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We study compactifications of D-dimensional de Sitter space with a q-form flux down to D − Nq
dimensions. We show that for ðN − 1Þðq − 1Þ ≥ 2 there are double-exponentially or even infinitely many
compact de Sitter vacua, and that their effective cosmological constants accumulate at zero. This population
explosion of Λ ≪ 1 de Sitters arises by a mechanism analogous to natural selection.
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I. INTRODUCTION

There is typically more than one way to compactify a
higher-dimensional theory. Different ways give rise to
different lower-dimensional theories with different cosmo-
logical constants. In this paper we will study the distribu-
tion of the cosmological constants of compactified vacua.
There is a common lore that the distribution of four-

dimensional de Sitter vacua has no special feature as
Λ → 0þ. And indeed this common lore is borne out in
two well-studied models: the Freund-Rubin (FR) model
[1–3], which has dynamical extra dimensions but only a
single internal q cycle wrapped by a q-form flux, and the
Bousso-Polchinski (BP) model [4], which has many
internal q cycles, each individually wrapped by a q-form
flux, but which fixes the geometry by fiat. In this paper we
will see that the common lore does not apply when we
combine these features: when we have dynamical extra
dimensions compactified on a product manifold.
We will show that a D-dimensional de Sitter vacuum

begets exponentially or even infinitely many dSD−Nq ×
ðSqÞN vacua whose cosmological constants accumulate
at zero. This population explosion arises by a mechanism
analogous to natural selection. Compactifying once
(N ¼ 1) gives a family of first generation vacua with a
range of cosmological constants. Compactifying again
(N ¼ 2) assigns a family of second generation vacua to
each first generation vacuum. Since the number of offspring
of a given vacuum is inversely proportional to its cosmo-
logical constant, and since the progeny all inherit a Λ no
larger than that of their parent, sequential compactification
naturally selects for the trait of having a small cosmological
constant. By the Nth generation the distribution of de Sitter
vacua is strongly peaked at Λ ¼ 0.

These compactifications do not have a cosmological con-
stant problem, in the sense that [when ðq − 1ÞðN − 1Þ ≥ 2]
the cosmological constant in a generic de Sitter vacuum is
double-exponentially sub-Planckian.1 These compactifica-
tions do, however, have another problem no less severe: the
Kaluza-Klein (KK) scale in a generic vacuum is near the
Hubble scale, and is therefore also double-exponentially
sub-Planckian. The question of why the cosmological
constant is so small has been replaced with the question
of why the extra dimensions are so small. Nevertheless,
the accumulation point persists even when restricting to de
Sitter vacua with a KK scale arbitrarily higher than the
Hubble scale.

II. BOUSSO-POLCHINSKI
COMPACTIFICATIONS: NO ACCUMULATION

In the Bousso-Polchinski model, the extra dimensions
are fixed by fiat, and the effective four-dimensional
cosmological constant is uplifted by the q-form flux:

Λ4 ¼ Λno flux þ
1

2

XN
i¼1

g2n2i ; ð1Þ

where g is the quantum of magnetic flux and ni ∈ Z is the
number of units wrapping the ith q cycle. For Λno flux < 0
this gives rise to a landscape with both anti–de Sitter (AdS)
(small ni) and de Sitter (dS) (large ni) vacua, but if the ni’s
get too large, the energy density exceeds the cutoff and
perturbative control is lost. The number of de Sitter vacua
that lie beneath this cutoff is exponentially large in N, but
finite; a typical vacuum has a cosmological constant just
below the cutoff. Since nothing picks out Λ ¼ 0 as special,
the distribution of vacua is flat through zero, as is shown
in Fig. 1.
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1Specifically, when the vacua are counted with a uniform
measure over the number of flux units, we find that the generic de
Sitter vacuum has minuscule cosmological constant.
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III. N ¼ 1 FREUND-RUBIN COMPACTIFICATIONS
WITH ΛD > 0: NO ACCUMULATION

Freund-Rubin compactifications start with the Einstein-
Maxwell action

S ¼
Z

dDx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gμνj

q �
MD−2

D R −
1

2q!
F2
q − 2ΛD

�
; ð2Þ

where Fq is a q-form flux with q ≥ 2, ΛD is a cosmological
constant, and MD is the Planck mass. We can compactify
this down toD − q dimensions where the internal manifold
is a q-sphere uniformly wrapped by n units of the q-form
flux. The ðD − qÞ-dimensional Einstein-frame effective
potential for the radius R of the sphere is

VD−qðRÞ
MD−q

D−q
∼
�

1

Mq
DR

q

� 2
D−q−2

�
ΛD

MD
D
−

1

M2
DR

2
þ g2n2

M2
DR

2q

�
;

ð3Þ

with the lower-dimensional Planck mass defined by
MD−q−2

D−q ≡MD−2
D Rq. The curvature term (the second term)

makes the extra dimensions want to shrink, but the flux
term (the third term) buttresses the extra dimensions against
collapse, creating a minimum of the potential, as shown in
Fig. 2. The value of the lower-dimensional cosmological

constant is set by the value of the potential in this minimum
ΛD−q ≡ VD−qðRminÞ. A small value of gn gives rise to an
AdS minimum and a larger value gives rise to a dS
minimum; when gn is too large, however, there is no
minimum of any kind. Unlike in the BP model, the reason
the minimum disappears is not that the energy density
becomes too large. Instead, the minimum disappears
because the flux has swelled the extra dimensions so much
that they get caught up in the Hubble expansion and
decompactify. The value nmax at which this occurs is that

for which Rmin ∼H−1
D , where HD ≡ Λ1=2

D =MðD−2Þ=2
D is the

D-dimensional Hubble scale. At n ¼ nmax, all three terms
in the effective potential are approximately the same size,

so g2n2max ∼H−2ðq−1Þ
D .

How many N ¼ 1 de Sitter minima are there? The
allowed flux values are evenly spaced in n, so a good
proxy for the number of vacua is to treat n as continuous
and to evaluate the length in n space. The total number of

vacua is therefore set by NumD−q ∼ nmax ∼H−ðq−1Þ
D =g.

Since q ≥ 2, the total number of lower-dimensional minima
is thus inversely proportional to the higher-dimensional
cosmological constant—lower de Sitter are fitter and give
rise to more offspring. The fraction of these offspring that
are de Sitter is O(1) and independent ofHD; the distribution
of their c.c.’s is smooth through ΛD−q ¼ 0 and is plotted in
the right pane of Fig. 2. This distribution is well approxi-
mated by a step function

dNumD−q

dH2
D−q

∼
dn

dH2
D−q

∼
� 1

gH1þq
D

for HD−q < HD

0 for HD−q > HD:
ð4Þ

Since the Hubble scale of the parent bounds the Hubble
scale of the offspring, HD−q < HD, if you start with a
low c.c. all of the direct descendants have a low c.c.—
having low cosmological constant is a heritable trait.

IV. N ¼ 1 FREUND-RUBIN COMPACTIFICATIONS
WITH ΛD ≤ 0: ADS ACCUMULATION

The effective potential and distribution of cosmological
constants for ΛD ≤ 0 are plotted in Fig. 3. The repulsive

FIG. 2 (color online). The N ¼ 1 FR compactification of D-dimensional de Sitter. Left: the effective potential as a function of R,
plotted for several values of the number of conserved flux units n. Right: the number density of dSD−q vacua as a function of the lower-
dimensional ΛD−q=M

D−q
D−q. To make this histogram, we have treated gn as continuous.

FIG. 1 (color online). The Bousso-Polchinski model. Left: the
phase diagram of vacua. The lines of isopotential are circles/
spheres. Spheres of smaller radius are AdS; spheres of larger
radius are dS. If the fluxes get too large, perturbative control is
lost. Right: the number density of vacua with a given value of the
cosmological constant. The total number of de Sitter minima is
finite, and the number density is smooth through Λ4 ¼ 0.
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flux term and the attractive curvature term create a mini-
mum; without positive ΛD to uplift that minimum, it is
necessarily AdSD−q. We saw in the last section that the
number of N ¼ 1 minima diverges as ΛD → 0 from above.
When ΛD ≤ 0, every value of n gives rise to a minimum
and the number of minima is infinite. Unlike the FR model
with ΛD > 0, no matter how many flux units n are wrapped
around the extra dimensions, the radion stays stable: the
extra dimensions just get larger and larger and the potential
gets less and less negative. Unlike the BP model, no matter
how many flux units n are wrapped around the extra
dimensions, the energy density stays sub-Planckian:
indeed, the extra dimensions grow sufficiently rapidly with
n that the flux density n=Rq falls. There are thus an infinite
number of AdS minima in this model, and the cosmological
constants of these minima accumulate at zero [5].

V. N ¼ 2: DE SITTER ACCUMULATION

The BP landscape and N ¼ 1 compactifications of de
Sitter both have smooth distributions of vacua through
Λ ¼ 0. We will now see that the same is not true for N ≥ 2.
We begin with the same higher-dimensional action, Eq. (2),
except rather than compactifying on a single q-sphere, we
are going to compactify on N individually wrapped q-
spheres. [A (1þ 1)-dimensional version of this landscape
was studied in [6,7]. The full spectrum and perturbative
stability of these compactifications was studied in [8].]

Let us begin with N ¼ 2. The (D − 2q)-dimensional
effective potential can be derived by iterating Eq. (3):

VD−2qðR1; R2Þ
MD−2q

D−2q
¼

�
1

Mq
D−qR

q
2

� 2
D−2q−2

×

�
VD−qðR1Þ
MD−q

D−q
−

1

M2
D−qR

2
2

þ g2n22
M2

D−qR
2q
2

�
;

ð5Þ
where MD−2q−2

D−2q ¼ Rq
2M

D−q−2
D−q ¼ Rq

2R
q
1M

D−2
D . Though not

manifest in this form, the potential is symmetric under the
exchange of 1↔2.
How many dSD−2q minima are there? The easiest way to

think about this is in terms of sequential compactification—in
terms of first compactifying fromD toD − q dimensions, and
then compactifying from D − q to D − 2q. The first com-
pactification gives rise to a flat range of ΛD−q ’s, as in Fig. 2.
Each of those daughterΛD−q’s then gives rise to its own range
of granddaughterΛD−2q’s with a distribution that is again flat.
The total distribution of granddaughters is given by a con-
volution, as shown in Fig. 4. The distribution of Hubbles is

dNumD−2q

dH2
D−2q

∼
Z

∞

H2
D−2q

dH2
D−q

gHqþ1
D−q

dNumD−q

dH2
D−q

∼
Z

H2
D

H2
D−2q

dH2
D−q

gHqþ1
D−q

1

gHqþ1
D

∼
1

g2
1

Hqþ1
D

1

Hq−1
D−2q

ð6Þ

FIG. 3. The N ¼ 1 FR compactification of D-dimensional Minkowski. Left: the effective potential as a function of R, plotted for
several values of the number of conserved flux units n; the minimum is always AdS. Right: the number density of AdSD−q vacua as a
function of ΛD−q=M

D−q
D−q.

FIG. 4 (color online). The number density of granddaughter vacua with a given value of ΛD−2q is the sum of the distributions from each
of the ðD − qÞ-dimensional daughter vacua. Each daughter vacuum contributes a number of granddaughters inversely proportional to its
cosmological constant, with a flat distribution that cuts off at its Hubble scale. These contributions pile up at ΛD−2q ¼ 0. (There is also a
divergent number density of AdS vacua for every negative ΛD−2q.)
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near zero, where, as in Eq. (4), we have treated the N ¼ 1
distribution of Hubbles as a step function. The N ¼ 2
distribution is singular at H2

D−2q ¼ ΛD−2q=M
D−2q−2
D−2q ¼ 0,

and the singularity is integrable for q ¼ 2, logarithmic for
q ¼ 3, and power-law for q ≥ 4.
Another way to think about this singularity is in terms of

the phase diagram shown in Fig. 5. While in the BP model
the codimension-one surface of Minkowski vacua was a
sphere, as in Fig. 1, here the Minkowski surface is a
hyperbola. There is a critical value of n1 indicated by the
dotted line to which this hyperbola asymptotes. When n1 is
less than this value, the first compactification is to AdSD−q
so all values of n2 give rise to minima, but all those minima
are AdSD−2q. When n1 is greater than the critical value, the
minimum can be either AdSD−2q or dSD−2q or there can be
nominimum at all, depending on the value of n2.When n1 is
only just above the critical value, ΛD−q is only just above
zero, and there are de Sitter minima for a large array of n2 all
of which have small cosmological constants. In other words,
the large number of dSD−2q’s is coming from the “de Sitter
tails” on the phase diagram. The continuous approximation
means that we are using area in this phase diagram as a proxy
for the number of vacua (the number of grid points). We will
show later that flux quantization generically replaces the
infinity with a double-exponentially large number.

VI. GENERAL N: NATURAL SELECTION

For general N we need to iterate Eq. (6) N times.
Defining p≡D − Nq, we have

dNump

dH2
p

∼
Z
H2

p

dH2
pþq

gH1þq
pþq

Z
H2

pþq

dH2
pþ2q

gH1þq
pþ2q

� � �

×
Z

H2
pþNq

H2
pþðN−2Þq

dH2
pþðN−1Þq

gH1þq
pþðN−1Þq

1

gH1þq
pþNq

∼
1

gN
1

Hqþ1
D

1

HðN−1Þðq−1Þ
p

: ð7Þ

The divergence in the distribution of compactified Hubbles
is set by ðN − 1Þðq − 1Þ.
To find the distribution of cosmological constants

Λp=M
p
p, we need to compare these Hp’s to the Planck

mass Mp. The p-dimensional Planck mass is given by

Mp−2
p ∼ Rq

NR
q
N−1 � � �Rq

1M
pþNq−2
pþNq

∼H−q
pþqH

−q
pþ2q � � �H−q

pþNqM
pþNq−2
pþNq ; ð8Þ

so that Mp varies from vacuum to vacuum and depends on
the Hubble scale not just of the direct parent, but of all the
ancestors; this fact means that the singularity in the
distribution of Λp=M

p
p will in general be different from

the singularity in the distribution ofH2
p ¼ Λp=M

p−2
p . Let us

define the ansatz for the distribution of ðΛp=M
p
pÞ’s near

zero by

dNump

dðΛp=M
p
pÞ ¼

dNump

dðH2
p=M2

pÞ
≡ β

�
H2

p

M2
p

�−α
¼ β

�
Λp

Mp
p

�
−α
:

ð9Þ

We need to modify Eq. (7) by adding in appropriate powers
of Mp,

dNump

dðH2
p=M2

pÞ
∼M2α

p

Z
H2

p

dH2
pþq

gH1þq
pþq

H−2qð1−αÞ=ðp−2Þ
pþq

Z
H2

pþq

dH2
pþ2q

gH1þq
pþ2q

H−2qð1−αÞ=ðp−2Þ
pþ2q

…

Z
H2

pþNq

H2
pþðN−2Þq

dH2
pþðN−1Þq

gH1þq
pþðN−1Þq

H−2qð1−αÞ=ðp−2Þ
pþðN−1Þq

H−2qð1−αÞ=ðp−2Þ
pþNq

gH1þq
pþNq

M2ð1−αÞðpþNq−2Þ=ðp−2Þ
pþNq ; ð10Þ

which gives a consistency equation for α ¼ −ðN − 1Þð1 −
1þq
2

− qð1−αÞ
p−2 Þ whose solution is

α ¼ N − 1

2

2þ pðq − 1Þ
D − q − 2

with β ¼ M2ð1−αÞðD−2Þ=ðp−2Þ
D

gNH1þqþ2qð1−αÞ=ðp−2Þ
D

:

ð11Þ

Equation (11) gives the distribution of de Sitter vacua near
zero for all values of N ≥ 1, q ≥ 2, and p ≥ 3. For N ¼ 1,
the distribution is always flat, but for higher N the dis-
tribution diverges at Λp ¼ 0: this divergence is integrable

for ðN−1Þðq−1Þ≤1, logarithmic for ðN − 1Þðq − 1Þ ¼ 2,
and power law for ðN − 1Þðq − 1Þ ≥ 3. For p ¼ 4 and
q ¼ 2, Eq. (11) gives

FIG. 5 (color online). The phase diagram of N ¼ 2 compacti-
fications of de Sitter. The de Sitter minima lie in the infinitely
long crescent above the Minkowski line and below the decom-
pactification line. The area of this strip is a proxy for the number
of dS vacua.
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dNum4

dðH2
4=M

2
4Þ

∼
dNum4

dðV4=M4
4Þ

∼
�
V4

M4
4

�
−3ðN−1Þ

2N

; ð12Þ

consistent with the answer found by a different route in [9].

VII. QUANTIZATION AND INFINITIES

We have found an infinite volume of ni space that
corresponds to de Sitter minima. However, the allowed
values of ni are restricted to integer grid points since flux is
quantized, and an infinite volume need not enclose an
infinite number of grid points. Consider the N ¼ 2 phase
diagram in Fig. 5. If the coupling g is just right, the grid of
allowed ni will lie exactly along the de Sitter tail, and the
infinite flux volume will enclose an infinite number of de
Sitter vacua. However, for generic g the grid will straddle
the de Sitter tail and there will only be a finite number of de
Sitter vacua.
While generic g gives a finite number of dS vacua, that

finite number is double-exponentially large. We can see this
by again treating the compactification sequentially. After
the first round of compactification, the Hubble of the
smallest de Sitter daughter is typically

H2
D−q ∼

H2
D

#dSminima
∼

H2
D

H1−q
D =g

∼ gðH2
DÞ

1þq
2 : ð13Þ

The Hubble of the smallest de Sitter daughter of the
smallest de Sitter daughter … of the smallest de Sitter
daughter is therefore typically

H2
D−Nq ∼ g2

ð1þq
2

ÞN−1
q−1 ðH2

DÞð
1þq
2
ÞN : ð14Þ

Since this calculation drastically underestimates the
smallness of the smallest positive cosmological constant,
this establishes that a generic de Sitter vacuum lies double-
exponentially close to Λp ¼ 0.

VIII. DISCUSSION

We have shown that if you can construct aD-dimensional
de Sitter, it will give rise to double-exponentially many
lower-dimensional de Sitters, with double-exponentially
small cosmological constants. While the Kachru-Kallosh-
Linde-Trivedi construction of de Sitter [10] only works for
D ¼ 4, there are noncritical string-theory constructions of de
Sitter for any D [11], indicating that our mechanism should
operate in the full string-theory landscape.
Furthermore, while we have illustrated our mechanism

with the simplest possible example—N spheres each of
dimension q—it should operate also in more complicated
compactifications. The generalization to spheres of differ-
ent dimensionality follows trivially by repeated iteration of
Eq. (6), as shown in the Appendix (this means our
mechanism applies equally to the case where the number

of extra dimensions is prime). The generalization to
nonspherical compactifications would be worth investigat-
ing further. To compactify down to four spacetime dimen-
sions and have ðq − 1ÞðN − 1Þ ¼ 2 (the marginal case)
requires that we start in at least ten dimensions; to have
ðq − 1ÞðN − 1Þ > 2 (the power-law case) requires that we
start in at least eleven. [If instead of a single species of
q-form flux there are n species, then the natural selection
effect is even stronger because the reproductive advantage
of low de Sitter minima is even larger: there are nnmax ways
to wrap flux round a given q-sphere such that the total field
strength around that sphere stays less than g2n2max.]
For a landscape in which our mechanism operates, there

is no cosmological constant problem, in the sense that
typical de Sitter vacua have extremely sub-Planckian
cosmological constants. There is however a radion mass
problem, in the sense that typical vacua also have extremely
large internal dimensions. Indeed, the lower-dimensional
Hubble scale and the KK scale are linked. In the N ¼ 1
case, HD sets the natural scale for both quantities; for
general N, it is the ðN − 1Þst generation’s Hubble that sets
the natural scale, so typically mKK ∼ R−1

min ∼Hp ∼Hpþq.
The solution to the cosmological constant problem and the
introduction of the radion mass problem are two sides of
the same coin; it is precisely the large extra dimensions that
are diluting away the cosmological constant. In fact, the
extra dimensions dilute away all coupling constants as well,
so that the effective four-dimensional theory in one of these
vacua is almost completely inert. This is why quantum
corrections do not spoil the accumulation point.
Since the KK scale is so low, a typical de Sitter vacuum

in this landscape looks nothing like our own (to say nothing
of the absence of the Standard Model). There are, however,
rarer vacua that have a larger KK scale. How many of these
rarer vacua there are depends on how we characterize the
largeness of the KK scale. One way to characterize it is to
compare mKK to Hp. While typical vacua have Hp ∼
Hpþq ∼mKK (they have inherited their parent’s Hubble),
there are rarer vacua for which Hp ≪ Hpþq ∼mKK so that
mKK=Hp is large. Because the distribution of vacua one
generation down is flat, as in Eq. (4), restricting mKK to be
greater than some huge number timesHp just multiplies the
number density by some overall tiny factor, but leaves the
shape of the distribution untouched: the subset of vacua
withMp ≫ mKK ≫ Hp still accumulates at Λp ¼ 0. On the
other hand, another way to characterize the largeness of the
KK scale, which might be preferable to a four-dimensional
effective field theorist, is to compare mKK to a four-
dimensional energy scale like the TeV scale. This puts a
restriction on the size of the extra dimensions and oblit-
erates the accumulation point.
A related idea for giving rise to a preponderance of low-

cosmological-constant vacua was advanced in [12]. The
idea of [12] is that the product of N uniform independent
random variables is peaked at a value that is exponentially
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small in N. The same mathematical fact is also used in this
paper—the Weyl factors in the effective potential multiply
[see Eq. (5)]—and this was essential to making a small
cosmological constant “heritable.” However, the natural
selection mechanism makes use of an additional element—
that having a small cosmological constant confers to de
Sitter vacua a reproductive advantage. It is for this reason
that we found the proliferation of low-scale de Sitter vacua
to be not exponential but double exponential.
Nongravitational physics knows nothing about Λ ¼ 0

and so it cannot give a landscape with a special feature at
zero. We have demonstrated a mechanism that picks out
Λ ¼ 0 for a fundamentally gravitational reason. This
mechanism can generate a double-exponentially large
number of four-dimensional de Sitter vacua and naturally
select a small cosmological constant.
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APPENDIX: SPHERES OF DIFFERENT
DIMENSIONALITY

A q-form flux permits compactification on a q-sphere. A
theory with an array of different qi-form fluxes may be

compactified on spheres of different dimensionality. In the
hierarchical limit, we consider vacua formed by first
compactifying on a q1-sphere using a q1-form flux, then
compactifying on a q2-sphere using a q2-form flux, and so
on. In the continuous approximation, the distribution of the
resulting de Sitter vacua is given by repeated application of
Eq. (6) as

dNump

dH2
p

∼
Z
H2

p

dH2
pþqN

gNH
1þqN
pþqN

Z
H2

pþqN

dH2
pþqNþqN−1

gN−1H
1þqN−1
pþqNþqN−1

� � �
Z

H2
D

H2
D−q2−q1

dH2
D−q1

g2H
1þq2
D−q1

1

g1H
1þq1
D

∼
1

g1g2…gN

1

H1þq1
D

1

H
P

N
i¼2

ðqi−1Þ
p

; ðA1Þ

where D ¼ pþP
N
i¼1 qi. For gi ¼ g and qi ¼ q this

reduces to Eq. (7). This distribution is independent of
the order of the compactification, except for the first
compactification—for the first compactification, on a
q1-sphere, there is only a single parent vacuum, so the
reproductive advantage of parent vacua with small cosmo-
logical constants is unable to affect the scaling of the
distribution.
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