the metric
are allowed in the potential term), we confine ourselves to
the HLG generalization of the terms present in the usual
Einstein-Hilbert action with a cosmological constant Λ,
namely,

S ¼
Z

dt
Z

d3x
ffiffiffi
g

p
NðKijGijklKkl þ R − 2ΛÞ; ð4Þ

where R is the three-dimensional Ricci scalar and

Kij ¼
1

2N
ð_gij −∇iNj −∇jNiÞ ð5Þ

is the extrinsic curvature tensor of the spatial hypermani-
folds, with traceK ≔ gijKij. In writing the action as (4), we
have set the overall factor 1=ð16πGNÞ depending on
Newton’s constant GN to 1, since it will not play an
important role in our classical analysis. The covariant
derivative ∇ in (5) is with respect to the three-metric gij,
and Gijkl is the Wheeler-DeWitt metric on “superspace”
(the space of all Riemannian three-metrics on Σ),

Gijkl ¼ 1

2
ðgikgjl þ gilgjkÞ − gijgkl: ð6Þ

As mentioned earlier, when reducing the full, four-
dimensional diffeomorphism invariance to an invariance
under foliation-preserving diffeomorphisms, the linear com-
bination KijKij − K2 loses its distinguished character,
since both KijKij and K2 are now separately invariant.
Consequently, the counterpart in HLG of the Einstein-
Hilbert action (4) becomes

Sλ ¼
Z

dt
Z

d3x
ffiffiffi
g

p
NðKijG

ijkl
λ Kkl þ R − 2ΛÞ

¼
Z

dt
Z

d3x
ffiffiffi
g

p
NðKijKij − λK2 þ R − 2ΛÞ; ð7Þ

where λ is a new dimensionless coupling and Gijkl
λ is the

generalized Wheeler-DeWitt metric,
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Gijkl
λ ¼ 1

2
ðgikgjl þ gilgjkÞ − λgijgkl; ð8Þ

which for λ ¼ 1 reduces to the standard Wheeler-DeWitt
metric (6). In what follows, we will exclude the case
λ ¼ 1=3, for which Gijkl

λ becomes degenerate. Under this
assumption, the inverse of the generalized Wheeler-DeWitt
metric exists and is given by

Gλ
ijkl ¼

1

2
ðgikgjl þ gilgjkÞ −

λ

3λ − 1
gijgkl: ð9Þ

We will refer to any theory with action (7) as a “λ-R model,”
a name coined by Bellorín and Restuccia in [5]. An assertion
often made in this context is that in order for Hořava-Lifshitz
gravity to reproduce general relativity in a low-energy limit,
the parameter λ must flow towards its “relativistic” value
λ ¼ 1, because only then the familiar-looking form of the
action is recovered.
A different argument for the unphysical nature of λ-R

models for general λ was given long before the advent of
HLG by Giulini and Kiefer [4]. They took the canonical
Dirac algebra of GR’s diffeomorphism constraints as their
starting point and introduced a λ-dependent Hamiltonian
constraint by constructing its kinetic part—the part quad-
ratic in the field momenta πij—with the help of the
generalized Wheeler-DeWitt metric (8) instead of (6).
By computing particular cosmological observables, and
finding them to be λ-dependent, they derived observational
constraints on the range of allowed λ values, thereby
demonstrating that at least for generic λ these models
cannot be equivalent to general relativity.
Note that not all versions of HLG yield (7) as their

lowest-order action; the so-called healthy extensions of
the nonprojectable theory include terms depending on
ai ≡ ∂i logN already at this stage [6]. Omitting these
terms, it was later argued in [5] that the resulting non-
projectable theory for generic values of λ reproduces GR.
This is at first sight surprising, since the functional form
of the action is then not that of the Einstein-Hilbert action,
and it also appears to be in contradiction with the results by
Giulini and Kiefer just described.

II. THE NONPROJECTABLE THEORY

The key questions we will address in the remainder of
this paper are whether the nonprojectable classical λ-R
model given by the action (7) with N ¼ Nðx; tÞ is equiv-
alent to general relativity for a compact, three-dimensional
manifold Σ without boundaries, and whether and how this
can be related to the results derived in [4]. Our treatment of
the nonprojectable λ-R model will follow the standard
Dirac analysis of constrained Hamiltonian systems, as for
example described in [7–9].
In a nutshell, we will define generalized momenta, read

off the resulting primary constraints, and express the

Hamiltonian functional as a function of the canonical field
variables. We then impose the consistency condition that
the primary constraints be preserved in time, using the
symplectic (Poisson bracket) structure to compute their
time evolution. When a time derivative is not weakly equal
to zero2 we either obtain a secondary constraint when the
resulting equation only affects the canonical field variables,
or we can determine a Lagrange multiplier associated with
a primary constraint. This process is repeated until no new
constraints are generated. From that moment on we work
in the subspace of the phase space defined by the joint
vanishing of all constraints fϕi; i ¼ 1; 2;…; ng, the
so-called constraint surface.3 We can then classify the
constraints into first and second class by computing
the n × n-matrix Mij ¼ fϕi;ϕjg of Poisson brackets
between them. The rank of M is equal to the number C2
of second-class constraints, while the number C1 of first-
class constraints is given by n − C2. This enables us to
compute the number N of local physical degrees of
freedom according to

N ¼ 1

2
ðP − 2C1 − C2Þ; ð10Þ

where P is the number of field variables parametrizing the
unconstrained phase space.
As already mentioned in the Introduction, the time

evolution of the Hamiltonian constraint in the nonproject-
able λ-R model gives rise to a tertiary constraint. In the
asymptotically flat setting, imposing it was tantamount to
the maximal slicing gauge π ¼ 0. This makes the λ-R
model equivalent to general relativity with the same gauge
choice, since setting π equal to zero makes all λ-dependent
terms drop out.4 The result for closed slices we will obtain
below is different and amounts to a tertiary constraint of the
form π ¼ aðtÞ ffiffiffi

g
p

, with aðtÞ a function of time. This
condition is by no means new in the context of general
relativity, and known there as “constant mean curvature
gauge.” It has been studied by York [11,12] and also lies at
the heart of the so-called shape dynamics program, see [13]
and references therein. The observation that surfaces of
constant mean curvature appear naturally as preferred
frames in low-energy Hořava-Lifshitz gravity has been
made earlier in [14]. Also [15] mentions the appearance of
the constant mean curvature (CMC) gauge in a special case
of the Hamiltonian treatment of extended HLG. Neither of

2Two phase space functions are said to be weakly equal when
they agree on the constraint surface, the subspace of phase space
where all constraints are satisfied.

3Sometimes a different name is given to the subspace
generated at each step. For simplicity, we will refer to all of
them as “the constraint surface,” implying the space defined at
the last step of the algorithm.

4The fact that Hořava-Lifshitz gravity with additional con-
straints like π ¼ 0 can be equivalent to a gauge-fixed version of
general relativity was already pointed out in [10].
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these references include the CMC gauge condition in a
further Dirac constraint analysis, as we do here.
To make the treatment of the nonprojectable model with

closed boundary conditions as transparent as possible, we
begin by performing the constraint analysis for general
relativity in the presence of the condition π ¼ aðtÞ ffiffiffi

g
p

,
before turning to the analogous computation in Hořava-
Lifshitz gravity. A good modern review of the Hamiltonian
formulation of GR in constant mean curvature (CMC)
gauge is [16].

A. General relativity

Let us first recall the canonical constraint structure of
general relativity. Taking as our starting point the ADM
form (4) of the Einstein-Hilbert action we define canoni-
cally conjugate, generalized momenta by

πij ≡ δS
δ_gij

¼ ffiffiffi
g

p
GijklKkl; ð11Þ

ϕi ≡ δS

δ _Ni ¼ 0; ð12Þ

ϕ≡ δS

δ _N
¼ 0: ð13Þ

We therefore have a total of 20 phase-space variables (or ten
canonical pairs) at each spacetime point5: 12 from gij and
πij, both of them symmetric three-tensors, six from the shift
vector Ni and its conjugate momenta ϕi, and two from the
lapse function N and its momentum ϕ. The vanishing of ϕ
and ϕi defines the four primary constraints of the theory,
which contribute to the total Hamiltonian

Htot ¼
Z

d3x

�
N

�
Gijklffiffiffi

g
p πklπij −

ffiffiffi
g

p ðR − 2ΛÞ
�

− 2Nigik∇jπ
kj þ αiϕi þ αϕ

�
ð14Þ

with Lagrange multipliers α and αi. The explicit form of
the inverse Wheeler-DeWitt metric Gijkl can be obtained
from (9) for the special case λ ¼ 1. Demanding that the
constraints ϕ ¼ 0 and ϕi ¼ 0 continue to hold under time
evolution implies four secondary constraints,

H ≔ fϕ; Htotg ¼ Gijklffiffiffi
g

p πklπij −
ffiffiffi
g

p ðR − 2ΛÞ ≈ 0; ð15Þ

Hi ≔ fϕi; Htotg ¼ −2gik∇jπ
jk ≈ 0; ð16Þ

where H ≈ 0 is called the “Hamiltonian constraint” and
Hi ≈ 0 are the three “momentum constraints.” Their time

preservation does not yield any further constraints since
both _H and _Hi vanish on the constraint surface. This can be
seen from their Poisson bracket relations,

�Z
d3xNi

1Hi;
Z

d3x0Nj
2Hj

�

¼
Z

d3xHiðNj
1∂jNi

2 − Nj
2∂jNi

1Þ; ð17Þ
�Z

d3xNi
1Hi;

Z
d3x0NH

�

¼
Z

d3xHNi∇iN; ð18Þ
�Z

d3xN1H;
Z

d3x0N2H
�

¼
Z

d3xHigijðN1∂jN2 − N2∂jN1Þ; ð19Þ

forming the so-called Dirac algebra of constraints, which
has the usual geometric interpretation as a “projected”
version of the (Lie) algebra of the generators of the four-
dimensional diffeomorphism group of the covariant theory.
Since all eight constraints are first class, the number N of
physical degrees of freedom is given by

N ¼ 1

2
ðP − 2C1 − C2Þ ¼

1

2
ð20 − 16Þ ¼ 2; ð20Þ

which is the usual statement that the gravitational field
contains just two local physical degrees of freedom, with
the remaining ones being redundant or “gauge.”

B. General relativity in constant mean curvature gauge

Having determined the constraint structure and the
equations of motion, one can proceed by gauge fixing
some of the redundant quantities. To pave the ground for
the discussion of HLG in the next subsection (where it will
appear as a solution to the tertiary constraint), we will
impose the condition

ω ≔ π − aðtÞ ffiffiffi
g

p ¼ 0; ð21Þ

with a (possibly time-dependent) constant a. The choice of
identifying a with time is usually referred to as “York time”
[11]. To make sure the chosen gauge (21) is preserved in
time, the total time derivative of ωmust vanish also, that is,

dω
dt

¼ ∂ω
∂t þ fω; Htg ¼ − _a

ffiffiffi
g

p þfπ − a
ffiffiffi
g

p
; Htotg ≈ 0:

ð22Þ
To simplify calculations, we will from now on assume that
a is not time dependent. Discarding terms which vanish on
the constraint surface, we then obtain the condition

5For the sake of brevity, we will omit “at each point” from
now on.
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M ≔
ffiffiffi
g

p �
R − 3Λþ a2

4
−∇2

�
N ≈ 0; ð23Þ

which itself has to be preserved in time. For given a, (23) is
an elliptic equation for the lapse function N. At this point,
we will take advantage of the freedom to redefine the vector
Hi of momentum constraints by adding a linear combina-
tion of constraints to it. More precisely, we will work with
momentum constraints of the form

~Hi ¼ −2gij∇kπ
jk þ ð∇iNÞϕ; ð24Þ

which alternatively can be viewed as redefining the
Lagrange multiplier of the constraint ϕ according to
α↦αþ Ni∇iN. The motivation for using the constraints
~Hi is that the original expressions Hi only generate spatial
diffeomorphisms of the metric and its momentum. Since
the new constraint M is a functional of the lapse, it is

necessary to adapt the form of the momentum constraints
to make its invariance under spatial diffeomorphisms
explicit. It is also straightforward to show that the relations
(17)–(19) of the Dirac algebra remain unchanged, with
Hi replaced by ~Hi everywhere. Imposing _M ≈ 0 leads
after a lengthy calculation to a differential equation for α,
namely,

2N∇i∇jNð2πij − a
ffiffiffi
g

p
gijÞ þ ð∇iNÞð∇jNÞð2πij − a

ffiffiffi
g

p
gijÞ

þN2ða ffiffiffi
g

p
R − 2πijRijÞþ

ffiffiffi
g

p �
R− 3Λþ a2

4
−∇2

�
α ≈ 0:

ð25Þ

Having imposed all conditions to make sure that the gauge
choice is consistent, we can now write down the equations
of motion for the fields. Without imposing the gauge (21) we
obtain

_gij ¼ ∇iNkgkj þ∇jNkgik þ
2Nffiffiffi
g

p Gijklπ
kl;

_πij ¼ −N
�
2gklffiffiffi
g

p
�
πikπjl −

1

2
πklπij

�
−

ffiffiffi
g

p ðgijðR − 2ΛÞ − RijÞ
�

þ ffiffiffi
g

p ðgikgjl − gijgklÞ∇k∇lN þ∇aðNaπijÞ − πai∇aNj − πaj∇aNi;

_N ¼ αþ Ni∇iN; _ϕ ¼ Hþ∇iðNiϕÞ ≈ 0;

_Ni ¼ αi; _ϕi ¼ ~Hi ≈ 0: ð26Þ

Substituting π ¼ a
ffiffiffi
g

p
, these equations simplify to

_gij¼∇iNkgkjþ∇jNkgikþ
2Nffiffiffi
g

p πij−aNgij;

_πij¼−N
�
2gklffiffiffi
g

p πikπjl−aπijþ ffiffiffi
g

p ðRij−gijΛ0Þ
�

þ ffiffiffi
g

p
gikgjl∇k∇lNþ∇aðNaπijÞ−πai∇aNj−πaj∇aNi;

_N¼ αþNi∇iN; _ϕ¼Hþ∇iðNiϕÞ≈0;

_Ni¼ αi; _ϕi¼ ~Hi≈0: ð27Þ

The reason for writing these equations explicitly is to
provide a reference point for the corresponding compu-
tation in Hořava-Lifshitz gravity below, where we will
see that their λ-dependence does not drop out trivially
when a ≠ 0.

C. Hořava-Lifshitz gravity

Keeping in mind the results just derived for general
relativity, we will now analyze the nonprojectable λ-R
model, whose Hořava-Lifshitz action Sλ was given earlier
in Eq. (7). Its Legendre transformation proceeds exactly as

before, with Gλ
ijkl replacing Gijkl in relations (11) and (14).

The total Hamiltonian is given by

Hλ
tot ¼

Z
d3xfNHλ þ Ni ~Hi þ αiϕi þ αϕg; ð28Þ

where the only new quantity is the HLG Hamiltonian
constraint Hλ given by

Hλ ≔
1ffiffiffi
g

p Gλ
ijklπ

ijπkl −
ffiffiffi
g

p ðR − 2ΛÞ ≈ 0: ð29Þ

Since we have not made any changes to the spatial
diffeomorphism part of the theory, the constraints ~Hi
remain unchanged and so does their Poisson bracket
algebra (17). Although the Hamiltonian constraint H is
replaced by Hλ, it is still invariant under spatial diffeo-
morphisms and depends on the same fields, which implies
that its Poisson brackets (18) with the momentum con-
straints are unchanged too.
The only difference with the standard Dirac algebra

arises in the fHλ;Hλg part of the Poisson brackets.
Omitting the (weakly vanishing) part of this bracket which
can be read off from the right-hand side of the correspond-
ing GR relation (19), one finds
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�Z
d3xN1Hλ;

Z
d3x0N2Hλ

�

≈ 2
1 − λ

3λ − 1

Z
d3zπðN1∇2N2 − N2∇2N1Þ; ð30Þ

which does not immediately vanish on the constraint
surface unless λ ¼ 1. Demanding _Hλ to be weakly equal
to zero for general λ will therefore generate a tertiary
constraint. Reading off the time evolution of Hλ from (30)
we obtain

�Z
d3xN1Hλ;

Z
d3x0N2Hλ

�

≈ 2
1 − λ

3λ − 1

Z
d3zN1ðπ∇2N2 −∇2ðπN2ÞÞ;

⇒ _Hλ ¼ −2
1 − λ

3λ − 1
ðN∇2π þ 2gijð∇iπÞð∇jNÞÞ ≈ 0: ð31Þ

Note that viewing (31) as a condition for fixing the lapse N
as a Lagrange multiplier is not an option here, because the
only possible solution for closed spatial slices would be
N ¼ 0, which we reject on account of implying a degen-
erate four-metric. To understand better the implications of
the new tertiary constraint, let us multiply (31) by N (which
by assumption is nonvanishing), yielding

N2∇2π þ 2gijNð∇iπÞð∇jNÞ ¼ gij∇iðN2∇jπÞ ≈ 0: ð32Þ

Solutions to (32) can be divided into those with an
identically vanishing momentum trace, π ¼ 0, and those
for which π ≠ 0. Setting π ¼ 0 clearly is a solution to the
constraint and does not impose any further restrictions. For
nonvanishing π, we can without loss of generality multiply
the equation by6 πffiffi

g
p and integrate it over Σ, resulting in

Z
d3x

πffiffiffi
g

p gij∇iðN2∇jπÞ ¼ −
Z

d3x
N2ffiffiffi
g

p gijð∇iπÞð∇jπÞ ≈ 0:

ð33Þ

Since neither N nor
ffiffiffi
g

p
are allowed to vanish, we conclude

that ∇iπ has to be zero. However, this expression can be
written as

∇iπ ¼ ffiffiffi
g

p ∂i

�
πffiffiffi
g

p
�
≈ 0 ⇒ π ≈ a

ffiffiffi
g

p
; ð34Þ

with a a (possibly time-dependent) constant, proving our
earlier assertion of the appearance of the tertiary constraint
(21) in the context of Hořava-Lifshitz gravity. Note that the
same condition can be derived in the case of noncompact

spatial boundary conditions, but there a ¼ 0 is forced upon
us by the requirement of asymptotic flatness, the special
case already shown to be equivalent to Einstein’s
theory [5].7

Repeating the steps of the previous section, we now
compute the analogue of M ≈ 0, which turns out to be

Mλ ≔
ffiffiffi
g

p �
R − 3Λþ a2

2ð3λ − 1Þ −∇2

�
N ≈ 0: ð36Þ

Demanding that Mλ be preserved in time, and again using
the redefined momentum constraints ~Hi of (24), another
lengthy calculation yields

2N∇i∇jNð2πij − cna
ffiffiffi
g

p
gijÞ

þ ð∇iNÞð∇jNÞð2πij − cna
ffiffiffi
g

p
gijÞ

þ N2ðcra
ffiffiffi
g

p
R − 2πijRijÞ

þ ffiffiffi
g

p �
R − 3Λþ a2

2ð3λ − 1Þ −∇2

�
α ≈ 0 ð37Þ

as the analogue of condition (25), where cn and cr are
λ-dependent constants given by

cn ¼
2λ − 1

3λ − 1
; cr ¼

2λ

3λ − 1
: ð38Þ

As a cross-check, note that setting λ ¼ 1 in (37) gives back
the GR result (25).
Let us summarize what we have learned about the

constraint structure of the theory. There are six first-class
constraints, Hi ≈ 0 and ϕi ≈ 0, and four second-class
constraints, Hλ ≈ 0, Mλ ≈ 0, ϕ ≈ 0 and ω ≈ 0, bringing
the total number of physical degrees of freedom to two, just
like in general relativity. There are other close parallels with
GR in constant mean curvature gauge: the field content is
the same, the spatial diffeomorphisms and their associated
three primary and three secondary first-class constraints
coincide, and there is a one-to-one correspondence between
the conditions imposed on the fields. However, due to
the nonvanishing of the terms proportional to π in the
Hamiltonian, the equations of motion are explicitly
λ-dependent and not obviously equivalent to those of
gravity. Explicitly, they are

6Including the inverse square root of the determinant is
necessary to obtain a quantity of the correct density weight to
be integrated.

7This follows from the falloff conditions on the fields implied
by the presence of the background flat metric at spatial infinity;
for r → ∞ one must have [16]

gij → δij þOðr−1Þ; πij → Oðr−2Þ;
N → 1þOðr−1Þ; Ni → Oðr−1Þ: ð35Þ

From these relations, it follows that π → Oðr−2Þ, excluding any
choice a ≠ 0.
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_gij ¼ ∇iNkgkj þ∇jNkgik þ
2Nffiffiffi
g

p πij − 2a
λ

3λ − 1
Ngij;

_πij ¼ −N
�
2gklffiffiffi
g

p πikπjl − 2a
λ

3λ − 1
πij −

πklπ
kl

2
ffiffiffi
g

p gij þ ffiffiffi
g

p �
Rij − gij

�
2Λ −

λa2

3λ − 1
−
R
2

���

þ ffiffiffi
g

p
gikgjl∇k∇lN þ∇aðNaπijÞ − πai∇aNj − πaj∇aNi;

¼ − N

�
2gklffiffiffi
g

p πikπjl − 2a
λ

3λ − 1
πij þ ffiffiffi

g
p �

Rij − gij
�
Λ −

λa2

2ð3λ − 1Þ
���

þ ffiffiffi
g

p
gikgjl∇k∇lN þ∇aðNaπijÞ − πai∇aNj − πaj∇aNi;

_N ¼ αþ Ni∇iN; _ϕ ¼ Hþ∇iðNiϕÞ ≈ 0; _Ni ¼ αi; _ϕi ¼ ~Hi ≈ 0: ð39Þ

Part of the λ-dependence can be absorbed into a by setting
~a ¼ 2a λ

3λ−1 and redefining the cosmological constant by a
λ- (and a-)dependent term, but this does not in any obvious
way eliminate the λ-dependence of N and α inherent in
Eqs. (36) and (37). Of course, to show that physics depends
on λ, we would have to exhibit a λ-dependent observable, in
the spirit of Giulini and Kiefer [4]. We will look in the next
section at their physicality criterion and find that it cannot
be applied in a straightforward way to the case at hand. On
the basis of this observation and the great overall similarity
with the case π ¼ 0 (which is the generic solution for the
tertiary constraint of the nonprojectable λ-R model with
noncompact slices), including the counting of local degrees
of freedom, we cannot rule out at this stage that the theory
with closed slices is also equivalent to general relativity.
There is still a residual gauge freedom, which potentially
could allow us to remove the λ-dependence from the
physical sector of the theory.

III. ACCELERATION OF THE THREE-VOLUME
AND PROJECTABILITY

Having derived the tertiary constraint for the nonpro-
jectable theory for closed spatial slices, we would like to
see under which conditions, if any, the result of [4] can be
reproduced. In [4], in search of a physical observable, the
acceleration of the spatial volume

VðtÞ ¼
Z

d3x
ffiffiffi
g

p ð40Þ

of the universe was calculated, where “time” t refers to
proper time in the so-called proper-time (or canonical)
gauge N ¼ 1, Ni ¼ 0. The result found for pure gravity
(without matter) according to [4] is

V̈ðtÞ ¼ −
2

3λ − 1

Z
d3x

ffiffiffi
g

p ðR − 3ΛÞ; ð41Þ

and therefore explicitly λ-dependent. For λ ¼ 1, it
reduces to

V̈ðtÞ ¼ −
Z

d3x
ffiffiffi
g

p ðR − 3ΛÞ; ð42Þ
matching the classical computation for general relativity
[17]. The formulas for the volume and its acceleration still
refer to a specific set of gauge-fixed coordinates, but it is
argued in [4] that the sign of the acceleration does not and
is a bona fide observable in the sense of being defined
invariantly. In general relativity, a positive scalar curvature
R contributes negatively to the acceleration (42), while a
positive cosmological constant contributes positively, both
being familiar features of standard cosmology. However, the
sign of the prefactor of the integral of ðR − 3ΛÞ in Eq. (41)
depends explicitly on the value of λ. Giulini and Kiefer point
out that this has potential cosmological consequences, at
the very least implying bounds on the allowed values of λ.
As we will show next, a similar conclusion cannot generally
be obtained in the λ-R model derived from nonprojectable
HLG which we studied in the last section.
Recall that Hořava-Lifshitz gravity from the outset

works with a preferred time foliation, where each spatial
hypersurface of constant time is one of the leaves of the
foliation. Its Hamiltonian formulation looks very much like
general relativity in terms of ADM variables, but the role of
the lapse is different; in GR the foliation is still arbitrary,
which is reflected in the presence of the full Dirac algebra
(17)–(19) of constraints and the fact that the Lagrange
multiplier N can in principle be any (strictly positive)
function. By contrast, as we have already seen in Sec. II C,
in Hořava-Lifshitz gravity N cannot be chosen freely, since
the full four-dimensional diffeomorphism symmetry is not
only nonmanifest, but no longer present.
While we cannot generally fix the lapse to 1 due to the

extra constraints on the HLGmodel, nothing prevents us, at
least locally, from choosing a vanishing shift vector,
Ni ¼ 0. Under this assumption, we can compute V̈ in a
straightforward manner to obtain

_V ¼ −
1

3λ − 1

Z
d3xNπ ¼ −

a
3λ − 1

Z
d3xN

ffiffiffi
g

p
;

⇒ V̈ ¼ a
3λ − 1

Z
d3x

ffiffiffi
g

p �
a

3λ − 1
N2 − α

�
; ð43Þ
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where for simplicity we still assume that a is a constant, as
in previous sections. Using (36) we can rewrite (43) as

V̈ ¼ −
2

3λ − 1

Z
d3x

ffiffiffi
g

p �
NðR − 3Λ −∇2ÞN þ a

2
α
�
:

ð44Þ
While the prefactor is the same as in (41), one cannot make
general statements about the sign of the acceleration, since
both α and N are λ-dependent, by virtue of the conditions
(36) and (37). If we could consistently set α ¼ 0 and
N ¼ 1, the arguments of [4] would carry over to the present
case, but again this does not appear to be possible, since
both (36) and (37) require a nontrivial functional depend-
ence of α and N on the other field variables, at least for the
case a ¼ const considered here.

A. Proper-time gauge in the nonprojectable theory

We saw in the previous section that preserving the
constraint ω≡ π − a

ffiffiffi
g

p ≈ 0 in time yields an equation
for N which in general is incompatible with the gauge
choice N ¼ 1 and Ni ¼ 0. We will show in this section that
imposing proper-time gauge in the nonprojectable theory
from the start makes little difference to the discussion of
Sec. II C; one is again led to a CMC condition, and a
contradiction arises. Going back to the action (7), nothing
seems to prevent us from choosing the proper-time gauge
N ¼ 1,Ni ¼ 0, as long as we impose by hand the equations
we would otherwise have obtained from varying with
respect to N and Ni. Since nothing out of the ordinary
happens with the shift part of the gauge, let us focus on the
lapse. It is straightforward to see that under the Legendre
transformation, imposing the Euler-Lagrange equation of
the lapse is equivalent to the modified Hamiltonian con-
straint Hλ ≈ 0, which then appears as a primary constraint
of the theory, together withHi ≈ 0. The total “proper-time”
Hamiltonian is given by

Hpt
tot ¼

Z
d3xðHλ þ γHλ þ γiHiÞ; ð45Þ

where only the first instance of Hλ comes directly from
the Legendre transformation, both Hλ ¼ 0 and Hi ¼ 0 are
primary constraints, and γ and γi are Lagrange multipliers.
In order to allow for an interpretation of Hpt

tot in terms of
four-geometry, the Lagrange multiplier γ must be such that
γ þ 1 is strictly positive and therefore can be interpreted as
a lapse function. Other than this, γ should at this stage be
freely specifiable. From this point on, the analysis of the
problem proceeds along the lines of Sec. II C, with N
replaced by β ≔ γ þ 1 both in the time evolution of Hλ

and in the constraint Mλ ≈ 0. No new computations are
required, because β is already a Lagrange multiplier and,
due to Mλ ≈ 0, depends on λ. The analogue of Eq. (43)
now reads

_V ¼ −
1

3λ − 1

Z
d3xβπ ¼ −

a
3λ − 1

Z
d3xβ

ffiffiffi
g

p
;

⇒ V̈ ¼ a
3λ − 1

Z
d3x

ffiffiffi
g

p a
3λ − 1

β2

¼
Z

d3x
ffiffiffi
g

p �
a

3λ − 1
β

�
2

: ð46Þ

Because of the absence of the term proportional to α
that was present in the previous expression (43), we have
been able to rewrite the integrand on the right-hand side
of the acceleration as a square, which means that the
acceleration has to be positive and vanishes only when a
is identically zero. However, as can be seen from relation
(42), there are no such restrictions on the sign of the
acceleration of the spatial volume in standard gravity
cosmology. It simply means that in nonprojectable
Hořava-Lifshitz gravity, no matter what the value of little
lambda, the choice of proper-time gauge, and of N ¼ 1 in
particular, is inconsistent.
The main obstacle to rederiving the results of [4] is the

presence of the Hamiltonian constraint Hλ which does
not Poisson commute with itself on the constraint surface.
In search of alternative derivations, let us briefly investigate
how far we can get when dropping the Hamiltonian
constraint Hλ ≈ 0 altogether. This corresponds to a λ-R
model without any time reparametrization invariance, where
only the spatial diffeomorphisms act as gauge transforma-
tions. (For the time being, we will not bother to analyze how
this affects the counting of physical degrees of freedom of
the model.) From the point of view of the action, it amounts
to settingN ¼ 1 without any further restrictions. Performing
the Legendre transformation, we obtain as Hamiltonian the
expression (45) with α ¼ 0, that is,

H ¼
Z

d3xðHλ þ αiHiÞ: ð47Þ

We would like to stress that despite usingHλ as a shorthand
for the functional πijπklffiffi

g
p Gλ

ijkl −
ffiffiffi
g

p ðR − 2ΛÞ, this model has

only momentum constraints and no Hamiltonian constraint.
It is straightforward to check that taking Poisson brackets

of the momentum constraints with the Hamiltonian (47)—
the usual consistency check for constraints—does not give
rise to any kind of Hamiltonian constraint. The relevant
Poisson bracket relation can be read off relation (18) for the
special case N ¼ 1. Although the integrand on the right-
hand side is still proportional to Hλ, it is at the same time
seen to be a total derivative. Consequently, the time
evolution of the momentum constraints, computed with
the Hamiltonian (47), vanishes without generating any new
constraints.
We note in passing that if instead ofN ¼ 1wewould have

a space-independent smearing functionN ¼ NðtÞ (as will be
the case in the projectable theory in the following section),
the same conclusion would apply, namely,
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�Z
d3xNiHi;

Z
d3x0NðtÞHλ

�
¼ 0: ð48Þ

Having established that no new constraints arise, the time
derivative of the three-volume is simply given by

_V ¼
�Z

d3x
ffiffiffi
g

p
; H

�
¼ −

1

3λ − 1

Z
d3xπ: ð49Þ

Taking another time derivative we obtain the acceleration

V̈ ¼ 1

3λ − 1

Z
d3x

�
3

2

�
−
Gλ
ijklffiffiffi
g

p πijπkl þ 2
ffiffiffi
g

p
Λ

�
−

ffiffiffi
g

p R
2

�
:

ð50Þ
Comparing again to the results of [4], because of the
absence of a Hamiltonian constraint in the present case, it is
not possible to rewrite the integrand of (50) to obtain an
expression depending on the three-dimensional Ricci scalar
and a cosmological constant, as in relation (41). However,
as we will see in Sec. III B below, there is a λ-R model
which has a Hamiltonian constraint—albeit a global one—
and no tertiary constraint, and which precisely realizes the
Giulini-Kiefer scenario.

B. Projectable λ-R model

Having exhausted all of the potentially relevant variants of
the nonprojectable λ-R model, we now turn to the model
derived from the projectable version of Hořava-Lifshitz
gravity. As we have explained in Sec. I A, the nonprojectable
theory has a general lapse function N ¼ Nðx; tÞ, whereas
the projectable one is characterized by N ¼ NðtÞ. In light of
this, the action (7) in the projectable case becomes

Sλpr ¼
Z

dtN
Z

d3x
ffiffiffi
g

p ðKijG
ijkl
λ Kkl þ R − 2ΛÞ; ð51Þ

where we have taken N outside the spatial integral to
highlight its independence of spatial coordinates. Unlike
what happened in the nonprojectable case, Sλpr really is the
most general second-order action in spatial derivatives in
this version of the theory. Its Legendre transformation can
be performed in a straightforward manner, taking into
account that the primary constraint ϕðtÞ defined by the
vanishing of the momentum of the lapse NðtÞ will also
depend on time only.
Keeping our previous notation for the functional form of

Hλ and Hi—without at this stage making any assumption
on their constrained character—the total Hamiltonian takes
the form

Hpr
tot ¼ αϕþ N

Z
d3xHλ þ

Z
d3xðNiHi þ αiϕiÞ: ð52Þ

To obtain the secondary constraints, we must impose that
the primary constraints be preserved in time, leading to

fϕðtÞ; Hpr
totg ≈ 0 ⇒

Z
d3xHλ ≈ 0;

fϕiðx; tÞ; Hpr
totg ≈ 0 ⇒ Hi ≈ 0: ð53Þ

Not having made any changes to the action of the spatial
diffeomorphisms, we obtain the usual momentum con-
straints, but instead of the usual Hamiltonian constraint
(one at each point x), there is only a single, integrated
Hamiltonian constraint at each fixed time t, reflecting the
reduced dependence of the lapse. It is precisely this feature
which will allow us to rederive the results of [4].
We must show next that the secondary constraints are

preserved in time. It turns out that all relevant computations
have already been done in earlier sections. The analogue of
the Dirac algebra in the present case has the momentum
constraints and their Poisson brackets (17) unchanged. The
counterparts of relations (18), that is, the Poisson brackets
of the integrated Hamiltonian constraint

R
d3xHλ ≈ 0 with

the local momentum constraints vanish identically, as we
have already argued in Sec. III A above. Lastly, the Poisson
brackets of the integrated Hamiltonian with itself vanish
also, since all nonvanishing contributions to the right-hand
side of relation (19) are associated with a nontrivial spatial
dependence of the lapse functions. We conclude that on the
constraint surface the secondary constraints of the project-
able λ-R model are automatically preserved in time and no
tertiary constraints arise.
Given the previous arguments, we are free to set N ¼ 1

from the beginning, in which case the acceleration of the
three-volume V reduces to our previous formula (50).
The difference here is that a genuine Hamiltonian constraint
is present, albeit an integrated one,

R
d3xHλ ¼ 0. This

allows us to perform the simplification we previously could
not apply to the right-hand side of Eq. (50) to obtain

V̈ ¼ f _V;Hg

¼ 1

3λ − 1

Z
d3x

�
3

2

�
−
Gijklffiffiffi

g
p πijπkl þ 2

ffiffiffi
g

p
Λ

�
−
1

2

ffiffiffi
g

p
R

�

¼ 1

3λ − 1

Z
d3x

�
−
3

2
H −

3

2

ffiffiffi
g

p
Rþ 3

ffiffiffi
g

p
Λ

þ 3
ffiffiffi
g

p
Λ −

1

2

ffiffiffi
g

p
R

�

¼ −
2

3λ − 1

Z
d3x

ffiffiffi
g

p ðR − 3ΛÞ; ð54Þ

which is exactly the desired result from [4]. We may then
take over their conclusion that at least for some range of
the parameter λ, the classical predictions of the projectable
λ-R model are not compatible with standard cosmology
and therefore inequivalent to general relativity. This is
potentially interesting in its own right, because it provides
an additional physical criterion on whether projectable
Hořava-Lifshitz gravity can be a viable theory, about which
there is some doubt in view of the fact that compared with
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standard gravity it has an additional scalar degree of
freedom (see, for example, the reviews [18,19] and refer-
ences therein for related criticism).

IV. SUMMARY AND CONCLUSIONS

Our analysis was motivated by two apparently contra-
dictory claims about the classical equivalence between
general relativity and the so-called λ-R models associated
with Hořava-Lifshitz gravity. These are models described
by an action of the form

S ¼
Z

dt
Z

d3x
ffiffiffi
g

p
NðKijKij − λK2 þ R − 2ΛÞ; ð55Þ

which differs from the standard gravitational Einstein-
Hilbert action through its dependence on the real parameter
λ. By performing a Hamiltonian constraint analysis à la
Dirac, we have shown that there is no contradiction after all.
The work by Giulini and Kiefer cannot be interpreted
consistently in the framework of the nonprojectable version
of HLG because the gauge choice made in [4] is not
compatible with the structure of the constraint algebra in
nonprojectable Hořava-Lifshitz gravity and the consistency
requirements following from it. By contrast, the results of
Bellorín and Restuccia in [5] were obtained for the non-
projectable λ-R model, and crucially relied on the space-
time dependence Nðt; xÞ of the lapse function.
In order to study the behavior of the total three-volume of

the universe introduced in [4] and make the comparison
between the two formulations explicit, we had to repeat the
Dirac analysis of Ref. [5] for closed spatial slices. We found
the same tertiary constraint, but because of the different
boundary conditions the class of allowed solutions was
larger and of the form π ¼ a

ffiffiffi
g

p
, with a a (possibly time-

dependent) constant. This raised the question of whether
the enlarged solution set still leads to theories equivalent to
GR (in constant mean curvature gauge), in the same way
that the unique solution π ¼ 0 for the asymptotically flat
case can be shown to be equivalent to GR in a maximal
slicing gauge. Because of the involved nature of the
λ-dependence of the consistency conditions arising in
the case of closed slices, we were unable to show that the
λ-dependence is pure gauge. However, given the similarity
with general relativity in the CMC gauge, the number of
local degrees of freedom and the fact that we have not
gauge fixed the theory completely, equivalence with gen-
eral relativity remains within the realm of possibilities.
An alternative possibility would be that choices aðtÞ ≠ 0
for some reason are inconsistent, which would again leave
us with π ¼ 0 as the only solution to the tertiary constraint.
Even if the equivalence with general relativity of the

nonprojectable λ-R model for closed spatial slices cannot
be shown to hold beyond a ¼ 0, we would like to re-
iterate a point already made in [5], namely, that λ ≠ 1 does
not necessarily indicate a deviation from general relativity.

Requiring λ to go to 1 when considering the low-energy
limit of nonprojectable Hořava-Lifshitz gravity may there-
fore be too restrictive. Since renormalization group
computations have been initiated in the context of HLG
[20,21], it will be interesting to see what flow is realized
for λ and whether it is possible to recover some partially
gauge-fixed version of the theory while avoiding the
strong-coupling pitfalls that have been shown to occur
when λ → 1 [22–24].
The question of the role and physical interpretation of

little lambda is also important in the causal dynamical
triangulations (CDT) approach to quantum gravity, which
can accommodate some of the anisotropic features of HLG
[25]. A main result in CDT quantum gravity is the fact that a
minisuperspace version Seff of the action (7) turns out to
govern the dynamics of the three-volume of the universe.
Nonperturbative contributions to the corresponding coupling
λeff are crucial in bringing about a classical limit compatible
with GR [26] (see also [27,28] for investigations of λ in the
context of CDT in three spacetime dimensions).
Our investigation has highlighted that the role of “little

λ” is rather subtle, even in the classical theory, and depends
on the precise model one is looking at. To understand the
constraint structure of the theory and why the construction
of [4] is inconsistent with nonprojectable HLG, we had to
perform the Dirac analysis from the beginning. The strategy
to look at the acceleration of the three-volume in the
framework of nonprojectable HLG was inconclusive, even
when we dropped the time reparametrization invariance and
associated Hamiltonian constraint altogether. Imposing
proper-time gauge from the outset, as in Ref. [4], turned
out to be inconsistent with the CMC condition which is still
necessary to close the constraint algebra. However, we have
found that projectable HLG can accommodate both the
computation and conclusions of [4], if one makes the
implicit assumption that the lapse function is only time
dependent and the Hamiltonian constraint is therefore a
single, global condition. With this interpretation, there is no
contradiction between the results of [4] and [5].
Although all of our computations were for pure gravity

with a cosmological constant, the conclusions do not
change when we include an ultralocal matter term in the
Hamiltonian constraint, similar to what was done in [4].
Given its ultralocal nature, it would not play any role in the
existence of the tertiary constraint and, at least for a ¼ 0,
the theory would still be equivalent to GR in maximal
slicing gauge.
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