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While black hole perturbation theory predicts a rich quasinormal mode structure, technical challenges
have limited the numerical study of excitations to the fundamental, lowest order modes caused by the
coalescence of black holes. Here, we present a robust method to identify quasinormal mode excitations
beyond the fundamentals within currently available numerical relativity waveforms. In applying this
method to waveforms of 68 initially nonspinning black hole binaries, of mass ratios 1∶1 to 15∶1, we find
not only the fundamental quasinormal mode amplitudes, but also overtones, and evidence for second order
quasinormal modes. We find that the mass-ratio dependence of quasinormal mode excitation is very well
modeled by a post-Newtonian-like sum in symmetric mass ratio. Concurrently, we find that the mass-ratio
dependence of some quasinormal mode excitations is qualitatively different from their post-Newtonian
inspired counterparts, suggesting that the imprints of nonlinear merger are more evident in some modes
than in others. We present new fitting formulas for the related quasinormal mode excitations, as well as for
remnant black hole spin and mass. We also discuss the relevance of our results in terms of gravitational
wave detection and characterization.
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I. INTRODUCTION

As we approach the era of gravitational wave (GW)
detection, there is a tremendous effort to understand and
predict the rich gravitational wave signals coming from
all expected sources of radiation. These predictions are
used to construct GW templates that will enable not only
the recognition of GW signals within noise, but also the
extraction of information about the source. It is for these
purposes that the development of templates that include the
final moments of binary black hole (BBH) coalescence is
important for future GW detection.
While source populations remain uncertain,BBHsystems

are expected to account for multiple signals per year and, if
systems with a total mass of a few hundred times that of our
sunor larger are observed, detectors such asAdvancedLIGO
and the Einstein Telescope are most sensitive to the final
stages of BBHcoalescence [1–4]. In these final moments the
two black holes (BHs) merge into a perturbed, remnant BH,
whose gravitational radiation rings down like a struck bell.
Very roughly put, if one were to observe the remnant at an
orientation ðθ;ϕÞ relative to its spin axis, and at a distance r
away, then theobservable timedomain strainof this decaying
ringdown radiation may be written as the real part of

h ¼ −
1

r

X
l;m;n

AlmnSlmnðθ;ϕÞ
eiðωlmnþi=τlmnÞt

ðωlmn þ i=τlmnÞ2

¼ hþ − ih×. ð1Þ

Here, hþ and h× are the real valued plus and cross
polarization states. In general, a linear combination of these
states will be detected [5].
If provided the remnant BH’s mass and spin, then the

BH perturbation theory of isolated Kerr BHs informs us
of Eq. (1)’s spatial multipoles and temporal frequencies:
the quasinormal modes (QNMs) that compose ringdown
[6–8]. However, in order to model astrophysically relevant
ringdown signals the output of numerical relativity (NR)
simulation is generally needed to tell us how much
each multipolar component is excited for a given initial
binary [6,9].
For this reason, applying perturbation theory to the

analysis of NR ringdown has assisted in the creation of
inspiral-merger-ringdown templates [10–12], and revealed
novel relationships between the initial binary’s configura-
tion and the remnant BH’s parameters [9]. But thus far,
technical challenges have limited analysis primarily to the
fundamental (lowest overtone) QNMs, while it has also
been acknowledged that a more detailed application of
perturbation theory to NR ringdown may be needed
[9,12–17]. As an example of ringdown’s potential com-
plexity, Fig. 1 shows the time domain strain envelope of a
potential 2∶1 mass-ratio ringdown signal of an initially
nonspinning BH binary, observed at two different lines of
sight. Here we see that the sum of many QNMs precisely
models NR ringdown data. This example case demonstrates
that both the intrinsic QNMs of perturbation theory and the
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observer’s extrinsic line of sight contribute to the richness

of possible ringdown signals.
In this study we assist in clarifying the extent to which

QNMs beyond the fundamentals are pertinent to the physics
and modeling of NR ringdown (e.g. Fig. 1). We consider
the ringdown of 68 initially nonspinning BBH simulations
of mass ratios between 1∶1 and 1∶15. In doing so, we find
that QNM excitation is exceptionally well modeled by a
post-Newtonian-like (PN-like) expansion (Sec. IV).
However, we also find that the excitation amplitudes of
some QNMs differ qualitatively from their post-Newtonian
counterparts, suggesting that the imprints of nonlinear
merger are more evident in these QNMs than in others
(Sec. VI A). But first, we present a robustmethod to estimate
multiple QNMs within NR ringdown (Sec. III A). We then
apply this method to a series of initially nonspinning NR
runs of varying mass ratio (Sec. III B–IV B). Lastly, we
consider the results of our analysis (overtones and second
order modes) in the context of ringdown-only templates
(Sec. VI B). Generally, our results may be of use for the
construction of merger-ringdown templates.
A complete paper outline is given in Sec. I C. A full

summary of fitting formulas and coefficients for QNM
excitations is given in Appendix A. For convenience, fits
for the most dominant QNM excitation amplitudes in
Eq. (1) are below:

A220 ¼ η ~ω2
220ð0.18e0.06i þ 0.10e−2.21iηþ 5.09e0.24iη2Þ ð2Þ

A221 ¼ η2 ~ω2
210ð0.89e−2.94i þ 6.30e0.13iηþ 19.40e2.96iη2Þ

ð3Þ

A210 ¼ η ~ω2
210

m1 −m2

M
ð0.20e2.42i þ 0.36e−2.65iη

þ 1.03e−2.04iη2Þ ð4Þ

A330 ¼ η ~ω2
330

m1 −m2

M
ð0.08e−0.12i þ 0.91e1.53iη

þ 5.35e−1.13iη2 þ 20.66e1.75iη3Þ ð5Þ

A320 ¼ η ~ω2
320ð0.07e−0.77i þ 0.46e1.71iη

þ 0.78e−2.04iη2 þ 2.48e−2.55iη3Þ ð6Þ

A440 ¼ η ~ω2
440ð0.06e0.01i þ 0.78e2.59iη

þ 7.74e−0.44iη2 þ 41.32e2.73iη3

þ 82.02e−0.58iη4Þ: ð7Þ

Here, M is the sum of the initial BH masses,

M ¼ m1 þm2;

and η is the symmetric mass ratio,

η ¼ m1m2

M2
:

The amplitudes are scaled relative to 10 M after the peak
luminosity in ψNR

22 (Sec. I B).
Note that the QNM frequencies, ~ωlmn, are complex, and

depend on the remnant BH’s parameters: spin magnitude
and mass:

~ωlmn ≡ ωlmn þ i=τlmn: ð8Þ

In Eq. (8), ωlmn is the QNM’s central oscillation frequency,
and τlmn the mode’s decay time. Each frequency may be
conveniently computed using the mapping between η and
remnant BH parameters given in Eqs. (C2) and (C1), or
Ref. [23], along with the phenomenological fitting for-
mulas1 for QNM frequencies in Ref. [24].

A. From QNMs and templates to NR ringdown analysis

Shortly after Vishveshwara’s 1970 discovery that per-
turbed black holes dissipate energy via gravitational ring-
down, the study of perturbed BHs began a proliferation that
now enables the creation of GW ringdown templates
[25–27]. In 1971 Teukolsky and Press revealed that ring-
down should be well approximated by a sum of eigen-
functions of Teukolsky’s master equation which describes
first order departures from the Kerr metric [8,28,29]. For a
BH of mass Mf and dimensionless spin parameter,

10 20 30 40 50 60
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FIG. 1. Ringdown for a 2∶1 mass-ratio, initially nonspinning
BH binary calculated via the GaTech MAYA code [18–22]. The
solid gray lines show the time domain envelope of NR ringdown
for two different lines of sight. Here θ and ϕ are polar and
azimuthal angles relative to the remnant BH’s spin vector. The
dashed black lines show the corresponding model ringdowns
(QNM sums) calculated using the results of this paper: estimation
of spheroidal QNM excitations from NR, including and beyond
the fundamental overtones.

1Note that here ~ωlmn are in units of 1=M while [24] reports the
unitless M ~ωlmn.
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jf ¼ sf
M2

f

;

these eigenfunctions are uniquely determined. Here sf is
the magnitude of the final BH spin vector. Press later
referred to Teukolsky’s set of radial, angular, and temporal
eigenfunctions as QNMs [25,28] [Eq. (11)]. QNMs are
multipoles with the usual polar and azimuthal indices,
l and m. In addition, in loose analogy with acoustic
theory, they are also labeled by an overtone number,
n ¼ f0; 1; 2…g, where, as n increases, so does the typical
QNM decay rate [7]. The n ¼ 0 QNMs are traditionally
referred to as the fundamental modes.
Given that astrophysical BHs are expected to be

described by only mass and spin, the work of developing
GW templates that include ringdown is largely equivalent
to modeling the excitations of Kerr QNMs for different
progenitor binaries [26,30]. This work has largely
focused on the most slowly decaying, fundamental
QNMs, which correspond to first order departures from
the Kerr metric.
However, it has been suggested that second order

QNMs, resulting from nonlinear self-coupling of their first
order counterparts, may also be pertinent [16,31–35].
Although these second order QNMs have largely been
studied for Schwarzschild BHs, where Regge-Wheeler-
Zerilli techniques can be directly applied, formal results
for the Kerr case do not appear to exceed the results of
Camanelli and Lousto [31], wherein the second order
contribution’s wave equation is derived within the
Newman-Penrose formalism.
This result demonstrates that the second order wave

equation for Kerr, like its Schwarzschild counterpart, is
sourced by a quadratic function of the first order modes.
For this reason it is expected that the second order
QNMs for Kerr are characteristically similar to those for
Schwarzschild [32]. In particular, one might expect to find
within Fig. 1 damped sinusoids whose frequencies and
decay rates are sums of those from two first order modes.2

From these considerations it is clear that perturbation
theory allows for an extremely rich space of possible
ringdown signals. But given that the fundamental modes
are the slowest damped, it is not immediately clear that
modes beyond the fundamentals are pertinent to modeling
of NR ringdown. Indeed, the single and two-mode ring-
down-only templates of Ref. [26] only consider fundamen-
tal QNMs. Similarly, studies that focus on linking QNM
excitation with initial binary parameters typically focus
only on the fundamental modes [9,36,37] and, while work
on templates that include both merger and ringdown has
found that overtones are required to blend the two regions,
a systematic study of overtone excitement is lacking

[11–13,17]. Moreover, there has been no work published
on the detection of nonlinear second order QNMs within
NR BBH coalescence. Here, we inform these areas by
describing QNM excitation for a series of initially non-
spinning, unequal mass BBH systems.
For the recovery of these initial parameters precise

agreement between template and signal is needed.
Concurrently, only qualitative agreement is needed for
detection purposes [26,30]. Although a full exploration
of detection and parameter estimation is beyond the scope
of the current study, we note that the richness of possible
signals depends not only on the configuration of the initial
binary, but also the orientation of the BH’s final spin vector
with respect to the observer’s line of sight.
As an example, consider again Fig. 1. Here we see that if

this idealized signal is observed along the remnant BH’s
final spin axis, θ ¼ 0, then the envelope of its time domain
behavior appears to be dominated by a single exponentially
decaying function, or equivalently, a single QNM; however,
if observed at a significant angle with respect to the final
spin axis, here θ ¼ π=3, then many QNMs may visibly
contribute. In order to model the complexities of these
potential signals, we utilize the intersections between
perturbation theory and NR.

B. Numerical relativity meets perturbation theory

NR waveforms are typically decomposed3 into spin
weighted-2 spherical harmonics, −2Ylmðθ;ϕÞ, such that
the Weyl scalar ψ4 is given by

ψ4ðt; θ;ϕ; rÞ ¼
1

r

X
l;m

ψNR
lm ðtÞ½−2Ylmðθ;ϕÞ�: ð9Þ

For gravitational radiation, the orthogonality of these
harmonics in both l and m ensures that this is a true
spectral decomposition:

ψNR
lm ðtÞ≡ r

Z
Ω
ψ4ðt; θ;ϕ; rÞ−2Ȳlmðθ;ϕÞdΩ: ð10Þ

Here −2Ȳlmðθ;ϕÞ is the complex conjugate of −2Ylmðθ;ϕÞ,
and we will focus on ψNR

lm , the spherical harmonic
multipoles of the Weyl scalar ψ4. The Weyl scalar ψ4 is
related to the observable strain via two time derivatives,
ψ4 ¼ −ḧ [38].

2This is analogous to the anharmonic oscillator, in which
the second order oscillation frequency is twice the first order
one [32].

3This decomposition is typically done such that the origin is at
the initial binary’s center of mass. In general, this is not the
location of the remnant BH if there is a nonzero recoil velocity.
However, for the systems studied here, the typical distance
traveled postmerger is sufficiently small compared to the wave-
form extraction radius, making this initial center of mass location
a good approximation for the position of the remnant BH.
Nevertheless, as discussed in Sec. V, this does potentially
introduce detailed effects that may not be inherent to the ring-
down regime.
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During ringdown, this choice of multipolar decomposi-
tion effectively casts the radiation as that corresponding to a
perturbed nonspinning BH [38]. However the remnant of a
BBH merger is typically a spinning BH.
For these cases, the perturbation theory of Kerr BHs [39]

yields

ψ4ðt; θ;ϕÞ ≈
1

r

X
l;m;n

ψPT
lmnðtÞ½−2Slmðjf ~ωlmn; θ;ϕÞ� ð11Þ

ψPT
lmnðtÞ≡ Almnei ~ωlmnt; ð12Þ

where ~ωlmn is the complex QNM frequency, −2Slm are the
spin weighted spheroidal harmonics, and Almn are the
complex QNM amplitudes or excitation coefficients whose
magnitude is contingent on where t is chosen to be zero
[25,40,41].
For example, if t� is the time relative to the peak

luminosity of ψNR
22 , and one considers ringdown to include

T0 ≥ 10ðMÞ after t� ¼ 0, then t≡ t� − 10ðMÞ [37]. Here
we consider t to be in units of the initial binary mass, M,
which is canonically set to unity.
Generally, Eq. (11) is not an equality as power-law tails,

of the form ψ tail ∼ t−k, are also expected in the postmerger
regime [39,42]. While, in principle, these power-law
contributions may be significant near the radiation’s peak,
a host of numerical studies has shown them to be extremely
weak throughout the subsequent QNM regime4 [6,39]. In
particular, while all power-law functions decay slower than
exponentials, they also require excitation coefficients much
larger than those of QNMs to contribute significantly to the
waveform. Therefore there is a heuristic expectation that
the power-law tails are eventually dominate the post-merger
waveform, but only at very late times [39,45–47]. Indeed,
recent NR codes that focus on binary black hole coales-
cence (BBC) have empirically verified this expectation
[6,13,17,37]. Numerical studies that focus specifically on
solving Teukolsky’s equation do find that power-law tails
are physically meaningful, but only at late times, and at
amplitudes that are very likely inaccessible to codes that
solve Einstein’s equations in full [43,45].
While the current study, in part, seeks to describe ring-

down in unprecedented detail, we also find that for the
systems considered, power-law decay can be neglected.5

For simplicity we have written Eq. (11) as a sum over the
first order QNM indices only. If written explicitly, the
second order QNM terms, being proportional to products of
two first order QNMs, would be labeled by six indices,

ðl1; m1; n1Þðl2; m2; n2Þ [16,32,33]. We have also neglected
to explicitly write the conjugate or mirror-mode terms
which arise from Teukolsky’s azimuthal equation having
two linearly independent solutions that, due to nonzero BH
spin, are not the complex conjugates of each other [7,24].
An additional consequence of nonzero BH spin is that

the spheroidal harmonics, while orthogonal in m, are not
orthogonal in l for the complex QNM frequencies of
ringdown,6 making a spectral decomposition of the form
of Eq. (10) not possible. However, just as the Kerr metric
reduces to the Schwarzschild metric for nonspinning BHs,
so do the spheroidal harmonics reduce to the sphericals.
Substituting Eq. (11) into Eq. (10) illustrates this point by
revealing that the spherical multipoles of NR are each a
sum of many spheroidal QNMs where, in the j → 0 limit,
only the l ¼ l0 term survives:

ψNR
l0mðtÞ ≈

X
n;l

Almnσl0lmnei ~ωlmnt ð13Þ

σl0lmn ≡
Z
Ω

−2Slmðjf ~ωlmn; θ;ϕÞ−2Ȳl0mðθ;ϕÞdΩ: ð14Þ

This was first noted in 1973 by Press and Teukolsky [29]
who used standard operator perturbation theory to show
that

−2Slm¼−2Ylmþjf ~ωlmn

X
l≠l0

−2Yl0mcl0lmþOðjf ~ωlmnÞ2: ð15Þ

Here cl0lm are related to the Clebsch-Gordon coeffi-
cients [24,29].
Equations (13) through (15) motivate two approaches to

characterize QNM excitations, Almn: single-mode and
multimode fitting.
Single-mode fitting.—The first category makes the

practical assumption that Eq. (13) is dominated by the
l ¼ l0 term, and thereby estimates the QNM amplitudes by
fitting a single mode to ψNR

lm . Although this single-mode
approach has been shown to be effective for the first few
l ¼ m multipoles [6,36], in principle, it neglects the
presence of overtones and BH spin [15,25]. Moreover,
because Eq. (15) says that the mixing between spherical
and spheroidal harmonics becomes more prevalent for
higher spins, we may hypothesize that single-mode fitting
incurs residuals that are qualitatively proportional to the
remnant BH’s spin. In particular, Fig. 2 shows that initially
nonspinning, quasicircular BBH systems coalesce to form a
remnant BH whose final spin is proportional to the initial
binary’s symmetric mass ratio. We would therefore expect
single-mode fitting of these systems to perform better for

4In contrast to the current study, which evolves the full Einstein
equations, studies that are able to resolve late-time power-law
decay evolve Teukolsy’s equation (e.g. [43]), which is motivated
by first order departures from the Kerr space-time [44].

5This is readily visible in Fig. 3’s lower panel where, if power-
law tails did contribute significantly, they would cause a localized
feature near zero frequency.

6Specifically, we are concerned with spheroidal harmonics
with complex frequency and of spin weight s ¼ −2, which
correspond to exponentially damped time-domain waveforms
[40,48].
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low mass ratios (m1 ≪ m2), and worse at higher mass
ratios (m1 ≈m2).
Specifically, while it has been shown that Eq. (14)’s

σl0lmn can be on the order of 0.10 for moderate values of jf
[40], Eq. (13) communicates that the relative values of
different Almn ultimately determine the significance of each
QNM term [15].
Multimode fitting.—The second category attempts to fit

each term in Eq. (13), and therefore requires the simulta-
neous fitting of multiple QNMs within each spherical
multipole. Although this multimode approach is more
faithful to the fact that the BHs of interest are spinning,
current fitting methods have had limited success
[13,50,51]. The difficulty is primarily due to complexity:
within each ψNR

lm , a multimode fitting algorithm must
optimize over fRe½Almn�; Im½Almn�;ωlmn; τlmng as well as
the total number of significant QNMs, N. There are
secondary difficulties arising from data accuracy and
numerical artifacts. As a result, the multimode approach
is a 4 × N dimensional optimization problem of combina-
toric complexity whose solution must be robust against
numerical errors. It is a lot like trying to identify a musical
chord by ear.

C. Structure of the paper

In the current study we present a multimode fitting
method, and apply it to the NR ringdown of 68 initially
nonspinning, unequal mass-ratio binaries with symmetric
mass ratios between η ¼ 0.2500 and η ¼ 0.0586.
We report estimates for the QNM excitations of not only

fundamental modes, but also for overtones and what appear
to be second order modes. We go on to discuss our results
in the context of phenomenological ringdown models and
future detection scenarios. First, in Sec. II A we review
the single-mode approach, and report fit residuals. As
described in Sec. II B, for nominal fitting regions, we find

that single-mode fitting incurs roughly 1% fitting errors for
the best case scenario, and greater 10% error in the worst
case scenarios. We also review the systemic dependence of
residuals with final BH spin. In Sec. III Awe introduce our
multimode fitting method, compare it with other
approaches using mock data in noise, and then review
found QNM amplitudes and residual errors. In Sec. IV, we
present post-Newtonian inspired fits to the dominant QNM
excitations across the range of mass ratios. In Sec. V we
discuss the limitations of our results, and their consistency
with perturbation theory. Finally, in Sec. VI, we discuss our
results in the contexts of analytic (nonlinear) perturbation
theory, and review the significance of our findings to a
mock detection scenario.

II. MOTIVATIONS FOR MULTIMODE FITTING

Let us first consider the single-mode fitting approach
discussed in Sec. I B. Figure 3 shows single-mode fits for a
2∶1mass-ratio binary. While we can see that in this case the
subdominant ψNR

lm ðtÞ are not all simple functions, the
dominant multipoles do appear to have exponentially
decaying envelopes, and so are well modeled by a single
QNM. Indeed, previous studies have found success in
treating the dominant multipoles as single QNMs during
ringdown [6,36]. In particular, this approach has led to
effective numerical estimates of BH final spin and mass, as
well as the characterizations of fundamental QNM ampli-
tudes with mass-ratio, and initial spin magnitude [37,52]. It
is therefore fair to suppose that more detailed QNM
information is not needed in order to capture ringdown’s
dominant physics. In what follows, we test this heurism by
first outlining the single-mode approach, and then inves-
tigating the dependence of fit residuals with initial binary
parameters (Fig. 4).

A. Single-mode fits

First, we outline a qualitatively general single-mode
fitting procedure to estimate the fundamental (n ¼ 0) QNM
excitations:
(a) Given the set of ψNR

lm , we define ringdown to be the
region fT0 ≤ t ≤ T1g relative to the peak luminosity7

of ψNR
22 [36].

(b) To calculate the waveform’s phase, θlmðtÞ, and
envelope, ΨlmðtÞ, we then consider the standard
representation for the fit:

ψFit
lmjfT0≤t≤T1g ¼ Ψlmeiθlm :

0 0.05 0.1 0.15 0.2 0.25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 2 (color online). Remnant BH spin for initially non-
spinning systems of varying mass ratio. The black dots are final
spin values calculated using the isolated horizon formalism [49].
The trend is monotonic and well fitted with a fourth order
polynomial (Appendix C).

7As will be discussed in Sec. III A, we consider multiple fitting
regions in order to characterize both the data and fit. In the case of
single-mode fitting, fitting regions were chosen to encompass
between 86 and 74 (M). For the multimode fitting approach to be
discussed in Sec. III A, each waveform was windowed and
padded after the onset of numerical noise to maintain a consistent
frequency domain resolution.
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(c) We then use linear least-squares fitting to model θlmðtÞ
and Log½ΨlmðtÞ� as lines in the time domain:

θlm ¼ tωFit
lm þ δFitlm ð16Þ

Log½ΨlmðtÞ� ¼ −t=τFitlm þ LogjAFit
lmj ð17Þ

where δFitlm is the complex phase of AFit
lm.

(d) Upon calculating the fit parameters, fAFit
lm;ω

Fit
lm; τ

Fit
lmg,

we calculate the fractional root-mean-square error,

εlm ≡
���� hðψ

NR
lm − ψFit

lmÞ2i
hψNR

lm
2i

����
1=2

: ð18Þ

Here εlm is typically much less than 1 for good fits,
and of order 1 or greater for poor fits. More carefully,
as discussed in Sec. II C, εlm is susceptible to being
biased by numerical noise. In the worst case scenario,
where noise dominates the data to be fit, εlm ≈ 1 may
correspond to a minimum residual with respect to fit
parameters.

Typical single-mode fits are shown in Fig. 3 for a 2∶1
mass-ratio binary, with the fitting region starting T0 ¼ 10M
after the peak luminosity in ψNR

22 . Here, as well as
throughout this paper, the Fourier transform of waveforms,
ψðtÞ, will be denoted as ~ψðωÞ. Note that the l ¼ m
multipoles are well fit, with associated errors εlm ≈ 0.08.
However, a notable exception is the l ¼ m ¼ 4 multipole
with ε44 and order of magnitude higher at ≈0.65.
Moreover, as has been found in previous studies, we also

find that the l ≠ mmultipoles are generally not well fit by a
single QNM. For example, the ðl; mÞ ¼ ð3; 2Þ multipole,
ψNR
32 , is known to have a significant contribution from the

ðl; m; nÞ ¼ ð2; 2; 0Þ term in Eq. (13) [6,13,15,54]. This may
be recognized in the lower panel of Fig. 3, where ψNR

32 is
seen have its dominant peak not at ψPT

32 ’s central frequency
8

of Mω ¼ 0.73, but at Mω ¼ 0.50, directly under the peak
of j ~ψNR

22 j.
In what follows we discuss the residual error of the

single-mode approach. In particular, we ask if the errors are
dominated by numerical artifacts (e.g. resolution related
errors [52]), or if the errors are dominated by the effects of
nonzero BH spin.

B. Single-mode fits: Results and residuals

To investigate the residuals incurred by single-mode
fitting, we consider 36 initially nonspinning, unequal mass
binaries with η between 0.2500 and 0.0586. The left panel
of Fig. 4 shows typical fit excitation amplitudes, jAFit

lmj, and
the right panel shows the corresponding residual errors
[Eq. (18)]. The left panel of Fig. 4 shows that QNM
excitation appears regular with symmetric mass ratio
with the n ¼ 0 mode dominating. The fitting model
proposed in Ref. [36] is also plotted. The lower left panel
of Fig. 4 indicates that the ðl; m; nÞ ¼ ð4; 4; 0Þ has a
significant local minimum at η ≈ 0.22 (m1=m2 ≈ 2) for
the resolution in η considered here. The ðl; m; nÞ ¼
ð3; 2; 0Þ QNM has been found to exhibit a similar local
minimum [15].
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FIG. 3 (color online). As demonstrated by this set of 2∶1 mass-
ratio nonspinning waveforms, fitting a single decaying sinusoid
to ψNR

lm incurs systematic residuals. Top panel: The time-domain
envelopes for (2,2),(3,3),(3,2),(4,4) spherical multipoles and
related fits, starting 10M after the peak luminosity of ψNR

22 .
Bottom panel: The frequency-domain envelopes, j ~ψNR

l;mj. All fits
correspond to the lowest, n ¼ 0, QNMs. While the (2,2) and (3,3)
multipole waveforms are best described by a single QNM fit, all
fits display visible deviations from the raw data.

8The central frequency is given by the real part of the QNM
frequency.
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Turning to the right panel of Fig. 4, the ðl; m; nÞ ¼
ð2; 2; 0Þ and (3,3,0) cases show monotonically decreasing
trends. This trend may be due to the difference between
spherical and spheroidal harmonics, which is proportional
to final BH spin [Eq. (15)], and is therefore also propor-
tional to symmetric mass ratio (Fig. 2); thus, single-mode
fitting may incur systematic errors that decrease with η.
While the ε21 and ε44 estimates display a more compli-

cated behavior, their overall decrease with η suggests that
these cases may be significantly affected not only by
QNMs beyond the fundamentals, but also by other sources
of errors.

C. Sources of error

To contrast how much of each εlm is attributed to
nonfundamental QNMs rather than other factors, we briefly
review the primary numerical sources of error: finite
resolution and extraction radius. In aggregate, we find that
the overall effect of these errors contributes to a noise floor
that, at ∼10−6ð1=rMÞ, is typically 2 orders of magnitude
lower than the relative fit errors shown in the right panel of
Fig. 4. As a general consequence, εlm is increasingly biased
by numerical noise as jψNR

lm j approaches the noise floor.
This is most evident for ε44, which displays a pronounced
increase as jAFit

44 j sweeps through its local minimum.
For the waveforms used here, the simulation grid is

structured so that there is a central grid of maximal resolution
within peripheral grids whose resolution decreases by a
factor of 2 at each outward extension. The result is an
inherent tension between the finite extraction radius and the
finest grid resolution (see Sec. V C for an expanded
discussion of finite extraction radius and related gauge
effects.). In effect, this means that ψNR

lm up to l ¼ m ¼ 5
are resolved spatially, with ∼7 points oscillation cycle, and

temporally with ∼42 points per cycle.9 In particular, we find
that duplication of Fig. 4 at η ¼ f0.25; 0.19; 0.16g is
consistent with resolutions f0.62; 1.125; 1.25g times that
of the values quoted above, and, therefore, the right panel of
Fig. 4 is not dominated by resolution effects.
Our postmerger data contain low amplitude, high fre-

quency oscillations that contribute at most 5% to our
estimates of residual error, εlm, and appear to be a side
effect of discretization. This high frequency contribution is
visible in Fig. 3 as low amplitude features to the right of
each central frequency. While the high frequency of these
oscillations means that their contribution to the mean
residual difference is small, the magnitude of these oscil-
lations is also marginal across multipoles, and appears at
comparable power at the same positive and negative
frequency. As seen in Fig. 3, this frequency varies from
multipole to multipole. Despite their pervasiveness, these
features are too high to be pertinent QNM frequencies
[Eq. (14)], and are likely artifacts due to our simulation’s
containing nonzero power at frequencies beyond the
resolvable limit. Comparison with public NINJA wave-
forms [55] reveals that these features show up inconsis-
tently across NR implementations, which suggests that they
are both spurious effects due to discretization, and inde-
pendent of the dominant physics at play.10

FIG. 4 (color online). Here we see the fundamental QNM excitations estimated by single-mode fitting. Left: The black dots are the
excitation amplitudes estimated from fitting. For reference, the dashed grey lines are phenomenological fits from Kamaretsos [36], and
the solid red lines are phenomenological fits from the more recent study by Meidam et al. [53]. The error bars were calculated as
described in Sec. III A–f. The right set of panels shows the related fractional residual errors calculated via Eq. (18).

9These figures were calculated using the l ¼ m ¼ 5 QNM
frequency for an equal mass nonspinning BBC. In the same case,
we find that there are ∼111 points temporally and ∼14 points
spatially within the typical amplitude decay rate. Because QNM
frequency decreases as final spin decreases, these numbers
increase as the initial binary becomes more unequal (e.g. Fig. 2).

10Importantly, as will be discussed in Sec. III A, they are also
well localized in the frequency domain, which allows us to
effectively filter them out during multimode fitting.
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As a result, we conclude that the fit errors in Fig. 4 are
not dominated by numerical artifacts, but instead primarily
due to choice of representation: the spherical representation
of Eq. (9) versus the spheroidal representation of Eq. (11).
Kelly et al. recently came to a similar conclusion by
considering only the ðl; mÞ ¼ ð3; 2Þ spherical multipole.

III. MULTIMODE FITTING: FROM SPHERICAL
TO SPHEROIDAL

As discussed in the previous section, the single-mode
fitting of spherical multipoles, ψNR

lm , results in relatively
significant residual errors (greater than 5%) that are
systematic in final BH spin. This spin-systematic behavior
verifies the hypothesis encapsulated by Eq. (13): NR
ringdown is not a single QNM, but a sum of QNMs.
We are therefore motivated to pursue a multimode fitting
approach to describe QNM excitations for different mass
ratios. In particular, we will seek to extract spheroidal
information from the spherical harmonic multipoles of NR
waveforms.
By noting that the general fitting problem is multilinear

in the set of decaying sinusoids given by perturbation
theory [Eq. (13)], we present a method based upon ordinary
linear least-squares fitting (OLS) to estimate spheroidal
QNM amplitudes within each spherical multipole. We find
that this particular choice of fitting routine (e.g. the least-
squares approach used here) is not as important as its
surrounding algorithm which aims to significantly reduce
the problem’s complexity. This is, in part, accomplished
by utilizing a standard greedy algorithm in addition to
OLS fitting. We refer to our approach as the greedy-OLS
method.
For reference, we test our method with artificial data

within artificial numerical noise to present a brief com-
parison between our greedy-OLS method and the modified
Prony method [50,56] in Sec. III B. We then present
estimates of the QNM excitations due to initially non-
spinning BH binaries of variable mass ratio.

A. Multimode fitting method

We have developed and implemented the following
fitting procedure to estimate QNM amplitudes:
(a) Given the set of ψNR

lm , we define ringdown to be the
region fT0 ≤ t ≤ T1g relative to the peak luminosity
of ψNR

22 [9]. Because the following procedure involves
taking the discrete Fourier transform, each ringdown
waveform is appropriately windowed at the noise
floor, and padded to ensure consistent frequency
domain resolution.

(b) Following Eq. (13), we assert that NR ringdown, ψNR
l0m,

may be well approximated by a sum of QNMs. As our
numerical waveforms are of limited accuracy, we
consider this sum to be finite:

ψFit
j ðtÞ ¼

XN
k

AFit
k σkjei ~ωkt

≈ ψNR
l0m ð19Þ

where

j ↔ fl0; mg ð20Þ

and

k ↔ fl; m; ng: ð21Þ

While Eq. (19)’s AFit
k is the estimate QNM amplitude,

for notational simplicity we will henceforth refer to it
as Ak. Moreover, the above summation is only over
fl; l0; ng, as m is fixed by Eq. (13).

Here, the apparent horizon may be used to estimate
the BH’s final mass and spin, Mf and jf ¼ sf

M2
f
[49].

Alternatively, one may estimate the final BH mass and
spin by optimizing the multimode fit of a single ψNR

lm ,
as each QNM frequency is determined by Mf and jf
(Appendix C). Specifically, the dependence of the
QNM frequencies on Mf and jf may be utilized by
either direct calculation (e.g. [7]), as used here, or by
phenomenological fit (e.g. [24]).11

(c) In the language of least-squares fitting, we seek to cast
Eq. (19) in the form of a set of normal equations:

αij ¼
XN
k

μikβkj ð22Þ

or equivalently,

~αj ¼ μ̂~βj: ð23Þ
To do so, we choose to make the following series of
definitions:

βkj ≡ Akσkj ð24Þ

αij ≡ 1

~ωi

Z
T1

T0

e−iωit · ψNR
j ðtÞdt ð25Þ

μik ≡ 1

~ωi

Z
T1

T0

e−iωit · ei ~ωktdt ð26Þ

where i ↔ fl; m; ng and μ̂ is an N × N complex
valued matrix. The consistency of Eqs. (24)–(26)
with Eq. (22) is evident upon plugging Eq. (19) into
Eq. (25).

11We find these two approaches to nominally agree to within
1% of each other (Appendix C).
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If μ̂ is nonsingular, then the complex fitting ampli-
tudes are given by

~βj ¼ μ̂−1~αj: ð27Þ
Recalling that Eq. (24) defines ~βj in terms of the

complex QNM amplitudes, we equivalently have that
estimates for the spheroidal coefficients in Eq. (19) are
given by the kth element of ~βj

Akσkj ¼ ð~βjÞk ¼ ðμ̂−1N ~αjÞk:

In effect, Eqs. (24)–(26) entail taking the Fourier
transform of the ringdown waveform, and perform-
ing semianalytic, linear least-squares fitting in the
basis of damped sinusoids allowed by perturbation
theory.

This approach imposes that ψNR
lm be composed of

the QNM frequencies of perturbation theory rather
than treating them as fitting parameters, and there-
fore, the total dimensionality of the fitting pro-
blem is reduced from 4 × N to 2 × N: fRe½βkj�;
Im½βkj�; Ng. However, since Eq. (27) allows for the
simultaneous determination of βkj ’s real and imagi-
nary parts, the problem has effectively been reduced
to 1 × N dimensions. But note that the problem is
not truly linear in N, as the fit must be optimized
over all likely combinations of QNMs allowed by
perturbation theory [Eq. (13)].

(d) To manage this last optimization, we first limit the
set of allowed QNMs to those whose σl0lmn is above
5 × 10−3 [Eq. (14)]. This choice is practically equiv-
alent to only allowing l to differ from l0 by at most 2,
and simultaneously limits the largest allowed fitting
frequency to be well below that of the non-QNM
features discussed in Sec. II C. We then use a greedy12

algorithm to estimate the optimal set of N QNMs for
each ψNR

lm . We choose to guide the greedy process by
using Eq. (18) averaged over different overlapping
fitting regions.13

(e) Once the optimal set of QNMs has been found,
we estimate the spheroidal QNM amplitudes from
Eq. (24),

Ak ¼
βkj
σkj

: ð28Þ

(f) To quantify the effect14 of T0 on Ak, we perform the
above process for T0 ¼ f6; 7; 8; ::11; 12gðMÞ and
then rescale each AkjT0

using the corresponding
QNM decay rate such that Ak is relative to
T0 ¼ 10ðMÞ. The resulting set, fAkgT0

, describes
how much each recovered Ak agrees with our
assumption that the choice of fitting regions corre-
sponds to QNM dominated ringdown. For example,
in the ideal case, where the fitting region contains
only QNMs, every element fAkgT0

would have the
same value.

Throughout this paper, we describe the fitting region
dependence of our results using error bars of width
1
2
RangeðfAkgT0

Þ, where RangeðfxkgÞ ¼ maxðfxkgÞ−
minðfxkgÞ. In Fig. 4, a scaling factor of 1

6
is used.

Error bars for nonamplitude quantities have been calcu-
lated in a similar fashion. We choose to represent the
error bars according to the range of values because the
data of interest are inherently systematic, not random
(Appendix B).
Now, for reference, we proceed by touching base with an

alternative multimode approach of interest [50,58], the
modified Prony method [56].

B. Multimode fits

Before using the greedy-OLS algorithm developed in
the preceding section, we compare it with a popular
method for recovering damped sinusoids within noise
that linearizes the fitting problem by framing each QNM
as the root of a complex polynomial. If the number of
data points is greater than the number of modes, this
approach is called the modified Prony algorithm [50,56].
In this section we consider test data to demonstrate what
we find to be the typical advantages of approaches like
the greedy-OLS algorithm. In particular, we ask: given
fake data, ψFake

22 , of known QNM composition, which
algorithm returns the input QNMs and achieves the
best fit?
To portray a typical answer to this question, we

construct ψFake
22 to be composed of the ðl; m; nÞ ¼

fð2; 2; 0Þ; ð3; 2; 0Þ; ð2; 2; 1Þg QNMs with the addition of
Gaussian noise [50] that is 10−5 times smaller than the
largest component amplitude. As the modified Prony
algorithm treats QNM frequency and decay time as free
parameters, we label each output frequency by its nearest
QNM frequency.
Figure 5 compares the output of the greedy-OLS

method to the results of the modified Prony algorithm
[56] and the single-mode fitting algorithm described in
Sec. II A. Table I lists the recovered QNMs and corre-
sponding residual errors [Eq. (18)]. While both the
modified Prony and greedy-OLS methods produce quali-
tatively precise fits, the inset of Fig. 5 shows that the

12Our greedy algorithm builds a list of N QNMs by starting
with N ¼ 1, and adding only QNMs to μ̂N that reduce the fit error
[Eq. (18)]. This process continues iteratively until the addition of
at most two QNMs does not better the fit significantly, or causes
the fit to become worse. A broader description of greedy
algorithms may be found in [57].

13In particular, we average ϵlm over 15 fitting regions whose
starting time is equally spaced between T0 and T0 þ 20ðMÞ. Each
ϵlm is calculated by evaluating Eq. (27) and Eq. (18) on the
subregion. 14Please see Sec. VA for a somewhat expanded discussion.
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Prony method incurs a noticeably higher residual error.
Turning to Table I, we see that this larger residual error
corresponds to the Prony method’s not capturing the
ðl; m; nÞ ¼ ð2; 2; 1Þ overtone. This missing mode illumi-
nates two related disadvantages of Prony methods when
applied to QNM analysis:

(i) The treatment of QNM frequency [Eq. (8)] as a
free parameter increases the difficulty in assigning
output frequencies to those predicted by perturbation
theory.

(ii) The method’s output frequencies are susceptible to
spurious deviations from the structure predicted by
BH perturbation theory. This aspect of the algorithm
complicates the process of estimating BH final mass
and spin [24].

For these reasons, throughout the sections that follow, we
favor the greedy-OLS algorithm. However, we must also
note that any fitting algorithm that uses prior information
from perturbation theory to perform multimode fitting may
be just as effective. For example, we find that using the
Levenberg-Marquardt algorithm [60], in place of Eq. (27),
is just as potent at estimating the QNM terms in Eq. (19),
but only if fitting frequencies are limited to those predicted
by perturbation theory.
Now, with some confidence in the greedy-OLS method’s

faithfulness to the QNM content of ringdown data, let
us consider two applications to NR ringdown. Figure 6

shows results for the l ¼ m ¼ 2 (top row) and l¼m¼4
(bottom row) spherical multipoles of a 2∶1 mass-ratio
initially nonspinning BBH system. The four dots in Fig. 6’s
top left panel are the recovered QNMs for ψNR

22 , indicating
that ψNR

22 is dominated by four QNMs. Similarly, ψNR
44

appears to be dominated by five QNM terms. As expected
from single-mode fitting, the fundamental modes generally
dominate. However, multimode fitting reveals overtones,
and in the case of ψNR

44 , an apparent second order QNM. For
reference, we have overlayed the results of the modified
Prony method in Fig. 6’s lower left panel.
Importantly, like our test case (Table I), the residual

errors for these cases are ∼10 times smaller than single-
mode fitting. We find this to be generally true for initially
nonspinning BBH systems of symmetric mass ratio
between 0.2500 and 0.0586. In the following section, we
use these cases to peer into the new information captured by
multimode fitting. We model the mapping between initial
binary mass ratio and QNM excitation.

IV. MAPPING QNM EXCITATION WITH
SYMMETRIC MASS RATIO

We apply the greedy-OLS algorithm to the ringdown
of quasicircular initially nonspinning BBH systems of

FIG. 5 (color online). Time domain comparison of different
fitting methods for artificial multimode data.

TABLE I. Recovered QNMs and errors when applying different
fitting methods to artificial ringdown data composed of the
ðl; m; nÞ ¼ fð2; 2; 0Þ; ð3; 2; 0Þ; ð2; 2; 1Þg QNMs within Gaussian
noise. Residual errors were calculated using Eq. (18).

Method Recovered QNMs ðl; m; nÞ ε

Single (Sec. II A) (2,2,0) 6.00 × 10−1

Modified Prony [56,59] (2,2,0), (3,2,0) 4.49 × 10−3

Greedy-OLS (Sec. III A) (2,2,0), (3,2,0), (2,2,1) 1.19 × 10−3

FIG. 6 (color online). Top panels: Multimode fitting results for
ψNR
22 . Bottom panels: Multimode fitting results for ψNR

44 . Left:
QNMs recovered, plotted in central frequency and decay time.
Each point is labeled with its QNM index in ðl; m; nÞ format.
Right: Frequency domain envelopes of component QNMs
(color), NR data (grey), and total fit (black). Within each right
panel, the shaded region denotes the frequency cutoff. Points in
the left panels correspond to curves in the right panels of the same
color and QNM label. For reference, we have overlayed the
results of the modified Prony method in Fig. 6’s lower left panel.
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symmetric mass ratio between 0.2500 and 0.0586. The
result is a map between η and Almn. Just as in the case of
inspiral, with its reflective symmetry about the orbital
plane, we find that jAlmnj ¼ jAl−mnj for all systems con-
sidered; therefore, we only focus on the m > 0 multipoles.
By applying the greedy-OLS algorithm to our NR

ringdown, we are able to catalog the mass-ratio dependence
of overtones and apparent second order QNM.We find that,
for the initially nonspinning systems studied here, the
mirror modes are not significantly excited.15 While a host
of well-resolved QNMs is recovered, for practicality, we
only focus on those needed to represent ψ4 ringdown up to
marginal accuracy. We consider these to be QNMs found
within the dominant l ¼ m and l ¼ mþ 1 spherical multi-
poles (e.g. ψNR

lm ), where l ≤ 4 [36,54,61]. We go on to
present a robust phenomenological model for the mapping
between η and Almn. We start by touching base with current
models for AlmnðηÞ.
The phenomenological models proposed by [36] are

shown in Fig. 4. This class of model is derived from the
single-mode fitting approach mentioned in Sec. II, and only
handles jAlmnj while leaving its complex phase to be
matched to the phase of ψNR

lm after merger.16 While the
model functions used in [36] capture the qualitative
behavior of the first few fundamental QNMs, the current
study’s increased resolution in mass ratio reveals clear
systematic deviations from NR results (Fig. 4, left panel).
Most prominently, the local minimum in jA440j is not
captured by

jA440j ¼ aj ~ω440j2
�
m1

m2

�3
4

e−b
m1
m2 :

The more recent work of [15] focuses on the ðl; m; nÞ ¼
ð3; 2; 0Þ mode, and proposes a qualitatively precise model
for jA320ðηÞj,

jA320j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − be−λ=ηÞ2 þ c2

q
; ð29Þ

where a, b, c, and λ are real valued constants. Despite the
success of this map,17 it is not immediately clear why this
functional form works so well, and how its effectiveness
may be extended to the other QNMs.
Ultimately, a thorough analytic study of QNM excita-

tion, akin to [41], may be needed to derive the mapping
between η and Almn. While such a pursuit is beyond the
current study, a connection between AlmnðηÞ and known
physics is appropriate.

To approach this problem, we maintain that QNM
excitations are, like their PN counterparts, best described
by an expansion in the initial binary’s parameters. Here we
expand upon [30] by considering a beyond leading order
summation in symmetric mass ratio.
First, we note that the relevant18 PN strain multipole

moments may be written in the form

hlm ¼ ηe−imϕðtÞδmðm1;m2Þ
X
u¼0

buηu ð30Þ

where

δmðm1;m2Þ≡ jm1 þ ð−1Þmm2j
m1 þm2

ð31Þ

and ϕ is the time dependent part of the waveform’s
complex phase [62,63]. In seeking to generalize Eq. (30)
to ψ4 QNM excitations, we may begin by expecting that
during ringdown, ϕðtÞ becomes ϕlmn ¼ ~ωlmntþ constants
(we revisit this idea in Sec. IVA). Furthermore, since ψ4

and strain are related through two time derivatives, the ψ4

ringdown analogue of Eq. (30) would pick up a factor of

~ω2
lmn ¼ j ~ω2

lmnje−φlmn :

Lastly, rather than Eq. (30)’s overall scaling by η, we find
it useful to impose that the excitation of each nth
overtone be proportional to ηn.
Gathering all of these ideas, we propose that, for ψ4

QNM excitations, Eq. (30) generalizes to

Almn ¼ ~ω2
nlmδmðm1;m2Þη1þn

X
u¼0

auηu

¼ e−iϕlmn jAlmnj ð32Þ

where

ϕlmn ≡ ϑlmn þ 2φlmn ð33Þ

and

au ¼ jaujeiαu : ð34Þ

While we have chosen to encapsulate the intrinsic αu
contribution [Eq. (34)] within ϑlmn, one might also expect
additional extrinsic contributions to ϑlmn from the con-
struction of each simulation (e.g. initial binary separation)
[52]. Our approach to these dependencies is outlined in
Sec. IVA.
We also notice that our PN inspired model has the

immediate advantage of constraining the QNM ampli-
tudes to be zero in the extreme mass-ratio limit, η → 0,

15We will discuss in Sec. V that imposing these modes detracts
from the consistency of our results with perturbation theory.

16On the other hand, a multimode representation of each ψNR
l0m

[Eq. (13)] requires information about both jAlmnj and its complex
phase.

17Please see Fig. 10 of [15]. 18Nonspinning, nonprecessing, quasicircular compact binaries.
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while imposing that only even m QNMs are excited in
the equal-mass case where δm ¼ 0. As a more phenom-
enological point, we have chosen to model the overtone
dependence as an increasing proportionality in η to better
fit the NR data.
With these conceptual tools at hand, we may now apply

Eq. (32) to NR ringdown by constructing a fit for the
complex valued Almn, as a function of η.

A. Constructing a fit for Almn on η

In order to accurately model ringdown according to
Eq. (11), both jAlmnj and the overall phase, ϕlmn, must be
represented. To do so, let us start by focusing on the aspects
of Eq. (32) not given by perturbation theory. First, we
rearrange Eq. (32) to define

Clmn ≡ Almn

η1þn ~ω2
lmnδmðm1;m2Þ

¼
X
u¼0

auηu:

¼ jClmnjeiϑlmn : ð35Þ

As we expect Clmn to be a polynomial with complex
coefficients, it might be well captured by standard least-
squares fitting methods; however, we are wary that this
approach will be ineffective if ϑlmn is not dominated by the
phase of the polynomial sum.19

With this in mind, if we refer to the intrinsic polynomial
phase as ϑInlmn., and the additional extrinsic contribution as
ϑExlmn., then

ϑlmn ¼ ϑExlmn þ ϑInlmn: ð36Þ

Physically, if there is a preferred azimuthal direction
postmerger, then one might expect it to dominate ϑExlmn.
In practice, we find this preferred direction is set by the

kick velocity. For the simulations considered here, the kick
velocity is always within the orbital plane of the initial
binary, giving ~vkick ¼ vxx̂þ vyŷ. The direction of the kick
velocity with respect to the simulation frame is then
ϕkick ¼ tan−1ðvy=vxÞ. In this sense, we find that the
extrinsic part of Clmn ’s complex phase is given by

ϑExlmn ¼ mðϕkick þ ϕ0Þ: ð37Þ

Together with Eq. (36) and Eq. (33), we now have that

ϕlmn ¼ ϑInlmn þmðϕkick þ ϕ0Þ þ 2φlmn: ð38Þ

Note that changes in the line of sight about the BH’s final
spin direction affect ϕlmn and mϕkick in the same way.
Put differently, redefining Eq. (10)’s to be ϕ ¼ ϕ0 − δϕ
effectively adds mδϕ to both sides of Eq. (38). This
leaves Eq. (38)’s ϕ0 as an orientation independent
quantity (e.g. independent of the observer’s location in
the initial binaries’ orbital plane).
However, ϕ0 is not purely intrinsic. As we have written

it in Eq. (38), ϕ0 not only encapsulates the difference
between the final kick orientation and QNM phase, but
also how each QNM’s phase has evolved up to the start
of the fitting region, t� ¼ T0. This is discussed further in
Sec. VA.
Using the ðl; m; nÞ ¼ ð2; 2; 0Þ QNM, we find that

ϕ0 ≡ ϑExlmn

m
− ϕkick ≈

ϕ220

2
− ϕkick: ð39Þ

This gives ϕ0 ¼ −2.39� 0.10 rad. The regularity of
approximation across different mass ratios is briefly dis-
cussed in Sec. V C.
Together, Eqs. (33)–(39) reveal the intrinsic polynomial

phase to be

ϑInlmn ≈ ϕlmn − ð2φlmn þmðϕkick þ ϕ0ÞÞ

≈ ϕlmn −
�
2φlmn þm

ϕ220

2

�
: ð40Þ

We may therefore construct Clmn by evaluating Eq. (40),
and applying it to the magnitude of jClmnj given by
Eq. (35). This allows for the simultaneous least-squares
fitting of Clmn ’s magnitude and phase. Here we have used
MATLAB’s polyfit:m. By increasing the order of the
polynomial fit until the residual error [Eq. (18)] changes
by less than 10%, we find that Clmn are well fit by
polynomials of order l − 1 for the considered range of
η. Figure 7 displays the broad effectiveness of our fitting
Clmn, and then transforming back to Almn to calculate
jAlmnj. Similarly, Fig. 8 displays the corresponding intrinsic
phases and their fits.
For each local minimum in Fig. 7, there is a corre-

sponding phase transition in Fig. 8. In an approximate
sense, this suggests that each Clmn may be more
appropriately represented as a polynomial function of
(η − η0), which would force η ¼ η0 to be a local mini-
mum. However, for simplicity, we have tabulated all
fitting coefficients according to Eq. (35).
All fitting coefficients are given in Appendix A.

B. Beyond the fundamentals: Overtones
and second order modes

Figure 9 displays estimates for the QNM amplitudes of
overtones (top panel) and second order modes (bottom

19For simplicity, we will not separate the Kerr eigenvalues (e.g.
the excitation factors [64]) out from the net QNM excitation,
Almn. The result is that the polynomial in question approximates
the product of two functions. One, the excitation factor, is
independent of the initial parameters. The other is entirely
dependent on the initial parameters.
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panel) as recovered by the greedy-OLS algorithm. While
their existence has been discussed in previous studies
(e.g. [11–13,16,17,32–35]), we present for the first time
their characterization with symmetric mass ratio.
The fitting polynomials for the overtones were found to

be of order l − 1 in η. The ðl; m; nÞ ¼ ð4; 4; 1Þ case is a
clear exception, requiring at least an eighth order fit. While
we find that many of our estimates of jAlmnj display a
localized increase between 0.18 ≥ η ≥ 0.17, jA441j displays
a significant decrease which makes its η dependence
possibly inconsistent with Eq. (32). As discussed in
Sec. VA, this is likely due to the definition of ringdown
start time in terms of the initial rather than final mass scale.
Given the limitations of our NR runs, we consider

these oscillations to be numerical, rather than physical.
A similar oscillating trend is observed in the apparent
ðl1;m1;n1Þðl2;m2;n2Þ¼ ð2;2;0Þð2;2;0Þ excitation (Fig. 9).
We discuss the likely source for these oscillations in the
next section (Sec. V C).
While the overtones decay faster (e.g. Fig. 6), their

functional form largely mirrors their n ¼ 0 counterparts
(Fig. 7). Similarly, the functional form of the second
order modes appears consistent with the notion that each
second order mode is largely driven by products of two
first order modes [32]. Quantitatively, we expect that each

Aðl1m1n1Þðl2m2n2Þ should be proportional to the product of
some Al1m1n1 and Al2m2n2 :

Aðl1m1n1Þðl2m2n2Þ ∝ Al1m1n1Al2m2n2 : ð41Þ

Under this caveat, we model the second order modes
according to

Aðl1m1n1Þðl2m2n2Þ ¼ μðl1m1n1Þðl2m2n2ÞAl1m1n1Al2m2n2 ; ð42Þ
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FIG. 8 (color online). Examples of phases relative to mϕ22=2.
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FIG. 9 (color online). Estimated overtone (top) and second
order (bottom) excitation amplitudes via multimode fitting. The
error bars were calculated as described in Sec. III A–f.
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FIG. 7 (color online). Fundamentals. The error bars were
calculated as described in Sec. III A–f.
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where, given Al1m1n1 and Al2m2n2 from the first order fits,
μðl1m1n1Þðl2m2n2Þ is the only undetermined parameter.
Upon using a standard root finding algorithm to solve

for μðl1m1n1Þðl2m2n2Þ, we find qualitatively good agreement
between our raw estimates for Aðl1m1n1Þðl2m2n2Þ and Eq. (42).
While Fig. 9 displays ðl1m1n1Þðl2m2n2Þ ¼ ð2; 2; 0Þð2; 2; 0Þ
and (2,2,0)(3,3,0) cases, other less dominant and poorly
resolved candidates were detected.
All fitting coefficients are given in Appendix A.

V. CONSISTENCY WITH PERTURBATION
THEORY AND RESULT LIMITATIONS

While we have developed a method for the estimation of
QNM excitation coefficients, this alone does not guarantee
the consistency of our results with perturbation theory. This
is primarily due to the fact that the QNMs and their related
functions are not complete (e.g. [65]). In particular, the
decaying sinusoids are overcomplete, making it, in prin-
ciple, possible to achieve an arbitrarily good fit to Eq. (13)
with many different combinations of decaying sinusoids.
However, the effectiveness of the greedy-OLS method
described in Sec. III hinges not on the completeness of
the QNMs, but on the uniqueness of the Fourier transform
[Eq. (25)], which the algorithm seeks to approximate up to
numerical accuracy by focusing only on the sparse QNM
frequencies suggested by perturbation theory.20

Even so, results for Almn may be intrinsically biased if
the data are not actually dominated by QNMs. This is the
case if the fitting region is chosen either too close to the
merger regime or so far away that irregular numerical noise
dominates. For this reason, independent measures of the
jAlmnj’s consistency with perturbation theory are needed. In
this section we consider two such measures, and discuss the
limitations of our results.

A. Fitting region effects

The first estimate of consistency is mentioned at the end
of Sec. III A–f: the effect of ringdown start time, T0, on
Almn. Here we will discuss the effect of T0 on Almn from
two perspectives.
Changing scales.—On one hand, we may ask why

defining T0 relative to the peak luminosity of ψNR
22 has

been found to yield well-behaved maps between initial
binary parameters and QNM excitations. For example, if
one defines T0 relative to the peak of ψNR

22 rather than its
luminosity, then seemingly irregular oscillations are intro-
duced into the dependence of each fundamental mode’s
Almn on symmetric mass ratio. This suggests that there is

something about the peak luminosity that serves as a
consistent reference for how the system is evolving in
the ringdown regime. This postulate is supported by our
analysis of each Almn phase in Sec. IV, where we found that
when using the peak luminosity as a reference point, the
complex phase of each Almn was dependent on m time the
systems final kick direction with an offset of mϕ0 that is
largely independent of initial parameters [Eq. (40)]. This
means that the phase evolution of each ringdown wave-
form, relative to the time of the peak luminosity, is
approximate for the systems considered here. In other
words, the choice to measure time relative to the peak
luminosity appears to be approximately the same as
choosing T0 such that ϕ0 is constant.
However, there is a discrepancy here: we have chosen

T0 ¼ 10M in units of the system’s Arnowitt-Deser-Misner
(ADM) mass [37], not the final black hole mass Mf,
meaning that while the physical scale of the system (Mf)
changes, our reference length T0 stays fixed. This along
with the dependence of each QNM frequency on the
final system state, fMf; jfg, should contribute to a sys-
tematically varying ϕ0. The systematic dependence of ϕ0

is shown in Fig. 11’s bottom right panel against η (η is
proportional to jf).
As with choosing the peak of ψNR

22 rather than its
luminosity as a reference point, we might expect seemingly
irregular oscillations to appear in the dependence of some
jAlmnjðηÞ. In particular, while further study is needed, the
above argument is a likely explanation for the fluctuations
of some modes around η ¼ 0.18 (e.g. jA320j and jA210j in
Fig. 7, and the modes in Fig. 9).
a. Different start times.—On the other hand, different

fitting regions incur different amounts of numerical noise
which may bias results. Therefore we have chosen to
quantify this measurement error by considering different
fitting regions, and then rescaling our results to be relative
to T0 ¼ 10M after the peak in ψNR

22 ’s luminosity. This
measure of consistency answers the question “How much
does the recovered QNM behave like a damped sinusoid?”
and may be quantified by rescaling AlmnjT0

according to its
complex QNM frequency

AlmnjT0
≈ AlmnjT 0

0
ei ~ωlmnðT0−T0

0Þ: ð43Þ
In the ideal case, where the estimated Almn behaves exactly
as a decaying sinusoid from T0 to T0

0, Eq. (43) becomes an
equality. This method was utilized to make the error bars
throughout this paper.
While we find that the effects of choosing different T0

are inherently systematic,21 they are also indicative of an
optimal start of ringdown that is generally about 10M after
the peak luminosity in ψNR

22 (Appendix B); however, in
some cases the effective ringdown fitting may be performed

20The greedy-OLS algorithm uses only a handful of frequen-
cies to estimate the Fourier transform at all frequencies. We find
that applying the greedy-OLS algorithm with the QNM frequen-
cies corresponding to a different physical spin does not yield
good fits.

21To the left of ringdown is the nonlinear merger, and to the
right is numerical noise.
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up to 2M after the peak luminosity. An expanded descrip-
tion of fitting region effects is given in Appendix B.

B. Inner-product ratios

An additional consistency test may be performed by
taking advantage of Eq. (13) for different ψNR

lm [15]. Noting
that any QNM may be found within multiple ψNR

lm of the
same m, it follows that the ratio of their mixing coefficients
may be estimated from fitting results, and then compared to
analytic calculations via Eq. (14).
For example, in the case of ψNR

33 and ψNR
43 , Eq. (13) gives

that

ψNR
33 ðtÞ ¼ A330σ3330ei ~ω330t þ…

and

ψNR
43 ðtÞ ¼ A330σ4330ei ~ω330t þ A430σ4430ei ~ω430t þ…

By comparing terms, and recalling that the greedy-OLS
algorithm gives a measure for terms in the above sum via
Eq. (24)

βl0lmn ¼ AEst
lmnσ

Est
l0lmn;

we see that the ratio, σl0lmn=σllmn, may be estimated directly
from the results of multimode fitting. For brevity, we shall
limit our discussion to the fundamental modes. For clarity,
we will make a distinction between the perturbation theory
result derived from Eq. (14)

λPTl0m ¼ σl0lm0

σllm0

; ð44Þ

and the multimode fitting estimate

λNRl0m ¼ βl0lm0

βllm0

¼ σEstl0lm0
AEst
lm0

σEstllm0A
Est
lm0

: ð45Þ

The top two and bottom left panels of Fig. 10 compare
λNRlm to λPTlm for l ¼ m ¼ f2; 3; 4g. Because λNRlm is insensitive
to waveform phase, we have included results for three
waveforms with lower symmetric mass ratios.

FIG. 10 (color online). Ratio of inner-products between spherical and spheroidal harmonics estimated via multimode fitting and direct
calculation. The error bars were calculated as described in Sec. III A–f.
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While consistency between perturbation theory and our
numerical results is seen in all cases, our estimate λNR44
does systematically deviate from λPTlm by roughly 10% on
0.20 < η < 0.25. As suggested by our discussion in Sec. II
C, we consider this deviation to be the result of jA440j
approaching the magnitude of numerical noise. Moreover,
this deviation was found to be exacerbated by the addition
of mirror modes (Sec. I B), the removal of the second order
modes, or both.

C. Limitations of results

While finite spatial and temporal NR resolution limits
the frequencies and multipoles that we are able to
consider, we find that our results are stable with respect
to the resolutions discussed in Sec. II C. This also suggests
that gauge and near-field effects are not significantly
manifested for the majority of our results.22 However our
consideration of the apparent second order modes carries a
more basic limitation: we currently lack detailed knowl-
edge about their structure. Moreover, our lacking many
simulations in the very unequal mass-ratio regime
presents another limitation.
Second order modes.—As analytic calculations of sec-

ond order Kerr QNMs are lacking, there exists a tension in
the existing literature.
On one hand, analytic studies such as that of Ioka and

Nakano [32] suggest that second order perturbations result
in QNMs proportional by products of two first order
modes. On the other hand, Pazos et al. [34] found that,
for spherically symmetric initial data, scalar wave scatter-
ing off of a Schwarzschild black hole results in second
order excitations whose frequencies are the same as those
of first order modes.
In this study (Sec. IV B) we find second order excitations

that appear to be largely driven by two first order QNMs,
with frequencies that are sums of two first order

frequencies. However, as our analysis approach has been
designed to only extract spheroidal information post-
merger, it cannot directly untangle mode coupling effects
that would be consistent with [34]. Therefore, our findings
may indeed be consistent with both [34] and [32]. We
expect that an analytic study, analogous to Leaver’s work
[7], but for second order Kerr perturbations [31], may
elucidate the matter.
Among the subtleties that should be addressed, we

expect the degeneracy of the sum and difference tone
spectrum to play an important role: when considering the
entire set of possible second order modes, one quickly finds
exact or near degeneracies between QNM frequencies with
l1 ≠ l2 and m1 ≠ m2. Here, the second order modes with
the lowest l ¼ m indices, such as (2,2,0)(2,2,0) and (2,2,0)
(3,3,0), are not only free from degeneracy at this level, but
appear to be the most prominent.
On a more rudimentary note, we do caution that, for the

apparent second order modes discussed in Sec. IV B, the
overall proportionality constants (see Appendix A) are
surely biased by the numerical limitations discussed in this
and previous sections.
Very unequal mass ratios.—Lastly, in regards to our fits

for QNM excitation on symmetric mass ratio, a more basic
limitation is the inability to include many points in the very
unequal mass-ratio regime (η < 0.15). Therefore, while the
fits presented in Sec. IV have been constructed to adhere to
the extreme mass-ratio limit, they are, conservatively, only
valid within the presented range of η.

VI. DISCUSSION OF RESULTS

In this section, we comment on the potential relevance of
subdominant QNMs to ringdown templates and the rel-
evance of our results to perturbation theory.

A. Perturbation theory comments

Pending an analytic description of QNM excitation for
initially nonspinning, quasicircular BBH merger, akin to
[41], and a better understanding of the higher order Kerr
spectrum, akin to, we have found that a PN-like prescrip-
tion effectively models QNM excitation for the systems
studied. The success of this model suggests that a well-
defined analytic description exists, and that its predictions
may be directly compared to the fitting coefficients in
Tables IV and V. When directly compared to its PN
counterparts, our model also illuminates the qualitative
differences between the inspiral regime, where PN is valid,
and the postmerger ringdown regime.
In particular, Fig. 12 shows the qualitative differences

between the spherical multipolar GWemission predicted by
PN (top panel), and the fundamental spheroidal emission
(bottom panel) presented here. On the one hand, similarities
between the ðl; m; nÞ ¼ fð2; 2; 0Þ; ð2; 1; 0Þg QNMs and
their PN counterparts may suggest that they are connected

FIG. 11. Difference between phase of ðl; m; nÞ ¼ ð2; 2; 0Þ
QNM excitation (10M after the peak luminosity in ψNR

22 ) and
the scaled kick direction, mϕkick (Sec. IV).

22See [15] for an expanded discussion.
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by a largely linear process. On the other, the clear
differences between PN predictions, and the ðl; m; nÞ ¼
ð3; 2; 0Þ and (4,4,0) QNMs may suggest a region of
nonlinear response between η ¼ 0.1 and η ¼ 0.24.
Further study is needed to precisely clarify whether or
not this is the case.
Despite our current limited understanding of the under-

lying physics, the local minima seen in Fig. 12 suggest that
the ðl; m; nÞ ¼ ð3; 2; 0Þ and (4,4,0) QNMs are less likely to
be relevant for detection in the ∼2∶1 mass-ratio (η ≈ 0.22)
regime. This point, in addition to our descriptions of the
overtones and second order modes (Sec. IV), allows us to
make qualitative comments on the relevance of QNMs to
template accuracy and mode detectability.

B. Template comments

While template accuracy and mode detectability are
topics whose full treatment is beyond the current work,
we are able to briefly comment on the impact of subdomi-
nant QNMs on the signal to noise ratio (SNR) of ringdown
signals. To do so, we will reconsider the 2∶1 mass-ratio
binary discussed in the introduction (Fig. 1).
Specifically, let us contemplate an idealized scenario

where a ringdown-only template is being used to search for
a potential signal as observed by either the Einstein
Telescope (ET), or Advanced LIGO (Adv. LIGO). For
simplicity we will assume that either detector is equally
sensitive over the solid angle, and that there are no glitches
in detector sensitivities as presented in Refs. [2,4]. To
completely constrain our example, we will consider only
templates made with binary parameters identical to that of
the signal: final mass 350M⊙, at a distance of 100 Mpc,
initially nonspinning, η ¼ 0.22, and quasicircular. We are
only interested in the effect of subdominant QNMs on the
estimated SNR.
If the signal, ~sðfÞ, is the frequency domain counterpart

of Fig. 1’s waveform, and the template, ~hðfÞ, is composed
of some superposition of QNMs according to the Fourier
transform of Eq. (11), then the SNR is given by

ρ ¼ ð~sðfÞj ~hðfÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~hðfÞj ~hðfÞÞ

q ð46Þ

where

ðaðfÞjbðfÞÞ≡ 2

Z
∞

−∞

a�ðfÞbðfÞ
SnðfÞ

df ð47Þ

and Sn is the power spectral density (PSD) of the detected
noise [2,4,67].
In the best case scenario, where the signal and template

are identical, ρ takes on its maximal value, ρmax. Table II
lists the values of ρmax for the orientations shown in Fig. 1.
We now ask which QNMs contribute the most to the total

SNR for each of the cases above. To answer this question,
we sequentially determine which N-mode template recov-
ers the largest percent of ρmax. For example, if we denote

FIG. 12. Comparison of the PN strain amplitudes with QNM
amplitudes. Top: Amplitude of dimensionless post-Newtonian
strain for a selection of ðl; mÞ spherical multipoles. Values were
calculated at Mω ¼ 0.18 using Ref. [66]. Bottom: Amplitude
only fits for fundamental QNM excitations.

TABLE II. Maximal SNR values, ρmax, for ET and Advanced
LiGO (Adv. LIGO) detectors at two different orientations
with respect to the final BH’s spin direction: ðθ;ϕÞ ¼
fð0; 0Þ; ðπ=3; 0Þg. Final mass 350M⊙, distance 100 Mpc, ini-
tially nonspinning, η ¼ 0.22, quasicircular.

ρmax

ðθ;ϕÞ Adv. LIGO ET

(0,0) 10.58 160.79
ðπ=3; 0Þ 6.20 94.29
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the recovered SNR of each N-mode template to be ρ�,
then in the case of Adv. LIGO, the 1-mode template that
recovers the largest percentage of ρmax contains only the
ðl; m; nÞ ¼ ð2; 2; 0Þ QNM. This is the case for θ ¼ 0,
where ρ� ¼ 0.9986ρmax, and for θ ¼ π=3, where ρ� ¼
0.9749ρmax. If we ask which additional QNM results in
the largest ρ� at θ ¼ π=3, then (3,3,0) proves to be the next
most important, with ρ� ¼ 0.9837ρmax. Taking another step
forward, we find that the best 3-mode template for Adv.

LIGO at θ ¼ π=3 includes the (2,2,0), (3,3,0) and (2,2,1)
QNMs, with a SNR of ρ� ¼ 0.9902ρmax. Table III lists the
percentages of ρmax recovered up to the 6-mode template
for θ ¼ π=3 and up to the 3-mode template for θ ¼ 0.
Figure 13 is a graphical representation of Table III, and
displays each frequency domain QNM against the ET and
Adv. LIGO PSDs.
This simple numerical experiment suggests that the

greater the angle between the detector’s line of sight and
the BH’s final spin direction, the more QNM information is
needed to model the signal up to 99% of ρmax. While
the orientation dependence and impact of multipoles with
l > 2 on detectability is a topic of active interest [61,68,69],
and previous studies of adding fundamental QNMs of
l > 2 to ringdown-only templates have suggested a sig-
nificant effect on event loss [26,30], our example demon-
strates that the ðl; m; nÞ ¼ ð2; 2; 1Þ overtone may play a
meaningful role. Further study, similar to [30], is needed to
better quantify its significance.
Intriguingly, although Table III shows that the second

order QNMs may only add a minuscule amount to the total
SNR, their contribution to the frequency domain features in
Fig. 13 raises the possibility of their being identified
postdetection.
Finally, in light of the QNM amplitude and phase results

presented in Sec. III B, our toy example also allows us to
consider what information about the remnant BH may be
learned. It is well known that the scaling of QNM
frequencies with remnant mass means that the detection

FIG. 13 (color online). Frequency domain envelopes of strain and fitted QNM amplitudes for a 2∶1 mass-ratio system (η ¼ 0.22) of
350 M⊙, at a distance of 100 Mpc. Left: Signal for line of sight along final spin direction [e.g. ðθ;ϕÞ ¼ ð0; 0Þ]. Right: Line of sight
π=3 rad with respect to final spin direction, ðθ;ϕÞ ¼ ðπ=3; 0Þ. Noise curves for the Einstein Telescope and Adv. LIGO are shown for
reference. For each panel, the color of each quasinormal mode curve, along with its relative position, labels the mode’s contribution to
total signal to noise ratio. In each case, the ðl; m; nÞ ¼ ð2; 2; 0Þ mode is the most dominant.

TABLE III. Recovered QNMs and estimated fractional SNR
values for Advanced LIGO (Adv. LIGO) and the Einstein
Telescope. Under each detector heading, values for the SNR
found using only one mode, ρ1, and values for using many
modes, ρ�, are shown. In the case of ρ�, the number of QNMs
used in the template increases from top to bottom. This may be
seen in the first row of each case, where ρ� ¼ ρ1.

Adv. LIGO ET

ðθ;ϕÞ Mode ðl; m; nÞ ρ1 (%) ρ� (%) ρ1 (%) ρ� (%)

(0,0)
(2,2,0) 99.865 99.865 99.880 99.880
(2,2,1) 89.461 99.986 86.956 99.989
(3,2,0) 62.561 99.997 59.026 99.998

ðπ
3
; 0Þ

(2,2,0) 97.494 97.494 98.348 98.348
(3,3,0) 63.946 98.365 60.932 98.801
(2,2,1) 86.457 99.023 85.537 99.349
(2,1,0) 41.464 99.558 92.670 99.685

(2,2,0)(2,2,0) 92.069 99.795 40.896 99.886
(2,2,0)(3,3,0) 30.870 99.934 27.192 99.957
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of at least two QNM frequencies is required to estimate the
final mass and spin of the system [24,25,30,37,70]. This
information, along with the relative amplitudes, may also
yield information about the initial binary, and perhaps even
final spin orientation [36,37]. Of the current study, if two
QNM frequencies are detected, allowing for the identifi-
cation of each frequency’s ðl; m; nÞ, then a rearrangement
of Eq. (39) suggests that information about the recoil angle
relative to the line of sight may also be estimated via

ϕkick ≈
ϕ220

2
− ϕ0: ð48Þ

The applicability of this potential measure is the subject
of a future study.

VII. CONCLUSION

Our in-depth analysis of NR entrance into ringdown has
provided us with a wealth of information about the
excitation of QNMs. We have found evidence for non-
fundamental spheroidal QNM excitations within the resid-
uals of single-mode QNM fits (Sec. II B). By developing a
method to estimate these spheroidal components (Sec. III
A), we have presented a review of QNM excitations
including and beyond the fundamentals, and we have
discovered that the phase of these excitations is affected
by the remnant BH’s final kick direction (Sec. IVA).
QNM excitations are well modeled by a PN-like expan-

sion (Sec. IV), and that our estimates for the excitation
amplitudes are largely consistent with perturbation theory,
within the limits of knowledge and numerical accuracy
available at the time of this study (Sec. V).
To make our results available for the construction of

ringdown related GW templates, we have tabulated related
fitting coefficients in Appendix A.
We studied the relevance of our results for GW detec-

tion with the ringdown of a 2∶1 mass-ratio system of
initially nonspinning BHs. For this case, we find that the
l ¼ m ¼ 2, n ¼ 1 overtone is the most dominant, and that it
is the second most significant QNM when the remnant BH
is observed along its final spin axis (Fig. 13, left panel).
This case also demonstrates that the apparent l ¼ m ¼ 2
second mode, while minuscule in comparison to its first
counterpart, may be more significant than higher l QNMs
at similar frequencies (Fig. 13, right panel). Moreover,
this case is consistent with the expectation that as the line
of sight deviates from the final BH spin direction, more
QNMs are needed to accurately represent the signal
(Table III).
But as informative as our example 2∶1mass-ratio system

may be, its shortcomings are clear. It demonstrates that
when modeling ringdown the ðl; m; nÞ ¼ ð2; 2; 1Þ can play
a role comparable to that of the higher fundamental QNMs
(Table III), but to solidify this statement, and its relevance
to high mass templates, a full orientation study is needed.

We have also seen that apparent second order QNMs might
contribute to ringdown’s frequency domain features
(Fig. 13), but the full extent to which these modes are
relevant cannot be assessed without more accurate NR
simulation, and a better understanding of the second order
structure of Kerr perturbations. Intriguingly, we have also
seen that the QNM phase carries information of how the
remnant BH is oriented relative to its recoil velocity. While
our example system demonstrates that this might allow for
an estimation of the recoil direction relative to the line of
sight, the scope of the estimation as presented here is only a
first step. We look forward to the exploration of this
possibility in future work.
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APPENDIX A: FITTING COEFFICIENTS
FOR QNM EXCITATIONS

For convenience, here we have collected all fitting
formulas and related coefficients. In particular, if one is
interested in the QNM excitations from initially nonspin-
ning, quasicircular binary black hole coalescence, then we
present the following algorithmic description to apply the
model presented in Sec. IV.
The primary inputs of our model are the binary’s

component masses, m1 and m2. The primary output of
our model is the ringdown portion ψ4ðtÞ, starting 10 (M)
after the peak luminosity in the l ¼ m ¼ 2 spherical
multipole. Therefore, throughout what follows, t ¼ 0
corresponds to 10 (M) after the l ¼ m ¼ 2 spherical
multipole, and values of t < 0 are to generally be consid-
ered outside of the fit’s domain of applicability.
First, given m1 and m2, one may calculate the symmetric

mass ratio via

η ¼ m1m2

m1 þm2

:

With the symmetric mass ratio, one may use a phenom-
enological fitting formula to quickly estimate the remnant
BH’s final mass, M, and dimensionless spin, j ¼ S=M2.
While we present fitting formulas in Appendix C, an
alternative formula may be found in [71].
Now with the final BH’s parameters at hand, individual

QNM frequencies,

~ωlmn ¼ ωlmn þ i=τlmn;

MODELING RINGDOWN: BEYOND THE FUNDAMENTAL … PHYSICAL REVIEW D 90, 124032 (2014)

124032-19



may be most readily obtained by using the fitting formulas
presented in [24]. Alternatively one may use the tabulated
values for Mωlmn available at [72].
We have that estimates for the complex QNM excitation

factors, Almn, may be found by evaluating the following
series of equations:

δmðm1;m2Þ≡ jm1 þ ð−1Þmm2j
m1 þm2

ðA1Þ

Almn ¼ ~ω2
nlmδmðm1;m2Þη1þn

X
u¼0

jaujeiαuηu: ðA2Þ

Values for jauj are listed in Table IV. Values for αu are listed
in Table V.
For the second order QNMs discussed in Sec. IV B, we

have that

Aðl1;m1;n1Þðl2;m2;n2Þ ¼ μðl1;m1;n1Þðl2;m2;n2ÞAl1;m1;n1Al2;m2;n2 ;

where for the (2,2,0)(2,2,0) mode we find that

μð2;2;0Þð2;2;0Þ ¼ 5.3956;

and for the (2,2,0)(3,3,0) mode,

μð2;2;0Þð3;3;0Þ ¼ 4.6354:

Keeping in mind that all tabulated coefficients correspond
to T0 ¼ 10 (M), the full time domain ringdown waveform
may be calculated by first evaluating the spheroidal
harmonics, −2Slmðj ~ωlmn; θ;ϕÞ (via [7]), and then evaluating

ψ4ðt; θ;ϕÞ ¼
1

r

X
l;m;n

ψPT
lmnðtÞ½−2Slmðj ~ωlmn; θ;ϕÞ�

where

ψPT
lmnðtÞ ¼ Almnei ~ωlmnt:

Alternatively, one may calculate the spherical multipole
moments by evaluating

ψNR
l0mðtÞ ¼

X
n;l

Almnσl0lmnei ~ωlmnt

where

σl0lmn ≡
Z
Ω

−2Slmðj ~ωlmn; θ;ϕÞ−2Ȳl0mðθ;ϕÞdΩ:

While we have suppressed the second order notation for
simplicity, one may again impose the notion that each full
second order QNM corresponds to products of two first
order modes. With the two expressions for ψNR

l0mðtÞ and
ψPT
lmnðtÞ above, we have completed our algorithmic descrip-

tion for calculating ringdown waveforms using the initial
binary’s component masses.
While our discussion thus far has been limited to first and

fundamental overtones, n ¼ 0 and n ¼ 1, it should also be
noted that consistent evidence for the n ¼ 2, l ¼ m ¼ 2,
overtone may be readily observed by considering fitting
regions closer to the ψNR

lm luminosity. Figure 14 displays
this overtone scaled relative to T0 ¼ 10 (M). Though the
general trend is reminiscent of the n ¼ 0 and n ¼ 1

TABLE V. Phase of Clmn fitting coefficients.

ðl; m; nÞ α0 α1 α2 α3 α4

(2,1,0) 2.417 −2.647 −2.042 0 0
(2,2,0) 0.05992 −2.208 0.2412 0 0
(2,2,1) −2.936 0.129 2.961 0 0
(2,2,2) 0.2528 −2.928 0.08554 0 0
(3,2,0) −0.7712 1.71 −2.036 −2.553 0
(3,3,0) −0.1153 1.528 −1.131 1.747 0
(3,3,1) −2.726 0.3594 −2.938 −1.683 0
(4,3,0) 2.285 −1.541 1.39 −1.077 1.897
(4,4,0) 0.008012 2.588 −0.4417 2.729 −0.5777
(5,4,0) 2.077 −2.134 0.1512 2.731 −0.8791
(5,5,0) 3.123 −0.5147 2.841 −0.1611 2.886

FIG. 14 (color online). The n ¼ 0; 1 and 2 overtones of the
l ¼ m ¼ 2 QNM excitation recovered from NR ringdown if
initially nonspinning unequal mass-ratio BH binaries. The error
bars were calculated as described in Sec. III A–f.

TABLE IV. Magnitude of fitting coefficients for Clmn.

ðl; m; nÞ ja0j ja1j ja2j ja3j ja4j
(2,1,0) 0.2045 0.3554 1.034 0 0
(2,2,0) 0.184 0.1 5.088 0 0
(2,2,1) 0.8904 6.304 19.4 0 0
(2,2,2) 1.626 15.3 40.65 0 0
(3,2,0) 0.06907 0.4579 0.7754 2.476 0
(3,3,0) 0.07896 0.9093 5.345 20.66 0
(3,3,1) 0.7784 7.641 25.73 10.29 0
(4,3,0) 0.03099 0.3174 1.544 6.013 16.33
(4,4,0) 0.05596 0.7825 7.74 41.32 82.02
(5,4,0) 0.01222 0.1674 1.834 8.804 16.32
(5,5,0) 0.03257 0.4652 4.876 28.71 64.31
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overtones, the n ¼ 2 mode’s faster decay rate corresponds
to larger variation with fitting region (e.g. larger error bars).

APPENDIX B: THE START OF RINGDOWN

While it is not possible to define an absolute start of
ringdown, we may make a practical definition by asking
which potential ringdown region is best modeled by QNMs
only. This question may be addressed by finding a local
minimum in residual error with respect to the fitting region
start time. To this end let us consider the multipole which is
least effected by numerical errors: ψNR

22 . Figure 15 shows its
residual error [Eq. (18)] on symmetric mass ratio. The trend
observed here is inherently systematic as, when moving
towards the peak in radiation, the data are no longer
dominated by QNMs, while, when moving away from
the peak, numerical noise eventually dominates.
Consequently, although there is a visible minimum at

T0 ¼ 10 ðMÞ, it is not the global minimum, as ε22 fluctuates
in the numerical noise following T0 ¼ 13 ðMÞ. However,
10 ðMÞ nevertheless gives us a practical starting point
within which the majority of ψNR

lm is above the numerical
noise floor.

APPENDIX C: FINAL MASS AND SPIN

As noted in [71], the final mass and spin dependence on
initial binary symmetric mass ratio may be well fit by a

polynomial in η. Alternatively, the more recent study [23]
shows that the final BH parameters may also be well
modeled as a power series in m1 −m2. Here, we present a
methodologically different fit than that presented in [71]
and [23], while maintaining the η parametrization of [71].
Specifically, when fitting final dimensionless spin, jf, we
choose to directly impose the boundary condition that as
η → 0, jf → 0. In particular, we fit

jfðηÞ ¼ η
X
k¼1

tkηk−1: ðC1Þ

Similarly, when fitting final mass, Mf, we choose to
directly impose the boundary condition that as η → 0,
Mf → 1. In particular, we fit

MfðηÞ ¼ 1 − η
X
k¼1

t0kη
k−1: ðC2Þ

The fitting result for jfðηÞ is shown in Fig. 2. Fitting
coefficients are tabulated in Table VI. While the fitting
results here are consistent with [71] and [23] within their
fit’s domain of applicability (deviations are within 1% of
the values reported), we expect that the forms given in (C1)
and (C2) bias the fit towards the physically correct solution
outside of the fitting domain.
Consistency with multimode fit.—The numerical values

used to make the above fits (Table VI) were calculated
using the isolated horizon formalism [49]. However, final
BH mass and spin may also be estimated using ringdown
fitting (e.g. [30,52]). For the numerical runs considered
here, we find that single-mode fitting recovers the horizon
estimate to within ∼5%, while multimode fitting recovers
the horizon estimate to within ∼0.5%. This level of
agreement is within the numerical error of the isolated
horizon estimate.
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