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We study torsional oscillations of neutron stars in the scalar-tensor theory of gravity using the relativistic
Cowling approximation. We compute unperturbed neutron star models adopting realistic equations of state
for the neutron star’s core and crust. For scalar-tensor theories that allow for spontaneous scalarization, the
crust thickness can be significantly smaller than in general relativity. We derive the perturbation equation
describing torsional oscillations in scalar-tensor theory, and we solve the corresponding eigenvalue
problem to find the oscillation frequencies. The fundamental mode (overtone) frequencies become smaller
(larger) than in general relativity for scalarized stellar models. Torsional oscillation frequencies may yield
information on the crust microphysics ifmicrophysics effects are not degenerate with strong-gravity effects,
such as those due to scalarization. To address this issue, we consider two different models for the equation
of state of the crust and we look at the effects of electron screening. The effect of scalarization on torsional
oscillation frequencies turns out to be smaller than uncertainties in the microphysics for all spontaneous
scalarization models allowed by binary pulsar observations. Our study shows that the observation of
quasiperiodic oscillations following giant flares can be used to constrain the microphysics of neutron star
crusts, whether spontaneous scalarization occurs or not.
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I. INTRODUCTION

Observations of quasiperiodic oscillations (QPOs) fol-
lowing giant flares in soft gamma-ray repeaters [1–3]
suggest a close coupling between the seismic motion of
the crust after a major quake and the modes of oscillation in
a magnetar. The analysis of x-ray data in SGR 1900þ 14
[2] and SGR 1806 − 20 [3] has unveiled a number of
periodicities, with frequencies that agree reasonably well
with the expected torsional (or toroidal shear) oscillation
modes of the neutron star (NS) crust: see e.g. [4] for a
review, and [5] for recent progress in explaining apparent
discrepancies between theoretical models and observations.
These observations are very exciting because they allow us,
for the very first time, to test NS oscillation models.
The foundations of crustal torsional oscillation theory in

general relativity (GR) were laid in a classic paper by
Schumaker and Thorne [6]. Recent work motivated by
QPO observations explored how torsional oscillation
frequencies are affected by various physical effects, includ-
ing crustal elasticity [7], magnetic fields [8–10], super-
fluidity [11], the nuclear symmetry energy [12–14] and
electron screening [15].
The main motivation of this paper is to answer the

following question: could torsional oscillation frequencies

carry observable imprints of strong-field dynamics, and
possibly hint at dynamics beyond GR? Vice versa, can we
ignore effects due to hypothetical strong-field modifica-
tions of GR when we explore the dependence of torsional
oscillation frequencies on the various physical mechanisms
listed above?
We address these questions within the simplest class of

modifications of GR, namely scalar-tensor theory. Damour
and Esposito-Farèse [16] showed that a wide class of
scalar-tensor theories can pass Solar System tests and
exhibit nonperturbative strong-field deviations away from
GR (“spontaneous scalarization”) that can potentially be
measured by observations of the bulk properties of NSs,
and of binary systems containing NSs. The magnitude of
these deviations is very sensitive to the value of a certain
theory parameter β, defined in Eq. (16) below.1

Static NSs in theories with spontaneous scalarization
were first studied in [16]. Their stability was investigated
using catastrophe theory by Harada [17,18]. The formation
of scalarized NSs in gravitational collapse was studied in
[19,20], and a possible mechanism to “seed” macroscopic
scalar fields from quantum vacuum instabilities was
recently suggested [21–23]. Slowly rotating NSs were
studied at first [24,25] and second [26] order in rotation
by extending the Hartle-Thorne formalism [27,28]. Recent
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1There exists a threshold βc ∼ −4.5, whose exact value
depends on the NS equation of state. Scalarization is possible
when β < βc.
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work [29–31] addressed the properties of rapidly rotating
NS models.
Widely separated binary systems of compact objects in

scalar-tensor theory have been studied in [24,32,33], and
the results have been combined with binary pulsar timing
data in order to obtain bounds on scalar-matter coupling
parameters, in particular β. Recent pulsar timing data
continue to improve these bounds [34,35]. Recently there
has been interest in close binaries and mergers, and it was
found that dynamical scalarization may take place: a close
NS binary may scalarize even if the NSs would not
scalarize in isolation [36–38]. The possibility of exploiting
this mechanism in order to obtain bounds on scalar-matter
coupling parameters from future gravitational wave obser-
vations has been explored in [39,40].
A second motivation for this work comes from the

surprising finding that there are universal “I-Love-Q”
relations between a NS’s moment of inertia, tidal Love
number and quadrupole moment in GR [41,42]. These
relations are “universal” in the sense that they are inde-
pendent of the poorly known equation of state (EOS) of
matter at high densities. Yagi and Yunes [41,42] pointed out
that if these relations were different in alternative theories
of gravity, measurements of these bulk NS properties could
be used to constrain alternative theories or even hint at
possible strong-field modifications of GR. However, stellar
structure calculations in scalar-tensor theories show that the
I-Love-Q relations are remarkably insensitive to scalariza-
tion for values of the theory parameters allowed by binary
pulsar tests [26,31]. If the static properties of NSs (multi-
pole moments and tidal deformation coefficients) cannot be
used for this purpose, it seems natural to explore QPOs and
torsional oscillation frequencies as promising observational
avenues to look for smoking guns of new physics.
Several papers have investigated the signature of alter-

native theories of gravity on the NS oscillation spectrum.
Sotani et al. studied nonradial oscillations in scalar-tensor
gravity [43–45], TeVeS [46–49] and Eddington-inspired
Born-Infeld gravity [50]. In particular, Refs. [43,44]
showed that the nonradial oscillation frequencies of NSs
can change when the effects of scalarization are large
enough to modify the bulk properties of the star by an
appreciable amount. These studies were motivated by
gravitational-wave asteroseismology, i.e. by the prospect
of constraining the stellar properties and the EOS from
direct observations of gravitational radiation from oscillat-
ing NSs. This is one of the major science goals of third-
generation gravitational-wave detectors such as the
Einstein Telescope, but it seems highly unlikely that we
will measure NS oscillation accurately enough to constrain
alternative theories of gravity with upcoming second-
generation experiments, such as Advanced LIGO and
Virgo (cf. [51,52] for reviews). The connection between
torsional oscillations and QPOs means that our results have
more immediate experimental relevance.

Another noteworthy aspect of this work is that, whereas
models of NSs in alternative theories of gravity usually
adopt simple EOS models, none of these investigations has
studied the effect of scalarization on the structure of the NS
crust. Here we show quantitatively the connection between
the crustal depth, the threshold for scalarization and the
scalar field profile in a scalarized star.
The plan of the paper is as follows. In Sec. II we give the

equations of hydrostatic equilibrium and we present
numerical results for the equilibrium structure using differ-
ent models for the EOS prevailing in the crust. In Sec. III
we derive the perturbation equation describing torsional
oscillations in scalar-tensor theory in the Cowling approxi-
mation, and we describe the numerical method we used to
solve the corresponding eigenvalue problem. Section IV
shows our numerical results for the oscillation spectra. In
the conclusions we discuss the implications and possible
extensions of our work. Appendix A provides the deriva-
tion of an approximate analytical expression for the
ratio between the crust thickness and the stellar radius in
scalar-tensor theory, that generalizes a similar result by
Samuelsson and Andersson [7] in GR. We carry out most of
the work in the Einstein frame, but in Appendix B we show
that the Einstein- or Jordan-frame formulations are equiv-
alent, in the sense that the energy-momentum conservation
law in either frame leads to the same perturbation
equations.

II. STELLAR MODELS IN SCALAR-TENSOR
THEORY

A. Action and field equations

We consider the Einstein-frame action [16]

S ¼ c4

16πG�

Z
d4x

ffiffiffiffiffiffiffiffi−g�
p
c

ðR� − 2gμν� ∂μφ∂νφÞ

þ SM½ψM;A2ðφÞg�μν�; ð1Þ

whereG� is the bare gravitational constant, g� ≡ det½g�μν� is
the determinant of the Einstein-frame metric g�μν, R� is the
Ricci curvature scalar of the metric g�μν and φ is a massless
scalar field. SM is the action of the matter fields ψM,
coupled to the Einstein-frame metric g�μν and scalar field φ
via the Jordan-frame metric ~gμν ≡ A2ðφÞg�μν, where AðφÞ
is a conformal factor. Throughout this work we use
geometrical units (c ¼ 1 ¼ G�) and a mostly plus metric
signature ð−;þ;þ;þÞ. Quantities associated with the
Einstein (Jordan) frame will be labeled with an asterisk
(tilde).
The field equations of this theory, obtained by varying

the action S with respect to gμν� and φ, respectively, are
given by
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R�μν ¼ 2∂μφ∂νφþ 8π

�
T�μν −

1

2
T�g�μν

�
; ð2Þ

□�φ ¼ −4παðφÞT�; ð3Þ

where R�μν is the Ricci tensor, αðφÞ≡ dlogAðφÞ=dφ is
usually called the “scalar-matter coupling function,” Tμν

� is
the matter field energy-momentum tensor defined as

Tμν
� ≡ 2ffiffiffiffiffiffiffiffi−g�

p δSM½ψM; A2ðφÞg�μν�
δg�μν

; ð4Þ

and T� ≡ Tμν
� g�μν is its trace. The energy-momentum tensor

in the Jordan frame ~Tμν, with trace ~T ≡ ~Tμν ~gμν, is defined
as

~Tμν ≡ 2ffiffiffiffiffiffi
−~g

p δSM½ψM; ~gμν�
δ~gμν

: ð5Þ

The energy-momentum tensors (and their traces) in these
two conformally related representations of the theory are
related as follows:

Tμν
� ¼ A6ðφÞ ~Tμν; T�μν ¼ A2ðφÞ ~Tμν; T� ¼ A4ðφÞ ~T:

ð6Þ

Moreover, the covariant divergence of the energy-
momentum tensor in the Einstein and Jordan frames can
be shown to be

∇�μT
μν
� ¼ αðφÞT�∇ν�φ; ð7Þ

~∇μ
~Tμν ¼ 0: ð8Þ

In the limit αðφÞ → 0 the scalar field decouples from
matter, and the theory reduces to GR.

B. The equations of hydrostatic equilibrium

The line element describing the space-time of a static,
spherically symmetric star in Schwarzschild coordinates is
given by

ds2� ¼ −e2Φdt2 þ e2Λdr2 þ r2dθ2 þ r2 sin2 θdϕ2 ð9Þ

in the Einstein frame, and by

d~s2 ¼ A2ðφÞð−e2Φdt2 þ e2Λdr2 þ r2dθ2

þ r2 sin2 θdϕ2Þ ð10Þ

in the Jordan frame, where Φ and Λ are functions of the
radial coordinate r. By symmetry, the scalar field φ also
depends only on r. We assume the energy-momentum
tensor ~Tμν to be that of a perfect fluid:

~Tμν ¼ ð~εþ ~pÞ ~uμ ~uν þ ~p~gμν; ð11Þ

where ~ε is the energy density, ~p the pressure and ~uμ the
fluid’s four-velocity. Using Eqs. (9) and (11), the field
equations (2) and (3) yield the following equations that
describe a static spherically symmetric star in hydrostatic
equilibrium in scalar-tensor theory [16,24]:

dm
dr

¼ 4πA4ðφÞr2 ~εþ 1

2
rðr − 2mÞψ2; ð12Þ

dΦ
dr

¼ 4πA4ðφÞ r2 ~p
r − 2m

þ 1

2
rψ2 þ m

rðr − 2mÞ ; ð13Þ

dψ
dr

¼ 4πA4ðφÞ r
r − 2m

½αðφÞð~ε − 3 ~pÞ þ rð~ε − ~pÞψ �

−
2ðr −mÞ
rðr − 2mÞψ ; ð14Þ

d ~p
dr

¼ −ð~εþ ~pÞ
�
dΦ
dr

þ αðφÞψ
�
: ð15Þ

Here m ¼ mðrÞ is the relativistic mass-energy function,
defined in terms of ΛðrÞ as m≡ ðr=2Þð1 − e−2ΛÞ, and we
introduced ψ ≡ dφ=dr.
Hereafter, following Damour and Esposito-Farèse

[16,24], we will focus on the scalar-tensor theory specified
by the choice

AðφÞ ¼ e
1
2
βφ2

: ð16Þ
For sufficiently large and negative values of β, as discussed
in the Introduction, NSs in this theory can undergo a phase
transition called spontaneous scalarization and acquire a
nonvanishing scalar charge associated with a nontrivial
scalar field configuration. These scalarized solutions of the
field equations are more energetically favorable than non-
scalarized solutions.
To close this system of equations we must complement it

with an EOS ~p ¼ ~pð~εÞ. In this paper, we construct our
stellar models adopting two EOSs for the NS core, namely
EOS APR [53] and EOS MS0 [54], while for the NS crust
we use the EOSs derived by Kobyakov and Pethick
(henceforth KP, [55]) and by Douchin and Haensel (hence-
forth DH, [56]). These crust EOSs have densities ~εb at the
crust basis equal to ~εb ¼ 1.504 × 1014 g=cm3 for EOS KP,
and ~εb ¼ 1.285 × 1014 g=cm3 for EOS DH. For a com-
parison between the physical assumptions involved in the
construction of these two EOSs, see e.g. [15]. In Fig. 1 we
display the relation between pressure and energy density
for EOSs DH and KP.

C. Numerical results for unperturbed stars

To obtain the equilibrium stellar models we integrate
numerically Eqs. (12)–(15) outwards starting from r ¼ 0
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with initial conditions mð0Þ ¼ 0, Φð0Þ ¼ Φc, φð0Þ ¼ φc,
ψð0Þ ¼ 0 and ~εð0Þ ¼ ~εc, using one of the two EOSs (APR
or MS0) for the core region. The point r ¼ rb such that
~εðrbÞ ¼ ~εb determines the location of the crust basis. The
integration then proceeds until we reach a point r ¼ rs for
which ~pðrsÞ ¼ 0, which defines the Einstein-frame radius
of the star. The radii rb and rs can be converted to the
physical (Jordan) frame using the relations ~Rb ¼ AðφbÞrb
and ~R ¼ AðφsÞrs, where φb ¼ φðrbÞ and φs ¼ φðrsÞ. We
can then define the crust thickness as Δ ~R≡ ~R − ~Rb. For
convenience, we also introduce the dimensionless frac-
tional crust thickness ~R≡ Δ ~R= ~R. We remark that the
theory is invariant under reflection symmetry (φ → −φ),
and therefore, for simplicity, we shall only consider positive
values of the scalar field.
At spatial infinity (r → ∞) the metric g�μν and the scalar

field φ behave asymptotically as

g�tt ¼ −1þ 2M
r

þO
�
1

r2

�
; ð17Þ

g�rr ¼ 1þ 2M
r

þO
�
1

r2

�
; ð18Þ

φ ¼ φ∞ þQ
r
þO

�
1

r2

�
; ð19Þ

where M is the Arnowitt-Deser-Misner mass and Q is the
scalar charge. The values of the various variables at the
stellar surface (labeled with the subscript s) can be used to
calculate M, Q and the asymptotic value of the scalar field
φ∞ ≡ φðr → ∞Þ via the following expressions [16]:

M ¼ r2sΦ0
s

�
1 −

2ms

rs

�
1=2

exp

�
−

Φ0
s

ðΦ02
s þ ψ2

sÞ1=2

× arctanh

�ðΦ02
s þ ψ2

sÞ1=2
Φ0

s þ 1=rs

��
; ð20Þ

Q ¼ −
ψ s

Φ0
s
M; ð21Þ

φ∞ ¼ φs þ
ψ s

ðΦ02
s þ ψ2

sÞ1=2
arctanh

�ðΦ02
s þ ψ2

sÞ1=2
Φ0

s þ 1=rs

�
; ð22Þ

where Φ0
s can be calculated with the aid of Eq. (13) as

Φ0
s ¼

1

2
rsψ2

s þ
ms

rsðrs − 2msÞ
; ð23Þ

and primes indicate partial derivatives with respect to the
radial coordinate r.
From now on, we will assume that φ∞ ¼ 0. To obtain

solutions of Eqs. (12)–(15) satisfying this assumption, we
apply the shooting method in order to find the central
values of the scalar field φc such that the required value of
φ∞ is obtained. As a check of our code we compared our
results against the ones presented in Refs. [30] (in scalar-
tensor theory) and [57,58] (in GR), finding excellent
agreement.
In Fig. 2 we present general properties of stellar models

constructed by solving Eqs. (12)–(15) combining EOS
APR and EOS MS0 (for the NS core) with EOS KP and
EOS DH (for the NS crust). The top row refers to the APR
EOS, and the bottom row refers to the MS0 EOS; results for
different crust models are shown using different line styles
in each inset.
The leftmost column shows the mass-radius relation.

Deviations from GR due to spontaneous scalarization are
clearly visible; we also see that the choice of crustal EOS
has negligible influence on the mass-radius relation, for
both “ordinary” and scalarized stars. The second column
shows the central value of the scalar field φc as a function
of the central density ~εc. The scalar field at the center
acquires a nonzero value (i.e., the NS becomes scalarized)
around ~εc ≈ 4 × 1014–6 × 1014 g=cm3, and it has a maxi-
mum around ~εc ≈ 7 × 1014–9 × 1014 g=cm3. In the third
column we plot the dimensionless scalar charge α≡
−Q=M as a function of the compactness ~C≡M= ~R (both
expressed in geometrical units). Finally, the rightmost
column shows ~R as a function of the compactness ~C. In
comparison with their GR counterparts, for scalarized stars
the crust represents a smaller fraction of the NS interior.
Note also that deviations in the crust thickness due to
scalarization and nonzero scalar charges develop in the
same range of compactness ~C, as expected.
These plots show that the choice of crustal EOS has

negligible effects on the bulk properties of the star. This is

FIG. 1 (color online). Pressure ~p versus energy density ~ε for the
crust EOSs considered in this work: EOS DH (solid line) and
EOS KP (dashed line).
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not surprising, considering that EOSs DH and KP have very
similar crust basis densities ~εb and ~pð~εÞ (cf. Fig. 1).
However, as we will see in Sec. III B, different crustal
EOSs result in rather different elastic properties for the
crust, and they do have an effect on torsional oscillation
frequencies.

D. An approximate formula for R

Samuelsson and Andersson [7] obtained a simple
approximate analytical expression for the ratio between
the crust thickness and stellar radiusR, within GR, in terms
of the star’s compactness C:

R ¼
�
C
σ
e2Λ þ 1

�
−1
; ð24Þ

where e−2Λ ¼ 1 − 2C and σ ≈ 0.02326 is a constant found
by curve fitting, which in general depends on the crustal
EOS [59].
In Appendix A we show that this result can be gener-

alized to scalar-tensor theory as follows:

R ¼ σ

2βζ

�
F −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 −

4βζ

σ

r �
; ð25Þ

where we introduced

F ≡ 1þ 1

σ
ðCe2Λ þ βζÞ ð26Þ

and ζ ¼ ζðCÞ≡ φsψ srs, which is obtained by interpolation,
given a family of stellar models, as a function of C. We

make the same approximations used in [7], and in addition
we assume the scalar field to be constant throughout the NS
crust. From Eq. (25) we can also calculate the first
correction to Eq. (24) in powers of βζ, due to the presence
of the scalar field in a scalarized NS:

FIG. 2 (color online). Properties of our stellar models in scalar-tensor theory. From left to right we show the mass-radius relation, the
scalar field at the center of the star φc as a function of the central density ~εc, the dimensionless ratio −α ¼ Q=M as a function of the
compactness ~C and the fractional crust thickness ~R as a function of ~C. The choice of crustal EOS does not sensibly affect the crust
thickness and the onset of scalarization. In all panels, curves with various line styles correspond to stellar models using EOS DH for the
NS crust: solid lines correspond to β ¼ 0.0, dashed lines to β ¼ −4.5, and dotted lines to β ¼ −6.0. Different symbols correspond to
stellar models using EOS KP for the crust: circles for β ¼ 0.0, squares for β ¼ −4.5 and triangles for β ¼ −6.0.

FIG. 3 (color online). Comparison between Eq. (25) and the
numerical results for β ¼ −6.0, using σ ¼ 0.02326. The GR
expression (24) is also shown. Since the integration of
Eqs. (12)–(15), gives us φ in the Einstein-frame radial coordinate
r, the compactness and fractional crust thickness are evaluated in
this frame. Notice, however, that even for β ¼ −4.5 (a value
marginally excluded by binary pulsars observations [34]) the
percent difference between the compactnesses and fractional crust
thicknesses in the two frames is less than 1.0%, and therefore
Eq. (25) is accurate for all physically sensible values of β.
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R≈
�
C
σ
e2Λ þ 1

�
−1

− 2Ce2Λ
ðβζÞ2
σ3

�
C
σ
e2Λ þ 1

�
−3
; ð27Þ

where the minus sign indicates that R is smaller for such
stars in comparison to nonscalarized ones, as observed in
Figs. 2 and 3.
To illustrate how accurately Eq. (25) describes the

behavior of R observed in Fig. 2, in Fig. 3 we plot R,
choosing EOS APR to describe the NS core, as a function
of C for β ¼ −6.0 (the case in which deviations from GR
are greatest). We find good agreement between the approxi-
mate expression and data obtained by numerically solving
Eqs. (12)–(15). As can be seen, the same value of σ
obtained in [7] for the EOS used in [59] is accurate enough
for both EOS DH and EOS KP.

III. TORSIONAL PERTURBATIONS IN THE
COWLING APPROXIMATION

A. Derivation of the perturbation equations

Let us now derive the equation describing torsional
oscillations in scalar-tensor theory. We begin by introduc-
ing a small fluid perturbation described by a Lagrangian
displacement vector

~ξi ¼
�
0; 0; ~Yðt; rÞ 1

sin θ
∂θPlðcos θÞ

�
; ð28Þ

where Plðcos θÞ is the Legendre polynomial of order l.
For notational convenience, in Eq. (28) we omit the sum
over l. The perturbation of the fluid four-velocity
δ ~u3 ¼ ~u0ð∂ ~ξ3=∂tÞ is

δ ~u3 ¼ A−1ðφÞe−Φ _~Yðt; rÞ 1

sin θ
∂θPlðcos θÞ; ð29Þ

where the dot represents a partial derivative with respect to
the time coordinate t.
In this work we use the Cowling approximation [60,61],

i.e. we assume that matter perturbations do not result in
perturbations on the metric ~gαβ: δ~gμν ¼ 0. In spherically
symmetric, perfect fluid NSs, the pressure ~p, the energy
density ~ε and the scalar field φ are unaffected by odd (axial)
perturbations (see e.g. [62] for a discussion within GR).
Metric perturbations are effectively variations of the gravi-
tational potential induced by fluid perturbations (in GR)
and scalar field perturbations (in scalar-tensor theory).
Therefore the Cowling approximation is adequate to study
torsional oscillations, that are odd (axial) in character.
Within this approximation, the perturbed perfect fluid
energy-momentum tensor (11), including the shear tensor
contribution δ ~Sμν, is

δ ~Tμν ¼ ð ~pþ ~εÞðδ ~uμ ~uν þ ~uμδ ~uνÞ − 2~μδ ~Sμν; ð30Þ

where we have introduced the shear modulus ~μ ¼ ~μðrÞ.
While the first term in Eq. (30) is simple to calculate,
to obtain δ ~Sμν we must first use the fact that
δ ~σμν ≡ £ ~uδ ~Sμν ¼ A−1ðφÞ expð−ΦÞ∂0δ ~Sμν, where the
perturbed rate of shear δ ~σμν ¼ δ ~σνμ is given by

δ ~σμν ¼
1

2
ðδ ~Pα

ν
~∇α ~uμ þ δ ~Pα

μ
~∇α ~uν þ ~Pα

ν
~∇αδ ~uμ

þ ~Pα
μ
~∇αδ ~uνÞ −

1

3
ðδ ~Pμν

~∇α ~uα þ ~Pμν
~∇αδ ~uαÞ; ð31Þ

δ ~Pμν denotes the perturbed projection operator

δ ~Pμν ¼ δ ~uμ ~uν þ ~uμδ ~uν; ð32Þ

and £ ~u is the Lie derivative along the worldline of a fluid
element [6]. The nonzero components of the perturbed rate
of shear δ ~σμν can then be shown to be

δ ~σ13 ¼
1

2
AðφÞe−Φ _~Y

0ðt; rÞr2 sin θ∂θPlðcos θÞ; ð33Þ

δ ~σ23 ¼
1

2
AðφÞe−Φ _~Yðt; rÞr2sin2θ∂θ

�
1

sin θ
∂θPlðcos θÞ

�
:

ð34Þ

Using Eqs. (33) and (34), the perturbed shear tensor has
components

δ ~S13 ¼
1

2
A2ðφÞ ~Y0ðt; rÞr2 sin θ∂θPlðcos θÞ; ð35Þ

δ ~S23¼
1

2
A2ðφÞ ~Yðt;rÞr2sin2θ∂θ

�
1

sinθ
∂θPlðcosθÞ

�
: ð36Þ

Combining these results, we find that the nonzero
components of the perturbed energy-momentum tensor are

δ ~T03 ¼ −ð ~pþ ~εÞA2ðφÞ _~Yr2 sin θ∂θPlðcos θÞ; ð37Þ

δ ~T13 ¼ −~μA2ðφÞ ~Y0ðt; rÞr2 sin θ∂θPlðcos θÞ; ð38Þ

δ ~T23 ¼ − ~μA2ðφÞ ~Yðt; rÞr2sin2θ∂θ

�
1

sin θ
∂θPlðcos θÞ

�
:

ð39Þ

In the GR limit [obtained by taking AðφÞ ¼ 1, and
consequently αðφÞ ¼ 0] the above results are in agreement
with [6] when we neglect metric perturbations in their
equations.
In the Cowling approximation, the variation of the

energy-momentum conservation law in the Jordan frame
[43] can be obtained from Eq. (8):
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~∇νδ ~T
ν
μ ¼ ∂νδ ~T

ν
μ þ Γν�ανδ ~T

α
μ − Γα�μνδ ~T

ν
α

þ 4αðφÞ∂αφδ ~T
α
μ − αðφÞ∂μφδ ~T

α
α

¼ 0; ð40Þ

where Γμ
�νσ denotes the Christoffel symbols of the Einstein-

frame metric, related to the Jordan-frame counterparts by

~Γσ
μν ¼ Γσ�μν þ αðφÞðδσν∂μφþ δσμ∂νφ − gσρ� g�μν∂ρφÞ: ð41Þ

In Appendix B we show that Eq. (40) can also be obtained
starting from the energy-momentum conservation law (7)
in the Einstein frame, and therefore the two frames are
physically equivalent.
By setting μ ¼ 3 and making use of Eqs. (37)–(39) we

obtain the following differential equation for ~Yðt; rÞ:

~Y00ðrÞ þ
�
4

r
þ Φ0 − Λ0 þ ~μ0

~μ
þ 4αðφÞψ

�
~Y0ðrÞ

þ
��

ω

~vs

�
2

e−2Φ −
ðlþ 2Þðl − 1Þ

r2

�
e2Λ ~YðrÞ ¼ 0;

ð42Þ
where we have assumed a harmonic time dependence
~Yðt; rÞ ¼ ~YðrÞeiωt for the perturbation variable, and we
have introduced the shear wave velocity ~v2s ≡ ~μ=ð ~pþ ~εÞ.
We can recast Eq. (42) in a form identical to the GR case

(cf. [6,15]) if we introduce an effective shear modulus
~μeff ≡ A4ðφÞ ~μ, an effective wave velocity ~v2eff ≡ A4ðφÞ ~v2s
and a rescaled frequency ω̄ ¼ A2ðφÞω:

~Y00ðrÞ þ
�
4

r
þ Φ0 − Λ0 þ ~μ0eff

~μeff

�
~Y0ðrÞ

þ
��

ω̄

~veff

�
2

e−2Φ −
ðlþ 2Þðl − 1Þ

r2

�
e2Λ ~YðrÞ ¼ 0.

ð43Þ

Given the definition of the conformal factor (16), the factor
A4ðφÞ is always less than unity when β < 0, and there-
fore ~μeff= ~μ ≤ 1.
To obtain the oscillation frequencies we must integrate

Eq. (43) numerically with appropriate boundary conditions.
We assume that torsional oscillations are confined to the NS
crust, so our boundary conditions are a zero-torque con-
dition at r ¼ rs and a zero-traction condition at r ¼ rb.
These boundary conditions follow from the fact that the
shear modulus is zero in the NS core and outside the star,
and they imply that ~YðrÞ must satisfy Neumann boundary
conditions, i.e. ~Y0ðrÞ ¼ 0 at both r ¼ rb and r ¼ rs
[6,8,15]. Our integrations of Eq. (43) are performed in
the Einstein frame, but since φ∞ ¼ 0, the torsional oscil-
lation frequencies measured at infinity are the same in the
Einstein and Jordan frames.

Following common practice in the literature, we will
present numerical results for the torsional oscillation
frequencies ntl ≡ ω=ð2πÞ. Here n is the number of radial
nodes of the function ~YðrÞ in the crust region, and l is the
usual angular index associated with the Legendre poly-
nomials Plðcos θÞ.

B. The shear modulus

Torsional oscillations depend on the elastic properties of
the solid NS crust [63], characterized by the shear stress
tensor.2 A crucial element in describing the elastic proper-
ties of the NS crust is the shear modulus ~μ. Assuming the
NS crust to be a body-centered cubic (bcc) lattice, Ogata
and Ichimaru [64] (see also [65]) showed that the shear
modulus in the limit of zero temperature can be approxi-
mated as

~μ ¼ 0.1194n
ðZeÞ2
~a

; ð44Þ

where n is the ion number density, Ze the charge of the
nuclei and ~a3 ¼ 3=ð4πnÞ is the radius of the Wigner-Seitz
cell containing one nucleus. Although it is often assumed
that the electrons are uniformly distributed in the NS crust,
one can also calculate the correction to the shear modulus
due a nonuniformity of the electron density distribution, i.e.
electron screening effects [55,66]. Kobyakov and Pethick
[55] obtained the following corrected expression for
Eq. (44):

~μ ¼ 0.1194nð1 − 0.010Z2=3Þ ðZeÞ
2

~a
: ð45Þ

For Z ¼ 40, electron screening can reduce the shear
modulus by ≈11.7%. As discussed in [15], this reduces
the fundamental mode frequency 0t2 by roughly 6% in GR,
independently of whether we use EOS DH or KP.
In our calculations we consider both Eqs. (44) and (45)

to see whether one would be able, in principle, to
distinguish modifications of the torsional oscillations spec-
trum due to a modified theory of gravity from microphysics
effects (electron screening being one of the simplest
examples to investigate).
The impact of electron screening effects can be visual-

ized by plotting the shear velocity ~v2s ¼ ~μ=ð~εþ ~pÞ in the
crust region. Figure 4 shows ~v2s for NS models in GR and in
a scalar-tensor theory with β ¼ −6.0, using both EOS DH
and KP, with and without electron screening effects. All NS
models shown in the figure have radius R ¼ 15.21 km km
and mass M ¼ 2.046M⊙. The (density-weighted) shear
velocity

2Any deformation of an elastic medium can be decomposed
into compressional and shear components. Matter in the NS crust
is essentially incompressible, and this is why only a shear stress
tensor is studied in the literature [63,64].

TORSIONAL OSCILLATIONS OF NEUTRON STARS IN … PHYSICAL REVIEW D 90, 124044 (2014)

124044-7



h ~vsi ¼
R
rs
rb
~εðrÞ~vsðrÞr2drR
rs
rb

~vsðrÞr2dr
ð46Þ

is always close to ≈1 × 108 cm=s, in remarkable agreement
with early estimates by Schumaker and Thorne [6] (see
also [67]).

C. Numerical procedure

To numerically integrate Eq. (42) and obtain the frequen-
cies ntl, it is convenient to introduce two new variables
~Y1ðrÞ and ~Y2ðrÞ, defined as

~Y1ðrÞ≡ r1−l ~YðrÞ; ð47Þ

~Y2ðrÞ≡ ~μeffeΦ−Λr2−l ~Y
0ðrÞ: ð48Þ

In terms of these variables, Eq. (42) can be decomposed
into a system of two first-order coupled differential
equations:

~Y0
1ðrÞ ¼ −

l − 1

r
~Y1ðrÞ þ

eΛ−Φ

~μeffr
~Y2ðrÞ; ð49Þ

~Y0
2ðrÞ ¼ −

lþ 2

r
~Y2ðrÞ − eΦþΛ

�
ð~εþ ~pÞrω̄2e−2Φ

− ðlþ 2Þðl − 1Þ ~μeff
r

�
~Y1ðrÞ: ð50Þ

The advantage of this approach is that it eliminates the
necessity of computing the derivative of the shear modulus
~μ, which is known only in tabulated form. In terms of
~Y2ðrÞ, the zero-traction and zero-torque conditions trans-
late into the requirements that ~Y2ðrbÞ ¼ ~Y2ðrsÞ ¼ 0. The
same change of variables was used in [8] in the context of
magnetized stars (see also [69]).
Using Eqs. (49) and (50) we can now find the frequen-

cies ntl by applying a shooting method (see e.g. [57]).
Choosing ~Y1ðrÞ to be normalized to unity, and setting
~Y2ðrÞ ¼ 0 at the stellar surface r ¼ R, we integrate
Eqs. (12)–(15), (49) and (50) inwards for a trial value of
ω until we reach the crust basis at r ¼ rb, where we must
have ~Y2ðrbÞ ¼ 0. Depending on whether or not this
condition is satisfied, we adjust the trial value of ω until
we find ~Y2ðrbÞ ¼ 0 within a certain tolerance. In this way
the determination of ω becomes a root finding problem,
which can be solved using (for instance) the bisection
method.

IV. THE OSCILLATION SPECTRA

With our equilibrium NS models and our numerical
framework to deal with crustal perturbations, we are finally
in a position to compute and discuss the spectrum of
torsional oscillation frequencies in scalar-tensor theory. The
spectrum depends quite sensitively on the bulk properties
of the star (mass M, radius ~R, crust thickness Δ ~R), on the
choice of crustal EOS, and on the scalar field profile in the
crust region.
In Fig. 5 we show the torsional oscillation frequencies

for the fundamental mode 0t2 (top panels) and first overtone

1t2 (bottom panels) as a function of the mass M for NS
models with all possible combinations of core EOS (MS0,
APR) and crust EOS (DH, KP). We show results for three
different values of β: β ¼ 0 (GR), β ¼ −4.5 (marginally
excluded by binary pulsar observations) and β ¼ −6
(observationally excluded, but shown nonetheless to

FIG. 4 (color online). Shear velocity profile ~vsðrÞ in the NS
crust in the following cases: (i) GR without electron screening
(solid line); (ii) GR with electron screening (dashed line);
(iii) scalar-tensor theory (β ¼ −6.0) without electron screening
(dashed-dotted line); (iv) scalar-tensor theory (β ¼ −6.0) with
electron screening (dotted line). The top panel refers to EOS DH,
and the bottom panel to EOS KP. The sharp peaks occur near the
neutron drip density ~ε ≈ 3 × 1011 g=cm3 [68].
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maximize the effects of scalarization). By comparing the
left and right panels we can quantify the influence of
electron screening effects (everything else being the same):
electron screening typically lowers the oscillation spectra,
in agreement with the findings of Ref. [15]. For stellar
models built using EOSMS0 and for the conservative value
β ¼ −4.5, modifications from GR occur at values of
M ≃ 2.0M⊙, close to the largest observed NS mass
[35,70]. Therefore from now on we will focus on
EOS APR.
Notice that the first overtone is more sensitive to

scalarization than the fundamental mode. This is confirmed
in Fig. 6, where we show the frequencies of the 0tl and 1tl
modes for a fixed stellar massM ¼ 1.8M⊙ as a function of
β. Newtonian estimates [67] (see also [7] for GR with
similar conclusion) show that the overtones scale roughly
as ≈n=Δ ~R and are essentially independent of l, as long as
l is not much larger than n. As shown by Eq. (25) and in

Fig. 3, scalarization decreases the crust thickness. The
shrinking crust thickness compensates for the reduced
effective shear modulus, and the net effect is an increase
of the oscillation frequencies. Notice also that in scalar-
tensor theory the frequencies of the fundamental torsional
oscillation mode decrease as we decrease β (the opposite
happens in tensor-vector-scalar theory [49]).
In Fig. 7 we address the following question: are

uncertainties in the EOS small enough to allow for tests
of the underlying gravitational theory based on measure-
ments of torsional oscillation frequencies in QPOs?
Unfortunately, the answer is in the negative. Shaded
regions in the plot are bounded by the values of the
torsional oscillation frequencies computed using EOS
DH and KP for the crust. One region (bounded by dashed
lines) corresponds to GR, while the other (solid lines) to
scalar-tensor theory. These regions are meant to roughly
quantify the EOS uncertainty within each theory.

FIG. 5 (color online). Frequencies of the torsional modes in scalar-tensor theory as a function ofM=M⊙. Top panels: The fundamental
torsional mode 0t2 without (left) and with (right) electron screening. Lower panels: The first overtone 1tl without (left) and with (right)
electron screening.
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Horizontal lines in the left panels mark the QPO frequency
of 28 Hz observed in SGR 1900þ 14 [2], and identified
with the 0t2 mode. The plots show that for a theory
parameter β ¼ −4.5 (marginally ruled out by binary pulsar
observations [34]) the predictions of GR and scalar-tensor
theory are indistinguishable within uncertainties in the
crustal EOS. The bottom left panel shows that, in principle,
a scalar-tensor theory with β ¼ −6.0 could be distinguished
from GR if we were to observe QPOs with frequencies

smaller than 24 Hz in magnetars with M ≳ 1.6M⊙.
However, such a large value of β is already excluded by
binary pulsar experiments. The right panel carries out a
similar analysis for the first overtone 1tl. The horizontal
line indicates the QPO frequency of 626.46� 0.02 Hz
detected in SGR 1806 − 20 [3], and identified with the first
overtone 1tl. The conclusions are similar: for β ¼ −4.5, the
predictions of GR and scalar-tensor theory are indistin-
guishable within uncertainties in the crustal EOS.
Let us now focus on the fundamental mode 0t2, which

has been identified with QPOs in both SGR 1900þ 14
(28� 0.5 Hz) [2] and SGR 1806 − 20 (30.4� 0.3 Hz) [3].
To quantify the relative effect of scalarization and electron
screening, assuming the crustal EOS to be known, we
introduce the ratio

η≡ j0t2½ST� − 0t2½GR�j
j0 t̄2½GR� − 0t2½GR�j

; ð51Þ

where 0t2½GR� (0t2½ST�) is the fundamental mode frequency
in GR (scalar-tensor theory) ignoring electron screening,
and 0t̄2½GR� is the corresponding frequency in GR com-
puted by taking into account electron screening. Electron
screening has a larger impact than scalarization whenever
η < 1.
In Fig. 8 we show η as a function of the mass M for all

combinations of core and crust EOS considered in this
work. The punchline of this plot is consistent with our
previous findings: the effect of electron screening is always
dominant over scalarization for values of β that are
compatible with current binary pulsar experiments.
Unrealistically large values of β (e.g., β ¼ −6) would be

FIG. 6 (color online). Frequencies of the torsional modes in
scalar-tensor theory as a function of β for stellar models with
mass M ¼ 1.8M⊙. Circles and dotted lines correspond to
APRþ DH; squares and dashed lines correspond to
APRþ KP. In the right panel we plot the mode frequencies

0tl for l ¼ 2; 3; 4 and 5. In the left panel we show the frequencies
of the first overtone 1tl.

FIG. 7 (color online). This plot compares modifications in torsional oscillation frequencies due to the underlying gravitational theory
with crustal EOS uncertainties for models constructed using EOS APR in the core. Regions bounded by dashed lines correspond to
oscillation frequencies in GR with different crustal EOSs; regions bounded by solid lines correspond to oscillation frequencies in scalar-
tensor theory with different crustal EOSs. The degeneracy between modified gravity and crustal EOS is broken when the two regions do
not overlap. Left panels refer to a scalar-tensor theory with β ¼ −4.5, and right panels to a theory with β ¼ −6.0 (a value already
excluded by binary pulsar experiments [34]).
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needed to constrain scalar-tensor theories via torsional
oscillation frequencies.

V. CONCLUSIONS

We studied torsional oscillations in NS crusts in scalar-
tensor theories of gravity allowing for spontaneous scala-
rization. Working in the Cowling approximation, we
showed that the “master equation” governing torsional
oscillations—our Eq. (43)—has the same form as in GR [6]
if we introduce an effective shear modulus ~μeff , an effective
wave velocity ~veff and a rescaled frequency ω̄. In general, a
smaller effective shear modulus reduces the oscillation
frequencies. However we showed both analytically and
numerically that the NS crust becomes thinner under
scalarization, and a thinner crust tends to increase the
overtone frequencies. Our numerical calculations show that
the reduced shear modulus is the dominant effect for the
fundamental mode, while the change in crust thickness is
dominant for the first overtone.
We found that the dominant torsional oscillation

frequencies in scalar-tensor theory are essentially indistin-
guishable from those in GR for all values of β ≥ −4.5 that
are still allowed by binary pulsar observations. One of the
simplest microphysics effects that might affect the torsional
oscillation frequencies, namely electron screening [15], has
a much more important effect on torsional oscillation
frequencies than scalarization. More noticeable deviations
from GR would occur for (say) β ¼ −6.0, but such large
values of β are already ruled out by binary-pulsar obser-
vations [34]. We expect scalarization to be subdominant
when compared to other uncertainties in the microphysics,
such as nonuniform nuclear structures (pastas) [71] and
superfluidity of dripped neutrons [11].

Given the similarities between torsional oscillation
frequencies in GR and scalar-tensor theory, we can con-
jecture that the inclusion of slow rotation in our model
will result in torsional mode amplitudes growing due to the
Chandrasekhar-Friedman-Schutz (CFS) instability [72].
The inclusion of slow rotation adds an extra term propor-
tional to the frame dragging function ϖ (cf. [27]) in the
perturbation equation (43). Previous studies of slowly
rotating NSs in scalar-tensor theory [25] showed that
scalarization affects ϖ, and therefore it will affect torsional
modes for rotating stars.
One important omission in our study is the effect of

magnetic fields, a crucial ingredient for realistic compar-
isons with QPO observations in magnetars. Very few works
have studied NSs with magnetic fields in alternative
theories of gravity (see e.g. [73]). Couplings between
the scalar field and magnetic fields may produce larger
deviations of the torsional oscillations frequencies with
respect to GR. This is an interesting topic for future study.
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APPENDIX A: DERIVATION OF EQ. (25)

In this appendix we present the derivation of Eq. (25).
Making use of Eq. (13), we rewrite Eq. (15) as

d ~p
dr

¼ −ð~εþ ~pÞ
�
4πA4ðφÞ r2 ~p

r − 2m
þ 1

2
rψ2

þ m
rðr − 2mÞ þ αðφÞψ

�
: ðA1Þ

Let us assume that the following approximations hold
true in the NS crust: (i) ms ≈M, and therefore
e−2Λ ¼ 1 − 2M=rs; (ii) the pressure ~p is negligible in
comparison to ~ε [7]; (iii) φ ≈ φs and ψ ≈ ψ s; (iv) AðφÞ ≈ 1.
We also assume that the EOS has the polytropic form
~ε ¼ k ~p1=Γ, where k and Γ are constants. Then Eq. (A1)
becomes

d ~p
dr

≈ − ~pe2Λ
M
r
− ~ε

�
1

2
rψ2

s þ αðφsÞψ s

�
; ðA2Þ

where αðφsÞ ¼ βφs. Integrating this equation from r ¼ rb
to r ¼ rs and imposing ~pðrsÞ ¼ 0 we obtain

FIG. 8 (color online). The ratio η defined in Eq. (51) for all
stellar models considered in this work. Values of η > 1 mean that
the effect of scalarization is larger than that of electron screening.
This would only be possible for values of β that are already ruled
out by binary pulsar experiments.
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0 ¼ σ þMe2Λ
�
1

rs
−

1

rb

�
− ψ2

sðr2s − r2bÞ

− αðφsÞψ sðrs − rbÞ; ðA3Þ

where we have defined σ ≡ ξ ~pb=~εb and ξ≡ Γ=ðΓ − 1Þ
(recall that the subscript b denotes quantities evaluated at
the crust basis).
We now make the additional assumption that ψ2

sðr2s −
r2bÞ is negligible compared to αðφsÞψ sðrs − rbÞ. We have
verified this assumption by explicitly evaluating these two
terms for different stellar models: typically αðφsÞψ sðrs −
rbÞ is larger than ψ2

sðr2s − r2bÞ by at least a factor 10.
Rewriting Eq. (A3) in terms ofRwe obtain the quadratic

equation

0 ¼ βξ

σ
R2 −

�
1þ 1

σ
ðCe2Λ þ βζÞ

�
Rþ 1; ðA4Þ

where we introduced ζ ¼ ζðCÞ≡ φsψ srs, which must be
obtained by interpolation, given a family of stellar models,
as a function of C. Choosing the solution of Eq. (A4) that
reduces to the GR result (24) when β → 0 and defining
F ≡ 1þ ðCe2Λ þ βζÞ=σ, we finally obtain Eq. (25).

APPENDIX B: EQUIVALENCE OF THE
PERTURBATION EQUATIONS IN EINSTEIN

AND JORDAN FRAMES

Here we show that the perturbation equation (40) could
also be obtained by starting with the energy-momentum
conservation law in the Einstein frame,

∇�μT
μν
� − αðφÞT�∇ν�φ ¼ 0:

For odd (axial) perturbations in the Cowling approxima-
tion, the perturbed Einstein-frame energy-momentum
tensor δT�μν satisfies

∂μδT
μ
�ν þ Γμ

�σμδTσ�μ − Γσ�νμδT
μ
�σ − αðφÞδT�∇ν�φ ¼ 0:

ðB1Þ
Using the relation Tμ

�ν ¼ A4ðφÞ ~Tμ
ν [which implies

δTμ
�ν ¼ A4ðφÞδ ~Tμ

ν] and the trace relation T� ¼ A4ðφÞ ~T,
we obtain upon substitution into Eq. (B1) that

4A3ðφÞAðφÞ
dφ

∂μδ ~T
μ
ν þ A4ðφÞ½∂μδ ~T

μ
ν

þ Γμ
�σμδ ~Tσ

ν − Γσ�νμδ ~T
μ
σ − αðφÞ∂νφδ ~T� ¼ 0: ðB2Þ

Dividing by A4ðφÞ we recover Eq. (40).
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