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Nonlocal gravity: The general linear approximation
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The recent classical nonlocal generalization of Einstein’s theory of gravitation is presented within the
framework of general relativity via the introduction of a preferred frame field. The nonlocal generalization
of Einstein’s field equations is derived. The linear approximation of nonlocal gravity is thoroughly

examined and the solutions of the corresponding field equations are discussed. It is shown that nonlocality,
with a characteristic length scale of order 1 kpc, simulates dark matter in the linear regime while preserving
causality. Light deflection in linearized nonlocal gravity is studied in connection with gravitational lensing;

in particular, the propagation of light in the weak gravitational field of a uniformly moving source is
investigated. The astrophysical implications of the results are briefly mentioned.
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I. INTRODUCTION

The standard theory of relativity is based on a funda-
mental postulate of locality. In extending Lorentz invari-
ance to actual observers, which are all more or less
accelerated, a basic assumption is required regarding what
accelerated observers would measure. The hypothesis that
is adopted in the standard theory of relativity is that an
arbitrary accelerated observer is pointwise inertial; there-
fore, Lorentz transformations can be applied point by point
along the path of the accelerated observer to determine its
measurements. This locality postulate is an essential
ingredient of general relativity (GR) theory as well, since
Einstein’s heuristic principle of equivalence loses its
significance if one does not know what accelerated observ-
ers would measure. In general relativity, an arbitrary
observer in a gravitational field is locally (i.e., pointwise)
inertial as a joint consequence of Einstein’s principle of
equivalence as well as the hypothesis of locality [1,2].

In classical physics, the value of a physical quantity Q(¢)
at time ¢ is based on a certain measurement process that in
general started before time t. This circumstance becomes
particularly significant when the acceleration of the observer
is taken into account, as a consequence of the existence of
invariant acceleration scales in relativistic physics. Thinking
of classical physics in terms of particles and waves, we note
that the interaction of point particles and rays can be reduced
to pointlike coincidences; however, one can show that wave
properties cannot be measured instantaneously even with
ideal measuring devices. The deviation from locality is thus
expected to be proportional to 4/L, where % is the reduced
wavelength of the phenomenon under observation and L is
the acceleration length of the observer. An observer fixed on
the Earth, for instance, has translational and rotational
acceleration lengths ¢?/|gg| ~ 1 light year and ¢/|og| ~
28 astronomical units, respectively. Thus /L is generally
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rather small compared to unity; therefore, the hypothesis of
locality is a good approximation in most situations of
practical interest. Moreover, it has been shown by Bohr
and Rosenfeld that the measurement of the classical electro-
magnetic field at a given time ¢ by ideal inertial observers
involves a certain spacetime average over past events [3].
This observation acquires particular significance for accel-
erated observers in Minkowski spacetime due to the exist-
ence of invariant acceleration scales [4]. Thus the application
of the hypothesis of locality to a basic field such as the
electromagnetic field is only a first approximation, akin to
the impulse approximation of the quantum scattering
theory [5].

To go beyond the hypothesis of locality, one must
include an average over the past world line of the observer
with a weight function that is characteristic of the observ-
er’s acceleration. In this way, a nonlocal special relativity
theory has been developed in which nonlocality appears as
the memory of past acceleration [6]. Thus the measured
electromagnetic field consists of the local result plus an
integral over the past that is linear in the field and contains
an acceleration-dependent kernel [7]. The electromagnetic
field is local, but satisfies integro-differential equations
reminiscent of Maxwell’s original equations with nonlocal
constitutive relations [8]. How can this approach be
extended to a nonlocal general relativity theory [9]? It
turns out that GR has an equivalent tetrad formulation
(GR;) that is amenable to nonlocal generalization via a
causal constitutive kernel [10-17]. Such a nonlocal gen-
eralization of GR can simulate dark matter. The funda-
mental length scale associated with nonlocal gravity (NLG)
is a galactic length of the order of 1 kpc; therefore,
nonlocality can be neglected on scales that are much
smaller than 1 kpc. It appears that the nonlocal aspect of
gravity could indeed be responsible for the observational
data in astrophysics and cosmology that have been inter-
preted thus far in terms of dark matter; that is, what is now
considered dark matter may in fact be the manifestation of
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the nonlocal component of the gravitational interaction
[17]. This circumstance provides the motivation to study
the theoretical basis of NLG further and develop its
consequences.

In previous work on NLG [10-17], GR, the teleparallel
equivalent of GR, has been described within the framework
of gauge theories of gravitation, since GR) is the gauge
theory of the Abelian group of spacetime translations
[18-20]. Alternatively, it is possible to formulate the theory
within the standard framework of GR supplemented with a
latticework of preferred frames. For the sake of complete-
ness, we adopt in the present paper the latter formulation
that is much closer to the spirit of GR [20]. That is, nonlocal
gravity has been primarily described thus far in terms of
local frames in Weitzenbock spacetime [10—17]. We choose
a complementary approach in this paper and formulate
nonlocal gravity anew in such a way as to preserve the main
physical results of the theory [10-17] and avoid incon-
sistencies, as explained in detail in the following sections.
Furthermore, the matter energy-momentum tensor 7', as
employed in previous work on nonlocal gravity [10-17],
has not always been assumed to be symmetric in general. In
the present work, however, T, is the symmetric energy-
momentum tensor, exactly as in GR.

In Sec. II, we introduce the Weitzenbock connection and
concisely develop the essential elements of nonlocal gravity
in an extended general relativistic framework. In particular,
the field equations of nonlocal gravity are written as non-
locally modified Einstein’s equations. In Secs. Il and IV, the
general linear approximation of nonlocal gravity is devel-
oped in a consistent manner and applied in Sec. V to the
determination of the gravitational field of an isolated sta-
tionary source. Such a source is assumed to be in uniform
translational motion in Sec. VI, which is devoted to the
problem of propagation of light rays in the field of the
moving source. Section VII contains a brief discussion of our
results.

II. FIELD EQUATIONS OF NONLOCAL GRAVITY

A. One metric with two connections

Einstein’s local principle of equivalence has a natural
geometric formulation in terms of a spacetime manifold
with a Riemannian metric tensor g, (x) such that test
particles follow timelike geodesics

B gy drdd
dr? P dr dr

(1)

and rays of radiation follow the corresponding null geo-
desics of spacetime [1]. Here, x represents an event in
spacetime with coordinates x* = (ct,x'), 7 is the proper
time along the world line and (OF’;ﬂ) represents the Levi-
Civita connection given by the symmetric Christoffel
symbols
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Orﬁﬁ = %9" “(Gvap + Gupa = Japu)- (2)

This torsion-free connection has Riemannian curvature,
OR®p, = 0,°T%, — 0,1, +°0'% Ty, —°T¢,°T) . (3)

in terms of which one can develop a natural generalization
of Poisson’s equation of Newtonian gravity. Hence, we
have the gravitational field equations [1]

1
ORW - EgWOR + Ag,, =«T,,, (4)

where °R,, = °R*,,, represents Ricci curvature and °R =
g””ORM,, represents scalar curvature. Moreover, the matter
energy-momentum tensor is symmetric and given by T, A
is the cosmological constant and k := 87G/c*. The Einstein
equations can be derived from an action principle, where
the gravitational Lagrangian is given by L, = ¢*(°R—2A)/
(162G). The gravitational field is identified with the
Riemannian curvature tensor ORaﬁﬂs; in its complete
absence, there is no gravity and we are back in the
Minkowski spacetime of special relativity [21].

Observers in spacetime are endowed with an orthonor-
mal tetrad frame 4#;(x) such that #; is the observer ’s unit
temporal direction, A*;, i = 1,2,3, form its spatial frame
and

g/w(x)/w&(x)/lpﬁ(x) = Nap- (5)

The 16 components of the tetrad frame are subject to 10
orthonormality relations (5). Let us recall that in GR, the
metric tensor g,, carries the 10 gravitational degrees of
freedom. The remaining 6 degrees of freedom, which are
elements of the local Lorentz group, specify the observer’s
instantaneous velocity and the 3 Euler angles that define the
orientation of its spatial frame with respect to a background
reference system.

The local measurement of physical quantities by an
observer generally involves the projection of relevant tensor
fields on its tetrad frame. Thus the spacetime interval ds can
be written as

ds* = g, dx*dx* = r]&ﬁdx&dx[’, (6)

where dx* = #,dx® In our convention, the Minkowski
metric tensor 7,4 is given by diag(—1,1,1,1). Moreover,
latin indices run from 1 to 3, unless specified otherwise,
while greek indices run from 0 to 3. The hatted indices
(e.g., &, 1, etc.) refer to anholonomic tetrad—that is, local
Lorentz—indices, while ordinary indices (e.g., a, i, etc.)
refer to general holonomic spacetime indices. As is evident
from Eq. (6), the tetrad connects (holonomic) spacetime
quantities to (anholonomic) local Lorentz quantities.
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In keeping with the spirit of GR, we work in this paper
essentially with holonomic systems and the corresponding
spacetime coordinates are assumed to be admissible.
Holonomic and anholonomic indices are raised and low-
ered by means of metric tensors g,,(x) and 7, j» Tespec-
tively. To change an anholonomic index of a tensor into a
holonomic index or vice versa, we simply project the tensor
onto the corresponding tetrad frame. We use units such that
¢ =1, unless otherwise specified.

Of all possible smooth orthonormal tetrad frame fields
that can be defined on the Riemannian spacetime manifold,
let us choose one, namely, e”;(x). This will be our
preferred tetrad field. Indeed, any such smooth frame field
will do; however, this basic degeneracy will be eventually
removed via the introduction of nonlocality into the theory.
Let us now use our preferred frame to define a second
connection [22]

.= e”i,aae[/}. (7)

One can directly verify that this nonsymmetric Weitzenbdock
connection is indeed curvature-free. It follows from Eq. (7)
that

Ve, =0, (8)
where V denotes covariant differentiation with respect to

the Weitzenbock connection. Therefore, V,g,; = 0 due to
the orthonormality relation

9w = €y euﬂnaﬁv (9)

so that the Weitzenbock connection is compatible with the
spacetime metric. Moreover, the new connection renders
spacetime a parallelizable manifold, since we have every-
where access to our preferred frame field ¢/, a smooth
global latticework of parallel tetrad frames. This framework
is known as teleparallelism, due to the distant parallelism of
the preferred tetrad frames via the Weitzenbock connection.
That is, distant vectors can be considered parallel if they
have the same local components relative to the preferred
tetrad frame field.

We have thus two connections that are both compatible
with our Riemannian metric. The difference between two
connections on the same manifold is always a tensor;
therefore, we have two associated tensor fields, namely, the
torsion tensor

Cﬂzza = F;lll/ - Fgﬂ = eaﬁ’(aﬂeuﬁ - 8116;4/})’ (10)
and the contorsion tensor
K, =°T% —T%,. (11)

From V,g,s = 0, we have
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gaﬂ,y = Fl;(lgﬂﬂ + Fl;ﬁg/m- (12)

Substituting this relation in Eq. (2), we find the relation
between torsion and contorsion, namely,

1
K;wa = Egaﬁ(cuﬂy + Cvﬂu - C/wﬂ)' (13)

While the torsion tensor is antisymmetric in its first two
indices, the contorsion tensor is antisymmetric in its last
two indices.

We have identified the gravitational field with the
Riemann curvature tensor ORW,,, from the standpoint of
the Levi-Civita connection. From the standpoint of the
Weitzenbock connection, however, the gravitational field
would naturally be identified with the torsion tensor Cy,,.
It can be shown that these notions are indeed compatible
[23]. To see briefly how this can come about, let us consider
the torsion tensor in the form

c

a
H

&c,l = 0,e,

=e€ uv u

) a_ 81,6;[6’. (14)
Foreach o = 6, i, Q, 3, we have in Eq. (14) an analog of the
electromagnetic field tensor defined in terms of the vector
potential e ,,‘3‘. The field completely vanishes if thAe potential
is a pure gauge; that is, if there are functions X“ such that
e, = 0,X* It then follows via Eq. (9) that we are indeed
in Minkowski spacetime and ORW,,, = 0. Conversely, in a
gravitational field with OR,,,,,,{r # 0, the torsion tensor is
necessarily nonzero. It is therefore natural to express
Einstein’s field equations in terms of the torsion tensor.
It is not surprising that the result will turn out to be
reminiscent of Maxwell’s equations. This way of describ-
ing the gravitational field, namely, GR, the teleparallel
equivalent of GR, turns out to be crucial for a proper
nonlocal generalization of GR [10,11]. Appendix A con-
tains a set of formulas involving torsion and contorsion that
should be useful in writing the field equations in terms of
torsion.

B. GR,

We can now combine Egs. (11) and (13) in order to express
the Levi-Civita connection in terms of the Weitzenbock
connection and its torsion tensor. Substituting the result in
the Riemann tensor (3) and taking the appropriate trace, we find
that the Ricci tensor, °R,,, = °R®,,,, is given by

1 0 oC
°R,, = \/_—_gﬁ (V=9K,,*) + xf = C 17,
— (0% + Kyy*) Ko =T, K0P (15)

Here g := 'det(.gﬂ,/), V=g = det(eff) and C, is the torsion
vector, which is the trace of the torsion tensor; that is,
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C,=C",=-Cr,. (16)

To express the gravitational field equations in terms of
our preferred frame field e ﬂé‘ and its torsion tensor, we first
note that the scalar curvature can be obtained from the trace
of the Ricci tensor, namely,

1
R = — E@:a/}ycaﬂy + ——ﬁ (\/_C(s) (17)

where €., is the auxiliary torsion tensor that is also
antisymmetric in its first two indices and is defined by

6(1/5]/ = (zg/iy - C[)’gay + Ky(z/}' (18)

Let us briefly digress here and mention that the

Lagrangian for GR; contains only the first term on the

right-hand side of Eq. (17), as the second term turns into a
surface term in the action. Moreover,

1
(s:aﬂycaﬂr = Ell + I, = 215, (19)
where
I, = Caﬂ,C“ﬁV, I, = CaﬂyCYﬂ“, =C,C”
(20)

are the three independent algebraic (Weitzenbock) invar-
iants of the torsion tensor.

We now introduce a second auxiliary field strength
H*, = —H™ , defined by

H, =Yg

v, —
Hop P

uup- (21)
It proves useful for our present purposes to express the
Einstein tensor as °G,, = °R,,, — 3 g,,"R, where the indices
on the symmetric Ricci tensor have been switched in order
to get from Eqs. (15) and (17) the Einstein tensor in the
form

0o __XK y 0 ap_
O =5 {g”“e”y o L
1
_ (Hypocﬂpv - 9o H,, ﬂy(;aﬁ?’)] . (22)

Thus the Einstein field equations (4) can be written within
the GR;; framework in the Maxwellian form

anyw \/_Aeﬂ = V=g (T +E).,  (23)

where E,, is now the trace-free energy-momentum tensor
of the gravitational field defined by
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1
V=g E = Cpp HMP? — 1 ety Cope H°. (24)

It follows from Eq. (23) and the antisymmetry of H*,, in its
first two indices that

%[H(T&”—%€”a+ﬂi”ﬂ =0, (25)

which expresses the conservation law of total energy-
momentum tensor in GRj, consisting of contributions
due to matter, the cosmological constant and the gravita-
tional field, respectively. We emphasize that the procedure
we have followed would work for any smooth tetrad field
that we may adopt as our preferred frame. This is related to
the invariance of Einstein’s theory under the local Lorentz
group. That is, Eq. (23) ultimately depends only upon the
metric tensor g,,; therefore, this teleparallel formulation
involves a 6-fold degeneracy at each event in spacetime.

The tetrad formulation of GR has a long history—see
Refs. [18-20] and the references cited therein. Indeed,
Mgller first pointed out that the problem of gravitational
energy in GR has a solution in the tetrad framework
[24,25]. An excellent review of the approach to GR; that
we have adopted in the present paper has been given by
Maluf [20], which should be consulted for further develop-
ments of GR;. This concludes our brief presentation of the
salient features of GR|, the teleparallel equivalent of GR.

C. Nonlocal GR,

In his successful approach to GR, Einstein interpreted
the experimentally well-established principle of equiva-
lence of inertial and gravitational masses to mean that there
is an intimate connection between inertia and gravitation
[1]. This notion eventually led to Einstein’s extremely local
principle of equivalence and GR. Following Finstein, we
wish to employ the general connection between inertia
and gravitation as a guiding principle to render GR (or,
equivalently, GR;) nonlocal in just the same way that
accelerated observers in Minkowski spacetime are non-
local. In field measurements of accelerated observers, the
memory of past acceleration appears as an integral over the
past that is linear in the field. To implement the same idea
in the theory of gravitation, we note that Einstein’s field
equations, represented by Eq. (23) in our tetrad framework,
have the general form of Maxwell’s original field equations
with the local constitutive relation (21). To render GR|
nonlocal, we simply replace the local constitutive relation
(21) with a nonlocal one given by

Hyp = \/_((, +N,,). (26)

Hvp

where N,, is a tensor involving an average of the

gravitational field—that is, torsion—over past events.
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We emphasize that in order to preserve the invariance of
the theory under arbitrary coordinate transformations, N,
and hence the resulting nonlocal auxiliary field strength
H,., should be antisymmetric in their first two indices.
The simplest expression for the nonlocality tensor N,

would involve a scalar kernel; that is,

N

up —

—/Q Q. Q, K (x, X ) XKV (x

PP

\/—d4’

(27)

where KC is the scalar causal kernel of the nonlocal theory
[10-17] and X,,,(x) is a tensor that is antisymmetric in its
first two indices and involves a linear combination of the
components of the torsion tensor. We note that there is no
physical connection between kernel X and the nonlocal
kernel of accelerated observers in Minkowski spacetime
due to the extreme locality of Einstein’s principle of
equivalence. In Eq. (27), Q(x, x') is Synge’s world function
[21], which involves a unique future-directed timelike or
null geodesic of g,, that connects event x’ to event x and the

square of its proper length is 2Q. Moreover, indices
W, UV, p, ... refer to event x’, while indices u, v, p, .... refer
to event x. We define
0Q 0Q
" = —— ! / = —
Q,(x,x') = R Q(x,x') R (28)

It can be shown that covariant derivatives at x and x’
commute for any bitensor [21]. Thus €, (x,x') =

Q,,(x,x') is a dimensionless bitensor such that
ilir;Q (x,x') = =g (x). (29)

Let us now consider the field equations of nonlocal GR,
with a general X, = —X,,,,. The field equations of NLG,
namely, Egs. (23)—(24) together with the nonlocal con-
stitutive relation (26) can be expressed explicitly by
substituting Eq. (26) in Egs. (23) and (24). Thus, we have

8 +jAeﬂa
K

oxY
= /=9 (T + Egb). (30)

VI (G + Ny
K

where Ez* is now given by

KEg = Cy,0(CH° + N*9).

(31)

With this E,*, the total energy-momentum conservation
law (25) is satisfied; that is, in nonlocal gravity, energy-
momentum conservation is represented by a simple

1
+ NHP7) — 1 e 5C e (€7
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generalization of Eq. (25) of GRj, where E;* is given
by Eq. (31).

It is possible to express the nonlocal gravitational field
equations as modified Einstein’s equations. To this end, we
separate out in Eq. (30) the partial derivative term involving
(v/—9/x)CH; and insert it into the expression (22) for the
Einstein tensor OGW to get the nonlocal generalization of
Einstein’s field equations, namely,

OG;w +N;w = KT/w - Ag/w + Q/w- (32)

Here, V,, defined by

N;w: Gua® ﬂ \/—8xﬁ

is a proper tensor, since N,z = —Np,, by assumption;
moreover, Q,, is a traceless tensor given by

(V=9N;) (33)

Q;w = CupaN Vpa

1
- Z 9w C&paNépG' (34)
It is clear that Einstein’s gravitational field equations are
recovered when the nonlocal kernel vanishes, C = 0, and
hence N,,, = 0. In GR, the 10 components of the metric
tensor g,, can be determined, in principle, from the 10
gravitational field equations. Here, however, the 16 com-
ponents of the preferred observers’ frame field e, can be
obtained, in principle, from the 16 gravitational field
equations (32)—(34) of nonlocal general relativity. That
is, nonlocality removes the essential degeneracy of GR;
moreover, as expected, nonlocal gravity is invariant under
the global Lorentz group. The integro-differential field
equations of nonlocal gravity in general contain Fredholm
integral relations that, whenever causal kernels are
involved, turn into Volterra integral relations [26,27].

To compare and contrast further the field equations of
nonlocal gravity with the Einstein field equations of GR,
one can separate out Eq. (32) into its symmetric and
antisymmetric components. In this way, we get the 10
nonlocally modified Einstein equations given by

OG;w + N(/w) = KTm/ - Ag;w + Q(/u/) (35)

as well as the 6 integral constraint equations involving the

nonlocality tensor N,,,, namely,

N[/w QW/ = ! ( [lpO'Nl/pg - CL//MN#/M)’ (36)
that are dominated by averaging over past events and
vanish for IC = 0. The energy-momentum tensor is sym-
metric in this paper; therefore, there is no contribution from
Ty, =0 to Eq. (36). This point brings out the main
difference between the present work and previous papers
on nonlocal gravity [10-17], in which T, was not assumed
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to be symmetric from the outset. Let us recall here that
these 16 field equations are required to determine the 16
components of e#;(x), of which 10 are fixed by the
spacetime metric g,, via orthonormality and the other 6
are Lorentz degrees of freedom (i.e., boosts and rotations).
This division is reflected in Egs. (35) and (36), respectively.
The general mathematical investigation of the existence and
uniqueness of the solutions of the integro-differential
Eq. (35) with integral constraints (36) is beyond the scope
of the present paper.

It is worthwhile to emphasize again the close analogy
between this construction of nonlocal gravity and the
nonlocal electrodynamics of media. Maxwell’s equations
in a medium in an inertial frame can be expressed in terms
of the field tensors F,,—(E,B) and H,,~(D,H) as

Fiup, =0, 0,H" = 4;]", (37)
where J# is the total current 4-vector associated with free
electric charges. To complete the theory, a constitutive
relation between F,, and H , is required. If we impose the
local relation H,, = F,,, we recover Maxwell’s equations
in vacuum. However, in a medium the constitutive relation
is in general nonlocal [28,29], thus leading to the nonlocal
electrodynamics of media. In the gravitational case, on the
other hand, Einstein’s field equations have been expressed
within the teleparallelism framework with the local con-
stitutive relation (21) in a form analogous to Maxwell’s
equations in vacuum. We have then extended this relation to
a nonlocal one via our ansatz (26), which has therefore
resulted in a simple nonlocal extension of Einstein’s theory
of gravitation. Let us note here that the constitutive ansatz
(26) involves a linear nonlocal relation between the two
field strengths involving H,,, and €,,,; however, as in
electrodynamics [28,29], such a nonlocal relation could
well become nonlinear when the field strengths are suffi-
ciently high. We will not have occasion here to discuss such
nonlinearities, since at this early stage in the development
of NLG the relation between X,,,,, and torsion is assumed to
be linear for the sake of simplicity.

In electrodynamics, the local constitutive relation
between H,, and F,,, considered as 6-vectors, can be
described via a 6 x 6 matrix. One can similarly envision the
local linear relationship between X,,,, = —X,,, and €, , in
Eq. (27) in a rather general context. The general case is
beyond the scope of the present work; instead, we limit our
considerations to a few simple observations regarding such
relations here and in Appendix B. We assume that the
constitutive relations are given up to constant overall
multiplicative factors, since these could be absorbed in
the corresponding scalar kernels. Previous work on NLG
has been based on the simplest constitutive relation,
namely, X,,, =€, [10-17]. However, in contrast to
previous work [10-17], we assume here from the outset
that 7, is symmetric. Then, as we show in detail in
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Appendix B, X,,=¢€,, is in general untenable in
linearized NLG. We must therefore explore other options.
Of the various possibilities of the general form X,,, =
G,y + AL, that we have considered, additions A, of the
forms C,g,, — C,g,, and C,g,, — C,g,, have been found
to be tenable in the linear approximation. Here C" is the

torsion pseudovector

C,= ! CE
w 5 apyus

(38)
which is the dual of the torsion tensor, see Appendix A.
The 16 gravitational potentials of linearized NLG can be
divided into 10 metric potentials and 6 tetrad potentials. It
turns out that the torsion vector contains both metric and
tetrad potentials, while the torsion pseudovector contains
only the tetrad potentials. The latter leads to much
simplification; hence, in this paper, we tentatively choose
the local constitutive relation of NLG to be

X;wp = 6:;41//7 + p<cﬂgvp - Cugﬂp)7 (39)

where p # 0 is a constant dimensionless parameter. We
emphasize again that this is different from previous work
on nonlocal gravity, where X, =€, and T, # T,, in
general [10-17]; however, in this paper, T, is symmetric,
as in GR, but then it turns out that the linearized field
equations of NLG are in general inconsistent with
Xy = €, as demonstrated in Appendix B. To maintain
consistency, we therefore assume that p # 0 in this paper.
It will turn out that the tetrad potentials and hence p are
only significant for time-varying gravitational fields near
their sources. That is, tetrad potentials are negligible for
steady-state configurations, see Sec. V. Thus we expect that
p can be eventually determined from observational data
regarding the gravitational physics of variable sources.

The constitutive kernel /C(x, x) could in general depend
upon scalars at x and x’ that can be formed from the
gravitational potentials, the world function Q(x,x’) and
their derivatives. For instance, we can tentatively assume
that /C(x, x") is simply a function of Q,(x,x’)e”;(x) and
Q, (x,x')e" 3(x'), where the Lorentz freedom in the choice
of the preferred frame has been fixed relative to the rest
frame of the gravitational source as in the following section,
where the consequences of this form for K(x,x’) are
worked out in detail within the framework of the linearized
theory.

It is not known at present whether the field equations of
nonlocal gravity can be derived from a variational principle.
Moreover, the theory is incomplete without a thorough
examination of the physical origin of the nonlocal kernel K.
As discussed in the next section, we take the view that at
present the kernel can be determined from observational
data regarding dark matter. Perhaps IC will be ascertained
someday from a more complete future theory. For instance,
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nonlocality can arise from integrating out certain physical
degrees of freedom [30].

Nonlocality—in the sense of an influence (“memory”)
from the past that endures—could be a natural feature of the
universal gravitational interaction. Some of the conse-
quences of our nonlocal gravity model have been consid-
ered thus far only in the linear weak-field regime [10-17].
This has involved detailed studies of the nonlocal mod-
ifications of Newtonian gravity and linearized gravitational
waves; indeed, these important results are confirmed here
via the approach adopted in the present work. As explained
in the following section, the notion that nonlocal gravity
simulates dark matter is completely consistent with cau-
sality; moreover, the theoretical results appear to be
consistent with experiment at the linear level. The nonlinear
regime of NLG has not yet been studied; therefore, exact
cosmological models or issues involving the influence of
nonlocality on the formation and evolution of black holes
are beyond the scope of our present considerations.

III. LINEARIZED NONLOCAL GRAVITY

Imagine a finite source of mass-energy in a compact
region of space. We suppose that the gravitational field is
everywhere weak and falls off to zero far away from the
source. We also set A =0 and assume that if gravity is
turned off, we are in the rest frame of the source in
Minkowski spacetime with the preferred tetrad frame
e, = &, In the presence of gravity, the preferred frame
field of nonlocal gravity is then assumed to be

eﬂ& = 52 + Wa/u ety = 5441 -y, (40)
where v, is treated to linear order in perturbation away
from Minkowski spacetime and hence the distinction
between spacetime and tetrad indices disappears at this
level of approximation. Let us note that in Eq. (40), the
invariance of the theory under global Lorentz transforma-
tions has been broken, since the preferred frame field
coincides with the rest frame of the gravitational source.
It is useful to decompose v, into its symmetric and
antisymmetric components; that is, we define

¢;w = 21//[;41/] (41)

It then follows from Eq. (9) that

Py =29 (),

G = M + h;w' (42)

Moreover, it is convenient to employ the trace-reversed
potentials

1
h/u/ = h/u/ - —"l,wh’

> h == mn,, ", (43)

just as in GR. Here i = —h and we have
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1- 1 1
= E h/w + E ¢yu - Zrl;wh' (44)

Y

It is now straightforward to work out the field compo-
nents in terms of y,,. The torsion tensor is then

C;w(i = ﬂl//(w - aul//o'y (45)

and the auxiliary torsion tensor is given by

_ - 1
Gyay = _hu[u.or] - ’71/[;4]10]/),'0 + E(b/m,y + 711/[;4¢0]/),p’ (46)

in terms of which the Einstein tensor can be expressed as

1_- - 1 -
OGMD = 866/4 v _EDh;w + hp(ﬂ,l/)/) - Eﬂuvhl) P03 (47)

where [J:= 79,05 Moreover, in the linear regime,
Eq. (27) reduces to

N, = / K (x3)X,, () (48)

and Q,, vanishes. Thus the linearized forms of the field
equations (35) and (36) of nonlocal gravity are given by

1
OG;w + 5 86(N;¢6v + Nu6ﬂ> = KT/w (49)

and

9,N,°, = OsN,°,, (50)
respectively. It follows immediately from the antisymmetry
of the auxiliary torsion tensor in its first two indices in
Eq. (47) and the symmetry of FEinstein’s tensor that
0,°G" =0, as expected. Furthermore, Egs. (49)—(50)
imply that

8,T" = 0, (51)

since NHY = —N°"_  We thus recover the energy-
momentum conservation law for mass-energy, just as in
linearized GR.

Let us next discuss the gauge freedom of the gravitational
potentials. An infinitesimal coordinate transformation,
X 't = xt —e(x), leads to w,, =y, =W, €,
that is valid to linear order in €. Thus under a gauge
transformation,

L 1 a
h;w - h;w + €uv + €ou ~ Nw€” a

(52)
¢/iw = ¢;u/ + €uv ~ €uy

and h' = h — 2¢% ,; however, as expected, the gravitational
field tensors C,,,, and €, are left unchanged. It follows that
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the linearized gravitational field equations of NLG are gauge
invariant.

To proceed further, we must discuss the nature of the
nonlocal kernel in the linearized theory. The kernel that
appears in Eq. (48) is the nonlocal kernel in the Minkowski
spacetime limit. In Minkowski spacetime, the world func-
tion is given by [21]

Q. ¥) = g 1glx — X~ ), ()

so that to lowest order in the perturbation, we find
Q, (x, ) et 4 (x) = =Qu (x, x)e 3 (x') = ngp(x? — x'P).
(54)

It follows from this result and our brief discussion of the
kernel in the previous section that we have a convolution
kernel in the linearized theory. That is, we can tentatively
assume that the nonlocal kernel K(x,y) is a universal
function of x* — y%, so that

K(x,y) =

Moreover, to ensure causality, we assume that the con-
volution kernel K is nonzero only when x* — y* is a future-
directed timelike or null vector in Minkowski spacetime,
which means that event y must be within or on the past light
cone of event x, or equivalently, that event x must be within
or on the future light cone of event y. That is, x° > y° and

Nap(X* = y*) (& = yF) <0. (56)

K(x—y). (55)

It follows that causality is ensured whenever
=y > [x -yl (57)
Hence, K(x—y) must be proportional to ©(x" — y'—
|x —y|), where O(r) is the Heaviside unit step function
such that ©(7) =0 for t < 0 and ©(7) = 1 for # > 0. That
18,
K(x—y) x©(x" = y* —[x —y]). (58)

Returning to field equations (49) and (50), let us now
write them more explicitly as follows

OG/w(x) + 04 / K(x - y)X(MaI/) (y)d4y = KT,MZ/(‘X> (59)

and

6¢/Ku—waﬂwfy—0 (60)

The consequences of these equations for various choices of

X, are briefly discussed in Appendix B. In this work,

PHYSICAL REVIEW D 90, 124031 (2014)

however, we choose Eq. (39), namely, X

p(éﬂgﬂb -
we have

pov — G’/wv
C,,g,w) with p # 0. Then, in the linear regime

X0 = €470 + pIC,5 — )
(uv) (n v) p v mn
H H %) it (1)

Xy, = 6,7 + pC8.

Let us recall here the fact that the torsion pseudovector C°
is the dual of C,,,, which in the linear approximation is
given by C,,,) = =y, - Moreover, in the linear approxi-
mation, CV‘U,,, = 0. Thus the part of the constitutive relation
proportional to p is given exclusively by the derivatives of
tetrad potentials and vanishes for ¢,, = 0.

In the calculation of the nonlocal term in Eq. (59),
0K/0x® = —0K/0y°, which together with Eq. (47)
implies, via integration by parts, that

8/xy

=-S5, + /K(x - )’)OG;tv(y)d4y’ (62)

J(y)dty

where S, is given by
0 c 4
= | 5,7 K@ =€ 0)ld"y. (63)
y
Gauss’s theorem then implies that
Su= § KE-0GL0EE0). (64

where the only contribution to the integral comes from
the boundary hypersurface at the light cone given by y° =
x% — |x — y|. Therefore,

S0 = [ K(x =¥l x=9)6,%60 =[x = y|. ),
(65)
where €,°, = €%, + €,°, is given by Eq. (46), namely,
€.’ = %(ljl;w,() = 1oGuw) + Mwhop? = NMoghn)p” + Pogun)
— Nuwbop” + N0uPu)p.”) (66)
and
€Ll = %(ﬁow + Gops) + Mol = Nopdu,’)- (67)

In a similar way, we find that
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U, =0, / K= ) (Gt = Cna) )y (68)

can be written as

U, = / K(x = ), (y)dy - / K(x—yl.x—y)

8 <0
< (Cud) = C ) (x° = [x =yl y) . (69)

We recall here that U, depends only upon the derivatives
of ¢,, and vanishes for ¢,, = 0.

It follows from these results that in the linear regime,
Eq. (32), which is the nonlocal extension of Einstein’s field
equations, can be written as

Gul) + [ K= Gty
= KTW(X) + S;w(x) - pU/ll/('x)‘ (70)
This is the main field equation of linearized nonlocal

gravity and can be split into its symmetric and antisym-
metric components, namely,

Gul0) + [ K= Gty

= KT;w(x) + S(/u/) (x) - pU(/u/) ()C) (71)
and

Spu) (%) = pUpy (x). (72)

Let us first note here that Sp,(x) = 0 due to the antisym-

metry of €, in its first two indices. Moreover, it proves
useful to define the quantity

W = —hoo,; + hij? — i/ (73)

Then, the purely nonlocal source-free integral constraints
(72) consist of 6 equations given by

[ K=ty = 4pUi) (04)
and
/Kc(x - )’)(;101',/ + oij — }_l()j.i — ;1) (y)d*y
= 4pU[,-j] (x) (75)

Here, we have introduced, for the sake of simplicity, the
light-cone kernel K,

PHYSICAL REVIEW D 90, 124031 (2014)
K (x—y) = K(x—y)s(x" —y" =[x —y]). (76)

Furthermore, from Sy, = 0 and Eq. (70), we have that

06, (x) + / K(x = 3)°Go, (y)d'y = kT, (x) = pUoy ().

(77)

where U, can be determined from Eq. (69), namely,

Vo) = / K(x—3)Cos0)dy.  (18)

In Appendix B, we show that C, can be determined in
principle in terms of Ty, see Eq. (B30). Finally, the source
term for the field equation involving °G; ; contains S ;;) and
Uij)» where

1 _ _
5/ Ko (x = y)lhijo = hoijy + Pogij)

+ 51’;'(}_10,),” — o F)|(v)d'y (79)

Sy (x) =

and U ;) can be simply determined from Eq. (69).

It is clear from these results that in our decomposition of
the linear gravitational potentials vy, in Eq. (41), the
symmetric metric part i_zm that satisfies Eq. (71) has primary
dynamical content, while the antisymmetric tetrad part ¢,
plays a secondary role and is constrained via Eq. (72).
In general, I_im, and ¢, are inextricably connected in both
sets of equations and cannot be simply disentangled. In the

case of X, =C,,, + p(C,9,, — C,g,,) under consider-
ation here, certain simplifications occur that are discussed
in the last part of this section.

Nonlocal gravity has a characteristic galactic length scale
of order 1 kpc; therefore, in the vicinity of a planet, a star or
a binary star system, whose dimensions are very small
compared to 1 kpc, the nonlocal terms in Egs. (71) and (72)
can be generally neglected and linearized nonlocal gravity
simply reduces to linearized GR. Therefore, in the dis-
cussion of gravitational radiation of reduced wavelength
A < 1 Kpc, which is the regime of current observational
interest, nonlocal effects in the generation and detection of
such waves are essentially negligible [15]. Nonlocal effects
can, however, be significant in the galactic or extragalactic
propagation of waves from the source to the detector
[15,16].

Before discussing the solution of the linearized field
equations, we must digress here and point out a significant
consequence of gravitational dynamics given by Eq. (70).
Working in the space of continuous functions on spacetime
that are absolutely integrable (L') as well as square
integrable (L?), it is possible to write Eq. (70) in the form
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OGW =kl + S —prU,

+ / R(x = )k + S — pU ] (). (80)

where R(x —y) is a kernel that is reciprocal to K(x —y)
[27]. The reciprocal kernel is of the convolution type and is
causal as well. Aside from nonlocal terms involving S, and
U,,» Eq. (80) exhibits an important feature that must be
stressed. That the linearized gravitational field equations
can be expressed as in Eq. (80) is a crucial result, since it
means that nonlocal gravity in the linear regime is essen-
tially equivalent to general relativity, except that in addition
to the usual gravitational source, there is an additional
“dark” source that is given by the convolution of the usual
source with the causal reciprocal kernel. In nonlocal gravity
theory, this additional source is identified as the main
component of what appears as dark matter in astrophysics.
Thus nonlocality simulates dark matter in this linearized
theory, since the latter is simply the manifestation of the
nonlocal aspect of the gravitational interaction.

A. Causal reciprocal kernel

Due to the importance of Eq. (80) for the physical
interpretation of NLG, this subsection is devoted to a brief
description of the mathematical steps that lead to this result.
It turns out that the convolution property of the kernels
under consideration is independent of their crucial causality
properties. Therefore, we first consider a kernel K (x, y) that
is causal, so that K(x,y) vanishes unless Eq. (57) is
satisfied in this case.

A Volterra kernel is defined to be a causal kernel
function K(x,y) that is continuous over causally ordered
sets in Minkowski spacetime. The product of two Volterra
kernels K and K’ is defined to be

V(x,y) _/D( ! K(x,2)K'(z,y)d*z, (81)

which is a Volterra kernel, since the above integrand is
nonzero only when z is simultaneously in the past light
cone of x and in the future light cone of y, so that y is in the
past light cone of x. Thus the integration domain D(x, y) in
Eq. (81) is the finite region in Minkowski spacetime
bounded by the past light cone of event x and the future
light cone of event y. Alternatively, consider the causality
conditions for K and K’, namely,

WO->x-z

’

) (82)

L=y >z-y

respectively. These imply, via addition, that V is causal,
since

=02 x—z[+z-y 2 x-y.  (83)

PHYSICAL REVIEW D 90, 124031 (2014)

by the triangle inequality. Volterra kernels thus form an
algebra over the causally ordered events in Minkowski
spacetime.

Consider next the generalized Volterra integral equation
of the second kind given by

B(x,y) + /D(x ) K(x,2)B(z,y)d*z = A(x,y), (84)

where A(x,y) and K(x,y) are given Volterra kernels and
we wish to find a Volterra kernel B(x, y) that satisfies this
equation. According to a general theorem due to M. Riesz
[31,32], there is a unique solution given by

A(x,y) + A( )R(x,z)A(z,y)d”'z = B(x,y), (85)

where the reciprocal Volterra kernel R(x,y) can be
expressed as

[se]

R(x,y) =Y Ku(x.y). (86)

n=1

Here the iterated Volterra kernels K, (x,y) forn=1,2,3,...
are defined such that K (x,y) := —K(x,y) and

Kn+1(x,y) = /D( )Kn(x,Z)KI(Z,y)d4z, (87)
X,y

The Neumann series (86) converges uniformly on bounded
domains and the reciprocal kernel R is indeed a Volterra
kernel. This is proved in the paper of Faraut and Viano [32]
using generalized Riemann-Liouville kernels. The work of
M. Riesz [31] employed a wider context; here, we have
followed the treatment of Ref. [32].

It is simple to demonstrate that this significant math-
ematical result holds just as well if Volterra kernels are all
of the convolution type; that is, we can replace K(x,y) by
K(x — ), etc. For instance, a simple change of variable in
the corresponding integral in Eq. (81) is enough to show
that V, the product of Volterra kernels K and K’ of
convolution type, is also of convolution type and that,
furthermore, V is also the product of K’ and K. Therefore,
convolution Volterra kernels form a commutative subal-
gebra of the Volterra algebra.

Henceforth, we limit our considerations to Volterra
convolution kernels that are L' and L?> functions on
spacetime. We wish to reduce the generalized Volterra
integral Egs. (84) and (85) to the following Volterra integral
equations:

Glx) + / K(x—y)00)d'y = F(x)  (88)

and
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Fla) + / Rx—))FO)d'y = G(x).  (89)

To this end, consider any continuous L' function f(x) over
spacetime and define

Fla) = / Alx = y)f()dy.
G(x) = / B(x - y)f(3)d*y. (90)

where A and B are closely related to the Volterra kernels
defined in Egs. (84) and (85). That is, replacing the
kernels in Eqs. (84) and (85) by L' and L? convolution
kernels, multiplying the resulting equations by f(y) and
integrating over spacetime, we obtain Egs. (88) and (89). It
is a simple consequence of Young’s inequality for con-
volutions that if f and A are L' functions, then their
convolution F is also L!. Thus we find that in Eq. (90),
F(x) and G(x) are continuous L' functions over spacetime.
Moreover, it follows from Minkowski’s integral inequality
that if f is L' and A is L?, then their convolution is L.
Hence, F(x) and G(x) are L? functions over spacetime
as well.

The substitution of Eq. (88) into Eq. (89), or vice versa,
results in the basic reciprocity integral equation

K(x—y)+R(x—y)+ /K(x—Z)R(Z —y)d*z=0.
(O1)

It is clear that the convolution Volterra kernels K and R can
be interchanged in this reciprocity relation.

Writing G for °G,, and F for T,, +S,, — pU,, in
Eqg. (70), we recover Eq. (88), which means that Eq. (89) is
then equivalent to Eq. (80); in particular, we have the
remarkable result that in the space of continuous and
absolutely integrable as well as square integrable functions
on spacetime, the reciprocal kernel exists and is causal, so that

R(x—y) xO(x" —y° —[x —y]). (92)

Furthermore, it is possible to express Egs. (88) and (89) in the
Fourier domain. That is, let

76 = / Fx)e (93)

be the Fourier transform of f in spacetime, where & - x :=
Nap&®xP. Then,

1 7 iEx 74
16) = / F@eerae, (94)

It follows from the convolution theorem for Fourier trans-
forms that Egs. (88) and (89) can be written in the Fourier
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domain as 7 = G(1 + K) and G = F(1 + R), respectively.
Therefore,

1+ K)(1+R) =1, (95)

which can also be obtained directly via Fourier transformation
from Eq. (91) and is an expression of the complete reciprocity
between K and R. In particular, suppose that R(x — y) can be
estimated from the observational data regarding dark matter,
then the kernel of nonlocal gravity K(x — y) can be deter-
mined from the Fourier transform of

A (96)

provided 1 + R(£) # 0.

B. Linearized field equations with 7 »=0

Let us now return to Egs. (70)—(80) that characterize
linearized nonlocal gravity and discuss the general structure
and the formal solution of the nonlocal field equations for
the gravitational field of an isolated source. For K = R = 0
in these equations, nonlocality disappears and the field
equations reduce to the familiar second-order partial differ-
ential equations of linearized GR. We assume, for the
present discussion, that kernels K and R are known; in fact,
their determination is the subject of the next section.

In connection with Eq. (80), it is useful to define the total
matter energy-momentum tensor 7 ,,,

T=T,+Th (97)

Hv

where Tff,,, the convolution of 7, and R, is the dark

counterpart of the matter energy-momentum tensor 7 ,.
That is,

70 (x) = / R(x )T, (y)d'y. (98)

Similarly, we define

Sp(x) 5= S, () + / R(x=y)Su()dy  (99)

and
U0) = Up () + [ Rr=3)U)ty. (100
It is possible to write these equations as
Sul) = [ Wix=0)8L 0y, (101)

where (Sﬂo,, is given by Eqgs. (66)—(67), and
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U, (x) = - / W = y)(Cudd — ) ()l

- [ Rx=0C ey (102)
Here, we have introduced convolution kernel W,
Wir=y)=Kor=3)+ [ Rr=2K.(z=y)z (103

where in the integrand R and K. can be interchanged.
Moreover, in deriving Eq. (102), we have used the
reciprocity relation (91).

As in GR, the gauge freedom of the gravitational
potentials may be used to impose the transverse gauge
condition

v, =0. (104)
The remaining gauge degrees of freedom involve four

functions €#(x) such that Cle# = 0. With the imposition of
the transverse gauge condition, we find from Eq. (47) that

G

1 _ -
w =5 0. (105)

Hence, our main dynamical result, Eq. (80), can be
expressed as

Oh,, +28,, = =2kT ,, + 2pU,,. (106)

That is,

e, = ~2KT g — 2p / R(x = y)Cop(y)dy.  (107)

since Sy, = 0 and hence S, = 0 as well. Furthermore,

Df_lij + /W(x -) V_lij,o - EO(i.j) + Qo) — 8ijpor X1 (v)d*y

where
Ui (x) = =6;; | W(x=y)Co(y)d'y
- /R(x —y)q,-’j)(y)d“y. (109)

We must solve these dynamic field equations subject to the
6 integral constraints given by Egs. (74) and (75). Once the
10 components of f_z/w have been determined, one can find
the metric perturbation

PHYSICAL REVIEW D 90, 124031 (2014)

1 -

hy = hyy — Enﬂyh.

(110)
On the other hand, the constraints appear to be dominated
by ¢, = —¢,,. Let us recall that the gravitational poten-
tials of linearized nonlocal gravity, w,, = W) + W)

= %hw and 6 tetrad

variables y,,) = %d)ﬂy. These variables are all intertwined
in the linearized field equations of NLG.

It is shown in Appendix B that the field equation for /¢
can be combined with constraint (74) to derive Eq. (B30)
for Cy = O(c™?). Assuming that C, can be determined in
terms of Ty, from Eq. (B30), we can then calculate U, via

consist of 10 metric variables v,

Uy, = — / Rx—y)Coui)dy.  (111)

The general solution of Eq. (107) involves the super-
position of a particular solution of the inhomogeneous
equation plus a general solution of the wave equation.
Assuming the absence of incoming gravitational waves, we
are interested in the special retarded solution

/jloﬂ(x(),x) _ 2K_”/ [TOM - (p/K)TLO;ﬂ(;Cr —|x=yly) d3y‘

(112)

The other variables cannot be simply decoupled in general.

In connection with the propagation of gravitational
waves, let us note that very far from the source, where
T,, =0, Egs. (107)~(109) and constraints (74)—(75) are
consistent in the transverse-traceless gauge with hg, =0
and ¢,, = 0. Then,

Ohy; + / Wx = y)hijo(y)dy 0, (113)

n general agreement with Refs. [15,16]. In this field
equation for ; j» 1t 18 interesting to note a nonlocal damping
feature that has been studied in Ref. [16]. Thinking about
Eq. (113) in terms of a simple analogy with the mechanics
of a linear damped oscillator, we note that the term O/, /0t
in Eq. (113) is reminiscent of the “velocity” of the
corresponding oscillator. It is interesting that such a non-
local damping is completely absent in Eq. (107), which for
hy is the physical basis for the modified Poisson equation
in the Newtonian regime of nonlocal gravity. The general
solution of the linearized field equations of NLG is beyond
the scope of this investigation. However, some special cases
of particular physical interest are treated in Secs. V and VL

To go further, it is necessary to have knowledge of the
reciprocal nonlocal kernels K and R. This is the subject of
the next section.
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IV. RECIPROCAL KERNEL R OF
LINEARIZED NLG

The reciprocity between the nonlocal kernels K and R
implies that it is in principle sufficient to determine only
one of them. This section is therefore primarily devoted to
the determination of R, since it is more directly connected
to astrophysical applications. The first step involves the
Newtonian limit of nonlocal gravity, which can be used to
determine R in the Newtonian regime from the comparison
of the theory with observational data regarding dark matter
in spiral galaxies as well as clusters of galaxies [17].

A. Newtonian limit

The Newtonian regime is marked by instantaneous
action at a distance; therefore, it is natural to assume that
for ¢ — oo, gravitational memory is purely spatial and all
retardation effects vanish. It follows that in the Newtonian
limit

K(x—y) =8(x" =y )r(x —y) (114)
and then reciprocity requires that
R(x—y) = 8(x" = y*)gq(x —y). (115)

In fact, the substitution of these Newtonian kernels in our
basic relations (88) and (89) results in the reciprocity
relation for spatial kernels, namely,

x(x=y)+q(x-y) —l—/)((x -2)q(z-y)d’z = 0.
(116)

We will assume that these spatial kernels are symmetric in

the sense that y(x —y) is only a function of |x —y|, etc.
Thus in the Fourier domain, we have
Z(1&) + a(1g]) + 2(1€)a(lé]) = o. (117)

Let us now use Eq. (115) in the linearized field
equation (107) to determine the generalization of
Poisson’s equation of Newtonian gravity as we formally
let ¢ — o0. We assume that the dominant term of the matter
energy-momentum tensor is given by Ty = pc?, where p is
the density of matter, and Ay, = —4®/c?. Moreover, it
follows from Eq. (B30) of Appendix B that C = O(c~2).
Thus, we find from Eq. (107) that as ¢ — oo,

V2B (x) = 4G (p + pp).

po(x) = / a(x = V)p(y)dy. (118)

where pp is the density of dark matter and we have
suppressed the dependence of ®, p and pp upon time ¢
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for the sake of simplicity. We take the view that dark matter
is essentially a consequence of the nonlocal aspect of the
gravitational interaction [10-17]. That is, nonlocality sim-
ulates dark matter at least at the linear order, and hence this
nonlocality should be able to account for the observational
aspects of the astrophysical phenomena attributed to dark
matter. A beginning has already been made in this direction
in Ref. [17], which also contains an essentially complete
description of the Newtonian regime of nonlocal gravity.
We therefore briefly review here the steps by which
q(x —y) has been determined thus far.

Starting from the Newtonian laws of motion and taking
into account the observational data regarding the nearly flat
rotation curves of spiral galaxies [33-35], one finds that in
the absence of dark matter, the Newtonian attraction of
gravity on the galactic scale must vary essentially as the
inverse of the distance from the center of the galaxy. That
is, the gravitational force acting on a star of mass m circling
the bulge in the galactic disk would be essentially mv(z) /r
where v is the constant rotation speed that corresponds to
the flat rotation curve of the spiral galaxy. This means that
the Newtonian inverse-square law of gravity, which is valid
on solar-system scales, must be suitably modified on
galactic scales and beyond. Moreover, the spatial kernels
q and y must be smooth functions of the kind discussed in
the previous section. This problem has been dealt with in
depth in Ref. [14], where two simple possible solutions to
the problem were investigated in detail. These are

L T+up(ag+r)
dnly (ag+r)?

0 (119)

and

B 1 1+,U(Clo+r)
= 471'/1() r(ao + r)

e, (120)

where r = |x —y| and Ay, ay and u are constant parameters
such that 1,, the fundamental length scale of NLG, is
expected to be of the order of 1 kpc and

0< /,l/lo < 1,

0 < pay < 1, 0<ap/ly < 1.

(121)

It turns out that Egs. (118)—(120) constitute a generali-
zation of the phenomenological Tohline-Kuhn approach to
modified gravity [36-38]; in fact, kernels (119) and (120)
are suitable generalizations of the Kuhn kernel [38] within
the framework of nonlocal gravity.

In conformity with the requirements of the previous
section (cf. Sec. IIT A), kernels ¢g; and ¢, are continuous
positive functions that are integrable as well as square
integrable over all space. The Fourier transform of ¢, is a
real positive function if a( /4 is sufficiently small compared
to unity. On the other hand, the Fourier transform of ¢, is

124031-13



B. MASHHOON

always real and positive regardless of the value of ay/4.
These results imply, via the Fourier transform method, that
the corresponding kernels y and y, exist, are symmetric and
have other desirable physical properties [14].

In many situations of physical interest, ay/Ay, 0 < ay/
Ao < 1, can be neglected, in which case ¢, and ¢, both
reduce to [17]

1 (I4pr)
=~ " LeH, 122
=4 2 € (122)

which is integrable over all space such that

2
A= —.
Aopt

/%(X)d3x = a, (123)

It is then straightforward to work out, using Egs. (118) and
(122), the nonlocal generalization of Newton’s inverse-
square law of gravity, namely,

Gmymy(x — 1
FNLG :—# [l—ﬁ—a—a(l-i—i,ur)e_’”}

(124)

This represents the attractive central conservative force
acting on point mass m, at x due to the presence of point
mass my aty. It is interesting to note that Fy; g is a linear
superposition of an attractive Newtonian force of gravity
augmented by (1 + @), where a=x 11, and a repulsive
Yukawa-type force with a spatial galactic decay length
of y=' ~ 17 Kpc [17]. Newton’s inverse-square force law
is recovered when r can be neglected in comparison with
u~!. On the other hand, on the scales of clusters of galaxies
and beyond, where ur > 1, the Yukawa-type force can be
neglected and the force of gravity is then essentially
Newtonian but with G — G(1 + a). Moreover, regarding
the exterior gravitational field of an extended source, we
find from the integration of Eq. (124) over a spherical mass
distribution of radius R, that the mass distribution can, in
effect, be treated approximately as a point mass if R is
completely negligible compared to y~' [12,17].

A detailed investigation has revealed that Eq. (124) is
consistent with gravitational dynamics in the Solar System,
spiral galaxies and clusters of galaxies with

a =10.94 £ 2.56, u = 0.059 4+ 0.028 kpc~! (125)

and Ay ~ 3 £ 2 kpc, where 1y = 2/(au) [17].

B. Beyond the Newtonian regime

Memory generally dies out; therefore, we expect non-
local kernels K and R to decay exponentially in space and
time. The exponential decay term in ¢ already indicates that
the distance scale associated with spatial gravitational
memory is u~' ~ 17 Kpc. We should therefore expect a
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similar temporal behavior in K and R; moreover, causality
requires that these kernels be proportional to the Heaviside
unit step function as in Eqs. (58) and (92). Thus the Dirac
delta function §(x° —y°) that appears in Eqs. (114) and
(115) should be suitably generalized for finite ¢ to satisfy
these requirements.

Consider the set of functions §,(s) for n =1,2,3, ...
given by

8,(s) = vne™=) @O (s - r), (126)
n

where v > 0 and r > 0 are constants. These functions are
normalized,

(127)

and form a Dirac sequence, since it can be shown that for
any smooth function f(s),

lim [ 5,(5)f(9)ds = f0).  (128)

—o0

Therefore, the Dirac delta function §(s) may be regarded as
a certain distributional limit of the sequence of normalized
functions 5,(s) as n — oo. Moreover, we note that the
singularity of this Dirac delta function occurs at 0", the
positive side of the origin.

In Eq. (126), let us now formally replace s by t, — ¢, r
by |x —y| and n by the speed of light ¢; then, it is
straightforward to check that in the limit as ¢ — oo, we
have

_yc<lx_[y_‘x;y‘)® t. —1 _M 51‘ —1
vce X y c - (x y)

(129)

in the distributional sense of Eq. (128). It follows from
these considerations that when the finite magnitude of the
speed of light is taken into account, §(x° — y°) in Eq. (115)
can be replaced by

ye_l’(xo_yo_lx_YD(-)(xO - yO — |X — y

), (130)

where we recall that x° = cty, y° = cty and (1 — ty) =
c5(x° —y°). Here, v7! is a constant length that should
ultimately be determined on the basis of observational data.
As in Ref. [15], we speculate that v~! is a galactic length
that is equal to, or comparable with, p~!.

Henceforward, we assume that

R(x —y) = ve W' ¥@(x0 - )0 — |x - y[)g(x — y).
(131)
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This reciprocal kernel R is consistent with our physical
requirements and depends only upon x* — y? and |x —y|.
An important consequence of the normalization property of
Eq. (130), namely,

/ ve ! =xY@(x0 —y0 — |x —y[)dy = 1, (132)
is that

/R@—wﬂwfy=/q@—wﬂwfy (133)

for any smooth purely spatial function Z(x). In the Fourier
domain, this relation amounts to

R(0.8) = 4(9).

which implies, via Eq. (95), when & = 0, and Eq. (117),
that

(134)

k(0.8) = 2(8), (135)

or, in the spacetime domain,

/ K(x - y)Z(y)d'y = / 2x—Y)Zy)dPy.  (136)

Finally, it is interesting to note that for Z = 1, the integral
of the reciprocal kernel R over the whole spacetime is given
by

/R(x)d4x = /q(x)d3x = §(0), (137)

which can be easily computed for ¢; and ¢, given in
Egs. (119) and (120), respectively. That is, for I = 1,2,

@ = 4,(0) = 4x / * 2q,(r)dr
0

— a—(3-1)32erE, (nap),
Ao

(138)

where a is given by Eq. (123) and E, is the exponential
integral function given by [39]

o p—t
E1<x> ::/ ert

We recall that, for x:0 — oo, E|(x) is a positive mono-
tonically decreasing function that behaves like — In x near
x = 0 and decays exponentially as x — oo. It follows that
0 <a—-a; <1 for sufficiently small aq/4, since 0 <
ap/dy < land 0 < pay < 1 (cf. Appendix A of Ref. [17]).
Moreover, it follows from Eq. (136) that

(139)
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/ K(x)d*x = / 2(x)dx = 7(0), (140

where 7(0) is related to ¢(0) via Eq. (117).

C. Kernel K of linearized NLG

The procedure followed above for the determination of
kernel R cannot be simply repeated for kernel K, since it
turns out that the fundamental reciprocity relation (91)
could not be satisfied in this way. It is therefore necessary to
determine K via the Fourier transform method of Sec. III
(cf. Sec. IITA). Let us note that our basic expression for R in
Eq. (131) implies that

14

R&) = o [ Nt

(141)

Then K (&) is given by Eq. (96) and K (x) can, in principle,
be determined by inverse Fourier transformation.

For a more tractable result, we can employ an approxi-
mation scheme that has already been introduced in
Ref. [15] and involves neglecting certain retardation effects
in Eq. (131). This means in practice that we replace x° —
0 —|x —y| in Eq. (131) by x* —9; that is, instead of
Eq. (131), we consider

R(x—y)=~ ve‘”<x0_yo>®(x0 -y )g(x —y). (142)

The Fourier transform of this approximate kernel is

v
v—i&l

R~

a([&))- (143)

If in Eq. (142) we use for g the spatial kernel g, given by
Eq. (122), we get [16]

. _ H 1 1€l
i) = oy g () 04

We note that relation (134) is satisfied by both Egs. (141)
and (143). .

For Eq. (143), 1 + R # 0; hence, K(x) can be obtained
from

vq(|€])
v+ ()] - e

Let us note that in this case, Eq. (135) is satisfied. It can be
shown, by means of contour integration and Jordan’s
Lemma, that [15]

K(&) ~ -

(145)

K(x)z—ﬁ(a(xo)/?]ﬂé)eié'xe‘”(1+9)x(]d3.§. (146)

Moreover, it is straightforward to verify, by integrating this
expression for K(x) over all spacetime, that Eq. (140) is
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satisfied in this case. Our approximation method has thus
led to a manageable expression for kernel K; the nature and
limitations of this simplification have been studied in
Appendix C of Ref. [15].

Following the determination of the reciprocal kernel R in
Eq. (131) and the approximate determination of kernel K, it
is now possible to treat more explicitly the gravitational
field of an isolated source in the linear post-Newtonian
approximation of nonlocal gravity. We begin with the
treatment of the time-independent field of a stationary
source in the next section, which amounts to a nonlocal
extension of steady-state gravitoelectromagnetism (GEM)
of GR [40]. A dynamic nonlocal generalization of the
standard GEM appears to be intractable.

V. GRAVITATIONAL FIELD OF
A STATIONARY SOURCE

The purpose of this section is to study the implications of
the linearized nonlocal field equations in the transverse
gauge (W** , = 0) for the weak time-independent gravita-
tional field of an isolated stationary source. To this end, let
us note that in the field equations (107)—(108),

T (%) = T, (x) + / d(x -y Ty,  (147)

as a result of Eq. (133). In a similar way, we can show that
S,w =0, since S;w =0 in this case. To see this, let us
consider Eq. (62) that defines S,,; for a time-independent
torsion field, Eq. (62) takes the form

8/ X -y (S’ y)d>y
- / 2(x = ¥)°G,o ().

as a consequence of Eq. (136). Following essentially the
same steps as in our discussion of Eq. (62), we find that
S, = 0, since the boundary surface in this case is at spatial
infinity. Here, the seeming disappearance of the light cone
is consistent with the complete temporal independence of
the gravitational field. It follows from S, = 0 and Eq. (72)
that the integral constraints in the stationary case reduce to
Uy = 0, which contain only ¢, and the constraints vanish
for ¢, = 0. We can therefore set ¢, = 0 in the gravita-
tional potentials of a stationary source. In the transverse
gauge, the linearized field equations (106) of nonlocal
gravity thus reduce in the stationary case to the 10 field
equations

(148)

V2R, (x) = —2¢[T,, (x) + / 4(x = ¥)T,0 (3) ).
(149)

The spatial reciprocal kernel ¢ is independent of the
speed of light; therefore, the standard static GEM approach
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can be adopted in this nonlocal case. Let us write the
energy-stress tensor for a slowly rotating source with |v| <«
cas T% = pc? and T = ¢ji, where j = pv is the matter
current; moreover, the matter stresses are assumed to be
independent of ¢ and of the form T';; ~ pv;v; + P§;;, where
P is the pressure. Then, with /g, = —4<I>/ c®, we have a
static gravitoelectric potential ®(x) that satisfies Eq. (118)
of the Newtonian regime of nonlocal gravity. Next,
hy; = —2A;/c?, where A(x) is the static gravitomagnetic
vector potential that satisfies

v == ix) + [ gx-imas|. (50

It is interesting to note here the contribution of the dark
current, jp(x), which is the convolution of the regular
current with the reciprocal spatial kernel ¢, to the grav-
itomagnetic vector potential. The solution of Eq. (150) is
thus given by

1 _ G [i¥)+ip(¥) 4
2A(X) = / Xyl d’y (151)
Finally, Eq. (149) implies that /;; = O(c™) and is there-
fore neglected. Indeed, all terms of O(c~*) are neglected in
the standard linear GEM analysis [40].

It is simple to check that the energy-momentum con-
servation law, Eq. (51), reduces in our nonlocal steady-state
GEM treatment to V - j = 0, which leads to V- j, = 0 as
well, and is consistent with the transverse gauge condition
V-A =0. With these conditions, one can develop a
nonlocal version of the steady-state GEM for any suitable
stationary source [41]. In fact, with E;=V® and
B, =V x A, we have GEM fields with dlmenswns of
acceleration such that

V-E, = 47G(p + pp).
1 1
V. <§ Bg) = O, V x (E

These are the steady-state field equations of nonlocal GEM.
The GEM spacetime metric in this nonlocal case has the
usual form [40]

ds? = —c2<1 +

P o
+ (1 - 2—2> 5,~jdxldxf.
C

VxE, =0,

dnG . .
Bg> :T(J +ip)-

(153)

(152)

P 4
2c—2> dr’ — - (A - dx)dt
(154)

Here, ®(x) is the gravitoelectric potential of nonlocal
gravity in the Newtonian regime given by Eq. (118) and
A(x) = O(c7!) is the gravitomagnetic vector potential
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given by Eq. (151). It is now possible to discuss the motion
of test particles and null rays that follow geodesics
associated with this metric. For instance, for the motion
of test particles, we recover the gravitational analog of the
Lorentz force law [40].

In view of possible astrophysical applications, it is
convenient to assume that the reciprocal kernel is g, given
by Eq. (122); then, ® and A are given by

W)
x - |

(155)

@(x):—G/{l+a(1—e"”)+ E\(u )]

%A(x) _ g/ {1 Fa(l = e) + éEl (W)} %cﬁy,

(156)

where r=|x —y| and E, is the exponential integral
function defined in Eq. (139). Moreover, we note that [39]

o pur

G M pwr < L <_ .
2ur +1 7o Fiur) <5e

(157)

These potentials can be explicitly calculated in any given
situation involving an isolated material source using gen-
eral methods familiar from classical electrodynamics [28].
We are particularly interested in the propagation of light
rays in this gravitational field. This is necessary in order to
explain astrophysical phenomena associated with gravita-
tional lensing without invoking dark matter. In linearized
nonlocal gravity, just as in linearized GR, the effects due to
gravitoelectric and gravitomagnetic fields could be treated
separately and then linearly superposed. Thus, as is well
known, the bending of light rays due to the gravitoelectric
potential ® is given by twice the Newtonian expectation as
worked out in detail in Ref. [17]. The influence of the
gravitomagnetic field on the propagation of light in GR has
been discussed in Refs. [42,43]. As explained in Ref. [42],
according to GR, the gravitomagnetic bending of light rays
passing near a slowly rotating source is generally smaller in
magnitude than the gravitoelectric deflection by a factor of
the order of |v|/c < 1. It is therefore usually ignored in the
discussion of gravitational lensing [44—46]. The situation
regarding the gravitomagnetic deflection of light in non-
local gravity is, however, somewhat more complicated. For
instance, if the integration in Egs. (155) and (156) extends
over a structure such as a cluster of galaxies for which
ur>1, then the quantity in square brackets in these
equations essentially reduces to 1 + a. Therefore, we are
in effect working in the domain of linearized GR, but with
enhanced gravity, i.e., with G —» G(1 + a).

Imagine the propagation of light in the gravitational field
of an isolated static source that moves uniformly with speed
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cf, —1 < f < 1 in the background Minkowski spacetime.
This case is of interest in connection with the Bullet Cluster
[47,48] and is treated in the next section; however, the
general case of a time-dependent source is beyond the
scope of this paper.

VI. LIGHT DEFLECTION DUE TO
A UNIFORMLY MOVING MASS

Consider the stationary case treated in Sec. V with no
matter current. In the rest frame of such a static gravitational
source, it is convenient to think of this body in terms Of a
collection of fixed mass elements m;, j =0,1,2,.
Then in Eq. (155), we can write

X) = ijé(x -X;),

X) = ij¢(|

(158)

¢ 4 "B (ur
o) ==2[1ati-em s LG 59

The spacetime metric in the rest frame of the source is given
by Eq. (154) with A = 0. Let us remark here that for
ur>1, ¢(r)~—(1+a)G/r in NLG, which is 1+«
times the Newtonian gravitational potential per unit mass.
To return to GR, we can formally set 4p = oo and a =0
in NLG.

In the background global inertial frame with coordinates
x* = (t,x,y,z), the gravitational source under considera-

x axis. The source acts as a gravitational lens in deflecting a
ray of light that, in its unperturbed state, is parallel to the z
axis, pierces the (x,y) plane at the point (a, b) and passes
over the body. We assume that the lens is relatively thin and
its matter is mostly distributed in and near the (x, y) plane.
We are interested in the deflection of the ray by the lens
when the point (a,b) and the lens are in a definite
geometric configuration as recorded by the static inertial
observers at spatial infinity. It will turn out that the end
result is independent of such a configuration. Let us assume
that the desired configuration—i.e., the observationally
preferred position of the source relative to the unperturbed
ray of light—occurs at time ¢t = #,, when, for instance, mass
element m; of the lens is at x;. The source is then
completely at rest in a comoving frame with coordinates
Xt = (¢,x',y, 7). To write the Lorentz transformation that
connects the two frames, let us choose mass point m to be
the origin of the comoving system; then,

! =yl(t—19) = B(x — xo)],
X' =y[(x —x) = Bt = 1y)],
Y=y-yo. Z=2z2-2. (160)
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Here, y is the Lorentz factor corresponding to f. Thus m
with coordinates xfy = (o, xo, Yo, 29) is at the origin of
coordinates in the rest frame of the source, namely,
x5 = (0,0,0,0). As the whole static source is at rest in
the comoving frame at 7y, Eq. (160) can be written with
respect to any other mass point m; as

¢ =1 = 7l = 10) ~ Bl = x))].
X =X =yl(x = x;) = Bt = 10)],

/

Y =Yi=y-yj
?—Z=z-2z, (161)
where #; = —yf(x; — x), etc. The result of the Lorentz

transformation is that the invariant spacetime interval (154)
can be written in the observers’ rest frame as
ds* = (1, + hy,)dx*dx”, (162)

where the nonzero components of 4, are given by

hoo = hiy = =2y (1 + ), (163)
hoy = hig = 4py*®,  hy = hyy = —29. (164)

Here, ® depends upon time and is given by
(165)

® = ijga(uj),
J
where u; = |x' —x';| is the positive square root of

2= P[(x—x;) = Blt = )P + (v =3 + (= 2%,
(166)

in accordance with Eq. (161). In practice, || < 1; never-
theless, we perform the calculations in this section for
arbitrary S, but then we set || < 1 in the end result. To
maintain our linear weak-field approximation scheme,
however, > cannot be too close to unity. Moreover,
¢, = 0, and the transverse gauge condition is also main-
tained under Lorentz transformation.

In the geometric optics approximation, a light ray
propagates along a null geodesic

U
L Or* kek? =0,

= (167)

where the spacetime propagation vector k* = dx*/dJ is
tangent to the corresponding world line and 1 is an affine
parameter along the path. Let & = dx*/dJ represent the
unperturbed light ray whose trajectory is given by

Z(t)=C+1—1, (168)
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where a, b and { are constants. To simplify matters in this
case, we can choose 4 =t — 1y, so that ¥ = (1,0,0, 1).

A comment is in order here regarding the physical
significance of {. In the regime of geometric optics,
Eq. (167) with k* = dx*/dA represents the equation of
motion of the light particle (“photon”) along the null ray.
At t =1y, ¢ indicates the position of the unperturbed
photon along the z axis away from the (x,y) plane.

To calculate the deflection of light from Eq. (167), we
consider the net deviation Ak*,

AR = k¥(+00) — k#(—00) = — / TP kekPda, (169)

where k#(—o0) = k*. The integrand here is computed along
the null geodesic. To linear order, however, the calculation
can be performed along the unperturbed light ray, namely,

Ak = —/°° LH(to 4 A a,b.C + 2)dA, (170)
where 1 =1 — to and
L£¥(x) = O, (x)kK’. (171)
Here, the Christoffel symbols,
o = L h h h 172
afp — E’/I ( va.f + vpa aﬂ,v)7 ( )

are determined from Egs. (163)-(166). A detailed calcu-
lation reveals that £F(fy + A, a, b,{ + 1) can be expressed
as

Ldo(u;) -
L0 = 2722mj—d—j A= pr*(a - x))

+ 1+ -2l (173)

1 do(u;) ~
L= ZyZij—T’ Br* A+ (1= p*r*)(a - X;)
j uj au;

+26( - z))]. (174)

1 do(u;
L£2=2) mj;— d( ) (b-y)). (175)
7 Mj I/ij

£ =223 L ) ) -2 (176)

In principle, the integration in Eq. (170) can now be carried
through to determine the net deviation of the ray due to the
gravitational attraction of the moving source; however, this
calculation would involve
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1d 1
dp _G [1 +a- a<1 +§ur>e‘/”].

177
rdr P (177)

We address the problem of calculating the relevant integrals
in Appendix C. Using the results of Appendix C, we find
that for f # 0,

AKY = BAK' = AR

:_‘WGZP +92
x[1+a-aS(u/P2+22)].  (78)
—4N2h,+gz
i amas(nfpEr )] (7
where
Pi=(a=x)+pC-z),  Q=b-y. (180)

Moreover, J(x) := J,(x) + (x/2)J(x), where J; and
J, are discussed in Appendix C; indeed,

S(x):Am

so that 3(0) =1 and J(o0) =0. For a =0, formulas
(178)—(180) extend the results of previous work on light
deflection in GR [43,49,50].

With z as the line-of-sight coordinate, the overall effect
of the deflection of the light ray in the plane of the sky can
be expressed via the angles @ = —(Ak!, Ak?), where

47/GZ S+ a—aSu\/P2+ Q).

(182)

(1 + Jxcoshv)e*coshy

cosh?o

dv, (181)

P,,Q
/7)2

Other than an overall factor of y, the effect of the motion of
the gravitational source appears here in #({ — z;) contained

The end result for the deflection angle &, and hence P |
and Q;, is independent of #, and any specific configuration
of the lens and the photon. To illustrate this important point,
we note that the photon crosses the (x,y) plane at time
iy = ty — ¢, when the point mass m;, say, is at (X;,9;,Z;);
then, repeating our calculation in this case would yield
P;=(a—X;) = pz; and Q; = b — ;. These are the same
quantities as given in Eq. (180), since the lens has moved
during the time interval {; that is, x; = X; + ¢, y; =y,
and z; = Z;.
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Let us now suppose that the gravitational lens is thin—
i.e., the extent of the deflecting mass in the z direction is
small [44]. Therefore, we may neglect ffiz; = pz; in P,
since in practice || < 1. Then, at the instant that the
unperturbed photon crosses the lens plane, it is possible to
express Eq. (182) for a moving extended lens in a form that
can be incorporated into the standard lens equation,
namely,

0-0

m [1+a—aS(ul0-0])]Z(0)d%0,

a0)="5
(183)

where X(0) is the surface mass density of the deflecting
source (“thin lens”) and the integration is carried over the
lens plane, which coincides with the (x, y) plane. Thus, in
Eq. (183),

0= (a,b), 0= (x,y), (184)
where 6 is the unperturbed position of the photon as it
crosses the lens plane and @ indicates the position of a point
of the extended lens at that instant. Furthermore, it is
possible to write @ = VW, where the lensing potential V¥ is

given by

4G

(o) == /[ln|0 0] + aM(ul0 — 0))|=(0)d. (185)

Here, the first term in the integrand is the GR result, which
follows from VIn|x| = x/|x|?, while the nonlocal con-
tribution to the lensing potential involves M, which is
related to § via d9t/dx = [1 — S (x)]/x.

It follows from these results that in the theoretical
interpretation of gravitational lensing data in accordance
with nonlocal gravity, due account must be taken of the
existence of the repulsive “Yukawa” part of the gravita-
tional potential as well. This may lead to the resolution of
problems associated with light deflection by colliding
clusters of galaxies. However, the confrontation of the
theory with lensing data would require a separate detailed
investigation that is beyond the scope of this work.

VII. DISCUSSION

This paper contains a new formulation of nonlocal
gravity. Previous work on NLG [10-17] adopted the
standpoint of gauge theories of gravitation, since GRj,
the teleparallel equivalent of general relativity that is
rendered nonlocal in NLG via a constitutive ansatz, is
indeed the gauge theory of the group of spacetime trans-
lations. In this approach to GRj, the energy-momentum
tensor T, is not necessarily symmetric. There is, however,
another way to approach GR;, which is much closer to the
spirit of GR. Within the Riemannian framework of GR, one
can introduce a preferred tetrad frame and the associated
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Weitzenbock connection; then, Einstein’s gravitational
field equations with an a priori symmetric 7, can be
formulated in terms of the Weitzenbdck torsion tensor. This
is the approach that is adopted in the present paper.

The distant parallelism of the preferred frame field
can be viewed as a natural scaffolding on the spacetime
manifold, reminiscent of the parallel frame field on
Minkowski spacetime that would correspond to the parallel
tetrad frames of the static inertial observers at rest in a
global inertial frame [23]. It turns out that the nonlocal
constitutive ansatz of the previous approach [10—17] must
now be modified, since the linearized field equations of
NLG with T, = T,, turn out to be inconsistent with the
old ansatz. The general linear approximation of NLG with
the new constitutive ansatz is then presented and the
solutions of the linearized field equations are investigated.
These new developments do not affect the main physical
results of previous work [10-17] that consisted of the
Newtonian regime of NLG and the treatment of linearized
gravitational waves. In fact, our modification of the
constitutive ansatz, which involves a constant overall
parameter p # 0, primarily influences the gravitational
field of time-varying sources in their near zones. All such
complications disappear, however, for a stationary source.
Indeed, it is possible to describe time-independent gravi-
tational fields in terms of a simple GEM metric familiar
from GR.

Nonlocality simulates dark matter. This important con-
sequence of NLG is confirmed here in the linear approxi-
mation while preserving causality. With regard to possible
astrophysical applications of linearized NLG to gravita-
tional lensing, we consider the problem of deflection of
light by a moving source. The results may be of interest in
connection with gravitational lensing by merging clusters
of galaxies.

APPENDIX A: TORSION AND CONTORSION

The torsion tensor, defined in Eq. (10) in terms of the
preferred frame field e#,(x) has 24 independent compo-
nents. It is interesting to note that

1 0
V=g V79D = ~Ca

where the torsion vector C,, is the trace of the torsion tensor.
Moreover, it is possible to introduce a forsion pseudovector
C, via the totally antisymmetric part of the torsion tensor
Clapy)- Indeed, this axial vector is given by the dual of C,,,
namely,

(A1)

. 1
C(l =—Z E(l/)’yﬁcwy(s} 5

. (42)

Clapy) = —EapsC’

where E 3,5 = /=g €4p,s 18 the Levi-Civita tensor and €5,
is the alternating symbol with €;;,3 = 1 in our convention.
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It is therefore possible to introduce a reduced torsion tensor
T.p, = —Tp,, with 16 independent components by sub-
tracting out from C,, in an appropriate fashion, its vector
and pseudovector parts. In fact, the torsion tensor can be
decomposed as

1
Copy = =5 (Calpy = Cpar) + Clapy) + T (A3)
It is straightforward to check from this definition of the
reduced torsion tensor that T, is totally traceless
and T[aﬂ},] =0.

Similarly, from the definition of the contorsion tensor
(13) as well as Eq. (18), we find that

1
Kiapy) = Clap) = =5 Clapy) (A4)
1
Kapr = =5 (Cpay = Crap) + Kiapy
1
+ 5 (Tayﬂ + Tﬂya - Taﬁy) (AS)
and
Y 2 S
Capr = 5 (Calpy = Cpdar) + Capy)
1
+ E (Ta/}y + Tay/)’ - Tﬂ}/(l)‘ (A6)
Let us note here the following useful formulas
gle;wg =C, gﬂyng/w = _Go = 2C0’ (A7)
e — Ol—‘a — 1 9 e =1« C
o = /}a_\/—_—gW(\/_g), o = Ui+ Cp.
(A8)
T = = == () (49
)22 \/—_gaxﬁ 99 ’
1
KK p = =K Thg,s = _EKaWC/Wﬂ (A10)
and V,¢” = 0, which can be written as
g7, = -TogP — T (Al1)

APPENDIX B: CONSTITUTIVE
RELATION OF NLG

This appendix is devoted to a discussion of the con-
stitutive relation of nonlocal gravity. More precisely, we
wish to examine the local connection between X, and the
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torsion tensor in Eq. (27) and its implications for linearized
NLG. Ultimately, of course, the confrontation of the theory
with observation can determine the right relation.

Imagine, for instance, the possibility of choosing X, =
Cup)- Returning to the general form of the linearized field
equations (59)—(60), we have in this case

1
X% =0, X'y = PX Pl (B1)
since in the linear approximation €, = %q’)w,b]. Thus

Eq. (59) is the same here as in the linearized Einstein
equation of GR and Eq. (60) takes the form

N0y / K(x = y)pp,(v)dty =0. (B2)

In this case, we have a complete separation of the 10
dynamic metric variables I_im, from the 6 tetrad variables
¢,,- The integral constraints (B2) can be satisfied with

4)/41/ =0. (B3)
Thus at the linear level, this theory of nonlocal gravity is
essentially equivalent to local GR; therefore, the connection
between nonlocal gravity and dark matter disappears in
this case.

In connection with the separation of the metric variables
from the tetrad variables, let us consider the possibility that

1
Xup = Cpup + EGP/“" (B4)

It is useful to note that we now have in Egs. (59)—(60),

X% = Cuy),

u v

3

X[MGD] = Z”/Upgb[yp,v]' (BS)
The constraint equations in this case contain the secondary
tetrad variables ¢, exclusively. Thus to simplify matters,
one can again assume that ¢,, = 0; then, the constraint
equations are satisfied and the ten dynamic nonlocal field
equations depend solely upon i_z,w. However, we note that in
this case X, # —X,,,, so that N,w in Eq. (33) does not in
general transform as a tensor under arbitrary coordinate
transformations. Thus this case violates the basic geometric
structure of nonlocal gravity theory.

Clearly, one can concoct other combinations and study
their consequences; however, the rest of this appendix is
devoted to a detailed discussion of the difficulty associated
with the simplest possibility, namely, X,,=¢€,,,
adopted, along with the possibility that 7,, #T,,, in
previous work on this subject [10-17]. In the present
work, T, =T,, as in GR; however, X, =C,, then
leads, in a manner that is independent of any gauge
condition, to a contradiction. The field equations in this
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case can be obtained from Egs. (61)—(80) for p = 0, and we
recall here that Sy, = 0. Let us take
%Gy = kT o (B6)

from the set of field equations for the metric variables and
write it using Eq. (47) as
EOO,ii - ;lij,ij = =27 ¢, (B7)

where 7 is the total energy density of the source defined
by Eq. (97). Next, we take Eq. (74) from the set of integral
constraint equations, namely,

/ K(x— )50 —y° — [x — y)W,(y)d'y =0, (B8)

where, in agreement with Eq. (73), W, is given by
Wi =~/ - (hoo.i = Ijlij.j)‘ (BY)

Integrating over the temporal coordinate in Eq. (B8), we
find

[ x(x-y

We note that

X —y)Wi(x* —|x —y|.y)d’y = 0. (B10)

SMWi = —hgo ' + f_lij,ij7 (B11)
since ¢;; = —¢;;. Hence, we find from Eq. (B7) the
interesting result that
5ijWi’j = 2KT()0. (B12)
To demonstrate that Eq. (B12) is in general incompatible
with Eq. (B10), we apply the partial derivative operator
0/0x’ to Eq. (B10). To simplify the calculation, let us
define the functions # and F by

n=x"—|x-yl,  F(x-y)=K(x-y[.x-y).

(B13)
Then, we have that
on  On oF  OF
o "oy ad - oy (B

Hence, taking the derivative of Eq. (B10) results in
0; / FW;d?y

_ [|_9F on 3y
= [ |- 5o+ P Wity |y =0,

(B15)
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Using integration by parts, we find that

0
B 0 on 3
From
0 n
gy Vil y) = 555 Wion.y) + Wisny) - (BI7)

and Eq. (B14), we see that in Eq. (B16) terms involving
W, cancel; thus, Eq. (B16) can be written as

0

Taking the trace of this equation and using Gauss’s
theorem, we finally get from Eq. (B12) that

[ ey
— % / K(x =yl —Y)Too(7. )y = 0. (B19)

This important result can also be expressed as

/ W(x —y)Too(y)d*y =0, (B20)

where kernel W is given by Eq. (103).

The source of the gravitational field has been assumed to
be finite and isolated in space, but is otherwise arbitrary.
It is conceivable that Eq. (B20) could be satisfied for rather
special source configurations. In general, however,
Eq. (B20) is not satisfied for an arbitrary source, which
indicates that a solution of the field equations does not
exist. We have thus shown, without using any gauge
condition, that the metric part of the field equations of
NLG is in general incompatible with the tetrad part for
X,y = €,,,. The incompatibility proof can be directly
extended to constitutive relations of the forms X, ,=
C.,+r'Cy and X, =€, ,+p"E,,,,C’, where p'#0
and p” # 0 are constant parameters.

Let us now consider the constitutive relation adopted in
the present paper. Then, instead of Eq. (B6), we have

0Goo = kT o9 — pUpo, (BZI)

where
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Uyp = /K(x - J’)Co,o(y)d“y,
Upy = — / R(x - y)Co,o()’)d4y (B22)

and we have used here the reciprocity relation (91).
It follows from Egs. (47) and (B11) that

8W; ;= 2kT o9 +2p / R(x—y)Coo(y)d*y. (B23)

Next, the relevant integral constraint is in this case
Sjiop = pUjig), or

[ x(x-y

Hence, using the approach adopted above for the p =0
case, we have

X =YW’ =[x —y|,y)dy = 4pUiig).-

(B24)

/ K(I% = ¥, X — Y)@W,) (2 - x = ¥l y)dy

It follows from Eq. (B23) that
[ Kelr= ) Tool)dy
0 [ [ Kelx=2RE=)Cools)atve'

where K. is defined by Eq. (76). Calculating Uy from
Eq. (69) and using Cﬂ’,, =0, we find

510, / K(x = yl.x = y)Ciln.y)dy

— [ Kl =3)Contety. (B27)
Moreover,

810, / K(x = y)Cjig/(v)d*y

=30 [ Ke=2)(CTo= Ny, (B28)

which, after using Gauss’s theorem and CG,G = 0, results in

810, / K(x—y)Cjiq(y)d*y

1

-3 [ Kx=n)@C) 0y (529
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Putting all these results together and using the definition of
kernel W in Eq. (103), we finally arrive at a nonlocal
integral constraint for C,

X / W(x - y)Tooly)d'y

=-p / [W(x = y)Coo(y) + K(x — y)OCy(y)]d*y.
(B30)

We assume that this equation for C, can be solved—for
example, via Fourier analysis—in terms of T, the energy
density of the gravitational source. In this way, for p # 0,
we avoid the contradiction that has forced us to introduce
the additional term in the constitutive relation of this work.

APPENDIX C: LIGHT DEFLECTION INTEGRALS
In Egs. (173)—(176) of Sec. VI, consider

ldp G(l+a) 1 eHr
" _SUTY (1)
rdr r * < —|—2/4r> r

where the first part on the right-hand side is simply due to
Newtonian attraction augmented by 1+ «, while the
second repulsive “Yukawa” part is due to the requirements
of nonlocality. To compute the net deflection of light, the
integrals due to the first part of Eq. (C1) are simpler and we
therefore treat them first.

Let w(X) > 0 be given by

(C1)

w(X) = A+ 2BX + CX?, (C2)

where A= AC—B*#0. It is then straightforward to
verify that

/d_X_B+CX /XdX__A+BX

w32 Awl/2’ w3z Awl/2 "’

(C3)

where only positive square roots are considered throughout.
Let us now assume that C > 0 and A > 0, so that

Cw(X) = (CX + B)2 + A. (C4)

Hence, w > 0 for X: — co — +o0. In this case, we have

I _ © dX 202 7. _ [eXdx _ 2B
R S R AR

(C5)

For the problem of light deflection discussed in Sec. VI,
we have w(r — 19) = uj, where u; is given by Eq. (166).
That is, along the unperturbed ray,

U3 = Aj+2B;(1 = 19) + C;(1 = 10)%,

(Co)
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where

Aj:yz(a—xj)z—l—(b—yj)2+(C—Zj)2, (C7)
B; = —pr*(a—x;) +({ - z;)
and C; = y*. Moreover, we find that Aj =AC; - B =
7/2(77j2 + sz), where P; and Q; are defined in Eq. (180)
and Aj, by assumption, never vanishes. Thus the conditions
for the applicability of Eq. (C5) are satisfied and with

X =t —ty, we find that the integrals for the first part are
given by

o dX 277!
L= w=prraor
—o 7 J J
7 _/oonX_zy—le,»—(c—zj)]
, =

3 2 2 ’
oouj Pj +Qj

(C8)

which, together with the results given below for the second
part of Eq. (Cl), eventually lead to Egs. (178)-(179)
of Sec. VL.

To treat the integration of the second (““Yukawa”) part of
Eq. (C1), let us first note that
(€9)

u:

= (@ + &)

i =yX+7r'B, Aj=(P2+92)V2  (Cl0)
As X! — 00 — +o00, ii; also goes from —oo to +o0; there-
fore, it proves useful to introduce a new variable v: — c0 —
+o0 such that

ii; = A, sinho, u; = A cosho. (C11)
The calculation of the integrals for the second part then
ultimately reduces to the determination of [J,(8;) and

J2(9;), where
>0 (C12)

and

0 6—8 coshov
T.(9) = / v (C13)
0

cosh"v

forn =1,2,3, .... It is interesting to observe that 7, (0) =
(VE/2)T()/T(25) and 7, (0) = 0.

To determine 7, and 7, let us first note that 7,(0) =
/2 and J,(0) = 1. Moreover, for 0 < |e| < 1, we find
from Eq. (C13) that for 9 > 0,

T8 +¢e)=T1(9)—eKoy(I) + ..., (C14)

124031-23



B. MASHHOON

1
j2(19+€) :J2<19)—€J1<19)+§€2K0(19)+, (ClS)
where K(9) is the modified Bessel function given by [39]

Ko(8) = A " gmdeoshogy, (C16)

For x:0 — o0, K((x) behaves as — In x for x — 0, but then
rapidly decreases monotonically with increasing x and
vanishes exponentially as x — oco. In fact,

|7
Ko(x) ~ z—xe_x

for x — oo [39]. It follows from Egs. (C14)—(C15) that

(C17)

dJ dJ
—g = Ko®. = E=-7.09).

5 (C18)
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Therefore, the series expansion for K, [39] can be
employed to find 7,

39
T1(8) _g—/ Ko(x)dx, (C19)
0
which in turn will help determine 7, via
39
J>(9) =1 —/ J1(x)dx. (C20)
0

In practice, the polynomial approximation for K, [39] can
be used to develop corresponding polynomial approxima-
tions for J; and 7.
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