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We construct several charged regular black hole metrics employing mass distribution functions which
are inspired by continuous probability distributions. Some of these metrics satisfy the weak energy
condition and asymptotically behave as the Reissner–Nordström black hole. In each case, the source to
the Einstein equations corresponds to a nonlinear electrodynamics model, which in the weak field limit
becomes the Maxwell theory (compatible with the Maxwell weak field limit or approximation).
Furthermore, we include other regular black hole solutions that satisfy the weak energy condition, and
some of them correspond to the Maxwell theory in the weak field limit.
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I. INTRODUCTION

Charged regular black holes are solutions of Einstein
equations that have horizons and, contrary to Reissner-
Nordström black holes which have singularities at the
origin, their metrics as well as their curvature invariants R,
RμνRμν, RκλμνRκλμν are regular everywhere [1]. This type of
black holes violates the strong energy condition somewhere
in the spacetime (see, e.g., Ref. [2] or Ref. [3]); however,
some of these solutions satisfy the weak energy condition
(WEC) everywhere. Those that satisfy theWEC necessarily
have a de Sitter center [4]. In addition, there are other
features that characterize regular black holes which are due
to the nonlinearities of the field equations. For instance, the
thermodynamic quantities of these black holes do not
satisfy the Smarr formula (see, e.g., Ref. [5]), the identity
of Bose–Dadhich [6] refers to the relation between the
Brown–York energy, and the Komar charge is not satisfied
by regular black holes [7].
Several regular black hole solutions have been found by

coupling gravity to nonlinear electrodynamics theories
(for a more detailed review, see Ref. [1] and references
cited therein). Two of these solutions satisfy the WEC and
asymptotically behave as the Reissner–Nordström black
hole; one of them was reported by Ayón-Beato and García
in Ref. [8] (see also Ref. [9] which is a generalization of this
case), and the other one was presented by Dymnikova in
Ref. [10]. Additionally Ayón-Beato and García obtained
other solutions in Refs. [11] and [12] (see also Ref. [13]),
which asymptotically behave as the Reissner–Nordström
solution but do not satisfy the WEC. These authors also
considered the Bardeen regular black hole [14], which
satisfies theWEC but asymptotically does not behave as the

Reissner–Nordström solution, and interpreted it as gravity
coupled to a theory of nonlinear electrodynamics for a self-
gravitating magnetic monopole in Ref. [15]. Recently, the
authors of this paper have presented a family of regular
black hole metrics in Ref. [16], which by construction
satisfy the WEC. Other black hole solutions that satisfy the
WEC have been found by considering a Gaussian distri-
bution for the mass density in Ref. [17] and also for both
the mass density and the charge density in Ref. [18].
A noncharged black hole solution which is also regular
and satisfies WEC was given by Dymnikova in Ref. [19].
A black hole solution similar to the Bardeen solution,
i.e., one that satisfies the WEC but asymptotically does not
behave as the Reissner–Nordström solution, is given by
Hayward in Ref. [20]. Other solutions of regular black
holes have been obtained by the junction of two spherically
symmetric regions in Refs. [2] and [21]. In particular,
Ref. [2] carried out a detailed analysis of the energy
conditions of these solutions, and the authors showed that
not all cases verify the WEC everywhere. The solutions
considered in Ref. [2] satisfy the WEC, where the outer and
the inner regions are separated by an electrically charged
spherically symmetric coat and the outer region behaves
as a Reissner–Nordström solution.
Using some of these examples, several articles have

discussed some other features of this family of solutions or
the particularities that differentiate this family of solutions
with respect to Reissner–Nordström solutions. In Ref. [22],
the Bardeen black hole was considered as a gravitational
lens, and the results were compared with those obtained by
a solution of Schwarzschild type. The thermodynamics and
evaporation process of the solution proposed by Hayward
are discussed in Ref. [23]. The solution given in Ref. [8] has
been considered with a cosmological constant in Ref. [24],
both the thermodynamics and stability have been analyzed.
There are various studies which consider the regular black
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hole defined by Ref. [11]. In particular, the thermodynam-
ics of this solution was studied in Ref. [25], and the entropy
of the corresponding extremal case was studied in
Refs. [26], [27], and [28]. It was also used to construct
a regular black hole solution in an asymptotically de Sitter
universe in Ref. [29]. Likewise it was used for construction
of the renormalized stress-energy tensor for the massive
scalar fields case [30,31] and for the massive spinor and
vector fields cases [32]. It was also used in the context of
quadratic gravity in Refs. [33] and [34]. Other studies have
used two or more of the solutions of regular black holes
mentioned in the previous paragraph: for the construction
of gravastar models in Ref. [35] and for obtaining solutions in
fðRÞmodified theories of gravity inRef. [36]. The stability of
some solutions was studied in Refs. [37], [38], and [39].
In this work we construct several charged regular black

hole metrics in the context of theories with nonlinear
electrodynamics coupled to general relativity. The mass
functions are inspired by continuous probability distribu-
tions. Some of these metrics satisfy the WEC and asymp-
totically behave as the Reissner–Nordström black hole.
This paper is organized as follows. In Sec. II, we

construct a general regular black hole metric for mass
distribution functions that are inspired by continuous
probability distributions. We also construct the correspond-
ing electric field for each black hole solution in terms of a
general mass distribution function. In Sec. III, we present
two examples of black hole solutions employing the
methodology developed in Sec. II. In Sec. IV, we generalize
the construction presented in Sec. II by considering
distribution functions raised to the power of a real number
greater than zero. Moreover, we give two examples of
black hole solutions by using this generalized construction.
In Sec. V, we consider a particular distribution in order to
obtain a regular black hole metric and then find the
conditions under which the WEC is satisfied. In Sec. VI,
we present some more regular black hole metrics that
satisfy the WEC, and, with the exception of one case, in the
weak field limit the corresponding black hole solutions do
not describe the Maxwell theory. In Sec. VII, we present
regular black hole metrics that asymptotically behave as the
Reissner–Nordström solution, and some satisfy the WEC.
Finally, in Sec. VIII, we briefly summarize our results.
In Appendix A, we give some probability distributions, and
in Appendix B, we give a brief description of the dual
P formalism.

II. GENERAL CONSIDERATIONS

We consider the line element for the most general static
and spherically symmetric metric,

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

with

fðrÞ ¼ 1 −
2mðrÞ

r
ð2Þ

and where mðrÞ is the mass function. The outer and the
inner horizons are located at rþ and r−, respectively,
satisfying r� ¼ 2mðr�Þ.
To construct metrics of regular black holes where the

invariant scalars and the electric fields are regular every-
where, we express the mass function mðrÞ as

mðrÞ ¼ σðrÞ
σ∞

M; ð3Þ

where the distribution function σðrÞ satisfies σðrÞ > 0 and
σ0ðrÞ > 0 for r ≥ 0. Additionally, σðrÞ=r → 0 as r → 0,
and σ∞ ¼ σðr → ∞Þ represents the normalization factor.
We will employ distribution functions inspired by the
shape of probability density functions that satisfy
σðxÞ > 0, σ0ðxÞ < 0 for x ≥ 0 and σ0ðx ¼ 0Þ ≠ 0 (see
Appendix A). Moreover, depending on the choice of the
distribution function, the variable x is replaced in σðxÞ by
1=r or 1=

ffiffiffi
r

p
with appropriate factors which depend on the

mass M and the charge q of the regular black hole.
The distribution functions are listed in Table I in the

same order as in Appendix A and satisfy the condition

mðrÞ
r

→ 0 when r → 0 ð4Þ

and asymptotically approach the Reissner–Nordström
metric

fðrÞ ¼ 1 −
2mðrÞ

r
≈ 1 −

2M
r

þ q2

r2
: ð5Þ

For each regular black hole solution of which the mass
function is given by Eq. (3), we can obtain the electric field
by considering the components of the Einstein gravitational
field equations Gμν ¼ 8πTμν. Here, the energy-momentum
tensor Tμν is given as

TABLE I. Examples of probability distribution functions used
in the mass functions of regular black holes.

Distribution function σðrÞ
exp ð− q2

2MrÞ
ðexpð q2MrÞ þ 1Þ−1
exp ð−

ffiffiffiffiffi
2q2

Mr

q
Þ=ð1þ exp ð−

ffiffiffiffiffi
2q2

Mr

q
ÞÞ2

2ðexpð
ffiffiffiffiffi
q2

Mr

q
Þ þ exp ð−

ffiffiffiffiffi
q2

Mr

q
ÞÞ−1

ð q2MrÞ=ðexpð q
2

MrÞ − 1Þ
ð6q2MrÞ expð

ffiffiffiffiffi
6q2

Mr

q
Þ=ðexpð

ffiffiffiffiffi
6q2

Mr

q
Þ − 1Þ2

LEONARDO BALART AND ELIAS C. VAGENAS PHYSICAL REVIEW D 90, 124045 (2014)

124045-2



Tμν ¼ LðFÞgμν − LFFμαFα
ν ; ð6Þ

where the Lagrangian LðFÞ depends on the Lorentz
invariant F ¼ 1

4
FμνFμν and we have defined LF ¼ dL=dF.

If we restrict to the electric field, i.e., we consider
Fμν ¼ EðrÞðδ0μδ1ν − δ1μδ

0
νÞ, and if we employ Eqs. (2) and

(3) given here as well as Eq. (7) from Ref. [16], then we can
write the components of Gμν as

G0
0 ¼ G1

1 ¼ −
2M
r2

σ0ðrÞ
σ∞

¼ 8πðLðFÞ þ E2LFÞ ð7Þ

G2
2 ¼ G3

3 ¼ −
M
r
σ00ðrÞ
σ∞

¼ 8πLðFÞ: ð8Þ

In addition, the electromagnetic field equations
∇μðFμνLFÞ ¼ 0 imply

EðrÞLF ¼ −
q

4πr2
: ð9Þ

By subtracting Eq. (7) from Eq. (8) and using Eq. (9), we
obtain a general expression for the electric field E of the
regular black hole solutions:

EðrÞ ¼ −
r3

2q
M
σ∞

d
dr

�
1

r2
dσðrÞ
dr

�
: ð10Þ

After considering any one of the distribution functions
listed in Table I, the corresponding electric fields are
regular everywhere and asymptotically behave as

EðrÞ ≈ q
r2
; ð11Þ

as expected from Eq. (5).
It is important to note that the distribution function σðrÞ,

which is associated with the mass function, converges to
zero approximately as e−

1
r when r → 0, and the same

applies to the derivatives of any order of σðrÞ. Therefore,
the curvature invariants, namely the Ricci scalar

R ¼ 2M
r2σ∞

ð2σ0ðrÞ þ rσ00ðrÞÞ; ð12Þ

the Ricci squared

RμνRμν ¼ 2M2

r4σ2∞
ð4σ0ðrÞ2 þ r2σ00ðrÞ2Þ; ð13Þ

and the Kretschmann scalar

RκλμνRκλμν ¼ 4M2

r6σ2∞
½4ð3σðrÞ2 − 4rσðrÞσ0ðrÞ þ 2r2σ0ðrÞ2Þ

þ 4r2ðσðrÞ − rσ0ðrÞÞσ00ðrÞ þ r4σ00ðrÞ2�; ð14Þ

are regular everywhere.
An equivalent description could be given by using the

dual P formalism implemented in Ref. [40] (some details of
this formalism are presented in Appendix B).

III. TWO EXAMPLES OF REGULAR
BLACK HOLE METRICS

In this section, we consider two of the distribution
functions listed in Table I in order to construct regular
black hole metrics.1

First, we consider the exponential distribution, where
the variable x is replaced with q2=ð2MrÞ in Eq. (A1) of
Appendix A (see also Table I), and we obtain

σðrÞ ¼ exp

�
−

q2

2Mr

�
; ð15Þ

where the normalization factor is

σ∞ ¼ 1: ð16Þ

Thus, the metric function is of the form

fðrÞ ¼ 1 −
2M
r

exp

�
−

q2

2Mr

�
; ð17Þ

which vanishes at the location of the horizons, i.e., r�.
By solving the resulting equation, namely fðr�Þ ¼ 0, we
find the real roots for r�,

rþ ¼ −
q2

2MWð0;− q2

4M2Þ
and r− ¼ −

q2

2MWð−1;− q2

4M2Þ
;

ð18Þ

where W is Lambert’s W function.
The corresponding electric field can be directly obtained

from Eq. (10),

EðrÞ ¼ q
r2

�
1 −

q2

8Mr

�
exp

�
−

q2

2Mr

�
; ð19Þ

which is regular everywhere and asymptotically behaves as
EðrÞ ¼ q=r2 þOð1=r3Þ. It should be noted that in this
example we have the extremal regular black hole
when jqj ¼ 1.213M.

1A similar treatment can also be applied to the rest of the
distribution functions in Table I.
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Second, we consider the Fermi–Dirac-type distribution.
Thus, if x is replaced with q2=ðMrÞ in Eq. (A2) of
Appendix A (see also Table I), we obtain the distribution
function

σðrÞ ¼ 1

expð q2MrÞ þ 1
ð20Þ

with normalization factor

σ∞ ¼ 1=2; ð21Þ
and the metric function is now written as

fðrÞ ¼ 1 −
2M
r

�
2

expð q2MrÞ þ 1

�
: ð22Þ

It is noteworthy that this metric function corresponds to an
Ayón-Beato and García black hole [11]. In addition, this
metric function satisfies the equation fðr�Þ ¼ 0 for the
location of the horizons, which now reads

r� ¼ 2M

�
2

expð q2

Mr�
Þ þ 1

�
: ð23Þ

This equation has two real roots which again will be
expressed in terms of Lambert’s W function [30]:

rþ ¼ −
4q2

4MWð0;− q2

4M2 e
q2

4M2Þ − q2

M

and

r− ¼ −
4q2

4MWð−1;− q2

4M2 e
q2

4M2Þ − q2

M

: ð24Þ

Employing Eq. (10), the corresponding electric field is now
written as

EðrÞ ¼ q
r2
sech2

�
q2

2Mr

��
1 −

q2

4Mr
tanh

�
q2

2Mr

��
: ð25Þ

Furthermore, the corresponding extremal regular black hole
is obtained when the value of the charge is jqj ¼ 1.055M
(see Refs. [26], [27], and [28]).

IV. MORE REGULAR BLACK HOLE METRICS

The use of the distribution functions mentioned above in
order to obtain regular black hole solutions can be extended
by considering the metric function to take the form

fðrÞ ¼ 1 −
2M
r

�
σðβrÞ
σ∞

�
β

; ð26Þ

where the function σðβrÞ corresponds to any one of the
mass functions listed in Table I, but with an additional
factor β > 0 for the variable r.

In this case, we can see that the mass function satisfies
the condition

mðrÞ ¼ M

�
σðβrÞ
σ∞

�
β

→ M when r → ∞ ð27Þ

in the same way as the distribution function satisfies

σðrÞ
σ∞

→ 1 when r → ∞: ð28Þ

Furthermore, using the same argument as above, one can
find that all curvature invariants are regular.
To illustrate these cases, let us consider here two

examples. The first one is constructed by employing the
Fermi–Dirac distribution function. In this case, the metric
function is written as

fðrÞ ¼ 1 −
2M
r

�
2

expð q2

βMrÞ þ 1

�
β

: ð29Þ

The outer and the inner horizons of this metric function can
be found numerically for each value of β. The correspond-
ing electric field can be obtained by using Eq. (10); thus,

EðrÞ¼ q
r2
exp

�ð1−βÞq2
2βMr

��
sech

�
q2

2βMr

��
1þβ

×

�
1−

q2

4Mr
tanh

�
q2

2βMr

�
þ 1

4βMr

�
1−β

expð q2

βMrÞþ1

��
:

ð30Þ

If we set β → 0 in Eq. (29), then we obtain the metric

fðrÞ ¼ 1 −
2M
r

exp

�
−

q2

Mr

�
; ð31Þ

while when we set β → ∞, we reproduce the metric
function given by Eq. (17), i.e.,

fðrÞ ¼ 1 −
2M
r

exp

�
−

q2

2Mr

�
: ð32Þ

It should be noted the difference in a factor of 2 between the
exponents of Eqs. (31) and (32). In Table II, we list some
values of β and the corresponding charges in order to
construct the extremal regular black hole metric for this
example.
The second example is given by using the logistic

distribution function for which the metric function reads

fðrÞ ¼ 1 −
2M
r

2
64 4 exp ð−

ffiffiffiffiffiffiffi
2q2

βMr

q
Þ

ð1þ exp ð−
ffiffiffiffiffiffiffi
2q2

βMr

q
ÞÞ2

3
75
β

: ð33Þ
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As before the horizons can be found numerically for each
value of β. Moreover, the corresponding electric field can
be obtained using Eq. (10):

EðrÞ ¼ q
r2
1

8

�
sech

 ffiffiffiffiffiffiffiffiffiffiffiffi
q2

2βMr

s !#2ð1þβÞ

×

"
ð1þ βÞ − β cosh

 ffiffiffiffiffiffiffiffiffi
2q2

βMr

s !

þ 7

ffiffiffiffiffiffiffiffiffi
βMr
2q2

s
sinh

 ffiffiffiffiffiffiffiffiffi
2q2

βMr

s !#
: ð34Þ

At this point a number of comments is in order. First, it is
noteworthy that the above expression for the electric field
as well as the electric field given by Eq. (30) asymptotically
behave as E ¼ q=r2. Second, if we set β → 0 in the metric
function given by Eq. (33), then we recover the
Schwarzschild black hole

fðrÞ ¼ 1 −
2M
r

; ð35Þ

while if we set β → ∞, then we get the metric function
given by Eq. (17):

fðrÞ ¼ 1 −
2M
r

exp

�
−

q2

2Mr

�
: ð36Þ

Third, it should be stressed that in the limit β → ∞ all
regular black hole metrics constructed by employing
Eq. (26) and the distribution functions listed in Table I
satisfy the condition

1 −
2M
r

�
σðβrÞ
σ∞

�
β

→ 1 −
2M
r

exp

�
−

q2

2Mr

�
: ð37Þ

Finally, when we set β → 0, for some of the cases, we
recover the Schwarzschild black hole as is the case for the
metric function given by Eq. (33), while for other cases we
obtain a black hole metric as the one given by Eq. (31). The
only exception here is the regular black hole metric for
which we have used the exponential distribution function,
namely Eq. (15), for its construction.

V. REGULAR BLACK HOLE METRIC THAT
SATISFIES THE WEC

In this section, we consider a distribution function
different from those listed in Appendix A (and thus in
Table I). This new distribution function is the log-logistic
distribution, which is given by

σðxÞ ¼ 1

ð1þ xÞ2 : ð38Þ

As in the previous section, we will employ the metric
function given in Eq. (26). Thus, making the variable
change x → 1=r with the appropriate factors, we can write
the metric function as

fðrÞ ¼ 1 −
2M
r

�
1

ð1þ q2

4βMrÞ2
�

β

: ð39Þ

Note that for this metric function, if we set β → 0, then we
recover the Schwarzschild black hole, while if we set
β → ∞, then we obtain the metric function given by
Eq. (17).
It should be pointed out that the curvature invariants,

namely

R ¼ ð2β þ 1Þ ð4βMÞ2βþ1q4

ð4βMrþ q2Þ2βþ1
r2β−3; ð40Þ

RμνRμν ¼ 2ð8βþ3ÞðβMÞ4βþ2q4

ð4βMrþ q2Þ4ðβþ1Þ ½128β2M2r2 − 16βð2β − 3ÞMq2rþ ð4βðβ − 1Þ þ 5Þq4�r4β−6; ð41Þ

RκλμνRκλμν ¼ 24ð2βþ1ÞM2

�
β2M2

ð4βMrþ q2Þ2
�

2β

×

�
1þ ð4βMr − ð2β − 1Þq2Þ2

ð4βMrþ q2Þ2 þ ð16β2M2r2 − 8βð2β − 1ÞMq2r2 þ ðβð2β − 3Þ þ 1Þq4Þ2
ð4βMrþ q2Þ4

�
r4β−6; ð42Þ

are all regular everywhere if β ≥ 3=2.

TABLE II. Values of β and the corresponding charges for the
case of an extremal regular black hole when we consider the
metric function given by Eq. (29).

β Extremal case

0.5 q ≈ 0; 991M
0.7 q ≈ 1.023M
1 q ≈ 1.055M
2.4 q ≈ 1.124M
4 q ≈ 1.153M
7 q ≈ 1.175M
10 q ≈ 1.186M
100 q ≈ 1.210M
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On the other hand, the WEC requires that the energy-
momentum tensor must satisfy Tμνtμtν ≥ 0 for all timelike
vectors tμ [41]. In general, in terms of the distribution
functions σðrÞ, the WEC implies (see also Eqs. (8) and (9)
in Ref. [16])

σ0ðrÞ
r2

≥ 0 ð43Þ

and

2
σ0ðrÞ
r

≥ σ00ðrÞ: ð44Þ

It is evident that if we set β ≤ 3=2 in Eq. (39) then the WEC
is satisfied. Therefore, if we impose β ¼ 3=2, then we can
construct a regular black hole solution which satisfies the
WEC and of which the metric function is of the form

fðrÞ ¼ 1 −
2M
r

�
1

1þ q2

6Mr

�
3

: ð45Þ

In addition, this black hole solution asymptotically behaves
as the Reissner–Nordström solution. Note that the aforesaid
metric function can also be obtained as in Ref. [16].
Moreover, it is known that if a charged regular black hole
satisfies the WEC then such a regular black hole has de
Sitter behavior at r → 0. Thus, if we set r → 0, then the
metric function given by Eq. (45) behaves like

fðrÞ ≈ 1 – 432
M4

q6
r2: ð46Þ

It should be stressed that the location of the horizons, i.e.,
r�, of the metric function given by Eq. (45) can be obtained
by solving the following cubic equation:

r3 þ
�
q2

2M
− 2M

�
r2 þ q4

12M2
rþ q6

216M3
¼ 0: ð47Þ

It can be shown that if q < 4M=3 then Eq. (47) has two
positive real roots. The extremal regular black hole is
obtained when qext ¼ 4M=3, and then Eq. (47) has one
positive real root of the form

rh ext ¼
16M
27

: ð48Þ

Furthermore, the electric field related to metric function
given by Eq. (45) is written as

EðrÞ ¼ q
r2

�
1

1þ q2

6Mr

�
5

; ð49Þ

which asymptotically becomes that of the Maxwell
theory.

VI. MORE REGULAR BLACK HOLE METRICS
THAT SATISFY THE WEC

In this section, we will construct new black hole metrics
using distribution functions different from those used in
previous sections. These black hole metrics will depend on
the arbitrary parameter β, and we will determine the value
of β in such a way that regularity and the WEC will be
satisfied.
We start by considering the standard Cauchy distribution

function

σðxÞ ¼ 1

ð1þ x2Þ ; ð50Þ

and then we will make the change x → 1=r with the
appropriate factors. Thus, by substituting the above dis-
tribution function in Eq. (26) and setting β ¼ 3=2, we
obtain a black hole metric which is regular everywhere and
which also satisfies the WEC. It should be noted that this
metric corresponds to the Bardeen solution, of which the
mass function reads

mðrÞ ¼ Mr3

ðr2 þ g2Þ3=2 ¼ M

�
1

1þ g2=r2

�
3=2

; ð51Þ

with g being a self-gravitating magnetic monopole
charge [15].
Next, we construct other black hole metrics based on the

Dagum distribution [42], which is given by

σðxÞ ¼ apxap−1

bapð1þ ðx=bÞaÞpþ1
; ð52Þ

with the variable x > 0 and the parameters a; b; p > 0.
First, it is easily seen that if we choose a ¼ 3, b ¼ 1, and

p ¼ 1=3 we can build a new metric function by replacing
Eq. (52) in Eq. (26), and of course we have to make the
change x → 1=r with the appropriate factors. In this case,
when we set β ¼ 3=4, the black hole metric becomes
regular everywhere and also satisfies the WEC. This
corresponds to the black hole solution given in
Ref. [20], of which the mass function reads

mðrÞ ¼ M
1þ 2l2M=r3

; ð53Þ

where l > 0 is the Hubble length.
Second, if we choose p ¼ 1=a and b ¼ 1, then we can

generalize the previous case with the following distribution
function:

σðxÞ ¼ 1

ð1þ xaÞaþ1
a

: ð54Þ

Thus, making the change x → q2=ðMrÞ and selecting the
appropriate factors, we can write the black hole metric in
the form
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fðrÞ ¼ 1 −
2M
r

�
1

ð1þ γð q2MrÞaÞ
aþ1
a

�
β

; ð55Þ

where γ > 0. As before, we can calculate the curvature
invariants and conclude that if we set β ≥ 3=ðaþ 1Þ, then
the black hole metric is regular everywhere; while if we set
β ≤ 3=ðaþ 1Þ, it satisfies the WEC. Thus, if we impose
β ¼ 3=ðaþ 1Þ, we have a regular black hole metric which
also satisfies the WEC and is written as

fðrÞ ¼ 1 −
2M
r

�
1

1þ γð q2MrÞ
a

�
3=a

: ð56Þ

The expression of the corresponding electric field is of the
form

E ¼ q
r2

�
3γð3þ aÞð q2MrÞ

a−1

2ð1þ γð q2MrÞ
aÞ2þ3=a

�
: ð57Þ

The metrics that can be derived from Eq. (56) asymptoti-
cally behave as the Schwarzschild black hole, and, for
small r, they behave as the de Sitter black hole,

fðrÞ ≈ 1 −
2M4

γ3=aq6
r2: ð58Þ

At this point, it should be pointed out that, except for the
case where a ¼ 1 and γ ¼ 1=6 which is equivalent to case
of Eq. (45), in all other cases the regular black hole metrics
asymptotically do not behave as the Reissner–Nordström
black hole. Furthermore, only in the case where a ¼ 1 and
γ ¼ 1=6, we have a model of nonlinear electrodynamics
which, in the weak field approximation, corresponds to the
Maxwell theory.

VII. REGULAR BLACK HOLES THAT
ASYMPTOTICALLY BEHAVE AS THE
REISSNER–NORDSTRÖM SOLUTION

In the previous section, we constructed a family of
regular black hole metrics given by Eq. (56), which satisfy
the WEC. However, as already noted, these black hole
metrics asymptotically do not behave as the Reissner–
Nordström black hole when we consider the case where
a ≥ 2. So, in this section, we consider two methods to build
regular black hole solutions using Eq. (56), of which the
electric fields will asymptotically behave as that of the
Maxwell theory.
The first method is to write the new black hole metrics in

the form

fðrÞ ¼ 1 −
2M
r

�
1

1þ γð q2MrÞ
a

�
3=a σðrÞ

σð∞Þ ; ð59Þ

where a ≥ 2, γ > 0 is a constant and σðrÞ can be any one of
the distribution functions listed in Table I. Note that the
values that the charge q can take in order for the black hole
metric to have horizons depends on the values of γ.
As an example of the general expression given by

Eq. (59), we consider the case in which the distribution
function is of the form

σðrÞ ¼ q2=ðMrÞ
expð q2MrÞ − 1

; ð60Þ

with a ¼ 4 and γ ¼ 1. Thus, we obtain the following
regular black hole metric:

fðrÞ ¼ 1 −
2M
r

�
1

1þ ð q2MrÞ
4

�
3=4
�

q2=ðMrÞ
expð q2MrÞ − 1

�
: ð61Þ

In this case, the electric field associated with the aforesaid
metric function is given as

EðrÞ ¼ −
Mr3

2q
d
dr

�
1

r2
d
dr

��
1

1þ ð q2MrÞ
4

�
3=4

×

�
q2=ðMrÞ

expð q2MrÞ − 1

���
; ð62Þ

which corresponds to an electric field obtained from a
nonlinear electrodynamics theory. This electric field is
regular everywhere and asympotically behaves as

EðrÞ ≈ q
r2
: ð63Þ

It is noteworthy that when jqj ¼ 0.907M we obtain the
metric and electric field for the corresponding extremal
regular black hole solution.
Furthermore, another interesting example which can be

classified within the family of metrics described by Eq. (59)
was developed in Ref. [12], by considering the distribution
function

σðrÞ ¼ exp

�
q2

Mr

�
; ð64Þ

together with the Bardeen model, i.e., choosing a ¼ 2 and
γ ¼ M2=q2 in Eq. (56).
It should be stressed that all regular black hole metrics

derived from the Eq. (59) asymptotically behave as the
Reissner–Nordström black hole metric. However, these
solutions do not satisfy the WEC.
The second method to build more regular black hole

metrics based on those given by Eq. (56) consists of adding
a new term which will make the metrics to behave
asymptotically as the Reissner–Nordström metric. To build
this new term, we employ once again the distribution
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function of Dagum with a factor q=r2. Thus, the metric
function is written

fðrÞ ¼ 1 −
2M
r

�
1

1þ γð q2MrÞ
a

�
3=a

þ q2

r2

�
1

1þ γð q2MrÞ
a

�
4=a

;

ð65Þ

where a ≥ 2 is an integer and γ > 0 is a constant. It should
be pointed out that if we set γ ≥ ð2=3Þa then the associated
solution satisfies the WEC. This can be demonstrated by
calculating the corresponding distribution functions and
their derivatives and then implementing Eqs. (43) and (44).
The expression for the electric field associated with the
above-mentioned metric is given by

E ¼ q
r2

�
3γð3þ aÞð q2MrÞ

a−1

2ð1þ γð q2MrÞ
aÞ2þ3=a þ

1 − γð3þ aÞð q2MrÞ
a

ð1þ γð q2MrÞ
aÞ2ð2þaÞ=a

�
:

ð66Þ

For small r, the black hole metrics obtained from Eq. (65)
behave as the de Sitter black hole metric, namely

fðrÞ ≈ 1 −
M4

γ4=aq6
ð2γ1=a − 1Þr2: ð67Þ

Note that the factor that accompanies the term r2 cannot
become zero because of the restriction γ ≥ ð2=3Þa. On the
other hand, if we set ð1=2Þa ≤ γ < ð2=3Þa, the black hole
metrics remain regular, without satisfying the WEC, but
they have a de Sitter center. Therefore, if a regular black
hole metric is regular and satisfies the WEC, then it has a de
Sitter center [4]. However, if the metric has a de Sitter
behavior when approaching the center, it does not neces-
sarily satisfy the WEC. Furthermore, if we set γ < ð1=2Þa,
the black hole metric is not regular.
Finally, there is a known case which can be obtained as a

particular case of Eq. (65) by choosing a ¼ 2 and
γ ¼ M2=q2. This case corresponds to the black hole metric
given in Ref. [8].

VIII. CONCLUSIONS

We have given various examples of regular black hole
solutions that asymptotically behave as the Reissner–
Nordström solution, and some of them also satisfy the
weak energy condition. To construct regular black hole
metrics, we employed several probability distribution
functions in which we have replaced the variable by its
reciprocal. In addition, we have also used powers of these
distribution functions as a second method to construct new
regular black hole metrics.
It is worth noting the case based on log-logistic dis-

tribution in Sec. V, where we have adjusted the power of the
distribution function to get a black hole metric which is

regular everywhere and also satisfies the WEC. One virtue
of this solution is that the corresponding extremal case can
be algebraically manipulated. Thus, we can revisit the
aspects studied in Refs. [26], [27], and [28] by using this
solution.
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APPENDIX A: CONTINUOUS PROBABILITY
DISTRIBUTIONS

Some probability distributions which satisfy σðxÞ > 0
and dσðxÞ=dx < 0 for x ≥ 0 are listed here (see,
e.g., Ref. [43]).
The exponential distribution is

σðxÞ ¼ e−x: ðA1Þ

The Fermi–Dirac distribution is

σðxÞ ¼ 1

ex þ 1
: ðA2Þ

The logistic distribution is

σðxÞ ¼ e−x

ð1þ e−xÞ2 : ðA3Þ

The hyperbolic secant distribution is [44]

σðxÞ ¼ 2

ex þ e−x
: ðA4Þ

The Einstein functions are

σðxÞ ¼ x
ex − 1

ðA5Þ

and

σðxÞ ¼ x2ex

ðex − 1Þ2 : ðA6Þ

APPENDIX B: DUAL P FORMALISM

We show here the description based in a dual represen-
tation of nonlinear electrodynamics obtained by a Legendre
transformation [40].
The metric function and its corresponding electromag-

netic field arise as a solution of Einstein field equations
coupled to a nonlinear electrodynamics model; that is,

LEONARDO BALART AND ELIAS C. VAGENAS PHYSICAL REVIEW D 90, 124045 (2014)

124045-8



S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π
R −

1

4π
LðFÞ

�
; ðB1Þ

where R is the scalar curvature and the Lagrangian L
depends on F ¼ 1

4
FμνFμν which, for weak fields, describes

the Maxwell theory. One can describe the system under
study in terms of an auxiliary field defined by Pμν ¼
ðdL=dFÞFμν. The dual representation is obtained by means
of a Legendre transformation

H ¼ 2F
dL
dF

− L; ðB2Þ

which is a function of the invariant P ¼ 1
4
PμνPμν. Thus, we

can express the Lagrangian L depending on Pμν as

L ¼ 2P
dH
dP

−H ðB3Þ

and the electromagnetic field as

Fμν ¼
dH
dP

Pμν: ðB4Þ

The energy-momentum tensor in the dual representation is
written as

Tμν ¼
1

4π

dH
dP

PμαPα
ν −

1

4π
gμν

�
2P

dH
dP

−H
�
: ðB5Þ

It follows from the components of Tμν that M0ðrÞ ¼
−r2HðPÞ. Therefore, we can obtain the corresponding
mass function.
We now list the function HðPÞ for each distribution

given in Table I, and to simplify notation, we define
U ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2q2P4

p
, s ¼ q=ð2MÞ:

Exponential:

H ¼ Pe−U ðB6Þ

Fermi-Dirac:

H ¼ 4P
e2U

ð1þ e2UÞ2 ¼ Pð1 − tanh2ðUÞÞ ðB7Þ

Logistic:

H ¼ Pffiffiffiffi
U

p sech2
ffiffiffiffi
U

p
tanh

ffiffiffiffi
U

p
ðB8Þ

Hyperbolic secant:

H ¼ Pffiffiffiffiffiffiffi
2U

p sech
ffiffiffiffiffiffiffi
2U

p
tanh

ffiffiffiffiffiffiffi
2U

p
ðB9Þ

Einstein:

H ¼ Pð4Ue2U − 2Þ 1

e2U − 1
: ðB10Þ

H ¼ 3Pcsch2ð
ffiffiffiffiffiffiffi
3U

p
Þð

ffiffiffiffiffiffiffi
3U

p
cothð

ffiffiffiffiffiffiffi
3U

p
Þ − 1Þ: ðB11Þ

Finally, we also include the case inspired by the log-logistic
distribution which reads

H ¼ P
ð1þ U=3Þ4 : ðB12Þ
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