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The quantization of a vector model presenting spontaneous breaking of Lorentz symmetry in flat
Minkowski spacetime is discussed. The Stueckelberg trick of introducing an auxiliary field along with a
local symmetry in the initial Lagrangian is used to convert the second-class constraints present in the initial
Lagrangian to first-class ones. An additional deformation is employed in the resulting Lagrangian to handle
properly the first-class constraints, and the equivalence with the initial model is demonstrated using the
BRST invariance of the deformed Lagrangian. The framework for performing perturbation theory is
constructed, and the structure of the Fock space is discussed. Despite the presence of ghost and tachyon
modes in the spectrum of the free theory, it is shown that one can implement consistent conditions to define
a unitary and stable reduced Fock space. Within the restricted Fock space, the free model turns out to be
equivalent to the Maxwell electrodynamics in the temporal gauge.
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I. INTRODUCTION

A great amount of effort has been employed in the
construction of a consistent quantum theory of gravity. This
relies mainly on theoretical grounds, since direct exper-
imental evidence from the Planck scale≃1019 GeV, where
such a theory plays a major role, is presently unattainable.
However, it may happen that these fundamental theories
can provide some key signals that our currently low-
energy-scale experiments are able to detect. Since CPT
and Lorentz symmetry are among the tenets of our present
understanding of nature at the fundamental level, minor
deviations from these symmetries could be detected in low-
energy experiments. In this way, CPTand Lorentz violation
is one of these key signals and, interestingly, it may occur in
many of the candidates for fundamental theories, like string
theory [1,2], loop quantum gravity [3], noncommutative
field theories [4], and nontrivial spacetime topology [5].
The effective field theory that accounts for the possible

deviations of the known physical phenomena due to
Lorentz and CPT violations is the Standard-Model
Extension (SME) [6–8]. In this framework, the usual
Lagrangians of the Standard Model (SM) of the elementary
particles of physics and of Einstein’s general theory of
relativity are supplemented by Lorentz-violating (LV)
operators. In the nongravitational sector of the SME, these
LV operators are constructed by considering all SM
operators contracted with LV tensorial coefficients in a
coordinate-invariant way. The gravity sector, in turn,
follows the same idea, but considering diffeomorphism
tensors instead of the SM operators.
The LV coefficients can be generated in many different

ways. One particularly elegant and generic one is through
spontaneous Lorentz and CPT violation [1,9]. In this case,

along with Lorentz and CPT violation, other important
consequences can arise, like the appearance of Nambu-
Goldstone (NG) and Higgs modes. Unlike the effective
framework provided by the SME, the properties of these
modes are, in general, model dependent and cannot be
completely discussed without knowledge of the underlying
fundamental theory. However, in many cases, some features
of the propagation of these modes can be discovered in a
model-independent way. In Ref. [10], for instance, the
effects of the NG modes on the metric field are taken into
account using the coordinate invariance requirement. In the
work of Ref. [11], some general conclusions about the fate
of the NG modes are also obtained without considering any
particular theory. It is also worth mentioning that, unlike the
nongravitational SME sector, the gravity sector needs to
take into account the NGmodes to keep its consistency as is
shown in Ref. [8].
Being an effective model, the SME is expected to apply

at low energies up to some characteristic energy scale
frequently related to the Planck scale, and for this reason, it
is unsurprising that some inconsistencies can arise in the
analysis of some phenomena if the typical energy scale
under consideration is pushed to arbitrarily large values.
Concerning the photon sector of the SME, the works in
Ref. [12] investigated the subtle issues of microcausality
and unitarity. In Ref. [13], focusing in the fermion sector,
the authors conclude that some problems can arise for
energies of the order of the Planck scale. It is also suggested
that contributions coming from the extra modes, due to the
spontaneous symmetry-breaking mechanism in the funda-
mental theory, could help in the consistency of the models.
To better understand the role of the NG modes in the
problem of the stability and causality, it seems relevant to
consider the quantization of models presenting spontane-
ous Lorentz and CPT violation and try to extract from them
some general features.*chernask@indiana.edu
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The most studied LV models contemplating the role of
the extra modes arising from the spontaneous symmetry-
breaking mechanism involve the vacuum condensation
of a vector field. These are called “bumblebee models”
and were discussed in curved and flat spacetimes
[1,10,11,14,15]. Besides the NG excitations, other modes
can also appear, like massive ones called Higgs modes and
Lagrange multiplier modes. The propagation properties of
all the dynamical modes depend on the form of the kinetic
and potential term considered in the Lagrangian. In
Ref. [11], it was shown that even when the extra modes
do not propagate, they can give interesting and measurable
contributions to the Coulomb and Newton potentials.
Bumblebee models have been extensively investigated

not only as toy models to probe the role of the several
excitations originated from the Lorentz symmetry-breaking
mechanism, but also as an alternative to the Uð1Þ gauge
theory in the consistent description of the photon. In this
case, the masslessness of the photon is unrelated to the
invariance of the system under a local symmetry, but is
instead related to its identification as a NG mode.
Surprisingly, with some assumptions, these LV vector
models turn out to be equivalent to the Maxwell electro-
magnetism in a special nonlinear gauge. Actually, a very
interesting model considered by Nambu [16] already
described the photon as a NG mode due to spontaneous
Lorentz violation. In Nambu’s model, Lorentz violation is
introduced by choosing a nonlinear gauge condition and
inserting it directly into the Maxwell Lagrangian coupled to
a conserved current. However, unlike the bumblebee
models, Lorentz violation in Nambu’s model is unphysical,
since it is a consequence of a special gauge choice.
This work establishes a suitable formalism for the

canonical quantization of a particular bumblebee model
with a Maxwell-type kinetic term and a smooth quartic
potential responsible for triggering the spontaneous break-
ing of Lorentz symmetry. This model was introduced by
Kostelecký and Samuel (KS) in Ref. [1] and was inves-
tigated in Refs. [11,14]. Besides the massless NG modes, it
propagates a massive tachyonic excitation leading to
instabilities. However, it will be shown that one can
consistently choose a region of the phase space of the
solutions where the tachyon does not propagate, and within
this phase space slice the model is classically equivalent to
the Maxwell theory in a nonlinear gauge. Since the model
has second-class constraints, the most direct way to apply
the methods of canonical quantization is through Dirac’s
method of the quantization of constrained systems.
However, to avoid the difficulties of Dirac’s method, this
work makes use of the Stueckelberg method. It consists of
the enlargement of the field content along with the
introduction of a local symmetry in the Lagrangian to turn
the second-class constraints into first-class ones. The first-
class constraints, in turn, are handled with the usual
procedure of quantization of gauge theories. First, a

gauge-fixing term will be introduced in the gauge-invariant
Lagrangian, and it will be shown that the new regular
Lagrangian is BRST invariant, resulting in its equivalence
to the KS model. Truncating the Lagrangian up to quadratic
terms, the basic components to perform a systematic
quantum analysis of the model are constructed. These
include the derivation of the dispersion relations of the
propagating modes, the subtle Fourier-mode expansion of
the free fields, and the correct identification of the creation
and annihilation operators as well as their algebra. The
perturbative conditions for the absence of negative-norm
states and tachyonic excitations are also discussed. The
resulting free model is tachyon free with a positive-normed
Fock space that coincides with that of the Maxwell
electrodynamics in the temporal gauge. To test the con-
sistency of the treatment, the analysis of the stability of the
free model is made and compared with the classical
discussion of Ref. [14].
This paper is organized as follows: Section II reviews the

main classical properties of the KS model. The implemen-
tation of the perturbation analysis and application of the
Stueckelberg method to the KS model is discussed in
Sec. III. In Sec. IV, the Fourier-mode expansion of the
fields and the construction of the extended Fock space of
the deformed KS model are performed. The conditions for
the absence of negative-norm states and the stability of the
free model are discussed in Sec. V. Finally, in Sec. VI, the
results are summarized. In Appendix A, the BRST invari-
ance of the full proposed Lagrangian is demonstrated.
Appendix B presents some technical calculations concern-
ing the Fourier expansion of the fields.

II. SPONTANEOUS LORENTZ SYMMETRY
VIOLATION AND CLASSICAL STABILITY OF

THE KOSTELECKÝ-SAMUEL MODEL

The starting point is the specific KS model with a smooth
quartic potential:

LKS ¼ −
1

4
BμνBμν −

κ

4
ðBμBμ − b2Þ2 − BμJμ; ð1Þ

where

Bμν ¼ ∂μBν − ∂νBμ: ð2Þ

κ is a dimensionless positive constant, and Jμ is an assumed
conserved current composed of matter fields, and it is also
the source for the Bμ field. In the present analysis, the
dynamics for the matter fields that compose the current
Jμ will be disregarded. b2 is a positive constant with
dimension of ðmassÞ2, and it will be convenient, for the
coming discussions, to consider it as the quadratic scalar
b2 ¼ bμbμ, formed out of the constant timelike vector bμ.
The first term in the Lagrangian (1) is the usual Maxwell
term, so it is invariant under Uð1Þ gauge transformations.
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However, the potential term, V ¼ κ
2
ðBμBμ − b2Þ2, breaks

this gauge invariance. One can also see that the minimum of
the potential occurs for B2 ¼ b2. Therefore, the field Bμ

acquires a nonvanishing vacuum expectation value. This
indicates the occurrence of spontaneous breaking of
Lorentz symmetry. The vacuum is degenerate, and any
choice between the possible vacuum states leads to equiv-
alent physical scenarios. For definiteness, the vacuum state
is chosen to be such that hBμi ¼ bμ, where h·i means
vacuum expectation value. According to Ref. [17], one can
classify the potential propagating modes in a spontaneously
symmetry-broken model in five types. For the present
purposes, due to the characteristics of the KS model, only
two of them are relevant: the NG modes, which are
massless excitations satisfying the condition V 0ðXÞ ¼ 0,
where the prime means derivative with respect to
X ¼ BμBμ − b2; and massive modes that satisfy V 0 ≠ 0.
Since V 0 ¼ κðBμBμ − b2Þ, the massive mode will be
present whenever ðBμBμ − b2Þ ≠ 0.
As discussed in Ref. [14], the Hamiltonian associated

with Lagrangian (1) is unbounded from below for general
field configurations. Nonetheless, initial conditions can be
chosen such that, for such field configurations, the
Hamiltonian remains positive.
The conjugate momenta associated with the Bμ fields are

defined by

Πμ ≡ δL
δð∂0BμÞ

: ð3Þ

From this definition and from Eqs. (1) and (2), one has

Πμ ¼ −B0μ: ð4Þ

This immediately shows that only three out of the four
components of Bμ actually propagate. In fact, Π0 ¼ 0 is
identified as the primary constraint on the phase space of
the model. Following the usual Lagrangian approach, the
equations of motion can be derived. They are given by

∂μBμν − κðBμBμ − b2ÞBν ¼ Jν:

Considering ν ¼ 0, one gets the consistency condition for
the primary constraint. The two constraints

ϕ ¼ Π0 ≈ 0; ð5Þ

χ ¼ ∂iΠi − κðBμBμ − b2ÞB0 − J0 ≈ 0 ð6Þ

define the constrained phase space of the model. The
symbol “≈” means weakly equal, which is used in equality
relations only valid on the constraint surface. There are two
kinds of constraints: first- and second-class ones. A first-
class constraint is one whose Poisson brackets, when
calculated in the extended phase space with any other

constraint, vanish, whereas a second class possesses at least
one nonvanishing Poisson bracket with another constraint.
In the present case, the Poisson bracket between the two
constraints in Eqs. (5) and (6) is nonvanishing, so they are
second class.
An important fact about constrained systems is that

the number of propagating degrees of freedom is different
from the number that one begins with in the Lagrangian.
Given a system described by N degrees of freedom and
with n1 and n2 first- and second-class constraints, respec-
tively, the number of propagating degrees of freedom is
N − n1 −

n2
2
. From the above discussion, the model

described by Lagrangian (1) has N ¼ 4, n1 ¼ 0, and
n2 ¼ 2. So, only three out of the four degrees of freedom
actually propagate in the model. The dynamics of the fields
is governed by the extended Hamiltonian, which is given by
the canonical Hamiltonian Hc ¼ ΠμBμ − L up to addi-
tional multiples of the constraints. The coefficients multi-
plying the constraints can be determined by consistency
requirements in the case of second-class constraints or
remain arbitrary in the case of first-class ones.
Using the constraints in Eqs. (5) and (6) and integration

by parts, the canonical Hamiltonian can be written as

H¼ 1

2
ðΠiÞ2þ 1

4
ðBjkÞ2 −

1

4
κð3B2

0þB2
j þb2ÞðB2

0−B2
j −b2Þ

þBiJi: ð7Þ

The situation when ~J ¼ 0 is the one in which the external
matter fields do no work on the Bμ fields. A stable model
should have a positive Hamiltonian in this limit. This is not
the case for the Hamiltonian given in Eq. (7) when general
field configurations are considered. However, positivity can
be attained if the field configurations are restricted to satisfy
the condition ðB2

0 − B2
j − b2Þ ¼ 0. It can be shown, using

the extended Hamiltonian, that this choice of the initial
conditions is preserved by the field dynamics [14]. This
condition avoids the propagation of the massive mode, and
the restricted phase space turns out to be equivalent to the
phase space of the Maxwell electrodynamics in a nonlinear
LV gauge. One of the main goals of this work is to develop
a framework suitable for the quantum analysis of this
stability issue. This will be the subject of the following
sections.

III. PERTURBATION ANALYSIS AND
STUECKELBERG METHOD

Since the KS model exhibits a phase where Lorentz
symmetry is spontaneously broken, it is convenient to
redefine the vector field Bμ as a perturbation, βμ, around its
expectation vacuum value bμ. That is,

Bμ ¼ bμ þ βμ: ð8Þ
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In terms of this expansion, the Lagrangian (1) is
written as

LKS ¼ −
1

4
βμνβ

μν −
κ

4
ð4bμβμbνβν þ βμβ

μβνβ
ν þ 4bμβμβνβνÞ

− βμJμ − bμJμ; ð9Þ

where

βμν ¼ ∂μβν − ∂νβμ: ð10Þ

The presence of the second-class constraints (5) and (6)
hampers the direct application of the canonical quantization
rules. There are many situations where it is desirable to look
for alternatives to the standard Dirac method of quantiza-
tion of constrained systems. For gauge-invariant models,
which are examples of models presenting first-class con-
straints, there are powerful tools associated with this
procedure, like the Gupta-Bleuler and BRST quantization.
In this case, the original gauge-invariant Lagrangian is
deformed by adding suitable gauge-noninvariant terms and
the Fadeev-Popov ghosts. The extra degrees of freedom,
inserted by the gauge-violating terms, are eliminated by
imposing additional constraints on the final set of quantum
states. The absence of unphysical degrees of freedom in the
second-class constrained systems foils the direct applica-
tion of this procedure.
To make use of the same framework described in the

quantization of gauge theories, the model given by
Lagrangian (9) will be considered as a gauge-fixing limit
of some gauge-invariant one. This will be done by
enlarging the field content of the KS model and introducing
a suitable gauge symmetry, in such a way that the new
degrees are of no physical consequence. This technique is
known in the literature as the Stueckelberg method. Despite
the lack of physical consequences, the presence of a new
field and a new symmetry provide a greater flexibility in the
mathematical treatment of some properties of the model.
The successful application of the Stueckelberg procedure in
the analysis of the unitarity and renormalizability of
massive vector theories is an example of its convenience.
In this case, the Proca Lagrangian describes a massive
vector field, and there is an apparent incompatibility
between power-counting renormalizability and the absence
of negative-norm states in the spectrum of the theory.
However, by implementing the Stueckelberg method
one can define an equivalent Lagrangian where the renor-
malizability and unitarity are evident [18]. A review of
the Stueckelberg method can be found, for example,
in Ref. [19].
The Stueckelberg field is introduced in the Lagrangian

(9) through the substitution

βμ ⟶ βμ −
1ffiffiffi
κ

p ∂μϕ: ð11Þ

With this substitution, the Kostelecký-Samuel-
Stueckelberg (KSS) Lagrangian is defined as

LKSS ¼ LKS

�
βμ ⟶ βμ −

1ffiffiffi
κ

p ∂μϕ

�
: ð12Þ

This Lagrangian is invariant under the following gauge
transformations:

β0μ ¼ βμ þ ∂μχ; ð13Þ

ϕ0 ¼ ϕþ ffiffiffi
κ

p
χ; ð14Þ

where χ is some arbitrary smooth function of the spacetime
coordinates. The invariance can easily be seen by noticing
that the combination on the right-hand side of expression
(11) is invariant under these transformations. The arbitrari-
ness in the field content permits one to choose the func-
tion χ in Eqs. (13) and (14) such that the ϕ field vanishes,
and the original Lagrangian (9) is recovered. In the standard
terminology of gauge theories, this is known as the unitary
gauge. Nevertheless, more interesting is to take advantage
of the gauge freedom of the Lagrangian (12) and make
use of the above mentioned machinery employed in the
treatment of gauge-invariant models. In this vein, the
Lagrangian (12) will be deformed by adding to it a
gauge-violating term, promoting, in this way, the propa-
gation of the gauge degrees of freedom. As a commonly
used terminology in the literature, this term will be referred
to as a gauge-fixing term.
It is convenient to choose a gauge-fixing term that

provides dynamics for the 0 component of the βμ field
and cancels out the mixing between the βμ and ϕ fields in
the Lagrangian (12). The first criterion enables one to avoid
the presence of the second-class constraints in Eqs. (5) and
(6), whereas the second is only for making the future
correspondence between the fields and the particle quantum
states more transparent. One can easily verify that the
following gauge-fixing Lagrangian meets these require-
ments:

Lgf ¼ −
1

2ξ
ðbνbμ∂νβμ − 2ξ

ffiffiffi
κ

p
ϕÞ2; ð15Þ

where ξ is a parameter whose value can be chosen
conveniently.
Gathering this gauge-fixing Lagrangian with LKSS, one

gets the total Lagrangian, LT ¼ LKSS þ Lgf , to be dis-
cussed from now on. The introduction of a gauge-fixing
term into the Lagrangian can sometimes be dangerous,
since this term provides dynamics for the unphysical
degrees of freedom and can lead to nontrivial conse-
quences. The BRST quantization method is an interesting
tool to analyze this issue. In Appendix A, it is shown that
LT ¼ LKSS þ Lgf is BRST invariant if the Fadeev-Popov
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ghosts are added, but these decouple from the other fields
and can be discarded without affecting physical results.
Furthermore, LT with the ghost fields included differs
from LKSS by a term that is in the image of the BRST
operator. If a physical state is defined as a state without
ghosts, by imposing the Gupta-Bleuler condition, this term
does not bring any contribution to the physical states. The
net result is that the physical Hilbert space construct from
LT is the same as the one construct from LKSS. For a review
of the consequences of the BRST invariance, see for
example Ref. [20].
The intention of this work is to construct a framework to

perform perturbative quantum calculations with the KS
model. As a first effort in this direction, the attention will be
mainly focused on the free part of the total Lagrangian
LKSS þ Lgf ; that is, the current Jμ will be switched off, and
only quadratic terms in the βμ and ϕ fields will be
considered. By doing this, one assumes that the constant
κ is sufficiently small to be considered as a perturbation
parameter. Without the interaction terms, the KS
Lagrangian (9) turns out to be of the same form as the
Proca-like LV theories considered in Refs. [21,22]. In those
works, an explicitly LV mass term of the form m2A2

i is
considered along with the Maxwell kinetic term for the
vector field Aμ rendering the transverse modes to be
massive. In the context of the electron-photon sector of
the SME, which is Uð1Þ gauge invariant, there is the
possibility that these gauge-violating mass terms can arise
as a result of radiative corrections. In the work of Ref. [23],
this issue is addressed, and the dispersion relations for a
more general class of LV mass terms of the form MμνAμAν

are discussed. The violation of the Lorentz symmetry in
the mentioned works is explicit, since they do not take
into account the NG and massive modes emerging from
the spontaneous symmetry-breaking mechanism. In the
present work, on the other hand, the considered vector
field is assumed to describe these NG and massive modes.
As a result, despite the form, the quadratic Lagrangian
− 1

4
βμνβ

μν − 2κbμbνβμβν still has a symmetry related to
Lorentz invariance of the complete Lagrangian. To verify
this, one can perform the infinitesimal transforma-
tion β0μ ¼ βμ þ ωμνbν with fixed bμ in the quadratic
Lagrangian and use the antisymmetry of the Lorentz group
parameters ωμν. This nonlinear symmetry is a reminiscence
of the Lorentz symmetry present in the full Lagrangian.
The Lorentz group acts linearly on the field Bμ via Λμ

νBν.
Since Bμ ¼ bμ þ βμ, an infinitesimal Lorentz transforma-
tion Λμ

ν ¼ δμν þ ωμ
ν acting on Bμ yields bμ þ β0μ ¼

bμ þ βμ þ ωμ
νbν þOðω2Þ, where ωμ

ν is supposed to be
of the same order of magnitude as the perturbation field βμ.
This gives the nonlinear transformation of the field βμ. In
Ref. [23] the mass matrixMμν cannot assume the form of a
product of two vectors, and such a shift symmetry cannot
be constructed. For the longitudinal mode, b · β, this
transformation has no effect, but for the transverse mode

βT , which satisfies b · βT ¼ 0, the shift symmetry is
expected to avoid the appearance of a mass term generated
by quantum corrections.
The stability of the treatment under the insertion of the

self-interactions of the βμ field and with the interactions
with the auxiliary field ϕ, along with the external matter
current, is of great importance, but is beyond the scope of
the present work. Hence, taking into account only quadratic
terms in the βμ and ϕ fields, one gets the following free
Lagrangian:

Lfree ¼ −
1

4
βμνβ

μν −
bνbμbρbσ

2ξ
∂νβμ∂ρβσ − κbμbνβμβν

− bμbν∂μϕ∂νϕ − 2ξκϕ2: ð16Þ

The canonical conjugate momenta associated with the
fields in this Lagrangian are given by

Πμ
β ¼ −~ημσ _βσ þ Γμσ0i∂iβσ; ð17Þ

Πϕ ¼ −2b0bμ∂μϕ; ð18Þ

with

~ημσ ¼
�
η00ημσ − ημ0ησ0 þ b20b

μbσ

ξ

�
; ð19Þ

Γμσ0i ¼
�
ημiη0σ −

b0bibμbσ

ξ

�
: ð20Þ

Since the constant vector bμ is timelike, ~ημσ is an invertible
matrix, and one can invert the relations in Eqs. (17) and (18)
to write the time derivatives of the fields in terms of the
canonical momenta and the fields themselves. So, as
expected, this is a regular Lagrangian system, and its
quantization follows the standard procedure of considering
the observables as quantum operators acting on the Hilbert
space of the particle states and the classical Poisson
brackets being replaced by commutators. The equal-time
canonical commutation relations (ETCR) are, therefore,
given by

½ϕðt; ~xÞ;Πϕðt; ~yÞ� ¼ iδ3ð~x − ~yÞ; ð21Þ

½βνðt; ~xÞ;Πμ
βðt; ~yÞ� ¼ iδμνδ3ð~x − ~yÞ; ð22Þ

and any other commutator vanishes.
From these commutators and the expressions for the

conjugate momenta (17) and (18), some other useful
commutation relations involving fields and time derivatives
of them can be derived. Namely,

½ϕðt; ~xÞ; _ϕðt; ~yÞ� ¼ −
i

2b20
δ3ð~x − ~yÞ; ð23Þ
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½ _ϕðxÞ; _ϕðyÞ� ¼ i
b30

bi∂x
i δ

3ð~x − ~yÞ; ð24Þ

½ _βσðt; ~yÞ; βνðt; ~xÞ� ¼ iη̄σνδ3ð~x − ~yÞ; ð25Þ

½ _βμðt; ~xÞ; _βνðt; ~yÞ� ¼ −iη̄μρη̄νσλρσ0i∂x
i δ

3ð~x − ~yÞ; ð26Þ

with η̄ being the inverse of the ~ηmatrix (19), which is given
explicitly by

η̄μν ¼
ημν
η00

þ
�
ξ

b40
þ b2

η00b20

�
η0μη0ν −

1

η00b0
ðη0μbν þ η0νbμÞ;

ð27Þ

and λρσ0i is the symmetric combination of the Γμσ0i’s
defined in Eq. (20):

λρσ0i ¼ Γρσ0i þ Γσρ0i: ð28Þ

It can be noticed from the new Lagrangian (16) that the
number of dynamical degrees of freedom has increased
from three to five as compared with the initial Lagrangian
(1). The two extra degrees of freedom are related to
the 0 component of the βμ field and to the Stueckelberg
field ϕ, which came to the fore through the gauge-fixing
Lagrangian (15). Evidently, if one desires to recover the
properties of the initial KS model, it is necessary to deal
properly with these extra degrees of freedom. This will be
done in Sec. V by choosing a specific region of the full
Hilbert space that accommodates the particle states of the
model described by Lfree, thwarting the appearance of the
extra degrees of freedom in the physical spectrum.

IV. FOURIER EXPANSION

In this section, the relations between the energy and
momentum for the particle spectrum of the model described
by Lagrangian (16) are obtained, and the expansion of the
fields βμ and ϕ in terms of Fourier modes is derived.
Obtaining the dispersion relations for the propagating
modes and the discussion of their physical properties is
the subject of Sec. IVA. Section IV B introduces the
concept of “pure-mode solutions,” which are particular
solutions of the equations of motion of the βμ field that
satisfy convenient orthogonality relations. Finally, the
general solutions for the βμ and ϕ fields are derived in
Sec. IV C.

A. Dispersion relations

To proceed with the analysis of the model described
by Lagrangian (16), the equations of motion are derived.
They are

∂μ∂μβν − ∂μ∂νβμ þ bνbμbρbσ

ξ
∂μ∂ρβσ − 2κbμbνβμ ¼ 0;

ð29Þ

bμbν∂μ∂νϕ − 2ξκϕ ¼ 0: ð30Þ

Assuming that the fields can be expressed as Fourier
integrals, one gets these equations in momentum space:
�
−p2ημνþpνpμ−

�ðp ·bÞ2
ξ

þ2κ

�
bμbν

�
βνðpÞ¼ 0; ð31Þ

ððp · bÞ2 þ 2ξκÞϕðpÞ ¼ 0: ð32Þ

The conditions for the existence of nontrivial solutions for
these equations are given, respectively, by

det

�
−p2ημν þ pνpμ −

�ðp · bÞ2
ξ

þ 2κ

�
bμbν

�
¼ 0; ð33Þ

ðp · bÞ2 þ 2κξ ¼ 0: ð34Þ

The second equation provides the dispersion relation of the
particle associated with the Stueckelberg field, whereas the
roots of the first equation give the dispersion relations for
the particles associated with βμ. The latter are promptly
obtained by solving Eq. (33). Since the expression inside
the brackets is a 4 × 4 matrix, an eighth-order polynomial
in the momentum p is expected from Eq. (33), and, in the
most general scenario, eight distinct roots. Nevertheless,
the polynomial only presents monomials with even powers
in the four-momentum; therefore, it is invariant under the
replacement ðp0; ~pÞ ⟶ ð−p0;−~pÞ. The solution with
negative energy and negative three-momentum can be
reinterpreted through a parity and time-reversal transfor-
mation (PT) as a solution with positive energy and positive
three-momentum. This reflects the fact that CPT symmetry
remains unbroken in this model, as can be directly seen
from the Lagrangian (16). The symmetry under charge
conjugation is trivial, since the field is real. However, parity
and time reversal, considered in isolation, are not sym-
metries of the Lagrangian (16), which can also be verified
by the noninvariance of Eq. (33) under the replace-
ment ðp0; ~pÞ ⟶ ð−p0; ~pÞ.
The dispersion relations obtained from Eq. (33) will be

labeled by λ ¼ 0, 1, 2, 3. They are given by

λ ¼ 0∶ ðp · bÞ2 þ 2κξ ¼ 0; ð35Þ

λ ¼ 1; 2∶ p2 ¼ 0; ð36Þ

λ ¼ 3∶ ðp · bÞ ¼ 0: ð37Þ
The reason for the appearance of only three independent
dispersion relations, instead of the four expected from CPT
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invariance, has to do with the remaining symmetry after the
spontaneous symmetry breaking of Lorentz symmetry
takes place. In the symmetric phase, the degrees of freedom
of a four-vector field can be mapped to those of a spin-1 and
a spin-0 particle. The presence of a timelike background
vector in a CPT invariant field theory promotes a splitting in
the dynamics of these degrees of freedom, and the particle
states organize themselves into classes of opposite spin
polarizations. For the four-vector case, its four degrees of
freedom potentially describe two new spins 0: the original
spin 0, and the 0 polarization of the original spin 1; and
one new spin 1: the �1 polarizations of the original
spin 1. So, these two polarizations of the spin 1 share
the same dispersion relation, and this is the reason for the
degeneracy of the massless pole in Eq. (36). In the
following, it will be verified that the mode described by
Eq. (36) is indeed a spin-1 particle, and it will be identified
as the photon.
One can also note the occurrence of the same dispersion

relation in Eqs. (34) and (35), as well as their dependence
on the gauge-fixing parameter ξ. In fact, these two modes
are the ones brought about by the gauge-fixing Lagrangian
(15) and are, in this sense, unphysical. Therefore, no
concern needs to be dedicated to their dependence on
the gauge-fixing parameter or possible issues with the
appearance of negative energies. However, since the
components of the four-momentum are the reciprocal
coordinates of the spacetime coordinates in the Fourier
expansion, they need to be real. This restricts the gauge
parameter to assume only negative values and highlights a
remarkable difference in the role played by the gauge-
fixing term in this model as compared with the SM gauge
theories, where no such dependence of the dispersion
relations on the gauge parameter appears, and no restriction
in their values is present.
The four-momentum in the dispersion relation (37) is

spacelike and gauge independent. So, one cannot advocate
that the associated excitation will not appear in the physical
spectrum. Indeed, its presence is really an indication of an
instability in the model. This kind of instability should
already be expected, since as seen in Sec. II, besides the NG
modes, the KS model propagates a massive mode that
renders the Hamiltonian to be unbounded from below. In
that classical discussion, it was argued that the instability
could be avoided by choosing a suitable slice of the full
phase space of the field solutions. The framework to
address this question in the quantized picture will be
discussed in Sec. V.

B. Suitable particular solutions for the βμ field

The decomposition of the vector field βμ in terms of
Fourier modes is subtle. To this end, it is convenient to
define first what will be called “pure-mode solutions,”

βðλÞμ ð~pÞ, that satisfy

�
−p2ημνþpνpμ−

�ðp ·bÞ2
ξ

þ2κ

�
bμbν

�����
p0¼pλ

0
ð~pÞ

βðλÞν ð~pÞ¼0;

ð38Þ

where pðλÞ
0 are the solutions for the dispersion relations

(35)–(37). For λ ¼ 0, 1, 2, there are actually two solutions

of the general type pðλÞ
0� ¼ fð~pÞ �

ffiffiffiffiffiffiffiffiffiffi
hð~pÞ

p
, but they are not

independent due to the invariance of the expression inside
the brackets under the substitution pμ → −pμ. So, only one
of the two needs to be considered. Conventionally, it is

assumed that pðλÞ
0 corresponds to pðλÞ

0þ. Up to normalization
constants, one can show that these particular solutions are
given by

βð0Þμ ð~pÞ ¼
�~b · ~p

b0
þ

ffiffiffiffiffiffiffiffiffiffiffi
−2ξκ

p
b0

; ~p
�
≡ pð0Þ

μ ð~pÞ; ð39Þ

βðiÞμ ð~pÞ ¼ ϵðiÞμ ð~pÞ; i ¼ 1; 2; ð40Þ

βð3Þμ ð~pÞ ¼
�~b · ~p

b0
; ~p

�
≡ pð3Þ

μ ð~pÞ; ð41Þ

where ϵðiÞμ ð~pÞ are two independent spacelike four-vectors

that are simultaneously orthogonal to pðiÞ
μ ¼ ðj~pj; ~pÞ and to

the background vector bμ. From their properties, one can
derive the projector on this orthogonal subspace:

X2
i¼1

ϵðiÞμ ð~pÞϵðiÞν ð~pÞ ¼ −ημν þ
1

p̄ · b
ðbμp̄ν þ bνp̄μÞ

−
1

ðp̄ · bÞ2 p̄μp̄ν; ð42Þ

where p̄μ ≡ ðj~pj; ~pÞ.
It can be shown that this projector also appears in the

propagator for the βμ field, and, after the exclusion of the
unphysical modes from the Fock space, it is identified as
the propagator for the transverse physical excitations.
Moreover, it also coincides with the propagator for the
Maxwell theory in the temporal gauge. There, the back-
ground vector, bμ, is assumed to have no physical conse-
quences, since it is introduced only for choosing a
particular gauge. However, in the present case, this vector
could give rise to measurable effects through the coupling
with the matter current, as can be seen from the
Lagrangian (9).
Although the solutions (39)–(41) are particular ones

for the equation of motion in momentum space (31),
they are interesting because they satisfy suitable orthogo-
nal relations. To derive such relations, Eq. (38) is
rewritten as
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½ðpðλÞ
0 Þ2 ~ημν − λμν0ipðλÞ

0 pi�βðλÞν ð~pÞ

¼
�
~p2ημν þ

�
δνi δ

μ
j −

bibjbμbν

ξ

�
pipj − 2κbμbν

�
βðλÞν ð~pÞ;

ð43Þ

where ~η and λμν0i, defined respectively in Eqs. (19) and
(28), are used. Multiplying both sides of this equation
by βλ

0 ð~pÞ, with λ ≠ λ0, and subtracting from the analo-
gous relation with λ and λ0 interchanged, yields

βðλ
0Þ

μ ð~pÞ½ðpðλÞ
0 þ pðλ0Þ

0 Þ~ημν − λμν0ipi�βðλÞν ð~pÞ ¼ 0: ð44Þ

For general λ and λ0, one can write

βðλ
0Þ

μ ð~pÞ½ðpðλÞ
0 þ pðλ0Þ

0 Þ~ημν − λμν0ipi�βðλÞν ð~pÞ ¼ ηλλ
0
NðλÞð~pÞ:

ð45Þ

When λ0 ¼ λ, the results need to be calculated
explicitly. Using the explicit results for the pure-mode
solutions (39)–(41), one has

Nð0Þ ¼ −4b0κ
ffiffiffiffiffiffiffiffiffiffiffi
−2κξ

p
; ð46Þ

NðiÞ ¼ 2j~pj; i ¼ 1; 2; ð47Þ

Nð3Þ ¼ 0: ð48Þ

Another useful orthogonality relation can be obtained by

multiplying Eq. (43) by βðλ
0Þ

μ ð−~pÞ, switching λ for λ0 and ~p
for −~p, and subtracting the obtained expression by the

original one multiplied by βðλ
0Þ

μ ð−~pÞ. This gives

βðλÞμ ð~pÞ½ðpðλ0Þ
0 ð−~pÞ − pðλÞ

0 ð~pÞÞ~ημν þ λμν0ipi�βðλ
0Þ

ν ð−~pÞ ¼ 0:

ð49Þ

In Ref. [24], the quantization of the photon sector within
the framework of the SME is considered. For the
Lagrangian considered in that work, the general solution
of the equations of motion can be written as a combination
of the pure-mode solutions. The analogous orthogonality
relations can be used for writing the creation and annihi-
lation operators in terms of the fields and canonical
momenta and for getting the algebra of these operators.
In the present case, a similar expansion would run into
trouble, since the normalization factor for the massive
mode in Eq. (48) vanishes, and one cannot invert the
expansion for this mode. Furthermore, as was already
emphasized, the expansion in terms of the pure-mode
solutions (39)–(41) fails to provide the most general
solution of the equation of motion (29).

C. General solutions

To construct the more general solution for βμ following
from the equation of motion (29), it is convenient to try to
decouple the dynamics for the longitudinal modes.
Multiplying the equation of motion (29) by ∂μ and bμ
yields the two coupled equations for these longitudinal
modes:

ðb · ∂Þ∂ · β −
�
□þ b2

ξ
ððb · ∂Þ2 − 2κξÞ

�
b · β ¼ 0; ð50Þ

ððb · ∂Þ2 − 2κξÞðb · ∂Þb · β ¼ 0: ð51Þ

The solution for the last equation can be promptly obtained,
since it is completely decoupled from the other modes. In
possession of this solution, one can use it in Eq. (50) to
obtain the solution for ∂ · β. Finally, both solutions can be
used in Eq. (29) to get the solution for the transverse modes.
From Eq. (51), the solution for b · β can be conveniently

expressed as

b · βðxÞ ¼ ξ

ð2πÞ3
Z

d4pδðððp · bÞ2 þ 2ξκÞp · bÞc̄ðpÞe−ip·x:

ð52Þ

c̄ðpÞ is a complex function of the four independent
variables p0 and ~p. From the reality of the field b · β, this
function satisfies the condition c̄†ð−p0;−~pÞ ¼ c̄ðp0; ~pÞ.
Using this condition and the properties of the delta
function, one obtains

b · βðxÞ ¼ 1

ð2πÞ3jb0j
Z

d3p

�
dð~pÞe−ipð3Þ·x

−
1

4κ
ðcð~pÞe−ipð0Þ·x þ c†ð~pÞeipð0Þ·xÞ

�
; ð53Þ

where

cð~pÞ≡ c̄

�~b · ~p
b0

þ
ffiffiffiffiffiffiffiffiffiffiffi
−2ξκ

p
b0

; ~p

�
ð54Þ

and

dð~pÞ≡ −
1

2κ
c̄

�~b · ~p
b0

; ~p

�
¼ d†ð−~pÞ: ð55Þ

The solution for ∂ · β in Eq. (50) can be constructed as
the sum of the solution of the homogeneous equation
ðb · ∂Þ∂ · β ¼ 0 plus a particular solution for the inhomo-
geneous one, since the inhomogeneous part is explicitly
known from Eq. (53). The solution for the homogeneous
equation can be derived straightforwardly following the
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previous reasoning to reach the solution for the b · β field in
Eq. (53). Denoting ∂ · βðxÞ as SðxÞ, one has

SHðxÞ ¼ 1

ð2πÞ3jb0j
Z

d3psð~pÞe−ipð3Þ·x; ð56Þ

where s†ð−~pÞ ¼ sð~pÞ, and the superscript H on the left-
hand side of this equation stands for homogeneous.
For the particular solution SP, one could make use of

the Green function method. The caveat here is that the
convolution of the Green function for the operator b · ∂
with the distribution δðððp · bÞ2 þ 2ξκÞp · bÞ is ill defined.
Here, only the final solution for SP is presented, leaving the
details for Appendix VI:

SPðxÞ ¼ −i□
Z

d3p
4jb0j

ffiffiffiffiffiffiffiffiffiffiffi
−2κξ

p ðcð~pÞe−ipð0Þ·x − c†ð~pÞeipð0Þ·xÞ

þ ð□ − 2κb2Þ
Z

d3p
b20

x0dð~pÞe−ipð3Þ·x: ð57Þ

Finally, this solution and the homogeneous part from
Eq. (56) can be used, along with the solution for b · β in
Eq. (53), to obtain the inhomogeneous part of the differential
equation (29). The solution for the entire field βμ can again
be expressed as a sum of a homogeneous plus an inhomo-
geneous part. The homogeneous part can be written as

βHμ ðxÞ ¼
1

ð2πÞ3
Z

d4paμðpÞδðp2Þe−ip·x; ð58Þ

where the set of the four vectors aμðpÞδðp2Þ, defined for
each momentum ~p, can be expanded in terms of some
convenient complete basis of vectors for each point ~p. For
the present purposes, a suitable basis can be built using
the background vector bμ, the lightlike four-momentum
p̄μ ≡ ðj~pj; ~pÞ, and the two spacelike vectors in Eq. (40).

Since bμ is timelike and the ϵðiÞμ ð~pÞ’s are simultaneously
orthogonal topμ and bμ, this set of vectors forms a complete
basis for each momentum ~p. In terms of this basis, the set of
vectors aμð~pÞ≡ aμðj~pj; ~pÞ can be expressed as

aμð~pÞ ¼
X2
i¼1

aðiÞð~pÞϵðiÞμ ð~pÞ þ að3Þð~pÞp̄μ þ að4Þð~pÞbμ:

ð59Þ

Concerning the particular solution, there is no obstruc-
tion for the convolution of the Green function of the
d’Alembertian operator with the expressions in
Eqs. (53), (56), and (57). Referring to the Green function
of the □ operator as Gð1Þ, one can write formally

βPμ ðxÞ ¼ ∂μðGð1Þ � SHÞ þ□∂μðGð1Þ �Gð3Þ � CÞ
þ 2κbμðGð1Þ �DÞ

− ð□ − 2κb2Þ∂μ
d
dτ

ðGð1Þ �Dðx; τÞÞjτ¼0; ð60Þ

where the symbol “�”means convolution, and the functions
CðxÞ and DðxÞ are defined in Eqs. (B3) and (B5),
respectively. Gð3Þ is the Green function for the operator
b · ∂, given in Eq. (B9), and the Green function Gð1Þ can be
chosen to be

Gð1Þ ¼ −
1

ð2πÞ4
Z

d4p
e−ip·x

p2 þ iϵ
: ð61Þ

Since the equation of motion (29) for the βμ field is
second order in time, one should expect the presence of
four pairs of arbitrary functions of the three-momenta to be
fixed by the initial conditions. However, it can be seen from
Eqs. (53), (56), (57), and (59) that there are six pairs at
disposal instead: ðaðlÞð~pÞ; a†ðlÞð~pÞÞ with l ¼ 1;…; 4;
ðcð~pÞ; c†ð~pÞÞ; and ðsð~pÞ; dð~pÞÞ. This apparent overcount-
ing problem is solved when it is imposed that b · β and
∂ · β, calculated from the Eqs. (58) and (60), match the
expressions in Eqs. (53), (56), and (57). These two
conditions imply in the vanishing of the functions að3Þ

and að4Þ in the expansion (59). Despite the length, for
convenience, the final result for the expansion of the βμ
field is presented here:

βμðxÞ ¼
1

ð2πÞ3
Z

d3p
2j~pj

X2
i¼1

ðaðiÞð~pÞϵðiÞμ ð~pÞe−ipð1Þ·x þ a†ðiÞð~pÞϵðiÞμ ð~pÞeipð1Þ·xÞ

−
i

4κjb0j
ffiffiffiffiffiffiffiffiffiffiffi
−2κξ

p ∂μ

Z
d3p
ð2πÞ3 ðcð~pÞe

−ipð0Þ·x − c†ð~pÞeipð0Þ·xÞ

þ 2κb2

ð2πÞ3b20

Z
d3p

�
δ0μ − ix0pð3Þ

μ

ðpð3ÞÞ2 −
2pð3Þ

0 pð3Þ
μ

ðpð3ÞÞ4
�
dð~pÞe−ipð3Þð~pÞ·x

−
2κbμ

ð2πÞ3jb0j
Z

d3p
e−ip

ð3Þ·x

ðpð3ÞÞ2 dð~pÞ −
1

ð2πÞ3jb0j
∂μ

Z
d3p

e−ip
ð3Þ·x

ðpð3ÞÞ2 sð~pÞ þ ∂μ

Z
d3p

ð2πÞ3b20
x0dð~pÞe−ipð3Þ·x: ð62Þ
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Concerning the general solution for the Stueckelberg
field ϕðxÞ, one can notice from Eq. (32) that its solution can
be expressed as

ϕðxÞ ¼ 1

ð2πÞ32 ffiffiffi
κ

p
Z

d4pδððp · bÞ2 þ 2ξκÞḡðpÞe−ip·x:

ð63Þ

Using the properties of the delta function, this expansion
yields

ϕðxÞ ¼ 1

ð2πÞ3
Z

d3p

4
ffiffiffi
κ

p jb0j
ffiffiffiffiffiffiffiffiffiffiffi
−2ξκ

p

× ðgð~pÞe−ipð0Þ·x þ g†ð~pÞeipð0Þ·xÞ; ð64Þ

since ϕ is a real field, and therefore ḡ†ð−p0;−~pÞ ¼
ḡðp0; ~pÞ. The function gð~pÞ was also defined by

ḡð~b·~pb0 þ
ffiffiffiffiffiffiffiffi
−2ξκ

p
b0

; ~pÞ.
The operators gð~pÞ and g†ð~pÞ will soon be identified as

the annihilation and creation operators of the Stueckelberg
field. The momentum-space operators for the transverse
field and for the gauge modes in expansion (62) arrange
themselves in the standard way, and it will be verified in the
next section that they can be indeed identified as creation
and annihilation operators for these modes. Nevertheless,
the expansion for the longitudinal sector is not so enlight-
ening, and the role of the operators sð~pÞ and dð~pÞ in the
structure of the Fock space is unclear. This issue will now
be addressed.

V. STABILITY

In this section, the conditions for the suppression of the
unphysical modes are discussed and implemented. In
Sec. VA, the commutation relations for the Fourier modes
that appear in field expansions (62) and (64) are obtained,
and their main properties are analyzed. The Gupta-Bleuler
condition for the absence of the gauge modes is also
discussed in this subsection. In Sec. V B, the two Fourier-
mode operators for the longitudinal sector, s and d, are
mapped into new ones with a simpler action on the Fock
space, and a condition for the absence of tachyons is
obtained from them.

A. Fourier-mode algebra

The Fourier expansions for the free fields ϕ and βμ in
Eqs. (62) and (64) are very convenient to make perturbative
calculations. However, one still needs to address the
question of the fate of the gauge and Stueckelberg modes,
which are unphysical, and the more subtle question of the
presence of tachyonic excitation in the spectrum of the
model. For this intent, the Fock space of the present model
will be constructed, and the implementation of the

conditions to handle properly the existence of the unphys-
ical excitations will be discussed in this section.
To begin with, the identification of the right operators

that create and annihilate all the propagating modes in this
theory is useful. So, one proceeds with the inversion of the
expansions (62) and (64). It can be directly shown that the
modes g and g† can be expressed in terms of ϕ and _ϕ as

gð~pÞ ¼
Z

d3xeip
ð0Þ·xði∂S

0

↔

2
ffiffiffi
κ

p
b20 þ 4

ffiffiffi
κ

p
b0

ffiffiffiffiffiffiffiffiffiffiffi
−2κξ

p
ÞϕðxÞ;

ð65Þ

g†ð~pÞ¼
Z

d3xe−ip
ð0Þ·xð−i∂S

0

↔

2
ffiffiffi
κ

p
b20þ4

ffiffiffi
κ

p
b0

ffiffiffiffiffiffiffiffiffiffiffi
−2κξ

p
ÞϕðxÞ;

ð66Þ
with x0 arbitrary, and for two arbitrary functions, f1 and f2,

∂S
0

↔

is defined by

f1ðxÞ∂S
0

↔

f2ðxÞ≡ f1ðxÞ∂0f2ðxÞ þ ∂0f1ðxÞf2ðxÞ; ð67Þ

where “S” stands for symmetric to differ from the anti-

symmetric, ∂A
0

↔

, defined by

f1ðxÞ∂A
0

↔

f2ðxÞ≡ f1ðxÞ∂0f2ðxÞ − ∂0f1ðxÞf2ðxÞ: ð68Þ

If the only vectors that appeared in the expansion (62)
for the βμ field were the pure-mode solutions (39)–(41),
one could obtain the inverse of that expansion using the
orthogonality relations (45) and (49). This would give

aðiÞð~pÞ ¼ −
Z

d3xeip
ð1Þ·xði∂A

0

↔

~ημν − λμν0ipiÞϵðiÞμ ð~pÞβνðxÞ;

ð69Þ

a†ðiÞð~pÞ¼−
Z

d3xe−ip
ð1Þ·xð−i∂A

0

↔

~ημν−λμν0ipiÞϵðiÞμ ð~pÞβνðxÞ;

ð70Þ

cð~pÞ ¼
Z

d3xeip
ð0Þ·xði∂A

0

↔

~ημν − λμν0ipiÞpð0Þ
μ ð~pÞβνðxÞ; ð71Þ

c†ð~pÞ ¼
Z

d3xe−ip
ð0Þ·xð−i∂A

0

↔

~ημν − λμν0ipiÞpð0Þ
μ ð~pÞβνðxÞ:

ð72Þ

However, besides the pure-mode solutions, there are other
four-vectors composing the full expansion (62). Thence,
extra algebraic relations between the vector quantities that
appear in this expansion would be needed. It turns out that
these extra contributions, coming from the substitution of
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the entire field βμ in the expressions above, cancel out,
and Eqs. (69)–(72) are in fact the right relations for
these modes.
The last two operators, sð~pÞ and dð~pÞ, can be obtained

by considering ∂ · β and b · β, respectively, directly in the
expansion (62) for βμ and performing suitable Fourier
transformations on the result. The outcome of this pro-
cedure is given by

dð~pÞ ¼ jb0j
Z

d3xeip
ð3Þ·xb · βðxÞ

þ 1

4κ

�
cð~pÞe−i

ffiffiffiffiffiffi
−2κξ

p
b0

x0 þ c†ð−~pÞei
ffiffiffiffiffiffi
−2κξ

p
b0

x0
�
; ð73Þ

sð~pÞ ¼ −i
1

4κ
ffiffiffiffiffiffiffiffiffiffiffi
−2κξ

p
�
ðpð0Þð~pÞÞ2cð~pÞe−i

ffiffiffiffiffiffi
−2κξ

p
b0

x0

− ðpð0Þð−~pÞÞ2c†ð−~pÞei
ffiffiffiffiffiffi
−2κξ

p
b0

x0
�

þ 1

jb0j
dð~qÞð2ipð3Þ

0 ð~pÞ þ x0ððpð3Þð~pÞÞ2 þ 2κb2ÞÞ

þ jb0j
Z

d3xeip
ð3Þ·x∂ · βðxÞ: ð74Þ

If the expressions (71) and (72) for cð~pÞ and c†ð~pÞ,
respectively, are used in the equations for dð~pÞ and sð~pÞ
above, this completes the task of writing the Fourier-mode
operators in terms of the fields and their time derivatives.
From the expressions (65), (66), (71), and (72) for

g, g†, c, and c†, respectively, and using the ETCR in
Eqs. (21)–(26) along with the orthogonality relations in
Eqs. (45) and (49), one can get the algebra of the Fourier
modes

½gð~pÞ; g†ð~qÞ� ¼ −ð2πÞ34jb0jκ
ffiffiffiffiffiffiffiffiffiffiffi
−2ξκ

p
δð~p − ~qÞ; ð75Þ

½cð~pÞ; c†ð~qÞ� ¼ ð2πÞ34jb0jκ
ffiffiffiffiffiffiffiffiffiffiffi
−2κξ

p
δð~p − ~qÞ; ð76Þ

½aðiÞð~pÞ; a†ðjÞð~qÞ� ¼ −ð2πÞ3δij2j~pjδð~p − ~qÞ; ð77Þ

½sð~pÞ; sð~qÞ� ¼ −ð2πÞ3δð~pþ ~qÞ2b2pð3Þ
0 ð~pÞ; ð78Þ

½sð~pÞ; dð~qÞ� ¼ i
2κ

ð2πÞ3jb0jðqð3ÞÞ2δð~pþ ~qÞ: ð79Þ

All the other possible commutators vanish.
The algebraic properties of the operators ðgð~pÞ; g†ð~qÞÞ,

ðcð~pÞ; c†ð~qÞÞ, and ðaðiÞð~pÞ; a†ðiÞð~qÞÞ are identical to the
standard algebra of annihilation and creation operators. In
this way, the vacuum of the theory can be defined as the
state annihilated by the operators gð~pÞ, cð~pÞ, and að~pÞ.
However, due to the plus sign in the commutator between
cð~pÞ and c†ð~qÞ, the Fock space generated from the vacuum
state by the successive operation of the creation operators

g†ð~qÞ, c†ð~qÞ, and a†ð~qÞ can present negative-norm states
and cannot correspond to the physical Hilbert space.
Despite the right sign in the commutator between gð~pÞ
and g†ð~qÞ, it depends on the gauge parameter as well as
½cð~pÞ; c†ð~qÞ�. These modes were both introduced through
the gauge-fixing term ðbνbμ∂νβμ − 2ξ

ffiffiffi
κ

p
ϕÞ, and for their

elimination, one imposes that the expectation value of this
term between physical states must vanish. Moreover, to
preserve the linear structure of the Hilbert space, one
follows the Gupta-Bleuler procedure by imposing that
the physical states must belong to the kernel of the
annihilation part of the gauge-fixing term. That is,

ðb · ∂b · β − 2ξ
ffiffiffi
κ

p
ϕÞþjPhysi ¼ 0: ð80Þ

The expansion (53) for the b · β field contains, besides
the modes cð~pÞ and c†ð~pÞ, the Fourier mode dð~pÞ, and the
condition (80) would also contain gauge-independent
modes. It turns out that the operator b · ∂ acting on b · β
kills exactly the contribution for the dð~pÞ mode, and the
condition (80) only contains the annihilation operators cð~pÞ
and gð~pÞ indeed. Using the expansions (53) and (64) for
b · β and ϕ, respectively, the condition (80) is equivalent to

ðicð~pÞ þ gð~pÞÞjPhysi ¼ 0: ð81Þ

The algebraic properties of the sð~pÞ and dð~pÞ operators
in Eqs. (78) and (79) require further analysis. The appear-
ance of the unusual i factor on the right-hand side of
Eq. (79) is consistent with the constraint conditions obeyed
by these operators: s†ð−~pÞ ¼ sð~pÞ and d†ð−~pÞ ¼ dð~pÞ.
One can verify this fact by taking the adjoint of Eq. (79) and
making the replacements ~p ⟶ −~p and ~q ⟶ −~q.
Furthermore, these operators cannot be interpreted directly
as creation and annihilation operators without contradicting
their algebraic relations. As a single example, suppose that
sð~pÞ is an annihilation operator. Therefore, it annihilates
the vacuum, and h0j½sð~pÞ; sð~qÞ�j0i should also give a null
result, but this contradicts the nonvanishing right-hand side
of Eq. (78). Many other examples can be given whenever
sð~pÞ or dð~pÞ are supposed to be creation or annihilation
operators. The correct interpretation of the role of these
operators in the structure of the Fock space plays a
fundamental role in the present analysis, since this sector
houses the massive tachyonic mode, and the stability of the
model demands its suppression. To accomplish this pur-
pose, it is convenient to construct other operators from s
and d such that they have a simpler action in the
Fock space.

B. Condition for the absence of tachyons

Due to the constraints obeyed by sð~pÞ and dð~pÞ, they
carry enough information to be mapped in a one-to-one
way into two adjointed-related complex operators. Let the
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latter be denoted by τð~pÞ and τ†ð~pÞ. Consider the complex
linear transformation

�
τð~pÞ

τ†ð−~pÞ

�
¼

�
ρð~pÞ σð~pÞ

ρ�ð−~pÞ σ�ð−~pÞ

��
sð~pÞ
dð~pÞ

�
; ð82Þ

where ρ and σ are two arbitrary complex functions of ~p,
such that τ and τ† satisfy the following commutation
relations:

½τð~pÞ; τð~qÞ� ¼ 0; ð83Þ

½τð~pÞ; τ†ð~qÞ� ≠ 0: ð84Þ

These conditions, together with the requirement that the
transformation (82) be one to one, yield

�
ρð~pÞρð−~pÞð−2b2pð3Þ

0 ð~pÞÞ þ ðρð~pÞσð−~pÞ

− ρð−~pÞσð~pÞÞ i
2κ

b0ðpð3ÞÞ2
�

¼ 0; ð85Þ
�
jρð~pÞj2ð−2b2pð3Þ

0 ð~pÞÞ þ ðρð~pÞσ�ð~pÞ

− ρ�ð~pÞσð~pÞÞ i
2κ

b0ðpð3ÞÞ2
�

≠ 0; ð86Þ

ρð~pÞσ�ð−~pÞ − ρ�ð−~pÞσð~pÞ ≠ 0: ð87Þ

It is straightforward to show that there are numerous
possibilities for the choices of ρ and σ that satisfy these
conditions. It seems that no specific choice is preferable to
any other. For the present purposes, it is just assumed that
some choice of ρ and σ is made such that it satisfies the
requirements (85)–(87). Now, since the algebra in Eqs. (83)
and (84) is the standard one for creation and annihilation
operators, τ† and τ can be identified as creation and
annihilation operators for the tachyonic mode, respectively.
Thus, as a last condition in the definition of a physical state,
one imposes

τð~pÞjPhysi ¼ 0: ð88Þ
This condition, together with the condition (81) for the
suppression of the gauge modes, is sufficient to show that
the only contribution for the expansion of the βμ and ϕ
fields between physical states comes from the transverse
modes. These, in turn, are creation and annihilation
operators for a massless spin-1 particle, which can be seen
from the expression for the transverse projector (42) and the
algebraic relation (77). As already mentioned before, the
projection operator (42) is the effective physical propagator
at the tree level for the βμ field, and it coincides with the
photon propagator of the Maxwell theory in the temporal
gauge. In this way, the KS model provides an alternative to

the gauge-invariant description of the photon by consider-
ing it an as NG mode arising from the spontaneous
breaking of Lorentz symmetry.
Another way to get the condition (88) is by imposing the

positiveness of the expectation value between physical
states of the Hamiltonian associated with the Lagrangian
(16). Using the expressions for the conjugate momenta (17)
and (18), the Hamiltonian is given by

H ¼ −
1

2
Πβ

iΠi
β −

ξ

2b40
Π2

0 −
bibi

2b20
ðΠβ

0Þ2 þ
bi

b0
Πβ

0Π
β
i

þ Πi
β∂iβ0 −

2bi

b0
Πβ

0∂iβ0 −
bibj

b20
Πβ

0∂iβj −
1

4b20
Π2

ϕ

þ 1

4
βijβ

ij þ κbμbνβμβν −
bi

b0
Πϕ∂iϕþ 2ξκϕ2: ð89Þ

As discussed before, there are five propagating degrees of
freedom, gauge dependence, and this Hamiltonian is
unbounded from below. For this reason, one needs to
implement conditions on the states of the Fock space so
that, when restricted to these states, all the mentioned
problems can be avoided. The extra degrees of freedom
brought by the propagation of the gauge modes are kept
outside of the physical region by the imposition of the
Gupta-Bleuler condition (80), which can be easily restated
using the expression for the conjugate momenta (17) as

hΠ0
β þ 2b20

ffiffiffi
κ

p
ϕi

Phys
¼ 0; ð90Þ

where the subscript “Phys” means that the expectation
value is being calculated between physical states.
Considering the ν ¼ 0 component of the Hamiltonian

version of the equation of motion (29) for βμ and using the
condition above, one obtains

hΠϕiPhys ¼
�

1ffiffiffi
κ

p ∂iΠi
β þ 2bib0∂iϕ − 2

ffiffiffi
κ

p
bμb0βμ

	
Phys

:

ð91Þ

These two constraints on the physical states suppress the
dynamics of two out of the five degrees of freedom, and
hHiPhys can be conveniently written as

hHiPhys ¼
�
−
1

2
ðΠi

β þ 2
ffiffiffi
κ

p
b0biϕÞðΠβ

i þ 2
ffiffiffi
κ

p
b0biϕÞ

þ 1

4
βijβ

ij

	
Phys

−
��

β0 þ
1

2κb20
∂iΠi

β þ
2ffiffiffi
κ

p
b0

bi∂iϕ −
1

b0
bμβμ

�

×

�
1

2
∂iΠi

β þ
ffiffiffi
κ

p
b0bi∂iϕ

�	
Phys

: ð92Þ
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First, one notices the gauge independence of this expres-
sion as should be expected. To ensure the positiveness of
this Hamiltonian is enough to require that

�
1

2
∂iΠi

β þ
ffiffiffi
κ

p
b0bi∂iϕ

	
Phys

¼ 0: ð93Þ

Interestingly, this expression could be obtained by intro-
ducing the Stueckelberg field, through substitution (11),
into the classical stability condition b · β ¼ 0 and consid-
ering it as a quantum expectation value between physical
states. In this sense, the classical stability condition
obtained in Ref. [14] is recovered.
From the expression (17) for the Πμ

β field and using
the constraint (90), equation (93) can be written as
h∂0∂iβ

iiPhys ¼ h∂i∂iβ0iPhys. Using the field expansion
(62) and after some algebraic manipulation, this amounts
to the condition hdð~qÞiPhys ¼ 0, which is ensured by
the condition (88). To show the dynamic consistency of
this condition, consider the ν ¼ i component of the
Hamiltonian version of the equation of motion (29) for βμ:

−∂0Πi
β þ ∂jβ

ji −
bibj

b20
∂jΠ0

β − 2κbμbiβμ ¼ 0: ð94Þ

Multiplying this equation by ∂i, taking the expectation
value between physical states, and using the Gupta-Bleuler
condition (90), one obtains

�
∂i

_Πi
β þ

bibj

b20
∂i∂jð−2b20

ffiffiffi
κ

p
ϕÞ þ 2κbμbi∂iβ

μ

	
Phys

¼ 0:

ð95Þ

The consistency of the condition (93) with the field
dynamics is verified if the time derivative of the combi-
nation on the left-hand side of Eq. (93), h1

2
∂i

_Πi
βþffiffiffi

κ
p

b0bi∂i
_ϕiPhys, vanishes. From Eq. (18), _ϕ ¼ − 1

2b2
0

Πϕ−
bi
b0
∂iϕ. Using this relation and rewriting Πϕ and ∂i

_Πi
β in

terms of the expressions obtained from Eqs. (91) and (95),
one finally gets

�
1

2b0
ffiffiffi
κ

p ∂i
_Πi
β þ bi∂i

_ϕ

	
Phys

¼
�
−bj∂j

�
1

2b20
ffiffiffi
κ

p ∂iΠi
β þ

bi

b20
∂iϕ

�	
Phys

; ð96Þ

which vanishes due to condition (93). Therefore, condition
(88) is a stable one, and it ensures the absence of tachyons
in the physical spectrum of the free theory.
With the analysis of this section, one concludes that the

components to develop a systematic quantum analysis of
bumblebee electrodynamics described by Lagrangian (1)

can be consistently constructed. Moreover, in spite of the
fact that the present approach to the canonical quantization
needs the introduction of unphysical ghost modes, a
physical Fock space free from pathologies can be defined.

VI. SUMMARY

In this work, the problems of the quantization and
stability of a particular vector theory with a potential term
that triggers the spontaneous symmetry breaking of Lorentz
symmetry were addressed. In Sec. II, the main classical
properties of the model described by the Lagrangian (1)
were reviewed. Performing a Hamiltonian analysis, it was
verified that the model exhibits two second-class con-
straints and only three out of the four degrees of freedom
available in the vector field can be dynamical. Two of them
correspond to the massless NG modes and form a massless
spin-1 particle that, with the choice of the kinetic term, can
be potentially identified as the photon. The other propa-
gating mode corresponds to a field excitation that does not
remain on the bottom of the potential, and for this reason is
characterized as a massive particle. In fact, the mass of this
particle was shown to be negative, leading to an instability
in the model. However, at the end of that section it was
shown that the instability can be avoided if suitable initial
conditions are chosen, and the reduced phase space of this
model is equivalent to that of the Maxwell electrodynamics
in a nonlinear gauge.
The construction of a framework for discussing the

quantum picture of the previous scenario was pursued in
the subsequent sections. To avoid some of the complica-
tions of the Dirac method of quantization of constrained
systems, the known Stueckelberg trick was used. This
consisted of promoting an enlargement of the field content
of the model with the simultaneous introduction of a local
symmetry. By doing this, the second-class constraints were
converted to first-class ones, and the widely known and
successful methods for the quantization of gauge theories
could be applied. In this vein, a convenient gauge-fixing
term was added to the KS-Stueckelberg Lagrangian, and
physical equivalence with the KS model was claimed based
on the fact that the two Lagrangians differed by a BRST-
invariant term.
To discuss the perturbation theory analysis, the free

Lagrangian (16) was considered, and the Fourier decom-
position of the free-field solutions was performed in
Sec. IV. The dispersion relations of the propagating modes
were obtained, and the appearance of two new unphysical
degrees of freedom brought by the gauge-fixing term was
observed. The other three degrees of freedom were the
expected massless spin-1 and the tachyonic mode. In the
sequence, the concept of pure-mode solutions was intro-
duced in Eq. (38), which helped us to understand the
structure of the Fourier decomposition. These are particular
solutions for the equations of motion, where the 0 compo-
nent of the four-momentum that appears in the matrix
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operator between brackets in Eq. (38) is one of the

solutions, pðλÞ
0 , for the dispersion relations (35)–(37). In

some cases, like in the quantization of the Maxwell
electrodynamics modified by the introduction of the
gauge-fixing and finite-mass terms and in the photon sector
of the SME, these pure-mode solutions form a basis of
vectors for each value of the three-momentum ~p, and they
provide a natural set of polarization vectors appearing in
the Fourier decomposition. However, in the present dis-
cussion, the pure-mode solution associated with the λ ¼ 0
dispersion relation changes its spacelike, timelike or light-
like behavior for different choices of the three-momentum.
It turns out that the four pure-mode solutions do not provide
a basis of vectors for every choice of the three-momentum.
This makes the Fourier decomposition of the vector field
much more involved, as can be seen from the final
result (62).
With the Fourier decomposition of the Stueckelberg and

vector fields, the construction of the physical Fock space of
the model was discussed in Sec. V. The Fourier expansion
of the fields was inverted and by using the ETCR (21)–(26),
the algebra of the Fourier-mode operators was obtained. In
the transverse sector, these operators could be directly
interpreted as creation and annihilation operators of mass-
less spin-1 particles. Due to the sign in the right-hand side
of Eq. (76), one could also verify that the full Fock space is
plagued by negative-norm states. These ghost states are
commonly introduced in the quantization of gauge theories,
and they are excluded from the physical Fock space by
demanding that the extra gauge modes, brought by the
gauge-fixing terms, be kept out of the physical Fock space.
This was attained, in the present case, by imposing that a
physical state should satisfy the condition (80). The
information about the tachyon mode is contained in the
s and d operators, but a condition for the absence of
tachyons in the physical Fock space cannot be obtained
directly from them, since they cannot be interpreted as
creation or annihilation operators without contradicting
their algebraic relations. The proposed solution for this
problem was to redefine them in terms of the operators τ
and τ† in such a way that these two new operators carried
the same information as the previous ones and satisfied a
usual creation and annihilation operator algebra. So, it was
finally proposed that the condition (88) is the one that
guarantees the absence of tachyons in the physical spec-
trum and, therefore, the stability of the free model. The
same condition was regained by demanding the positive-
ness of the physical free Hamiltonian. Then, the stability
condition was restated in terms of the fields which, in turn,
was verified to be the quantum analogous to the classical
stability condition discussed in Sec. II if the redefinition of
the fields by the Stueckelberg method is taken into account.
The main attainment of this work was to construct the

building blocks to develop a systematic quantum analysis
of the KS model. This was achieved by showing that one

can define a region of the full Hilbert space where the free
model is stable and is, indeed, equivalent to the Maxwell
electrodynamics in the temporal gauge. The present frame-
work paves the road for further discussions of the quantum
properties of the KS model that are presumably of great
importance but lie beyond the scope of the present work,
like the stability of the physical Fock space under radiative
corrections, the coupling to the matter sector, and micro-
causality-related issues.
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APPENDIX A: BRST INVARIANCE

The BRST invariance of the full Lagrangians LKSS and
LKSS þ Lgf will be shown in this appendix.
We introduce the scalar anticommutating fields ωðxÞ and

ω�ðxÞ. These are called ghost fields, since they satisfy a
wrong spin statistics relation. From the invariance of the
free Lagrangian LKSS under the gauge transformations (13)
and (14), it can be seen that it is also invariant under the
particular infinitesimal gauge transformations

sβμðxÞ ¼ ∂μωðxÞ; ðA1Þ

sϕðxÞ ¼ ffiffiffi
κ

p
ωðxÞ; ðA2Þ

sωðxÞ ¼ 0; ðA3Þ

where s is the operator that performs the infinitesimal
BRST transformations. Since ωðxÞ and ω�ðxÞ are anti-
commutating fields, s is nilpotent, s2 ¼ 0.
Instead of the gauge-fixing Lagrangian (15), consider the

more general one,

Lgf ¼ s

�
ω�

�
Gðβμ;ϕÞ þ

ξ

2
h

��
; ðA4Þ

where G is some general functional of the fields βμ and ϕ,
and h is an auxiliary field called the Nakanishi-Lautrup
field. Whatever the particular form of the functional G, this
Lagrangian is BRST invariant if the following transforma-
tions for the ω� and h fields are assumed:

sω�ðxÞ ¼ h; ðA5Þ

sh ¼ 0: ðA6Þ

Notice that s obeys the Leibniz product rule, and it
anticommutes with the ghost fields. Deriving the algebraic
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equation of motion for the auxiliary h field and using it
to eliminate this field from the Lagrangian (A4), one
obtains

Lgf ¼ −ω�ðsGÞ − 1

2ξ
G2: ðA7Þ

Choosing G ¼ ðbνbμ∂νβμ − 2ξ
ffiffiffi
κ

p
ϕÞ2, one can write

Lgf ¼ −ω�ðbνbμ∂ν∂μ − 2ξ
ffiffiffi
κ

p Þω

−
1

2ξ
ðbνbμ∂νβμ − 2ξ

ffiffiffi
κ

p
ϕÞ2: ðA8Þ

Therefore, with this choice for the functional G, the ghost
fields decouple and can be discarded from the Lagrangian
without affecting physical results. In this way, the
BRST invariance of the total Lagrangian LKSS þ Lgf is
established.

APPENDIX B: PARTICULAR SOLUTION
OF EQUATION (50)

In this appendix, the particular solution for the inhomo-
geneous differential equation (50) is derived. The problem
is essentially that the naive convolution of the Green
function with the inhomogeneous piece coming from
(53) will lead to the product 1

p·b δðp · bÞ, which is ill
defined. However, the issue only abides in the convolution
of the Green function with the d term in Eq. (53) that is
where δðp · bÞ plays a role. There is no prevention in
forming the convolution of the Green function with the c
and c† terms.
The particular solution can be derived by splitting it into

two pieces:

SP ¼ SP1 þ SP2 ; ðB1Þ

where SP1 is the particular solution for the equation

ðb · ∂ÞSP1 ðxÞ ¼ □CðxÞ ðB2Þ

and CðxÞ is the function defined by the first integral on the
right-hand side of Eq. (57). That is,

CðxÞ ¼ −
Z

d3p
4κjb0jð2πÞ3

ðcð~pÞe−ipð0Þ·x þ c†ð~pÞeipð0Þ·xÞ:

ðB3Þ

The other piece of the particular solution in Eq. (B1) is a
particular solution for the equation

ðb · ∂ÞSP2 ðxÞ ¼ ð□ − 2κb2ÞDðxÞ; ðB4Þ

where DðxÞ is the function defined by the second integral
on the right-hand side of Eq. (57). That is,

DðxÞ ¼
Z

d3p
ð2πÞ3jb0j

dð~pÞe−ipð3Þ·x: ðB5Þ

It can be easily verified that the two functions defined as
particular solutions in Eqs. (B2) and (B4), when added,
form a particular solution to Eq. (50), since

ððb · ∂Þ2 − 2κξÞCðxÞ ¼ 0 ðB6Þ

and

ðb · ∂ÞDðxÞ ¼ 0: ðB7Þ

To obtain SP1 , one considers the Green function for the
operator b · ∂, which must satisfy

ðb · ∂ÞGðxÞ ¼ δðxÞ: ðB8Þ
Since it is only needed for a particular solution, the following
Green function that satisfies this equation is chosen:

Gð3ÞðxÞ ¼ i
ð2πÞ4

Z
d4p

e−ip·x

b · pþ iϵ
: ðB9Þ

Now, the particular solution for Eq. (B2) can be written as

SP1 ðxÞ ¼ □ðGð3Þ � CÞðxÞ; ðB10Þ

where the symbol “�” means convolution, which for two
arbitrary functions f1ðxÞ and f2ðxÞ is defined by

f1 � f2ðxÞ ¼
Z

d4yf1ðx − yÞf2ðyÞ: ðB11Þ

The property of the convolution operation

Oðf1 � f2Þ ¼ ðOf1 � f2Þ ¼ ðf1 �Of2Þ; ðB12Þ

whereO is a derivative operator, was also used in Eq. (B10).
As was observed before, one cannot apply the same

technique for the obtainment of SP2 , since the convolution
Gð3Þ �D is ill defined. To proceed with this calculation,
one considers the continuous deformation, Dðx; τÞ, of the
function DðxÞ that analogously to Eq. (B7) satisfies the
differential equation

ðb · ∂ þ τÞDðx; τÞ ¼ 0; ðB13Þ

with the subsidiary condition that Dðx; τÞ ⟶ DðxÞ when
τ ⟶ 0. This gives

Dðx; τÞ ¼
Z

d3p
ð2πÞ3jb0j

dð~pÞe−ið
~b·~p
b0
−i τ

b0
Þx0þi~p·~x: ðB14Þ

Similarly, Sðx; τÞ is defined in such a way that it satisfies
the following differential equations:
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ðb · ∂ÞSP2 ðx; τÞ ¼ ð□ − 2κb2ÞDðx; τÞ; ðB15Þ

ðb · ∂ þ τÞSP2 ðx; τÞ ¼ ð□ − 2κb2ÞDðxÞ: ðB16Þ

Subtracting the first of these equations from the second,
dividing both sides by τ, and taking the limit τ ⟶ 0, one
gets

SP2 ðxÞ ¼ ð□ − 2κb2Þ dDðx; τÞ
dτ

����
τ¼0

: ðB17Þ

Gathering SP1 and SP2 along with the homogenous solution
(56), one has the desired general solution for Eq. (B2).
Using Eqs. (B9) and (B14), Eq. (57) is obtained.
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