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The recent classical nonlocal generalization of Einstein’s theory of gravitation is presented within the
framework of general relativity via the introduction of a preferred frame field. The nonlocal generalization
of Einstein’s field equations is derived. The linear approximation of nonlocal gravity is thoroughly
examined and the solutions of the corresponding field equations are discussed. It is shown that nonlocality,
with a characteristic length scale of order 1 kpc, simulates dark matter in the linear regime while preserving
causality. Light deflection in linearized nonlocal gravity is studied in connection with gravitational lensing;
in particular, the propagation of light in the weak gravitational field of a uniformly moving source is
investigated. The astrophysical implications of the results are briefly mentioned.
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I. INTRODUCTION

The standard theory of relativity is based on a funda-
mental postulate of locality. In extending Lorentz invari-
ance to actual observers, which are all more or less
accelerated, a basic assumption is required regarding what
accelerated observers would measure. The hypothesis that
is adopted in the standard theory of relativity is that an
arbitrary accelerated observer is pointwise inertial; there-
fore, Lorentz transformations can be applied point by point
along the path of the accelerated observer to determine its
measurements. This locality postulate is an essential
ingredient of general relativity (GR) theory as well, since
Einstein’s heuristic principle of equivalence loses its
significance if one does not know what accelerated observ-
ers would measure. In general relativity, an arbitrary
observer in a gravitational field is locally (i.e., pointwise)
inertial as a joint consequence of Einstein’s principle of
equivalence as well as the hypothesis of locality [1,2].
In classical physics, the value of a physical quantity QðtÞ

at time t is based on a certain measurement process that in
general started before time t. This circumstance becomes
particularly significant when the acceleration of the observer
is taken into account, as a consequence of the existence of
invariant acceleration scales in relativistic physics. Thinking
of classical physics in terms of particles and waves, we note
that the interaction of point particles and rays can be reduced
to pointlike coincidences; however, one can show that wave
properties cannot be measured instantaneously even with
ideal measuring devices. The deviation from locality is thus
expected to be proportional to ƛ=L, where ƛ is the reduced
wavelength of the phenomenon under observation and L is
the acceleration length of the observer. An observer fixed on
the Earth, for instance, has translational and rotational
acceleration lengths c2=jg⊕j ≈ 1 light year and c=jω⊕j ≈
28 astronomical units, respectively. Thus ƛ=L is generally

rather small compared to unity; therefore, the hypothesis of
locality is a good approximation in most situations of
practical interest. Moreover, it has been shown by Bohr
and Rosenfeld that the measurement of the classical electro-
magnetic field at a given time t by ideal inertial observers
involves a certain spacetime average over past events [3].
This observation acquires particular significance for accel-
erated observers in Minkowski spacetime due to the exist-
ence of invariant acceleration scales [4]. Thus the application
of the hypothesis of locality to a basic field such as the
electromagnetic field is only a first approximation, akin to
the impulse approximation of the quantum scattering
theory [5].
To go beyond the hypothesis of locality, one must

include an average over the past world line of the observer
with a weight function that is characteristic of the observ-
er’s acceleration. In this way, a nonlocal special relativity
theory has been developed in which nonlocality appears as
the memory of past acceleration [6]. Thus the measured
electromagnetic field consists of the local result plus an
integral over the past that is linear in the field and contains
an acceleration-dependent kernel [7]. The electromagnetic
field is local, but satisfies integro-differential equations
reminiscent of Maxwell’s original equations with nonlocal
constitutive relations [8]. How can this approach be
extended to a nonlocal general relativity theory [9]? It
turns out that GR has an equivalent tetrad formulation
(GR∥) that is amenable to nonlocal generalization via a
causal constitutive kernel [10–17]. Such a nonlocal gen-
eralization of GR can simulate dark matter. The funda-
mental length scale associated with nonlocal gravity (NLG)
is a galactic length of the order of 1 kpc; therefore,
nonlocality can be neglected on scales that are much
smaller than 1 kpc. It appears that the nonlocal aspect of
gravity could indeed be responsible for the observational
data in astrophysics and cosmology that have been inter-
preted thus far in terms of dark matter; that is, what is now
considered dark matter may in fact be the manifestation of*mashhoonb@missouri.edu
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the nonlocal component of the gravitational interaction
[17]. This circumstance provides the motivation to study
the theoretical basis of NLG further and develop its
consequences.
In previous work on NLG [10–17], GR∥, the teleparallel

equivalent of GR, has been described within the framework
of gauge theories of gravitation, since GR∥ is the gauge
theory of the Abelian group of spacetime translations
[18–20]. Alternatively, it is possible to formulate the theory
within the standard framework of GR supplemented with a
latticework of preferred frames. For the sake of complete-
ness, we adopt in the present paper the latter formulation
that is much closer to the spirit of GR [20]. That is, nonlocal
gravity has been primarily described thus far in terms of
local frames in Weitzenböck spacetime [10–17]. We choose
a complementary approach in this paper and formulate
nonlocal gravity anew in such a way as to preserve the main
physical results of the theory [10–17] and avoid incon-
sistencies, as explained in detail in the following sections.
Furthermore, the matter energy-momentum tensor Tμν, as
employed in previous work on nonlocal gravity [10–17],
has not always been assumed to be symmetric in general. In
the present work, however, Tμν is the symmetric energy-
momentum tensor, exactly as in GR.
In Sec. II, we introduce the Weitzenböck connection and

concisely develop the essential elements of nonlocal gravity
in an extended general relativistic framework. In particular,
the field equations of nonlocal gravity are written as non-
locally modified Einstein’s equations. In Secs. III and IV, the
general linear approximation of nonlocal gravity is devel-
oped in a consistent manner and applied in Sec. V to the
determination of the gravitational field of an isolated sta-
tionary source. Such a source is assumed to be in uniform
translational motion in Sec. VI, which is devoted to the
problem of propagation of light rays in the field of the
moving source. Section VII contains a brief discussion of our
results.

II. FIELD EQUATIONS OF NONLOCAL GRAVITY

A. One metric with two connections

Einstein’s local principle of equivalence has a natural
geometric formulation in terms of a spacetime manifold
with a Riemannian metric tensor gμνðxÞ such that test
particles follow timelike geodesics

d2xμ

dτ2
þ 0Γμ

αβ

dxα

dτ
dxβ

dτ
¼ 0 ð1Þ

and rays of radiation follow the corresponding null geo-
desics of spacetime [1]. Here, x represents an event in
spacetime with coordinates xμ ¼ ðct; xiÞ, τ is the proper
time along the world line and (0Γμ

αβ) represents the Levi-
Civita connection given by the symmetric Christoffel
symbols

0Γμ
αβ ¼

1

2
gμνðgνα;β þ gνβ;α − gαβ;νÞ: ð2Þ

This torsion-free connection has Riemannian curvature,

0Rα
μβν ¼ ∂β

0Γα
νμ − ∂ν

0Γα
βμ þ 0Γα

βγ
0Γγ

νμ − 0Γα
νγ
0Γγ

βμ; ð3Þ

in terms of which one can develop a natural generalization
of Poisson’s equation of Newtonian gravity. Hence, we
have the gravitational field equations [1]

0Rμν − 1

2
gμν0Rþ Λgμν ¼ κTμν; ð4Þ

where 0Rμν ¼ 0Rα
μαν represents Ricci curvature and 0R ¼

gμν0Rμν represents scalar curvature. Moreover, the matter
energy-momentum tensor is symmetric and given by Tμν, Λ
is the cosmological constant and κ ≔ 8πG=c4. The Einstein
equations can be derived from an action principle, where
the gravitational Lagrangian is given by Lg¼ c3ð0R−2ΛÞ=
ð16πGÞ. The gravitational field is identified with the
Riemannian curvature tensor 0Rαβγδ; in its complete
absence, there is no gravity and we are back in the
Minkowski spacetime of special relativity [21].
Observers in spacetime are endowed with an orthonor-

mal tetrad frame λμα̂ðxÞ such that λμ0̂ is the observer ’s unit
temporal direction, λμ î, i ¼ 1; 2; 3, form its spatial frame
and

gμνðxÞλμα̂ðxÞλνβ̂ðxÞ ¼ ηα̂ β̂: ð5Þ

The 16 components of the tetrad frame are subject to 10
orthonormality relations (5). Let us recall that in GR, the
metric tensor gμν carries the 10 gravitational degrees of
freedom. The remaining 6 degrees of freedom, which are
elements of the local Lorentz group, specify the observer’s
instantaneous velocity and the 3 Euler angles that define the
orientation of its spatial frame with respect to a background
reference system.
The local measurement of physical quantities by an

observer generally involves the projection of relevant tensor
fields on its tetrad frame. Thus the spacetime interval ds can
be written as

ds2 ¼ gμνdxμdxν ¼ ηα̂ β̂dx
α̂dxβ̂; ð6Þ

where dxμ ¼ λμα̂dxα̂. In our convention, the Minkowski
metric tensor ηαβ is given by diagð−1; 1; 1; 1Þ. Moreover,
latin indices run from 1 to 3, unless specified otherwise,
while greek indices run from 0 to 3. The hatted indices
(e.g., α̂, î, etc.) refer to anholonomic tetrad—that is, local
Lorentz—indices, while ordinary indices (e.g., α, i, etc.)
refer to general holonomic spacetime indices. As is evident
from Eq. (6), the tetrad connects (holonomic) spacetime
quantities to (anholonomic) local Lorentz quantities.
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In keeping with the spirit of GR, we work in this paper
essentially with holonomic systems and the corresponding
spacetime coordinates are assumed to be admissible.
Holonomic and anholonomic indices are raised and low-
ered by means of metric tensors gμνðxÞ and ηα̂ β̂, respec-
tively. To change an anholonomic index of a tensor into a
holonomic index or vice versa, we simply project the tensor
onto the corresponding tetrad frame. We use units such that
c ¼ 1, unless otherwise specified.
Of all possible smooth orthonormal tetrad frame fields

that can be defined on the Riemannian spacetime manifold,
let us choose one, namely, eμα̂ðxÞ. This will be our
preferred tetrad field. Indeed, any such smooth frame field
will do; however, this basic degeneracy will be eventually
removed via the introduction of nonlocality into the theory.
Let us now use our preferred frame to define a second
connection [22]

Γμ
αβ ¼ eμρ̂∂αeβρ̂: ð7Þ

One can directly verify that this nonsymmetricWeitzenböck
connection is indeed curvature-free. It follows from Eq. (7)
that

∇νeμα̂ ¼ 0; ð8Þ

where ∇ denotes covariant differentiation with respect to
the Weitzenböck connection. Therefore, ∇νgαβ ¼ 0 due to
the orthonormality relation

gμν ¼ eμα̂eνβ̂ηα̂ β̂; ð9Þ

so that the Weitzenböck connection is compatible with the
spacetime metric. Moreover, the new connection renders
spacetime a parallelizable manifold, since we have every-
where access to our preferred frame field eμα̂, a smooth
global latticework of parallel tetrad frames. This framework
is known as teleparallelism, due to the distant parallelism of
the preferred tetrad frames via the Weitzenböck connection.
That is, distant vectors can be considered parallel if they
have the same local components relative to the preferred
tetrad frame field.
We have thus two connections that are both compatible

with our Riemannian metric. The difference between two
connections on the same manifold is always a tensor;
therefore, we have two associated tensor fields, namely, the
torsion tensor

Cμν
α ¼ Γα

μν − Γα
νμ ¼ eαβ̂ð∂μeνβ̂ − ∂νeμβ̂Þ; ð10Þ

and the contorsion tensor

Kμν
α ¼ 0Γα

μν − Γα
μν: ð11Þ

From ∇γgαβ ¼ 0, we have

gαβ;γ ¼ Γμ
γαgμβ þ Γμ

γβgμα: ð12Þ

Substituting this relation in Eq. (2), we find the relation
between torsion and contorsion, namely,

Kμν
α ¼ 1

2
gαβðCμβν þ Cνβμ − CμνβÞ: ð13Þ

While the torsion tensor is antisymmetric in its first two
indices, the contorsion tensor is antisymmetric in its last
two indices.
We have identified the gravitational field with the

Riemann curvature tensor 0Rμνρσ from the standpoint of
the Levi-Civita connection. From the standpoint of the
Weitzenböck connection, however, the gravitational field
would naturally be identified with the torsion tensor Cμνρ.
It can be shown that these notions are indeed compatible
[23]. To see briefly how this can come about, let us consider
the torsion tensor in the form

Cμν
α̂ ¼ eρα̂Cμν

ρ ¼ ∂μeνα̂ − ∂νeμα̂: ð14Þ

For each α̂ ¼ 0̂; 1̂; 2̂; 3̂, we have in Eq. (14) an analog of the
electromagnetic field tensor defined in terms of the vector
potential eμα̂. The field completely vanishes if the potential
is a pure gauge; that is, if there are functions Xα̂ such that
eμα̂ ¼ ∂μXα̂. It then follows via Eq. (9) that we are indeed
in Minkowski spacetime and 0Rμνρσ ¼ 0. Conversely, in a
gravitational field with 0Rμνρσ ≠ 0, the torsion tensor is
necessarily nonzero. It is therefore natural to express
Einstein’s field equations in terms of the torsion tensor.
It is not surprising that the result will turn out to be
reminiscent of Maxwell’s equations. This way of describ-
ing the gravitational field, namely, GR∥, the teleparallel
equivalent of GR, turns out to be crucial for a proper
nonlocal generalization of GR [10,11]. Appendix A con-
tains a set of formulas involving torsion and contorsion that
should be useful in writing the field equations in terms of
torsion.

B. GR∥

Wecan now combine Eqs. (11) and (13) in order to express
the Levi-Civita connection in terms of the Weitzenböck
connection and its torsion tensor. Substituting the result in
theRiemanntensor(3)andtakingtheappropriatetrace,wefind
that the Ricci tensor, 0Rμν ¼ 0Rα

μαν, is given by

0Rμν ¼
1ffiffiffiffiffiffi−gp ∂

∂xα ð
ffiffiffiffiffiffi
−g

p
Kνμ

αÞ þ ∂Cμ

∂xν − CαΓα
νμ

− ðΓα
νβ þ Kνβ

αÞKαμ
β − Γα

βμKνα
β: ð15Þ

Here g ≔ detðgμνÞ, ffiffiffiffiffiffi−gp ¼ detðeμα̂Þ and Cμ is the torsion
vector, which is the trace of the torsion tensor; that is,
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Cμ ≔ Cα
μα ¼ −Cμ

α
α: ð16Þ

To express the gravitational field equations in terms of
our preferred frame field eμα̂ and its torsion tensor, we first
note that the scalar curvature can be obtained from the trace
of the Ricci tensor, namely,

0R ¼ −
1

2
CαβγCαβγ þ 2ffiffiffiffiffiffi−gp ∂

∂xδ ð
ffiffiffiffiffiffi
−g

p
CδÞ; ð17Þ

where Cαβγ is the auxiliary torsion tensor that is also
antisymmetric in its first two indices and is defined by

Cαβγ ≔ Cαgβγ − Cβgαγ þ Kγαβ: ð18Þ

Let us briefly digress here and mention that the
Lagrangian for GR∥ contains only the first term on the
right-hand side of Eq. (17), as the second term turns into a
surface term in the action. Moreover,

CαβγCαβγ ¼ 1

2
I1 þ I2 − 2I3; ð19Þ

where

I1 ¼ CαβγCαβγ; I2 ¼ CαβγCγβα; I3 ¼ CαCα

ð20Þ

are the three independent algebraic (Weitzenböck) invar-
iants of the torsion tensor.
We now introduce a second auxiliary field strength

Hμν
ρ ¼ −Hνμ

ρ defined by

Hμνρ ≔
ffiffiffiffiffiffi−gp
κ

Cμνρ: ð21Þ

It proves useful for our present purposes to express the
Einstein tensor as 0Gμν ¼ 0Rνμ − 1

2
gμν0R, where the indices

on the symmetric Ricci tensor have been switched in order
to get from Eqs. (15) and (17) the Einstein tensor in the
form

0Gμν ¼
κffiffiffiffiffiffi−gp

�
gναeμγ̂

∂
∂xβ H

αβ
γ̂

−
�
HνρσCμ

ρσ − 1

4
gνμHαβγCαβγ

��
: ð22Þ

Thus the Einstein field equations (4) can be written within
the GR∥ framework in the Maxwellian form

∂
∂xνH

μν
α̂ þ

ffiffiffiffiffiffi−gp
κ

Λeμα̂ ¼
ffiffiffiffiffiffi
−g

p ðT α̂
μ þ Eα̂

μÞ; ð23Þ

where Eμν is now the trace-free energy-momentum tensor
of the gravitational field defined by

ffiffiffiffiffiffi
−g

p
Eα̂

μ ≔ Cα̂ρσHμρσ −
1

4
eμα̂CνρσHνρσ: ð24Þ

It follows from Eq. (23) and the antisymmetry ofHμν
α̂ in its

first two indices that

∂
∂xμ

� ffiffiffiffiffiffi
−g

p �
T α̂

μ −
Λ
κ
eμα̂ þ Eα̂

μ

��
¼ 0; ð25Þ

which expresses the conservation law of total energy-
momentum tensor in GR∥, consisting of contributions
due to matter, the cosmological constant and the gravita-
tional field, respectively. We emphasize that the procedure
we have followed would work for any smooth tetrad field
that we may adopt as our preferred frame. This is related to
the invariance of Einstein’s theory under the local Lorentz
group. That is, Eq. (23) ultimately depends only upon the
metric tensor gμν; therefore, this teleparallel formulation
involves a 6-fold degeneracy at each event in spacetime.
The tetrad formulation of GR has a long history—see

Refs. [18–20] and the references cited therein. Indeed,
Møller first pointed out that the problem of gravitational
energy in GR has a solution in the tetrad framework
[24,25]. An excellent review of the approach to GR∥ that
we have adopted in the present paper has been given by
Maluf [20], which should be consulted for further develop-
ments of GR∥. This concludes our brief presentation of the
salient features of GR∥, the teleparallel equivalent of GR.

C. Nonlocal GR∥

In his successful approach to GR, Einstein interpreted
the experimentally well-established principle of equiva-
lence of inertial and gravitational masses to mean that there
is an intimate connection between inertia and gravitation
[1]. This notion eventually led to Einstein’s extremely local
principle of equivalence and GR. Following Einstein, we
wish to employ the general connection between inertia
and gravitation as a guiding principle to render GR (or,
equivalently, GR∥) nonlocal in just the same way that
accelerated observers in Minkowski spacetime are non-
local. In field measurements of accelerated observers, the
memory of past acceleration appears as an integral over the
past that is linear in the field. To implement the same idea
in the theory of gravitation, we note that Einstein’s field
equations, represented by Eq. (23) in our tetrad framework,
have the general form of Maxwell’s original field equations
with the local constitutive relation (21). To render GR∥
nonlocal, we simply replace the local constitutive relation
(21) with a nonlocal one given by

Hμνρ ≔
ffiffiffiffiffiffi−gp
κ

ðCμνρ þ NμνρÞ; ð26Þ

where Nμνρ is a tensor involving an average of the
gravitational field—that is, torsion—over past events.
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We emphasize that in order to preserve the invariance of
the theory under arbitrary coordinate transformations, Nμνρ

and hence the resulting nonlocal auxiliary field strength
Hμνρ should be antisymmetric in their first two indices.
The simplest expression for the nonlocality tensor Nμνρ

would involve a scalar kernel; that is,

Nμνρ ¼ −
Z

Ωμμ0Ωνν0Ωρρ0Kðx; x0ÞXμ0ν0ρ0 ðx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þ

p
d4x0;

ð27Þ

where K is the scalar causal kernel of the nonlocal theory
[10–17] and XμνρðxÞ is a tensor that is antisymmetric in its
first two indices and involves a linear combination of the
components of the torsion tensor. We note that there is no
physical connection between kernel K and the nonlocal
kernel of accelerated observers in Minkowski spacetime
due to the extreme locality of Einstein’s principle of
equivalence. In Eq. (27), Ωðx; x0Þ is Synge’s world function
[21], which involves a unique future-directed timelike or
null geodesic of gμν that connects event x0 to event x and the
square of its proper length is 2Ω. Moreover, indices
μ0; ν0; ρ0;…. refer to event x0, while indices μ; ν; ρ;…. refer
to event x. We define

Ωμðx; x0Þ ≔
∂Ω
∂xμ ; Ωμ0 ðx; x0Þ ≔

∂Ω
∂x0μ0 : ð28Þ

It can be shown that covariant derivatives at x and x0
commute for any bitensor [21]. Thus Ωμμ0 ðx; x0Þ ¼
Ωμ0μðx; x0Þ is a dimensionless bitensor such that

lim
x0→x

Ωμμ0 ðx; x0Þ ¼ −gμμ0 ðxÞ: ð29Þ

Let us now consider the field equations of nonlocal GR∥
with a general Xμνρ ¼ −Xνμρ. The field equations of NLG,
namely, Eqs. (23)–(24) together with the nonlocal con-
stitutive relation (26) can be expressed explicitly by
substituting Eq. (26) in Eqs. (23) and (24). Thus, we have

∂
∂xν

� ffiffiffiffiffiffi−gp
κ

ðCμν
α̂ þ Nμν

α̂Þ
�
þ

ffiffiffiffiffiffi−gp
κ

Λeμα̂

¼ ffiffiffiffiffiffi
−g

p ðT α̂
μ þ Eα̂

μÞ; ð30Þ

where Eα̂
μ is now given by

κEα̂
μ ≔ Cα̂ρσðCμρσ þ NμρσÞ − 1

4
eμα̂CνρσðCνρσ þ NνρσÞ:

ð31Þ

With this Eα̂
μ, the total energy-momentum conservation

law (25) is satisfied; that is, in nonlocal gravity, energy-
momentum conservation is represented by a simple

generalization of Eq. (25) of GR∥, where Eα̂
μ is given

by Eq. (31).
It is possible to express the nonlocal gravitational field

equations as modified Einstein’s equations. To this end, we
separate out in Eq. (30) the partial derivative term involving
ð ffiffiffiffiffiffi−gp

=κÞCμν
α̂ and insert it into the expression (22) for the

Einstein tensor 0Gμν to get the nonlocal generalization of
Einstein’s field equations, namely,

0Gμν þN μν ¼ κTμν − Λgμν þQμν: ð32Þ

Here, N μν defined by

N μν ≔ gναeμγ̂
1ffiffiffiffiffiffi−gp ∂

∂xβ ð
ffiffiffiffiffiffi
−g

p
Nαβ

γ̂Þ ð33Þ

is a proper tensor, since Nαβγ ¼ −Nβαγ by assumption;
moreover, Qμν is a traceless tensor given by

Qμν ≔ CμρσNν
ρσ −

1

4
gμνCδρσNδρσ: ð34Þ

It is clear that Einstein’s gravitational field equations are
recovered when the nonlocal kernel vanishes, K ¼ 0, and
hence Nμνρ ¼ 0. In GR, the 10 components of the metric
tensor gμν can be determined, in principle, from the 10
gravitational field equations. Here, however, the 16 com-
ponents of the preferred observers’ frame field eμα̂ can be
obtained, in principle, from the 16 gravitational field
equations (32)–(34) of nonlocal general relativity. That
is, nonlocality removes the essential degeneracy of GR∥;
moreover, as expected, nonlocal gravity is invariant under
the global Lorentz group. The integro-differential field
equations of nonlocal gravity in general contain Fredholm
integral relations that, whenever causal kernels are
involved, turn into Volterra integral relations [26,27].
To compare and contrast further the field equations of

nonlocal gravity with the Einstein field equations of GR,
one can separate out Eq. (32) into its symmetric and
antisymmetric components. In this way, we get the 10
nonlocally modified Einstein equations given by

0Gμν þN ðμνÞ ¼ κTμν − Λgμν þQðμνÞ ð35Þ

as well as the 6 integral constraint equations involving the
nonlocality tensor Nμνρ, namely,

N ½μν� ¼ Q½μν� ¼
1

2
ðCμρσNν

ρσ − CνρσNμ
ρσÞ; ð36Þ

that are dominated by averaging over past events and
vanish for K ¼ 0. The energy-momentum tensor is sym-
metric in this paper; therefore, there is no contribution from
T ½μν� ¼ 0 to Eq. (36). This point brings out the main
difference between the present work and previous papers
on nonlocal gravity [10–17], in which Tμν was not assumed
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to be symmetric from the outset. Let us recall here that
these 16 field equations are required to determine the 16
components of eμα̂ðxÞ, of which 10 are fixed by the
spacetime metric gμν via orthonormality and the other 6
are Lorentz degrees of freedom (i.e., boosts and rotations).
This division is reflected in Eqs. (35) and (36), respectively.
The general mathematical investigation of the existence and
uniqueness of the solutions of the integro-differential
Eq. (35) with integral constraints (36) is beyond the scope
of the present paper.
It is worthwhile to emphasize again the close analogy

between this construction of nonlocal gravity and the
nonlocal electrodynamics of media. Maxwell’s equations
in a medium in an inertial frame can be expressed in terms
of the field tensors Fμν↦ðE;BÞ and Hμν↦ðD;HÞ as

F½μν;ρ� ¼ 0; ∂νHμν ¼ 4π

c
Jμ; ð37Þ

where Jμ is the total current 4-vector associated with free
electric charges. To complete the theory, a constitutive
relation between Fμν and Hμν is required. If we impose the
local relation Hμν ¼ Fμν, we recover Maxwell’s equations
in vacuum. However, in a medium the constitutive relation
is in general nonlocal [28,29], thus leading to the nonlocal
electrodynamics of media. In the gravitational case, on the
other hand, Einstein’s field equations have been expressed
within the teleparallelism framework with the local con-
stitutive relation (21) in a form analogous to Maxwell’s
equations in vacuum.We have then extended this relation to
a nonlocal one via our ansatz (26), which has therefore
resulted in a simple nonlocal extension of Einstein’s theory
of gravitation. Let us note here that the constitutive ansatz
(26) involves a linear nonlocal relation between the two
field strengths involving Hμνρ and Cμνρ; however, as in
electrodynamics [28,29], such a nonlocal relation could
well become nonlinear when the field strengths are suffi-
ciently high. We will not have occasion here to discuss such
nonlinearities, since at this early stage in the development
of NLG the relation between Xμνρ and torsion is assumed to
be linear for the sake of simplicity.
In electrodynamics, the local constitutive relation

between Hμν and Fμν, considered as 6-vectors, can be
described via a 6 × 6matrix. One can similarly envision the
local linear relationship between Xμνρ ¼ −Xνμρ and Cμνρ in
Eq. (27) in a rather general context. The general case is
beyond the scope of the present work; instead, we limit our
considerations to a few simple observations regarding such
relations here and in Appendix B. We assume that the
constitutive relations are given up to constant overall
multiplicative factors, since these could be absorbed in
the corresponding scalar kernels. Previous work on NLG
has been based on the simplest constitutive relation,
namely, Xμνρ ¼ Cμνρ [10–17]. However, in contrast to
previous work [10–17], we assume here from the outset
that Tμν is symmetric. Then, as we show in detail in

Appendix B, Xμνρ ¼ Cμνρ is in general untenable in
linearized NLG. We must therefore explore other options.
Of the various possibilities of the general form Xμνρ ¼
Cμνρ þ Aμνρ that we have considered, additions Aμνρ of the
forms Cμgνρ − Cνgμρ and C

̬

μgνρ − C
̬

νgμρ have been found
to be tenable in the linear approximation. Here C

̬
μ is the

torsion pseudovector

C
̬

μ ¼
1

3!
CαβγEαβγμ; ð38Þ

which is the dual of the torsion tensor, see Appendix A.
The 16 gravitational potentials of linearized NLG can be
divided into 10 metric potentials and 6 tetrad potentials. It
turns out that the torsion vector contains both metric and
tetrad potentials, while the torsion pseudovector contains
only the tetrad potentials. The latter leads to much
simplification; hence, in this paper, we tentatively choose
the local constitutive relation of NLG to be

Xμνρ ¼ Cμνρ þ pðC
̬

μgνρ − C
̬

νgμρÞ; ð39Þ

where p ≠ 0 is a constant dimensionless parameter. We
emphasize again that this is different from previous work
on nonlocal gravity, where Xμνρ ¼ Cμνρ and Tμν ≠ Tνμ in
general [10–17]; however, in this paper, Tμν is symmetric,
as in GR, but then it turns out that the linearized field
equations of NLG are in general inconsistent with
Xμνρ ¼ Cμνρ, as demonstrated in Appendix B. To maintain
consistency, we therefore assume that p ≠ 0 in this paper.
It will turn out that the tetrad potentials and hence p are
only significant for time-varying gravitational fields near
their sources. That is, tetrad potentials are negligible for
steady-state configurations, see Sec. V. Thus we expect that
p can be eventually determined from observational data
regarding the gravitational physics of variable sources.
The constitutive kernel Kðx; x0Þ could in general depend

upon scalars at x and x0 that can be formed from the
gravitational potentials, the world function Ωðx; x0Þ and
their derivatives. For instance, we can tentatively assume
that Kðx; x0Þ is simply a function of Ωμðx; x0Þeμα̂ðxÞ and
Ωμ0 ðx; x0Þeμ0 α̂ðx0Þ, where the Lorentz freedom in the choice
of the preferred frame has been fixed relative to the rest
frame of the gravitational source as in the following section,
where the consequences of this form for Kðx; x0Þ are
worked out in detail within the framework of the linearized
theory.
It is not known at present whether the field equations of

nonlocal gravity can be derived from a variational principle.
Moreover, the theory is incomplete without a thorough
examination of the physical origin of the nonlocal kernelK.
As discussed in the next section, we take the view that at
present the kernel can be determined from observational
data regarding dark matter. Perhaps K will be ascertained
someday from a more complete future theory. For instance,
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nonlocality can arise from integrating out certain physical
degrees of freedom [30].
Nonlocality—in the sense of an influence (“memory”)

from the past that endures—could be a natural feature of the
universal gravitational interaction. Some of the conse-
quences of our nonlocal gravity model have been consid-
ered thus far only in the linear weak-field regime [10–17].
This has involved detailed studies of the nonlocal mod-
ifications of Newtonian gravity and linearized gravitational
waves; indeed, these important results are confirmed here
via the approach adopted in the present work. As explained
in the following section, the notion that nonlocal gravity
simulates dark matter is completely consistent with cau-
sality; moreover, the theoretical results appear to be
consistent with experiment at the linear level. The nonlinear
regime of NLG has not yet been studied; therefore, exact
cosmological models or issues involving the influence of
nonlocality on the formation and evolution of black holes
are beyond the scope of our present considerations.

III. LINEARIZED NONLOCAL GRAVITY

Imagine a finite source of mass-energy in a compact
region of space. We suppose that the gravitational field is
everywhere weak and falls off to zero far away from the
source. We also set Λ ¼ 0 and assume that if gravity is
turned off, we are in the rest frame of the source in
Minkowski spacetime with the preferred tetrad frame
eμα̂ ¼ δμα. In the presence of gravity, the preferred frame
field of nonlocal gravity is then assumed to be

eμα̂ ¼ δαμ þ ψα
μ; eμα̂ ¼ δμα − ψμ

α; ð40Þ

where ψμν is treated to linear order in perturbation away
from Minkowski spacetime and hence the distinction
between spacetime and tetrad indices disappears at this
level of approximation. Let us note that in Eq. (40), the
invariance of the theory under global Lorentz transforma-
tions has been broken, since the preferred frame field
coincides with the rest frame of the gravitational source.
It is useful to decompose ψμν into its symmetric and
antisymmetric components; that is, we define

hμν ≔ 2ψ ðμνÞ; ϕμν ≔ 2ψ ½μν�: ð41Þ

It then follows from Eq. (9) that

gμν ¼ ημν þ hμν: ð42Þ

Moreover, it is convenient to employ the trace-reversed
potentials

h̄μν ¼ hμν −
1

2
ημνh; h ≔ ημνhμν; ð43Þ

just as in GR. Here h̄ ¼ −h and we have

ψμν ¼
1

2
h̄μν þ

1

2
ϕμν −

1

4
ημνh̄: ð44Þ

It is now straightforward to work out the field compo-
nents in terms of ψμν. The torsion tensor is then

Cμνσ ¼ ∂μψσν − ∂νψσμ ð45Þ

and the auxiliary torsion tensor is given by

Cμσν ¼ −h̄ν½μ;σ� − ην½μh̄σ�ρ;ρ þ
1

2
ϕμσ;ν þ ην½μϕσ�ρ;ρ; ð46Þ

in terms of which the Einstein tensor can be expressed as

0Gμν ¼ ∂σCμ
σ
ν ¼ −

1

2
□h̄μν þ h̄ρðμ;νÞρ −

1

2
ημνh̄ρσ ;ρσ; ð47Þ

where □ ≔ ηαβ∂α∂β. Moreover, in the linear regime,
Eq. (27) reduces to

Nμ
σ
ν ¼

Z
Kðx; yÞXμ

σ
νðyÞd4y ð48Þ

and Qμν vanishes. Thus the linearized forms of the field
equations (35) and (36) of nonlocal gravity are given by

0Gμν þ
1

2
∂σðNμ

σ
ν þ Nν

σ
μÞ ¼ κTμν ð49Þ

and

∂σNμ
σ
ν ¼ ∂σNν

σ
μ; ð50Þ

respectively. It follows immediately from the antisymmetry
of the auxiliary torsion tensor in its first two indices in
Eq. (47) and the symmetry of Einstein’s tensor that
∂ν

0Gμν ¼ 0, as expected. Furthermore, Eqs. (49)–(50)
imply that

∂νTμν ¼ 0; ð51Þ

since Nμσν ¼ −Nσμν. We thus recover the energy-
momentum conservation law for mass-energy, just as in
linearized GR.
Let us next discuss the gauge freedom of the gravitational

potentials. An infinitesimal coordinate transformation,
xμ ↦ x0μ ¼ xμ − ϵμðxÞ, leads to ψμν ↦ ψ 0

μν ¼ ψμν þ ϵμ;ν
that is valid to linear order in ϵμ. Thus under a gauge
transformation,

h̄0μν ¼ h̄μν þ ϵμ;ν þ ϵν;μ − ημνϵ
α
;α;

ϕ0
μν ¼ ϕμν þ ϵμ;ν − ϵν;μ

ð52Þ

and h̄0 ¼ h̄ − 2ϵα;α; however, as expected, the gravitational
field tensorsCμνσ andCμσν are left unchanged. It follows that
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the linearized gravitational field equations of NLG are gauge
invariant.
To proceed further, we must discuss the nature of the

nonlocal kernel in the linearized theory. The kernel that
appears in Eq. (48) is the nonlocal kernel in the Minkowski
spacetime limit. In Minkowski spacetime, the world func-
tion is given by [21]

Ωðx; x0Þ ¼ 1

2
ηαβðxα − x0αÞðxβ − x0βÞ; ð53Þ

so that to lowest order in the perturbation, we find

Ωμðx; x0Þeμα̂ðxÞ ¼ −Ωμ0 ðx; x0Þeμ0 α̂ðx0Þ ¼ ηαβðxβ − x0βÞ:
ð54Þ

It follows from this result and our brief discussion of the
kernel in the previous section that we have a convolution
kernel in the linearized theory. That is, we can tentatively
assume that the nonlocal kernel Kðx; yÞ is a universal
function of xα − yα, so that

Kðx; yÞ ≔ Kðx − yÞ: ð55Þ
Moreover, to ensure causality, we assume that the con-
volution kernel K is nonzero only when xα − yα is a future-
directed timelike or null vector in Minkowski spacetime,
which means that event ymust be within or on the past light
cone of event x, or equivalently, that event xmust be within
or on the future light cone of event y. That is, x0 ≥ y0 and

ηαβðxα − yαÞðxβ − yβÞ ≤ 0: ð56Þ

It follows that causality is ensured whenever

x0 − y0 ≥ jx − yj: ð57Þ

Hence, Kðx − yÞ must be proportional to Θðx0 − y0−
jx − yjÞ, where ΘðtÞ is the Heaviside unit step function
such that ΘðtÞ ¼ 0 for t < 0 and ΘðtÞ ¼ 1 for t ≥ 0. That
is,

Kðx − yÞ ∝ Θðx0 − y0 − jx − yjÞ: ð58Þ

Returning to field equations (49) and (50), let us now
write them more explicitly as follows

0GμνðxÞ þ ∂σ

Z
Kðx − yÞXðμσνÞðyÞd4y ¼ κTμνðxÞ ð59Þ

and

∂σ

Z
Kðx − yÞX½μσν�ðyÞd4y ¼ 0: ð60Þ

The consequences of these equations for various choices of
Xμσν are briefly discussed in Appendix B. In this work,

however, we choose Eq. (39), namely, Xμσν ¼ Cμσνþ
pðC

̬

μgσν − C
̬

σgμνÞ with p ≠ 0. Then, in the linear regime
we have

XðμσνÞ ¼ CðμσνÞ þ p½C
̬

ðμδ
σ
νÞ − C

̬
σ
ημν�;

X½μσν� ¼ C½μσν� þ pC
̬

½μδ
σ
ν�:

ð61Þ

Let us recall here the fact that the torsion pseudovector C
̬
σ

is the dual of C½μνρ�, which in the linear approximation is
given by C½μνρ� ¼ −ϕ½μν;ρ�. Moreover, in the linear approxi-

mation, C
̬
σ
;σ ¼ 0. Thus the part of the constitutive relation

proportional to p is given exclusively by the derivatives of
tetrad potentials and vanishes for ϕμν ¼ 0.
In the calculation of the nonlocal term in Eq. (59),

∂K=∂xσ ¼ −∂K=∂yσ , which together with Eq. (47)
implies, via integration by parts, that

∂σ

Z
Kðx − yÞCμ

σ
νðyÞd4y

¼ −Sμν þ
Z

Kðx − yÞ0GμνðyÞd4y; ð62Þ

where Sμν is given by

Sμν ¼
Z ∂

∂yσ ½Kðx − yÞCμ
σ
νðyÞ�d4y: ð63Þ

Gauss’s theorem then implies that

Sμν ¼
I

Kðx − yÞCμ
α
νðyÞd3ΣαðyÞ; ð64Þ

where the only contribution to the integral comes from
the boundary hypersurface at the light cone given by y0 ¼
x0 − jx − yj. Therefore,

SμνðxÞ ¼
Z

Kðjx − yj;x − yÞCμ
0
νðx0 − jx − yj; yÞd3y;

ð65Þ

where Cμ
0
ν ¼ Cðμ0νÞ þ C½μ0ν� is given by Eq. (46), namely,

Cðμ0νÞ ¼
1

2
ðh̄μν;0 − h̄0ðμ;νÞ þ ημνh̄0ρ;ρ − η0ðμh̄νÞρ;ρ þ ϕ0ðμ;νÞ

− ημνϕ0ρ;
ρ þ η0ðμϕνÞρ;ρÞ ð66Þ

and

C½μ0ν� ¼
1

2
ðh̄0½μ;ν� þ ϕ0½μ;ν� þ η0½μh̄ν�ρ;ρ − η0½μϕν�ρ;ρÞ: ð67Þ

In a similar way, we find that
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Uμν ≔ ∂σ

Z
Kðx − yÞðC

̬

μδ
σ
ν − C

̬
σ
ημνÞðyÞd4y ð68Þ

can be written as

Uμν ¼
Z

Kðx − yÞC
̬

μ;νðyÞd4y −
Z

Kðjx − yj;x − yÞ

× ðC
̬

μδ
0
ν − C

̬
0
ημνÞðx0 − jx − yj; yÞd3y: ð69Þ

We recall here that Uμν depends only upon the derivatives
of ϕμν and vanishes for ϕμν ¼ 0.
It follows from these results that in the linear regime,

Eq. (32), which is the nonlocal extension of Einstein’s field
equations, can be written as

0GμνðxÞ þ
Z

Kðx − yÞ0GμνðyÞd4y

¼ κTμνðxÞ þ SμνðxÞ − pUμνðxÞ: ð70Þ

This is the main field equation of linearized nonlocal
gravity and can be split into its symmetric and antisym-
metric components, namely,

0GμνðxÞ þ
Z

Kðx − yÞ0GμνðyÞd4y

¼ κTμνðxÞ þ SðμνÞðxÞ − pUðμνÞðxÞ ð71Þ

and

S½μν�ðxÞ ¼ pU½μν�ðxÞ: ð72Þ

Let us first note here that S0νðxÞ ¼ 0 due to the antisym-
metry of Cμσν in its first two indices. Moreover, it proves
useful to define the quantity

Wi ≔ −h̄00;i þ h̄ij;j − ϕij;
j: ð73Þ

Then, the purely nonlocal source-free integral constraints
(72) consist of 6 equations given by

Z
Kcðx − yÞWiðyÞd4y ¼ 4pU½i0�ðxÞ ð74Þ

and

Z
Kcðx − yÞðh̄0i;j þ ϕ0i;j − h̄0j;i − ϕ0j;iÞðyÞd4y

¼ 4pU½ij�ðxÞ: ð75Þ

Here, we have introduced, for the sake of simplicity, the
light-cone kernel Kc,

Kcðx − yÞ ≔ Kðx − yÞδðx0 − y0 − jx − yjÞ: ð76Þ

Furthermore, from S0ν ¼ 0 and Eq. (70), we have that

0G0νðxÞ þ
Z

Kðx − yÞ0G0νðyÞd4y ¼ κT0νðxÞ − pU0νðxÞ;
ð77Þ

where U0ν can be determined from Eq. (69), namely,

U0νðxÞ ¼
Z

Kðx − yÞC
̬

0;νðyÞd4y: ð78Þ

In Appendix B, we show that C
̬
0 can be determined in

principle in terms of T00, see Eq. (B30). Finally, the source
term for the field equation involving 0Gij contains SðijÞ and
UðijÞ, where

SðijÞðxÞ ¼
1

2

Z
Kcðx − yÞ½h̄ij;0 − h̄0ði;jÞ þ ϕ0ði;jÞ

þ δijðh̄0ρ;ρ − ϕ0k;
kÞ�ðyÞd4y ð79Þ

and UðijÞ can be simply determined from Eq. (69).
It is clear from these results that in our decomposition of

the linear gravitational potentials ψμν in Eq. (41), the
symmetric metric part h̄μν that satisfies Eq. (71) has primary
dynamical content, while the antisymmetric tetrad part ϕμν

plays a secondary role and is constrained via Eq. (72).
In general, h̄μν and ϕμν are inextricably connected in both
sets of equations and cannot be simply disentangled. In the

case of Xμνρ ¼ Cμνρ þ pðC
̬
μgνρ − C

̬
νgμρÞ under consider-

ation here, certain simplifications occur that are discussed
in the last part of this section.
Nonlocal gravity has a characteristic galactic length scale

of order 1 kpc; therefore, in the vicinity of a planet, a star or
a binary star system, whose dimensions are very small
compared to 1 kpc, the nonlocal terms in Eqs. (71) and (72)
can be generally neglected and linearized nonlocal gravity
simply reduces to linearized GR. Therefore, in the dis-
cussion of gravitational radiation of reduced wavelength
ƛ ≪ 1 Kpc, which is the regime of current observational
interest, nonlocal effects in the generation and detection of
such waves are essentially negligible [15]. Nonlocal effects
can, however, be significant in the galactic or extragalactic
propagation of waves from the source to the detector
[15,16].
Before discussing the solution of the linearized field

equations, we must digress here and point out a significant
consequence of gravitational dynamics given by Eq. (70).
Working in the space of continuous functions on spacetime
that are absolutely integrable (L1) as well as square
integrable (L2), it is possible to write Eq. (70) in the form
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0Gμν ¼ κTμν þ Sμν − pUμν

þ
Z

Rðx − yÞ½κTμν þ Sμν − pUμν�ðyÞd4y; ð80Þ

where Rðx − yÞ is a kernel that is reciprocal to Kðx − yÞ
[27]. The reciprocal kernel is of the convolution type and is
causal as well. Aside from nonlocal terms involving Sμν and
Uμν, Eq. (80) exhibits an important feature that must be
stressed. That the linearized gravitational field equations
can be expressed as in Eq. (80) is a crucial result, since it
means that nonlocal gravity in the linear regime is essen-
tially equivalent to general relativity, except that in addition
to the usual gravitational source, there is an additional
“dark” source that is given by the convolution of the usual
source with the causal reciprocal kernel. In nonlocal gravity
theory, this additional source is identified as the main
component of what appears as dark matter in astrophysics.
Thus nonlocality simulates dark matter in this linearized
theory, since the latter is simply the manifestation of the
nonlocal aspect of the gravitational interaction.

A. Causal reciprocal kernel

Due to the importance of Eq. (80) for the physical
interpretation of NLG, this subsection is devoted to a brief
description of the mathematical steps that lead to this result.
It turns out that the convolution property of the kernels
under consideration is independent of their crucial causality
properties. Therefore, we first consider a kernelKðx; yÞ that
is causal, so that Kðx; yÞ vanishes unless Eq. (57) is
satisfied in this case.
A Volterra kernel is defined to be a causal kernel

function Kðx; yÞ that is continuous over causally ordered
sets in Minkowski spacetime. The product of two Volterra
kernels K and K0 is defined to be

Vðx; yÞ ¼
Z
Dðx;yÞ

Kðx; zÞK0ðz; yÞd4z; ð81Þ

which is a Volterra kernel, since the above integrand is
nonzero only when z is simultaneously in the past light
cone of x and in the future light cone of y, so that y is in the
past light cone of x. Thus the integration domainDðx; yÞ in
Eq. (81) is the finite region in Minkowski spacetime
bounded by the past light cone of event x and the future
light cone of event y. Alternatively, consider the causality
conditions for K and K0, namely,

x0 − z0 ≥ jx − zj;
z0 − y0 ≥ jz − yj; ð82Þ

respectively. These imply, via addition, that V is causal,
since

x0 − y0 ≥ jx − zj þ jz − yj ≥ jx − yj; ð83Þ

by the triangle inequality. Volterra kernels thus form an
algebra over the causally ordered events in Minkowski
spacetime.
Consider next the generalized Volterra integral equation

of the second kind given by

Bðx; yÞ þ
Z
Dðx;yÞ

Kðx; zÞBðz; yÞd4z ¼ Aðx; yÞ; ð84Þ

where Aðx; yÞ and Kðx; yÞ are given Volterra kernels and
we wish to find a Volterra kernel Bðx; yÞ that satisfies this
equation. According to a general theorem due to M. Riesz
[31,32], there is a unique solution given by

Aðx; yÞ þ
Z
Dðx;yÞ

Rðx; zÞAðz; yÞd4z ¼ Bðx; yÞ; ð85Þ

where the reciprocal Volterra kernel Rðx; yÞ can be
expressed as

Rðx; yÞ ¼
X∞
n¼1

Knðx; yÞ: ð86Þ

Here the iterated Volterra kernels Knðx;yÞ for n¼1;2;3;…
are defined such that K1ðx; yÞ ≔ −Kðx; yÞ and

Knþ1ðx; yÞ ≔
Z
Dðx;yÞ

Knðx; zÞK1ðz; yÞd4z: ð87Þ

The Neumann series (86) converges uniformly on bounded
domains and the reciprocal kernel R is indeed a Volterra
kernel. This is proved in the paper of Faraut and Viano [32]
using generalized Riemann-Liouville kernels. The work of
M. Riesz [31] employed a wider context; here, we have
followed the treatment of Ref. [32].
It is simple to demonstrate that this significant math-

ematical result holds just as well if Volterra kernels are all
of the convolution type; that is, we can replace Kðx; yÞ by
Kðx − yÞ, etc. For instance, a simple change of variable in
the corresponding integral in Eq. (81) is enough to show
that V, the product of Volterra kernels K and K0 of
convolution type, is also of convolution type and that,
furthermore, V is also the product of K0 and K. Therefore,
convolution Volterra kernels form a commutative subal-
gebra of the Volterra algebra.
Henceforth, we limit our considerations to Volterra

convolution kernels that are L1 and L2 functions on
spacetime. We wish to reduce the generalized Volterra
integral Eqs. (84) and (85) to the following Volterra integral
equations:

GðxÞ þ
Z

Kðx − yÞGðyÞd4y ¼ F ðxÞ ð88Þ

and
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F ðxÞ þ
Z

Rðx − yÞF ðyÞd4y ¼ GðxÞ: ð89Þ

To this end, consider any continuous L1 function fðxÞ over
spacetime and define

F ðxÞ ≔
Z

Aðx − yÞfðyÞd4y;

GðxÞ ≔
Z

Bðx − yÞfðyÞd4y; ð90Þ

where A and B are closely related to the Volterra kernels
defined in Eqs. (84) and (85). That is, replacing the
kernels in Eqs. (84) and (85) by L1 and L2 convolution
kernels, multiplying the resulting equations by fðyÞ and
integrating over spacetime, we obtain Eqs. (88) and (89). It
is a simple consequence of Young’s inequality for con-
volutions that if f and A are L1 functions, then their
convolution F is also L1. Thus we find that in Eq. (90),
F ðxÞ and GðxÞ are continuous L1 functions over spacetime.
Moreover, it follows from Minkowski’s integral inequality
that if f is L1 and A is L2, then their convolution is L2.
Hence, F ðxÞ and GðxÞ are L2 functions over spacetime
as well.
The substitution of Eq. (88) into Eq. (89), or vice versa,

results in the basic reciprocity integral equation

Kðx − yÞ þ Rðx − yÞ þ
Z

Kðx − zÞRðz − yÞd4z ¼ 0:

ð91Þ
It is clear that the convolution Volterra kernels K and R can
be interchanged in this reciprocity relation.
Writing G for 0Gμν and F for κTμν þ Sμν − pUμν in

Eq. (70), we recover Eq. (88), which means that Eq. (89) is
then equivalent to Eq. (80); in particular, we have the
remarkable result that in the space of continuous and
absolutely integrable as well as square integrable functions
on spacetime, the reciprocal kernel exists and is causal, so that

Rðx − yÞ ∝ Θðx0 − y0 − jx − yjÞ: ð92Þ
Furthermore, it is possible to express Eqs. (88) and (89) in the
Fourier domain. That is, let

f̂ðξÞ ¼
Z

fðxÞe−iξ·xd4x ð93Þ

be the Fourier transform of f in spacetime, where ξ · x ≔
ηαβξ

αxβ. Then,

fðxÞ ¼ 1

ð2πÞ4
Z

f̂ðξÞeiξ·xd4ξ: ð94Þ

It follows from the convolution theorem for Fourier trans-
forms that Eqs. (88) and (89) can be written in the Fourier

domain as F̂ ¼ Ĝð1þ K̂Þ and Ĝ ¼ F̂ ð1þ R̂Þ, respectively.
Therefore,

ð1þ K̂Þð1þ R̂Þ ¼ 1; ð95Þ

which can also be obtained directly via Fourier transformation
from Eq. (91) and is an expression of the complete reciprocity
between K and R. In particular, suppose that Rðx − yÞ can be
estimated from the observational data regarding dark matter,
then the kernel of nonlocal gravity Kðx − yÞ can be deter-
mined from the Fourier transform of

K̂ðξÞ ¼ −
R̂ðξÞ

1þ R̂ðξÞ ; ð96Þ

provided 1þ R̂ðξÞ ≠ 0.

B. Linearized field equations with h̄μν;ν ¼ 0

Let us now return to Eqs. (70)–(80) that characterize
linearized nonlocal gravity and discuss the general structure
and the formal solution of the nonlocal field equations for
the gravitational field of an isolated source. For K ¼ R ¼ 0
in these equations, nonlocality disappears and the field
equations reduce to the familiar second-order partial differ-
ential equations of linearized GR. We assume, for the
present discussion, that kernels K and R are known; in fact,
their determination is the subject of the next section.
In connection with Eq. (80), it is useful to define the total

matter energy-momentum tensor T μν,

T μν ≔ Tμν þ TD
μν; ð97Þ

where TD
μν, the convolution of Tμν and R, is the dark

counterpart of the matter energy-momentum tensor Tμν.
That is,

TD
μνðxÞ ¼

Z
Rðx − yÞTμνðyÞd4y: ð98Þ

Similarly, we define

SμνðxÞ ≔ SμνðxÞ þ
Z

Rðx − yÞSμνðyÞd4y ð99Þ

and

UμνðxÞ ≔ UμνðxÞ þ
Z

Rðx − yÞUμνðyÞd4y: ð100Þ

It is possible to write these equations as

SμνðxÞ ¼
Z

Wðx − yÞCμ
0
νðyÞd4y; ð101Þ

where Cμ
0
ν is given by Eqs. (66)–(67), and
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UμνðxÞ ¼ −
Z

Wðx − yÞðC
̬

μδ
0
ν − C

̬
0
ημνÞðyÞd4y

−
Z

Rðx − yÞC
̬

μ;νðyÞd4y: ð102Þ

Here, we have introduced convolution kernel W,

Wðx− yÞ≔ Kcðx− yÞ þ
Z

Rðx− zÞKcðz− yÞd4z; ð103Þ

where in the integrand R and Kc can be interchanged.
Moreover, in deriving Eq. (102), we have used the
reciprocity relation (91).
As in GR, the gauge freedom of the gravitational

potentials may be used to impose the transverse gauge
condition

h̄μν;ν ¼ 0: ð104Þ

The remaining gauge degrees of freedom involve four
functions ϵμðxÞ such that □ϵμ ¼ 0. With the imposition of
the transverse gauge condition, we find from Eq. (47) that

0Gμν ¼ −
1

2
□h̄μν: ð105Þ

Hence, our main dynamical result, Eq. (80), can be
expressed as

□h̄μν þ 2Sμν ¼ −2κT μν þ 2pUμν: ð106Þ

That is,

□h̄0μ ¼ −2κT 0μ − 2p
Z

Rðx − yÞC
̬

0;μðyÞd4y; ð107Þ

since S0μ ¼ 0 and hence S0μ ¼ 0 as well. Furthermore,

□h̄ij þ
Z

Wðx − yÞ½h̄ij;0 − h̄0ði;jÞ þ ϕ0ði;jÞ− δijϕ0k;
k�ðyÞd4y

¼ −2κT ij þ 2pUðijÞ; ð108Þ

where

UðijÞðxÞ ¼ −δij
Z

Wðx − yÞC
̬

0ðyÞd4y

−
Z

Rðx − yÞC
̬
ði;jÞðyÞd4y: ð109Þ

We must solve these dynamic field equations subject to the
6 integral constraints given by Eqs. (74) and (75). Once the
10 components of h̄μν have been determined, one can find
the metric perturbation

hμν ¼ h̄μν −
1

2
ημνh̄: ð110Þ

On the other hand, the constraints appear to be dominated
by ϕμν ¼ −ϕνμ. Let us recall that the gravitational poten-
tials of linearized nonlocal gravity, ψμν ¼ ψ ðμνÞ þ ψ ½μν�,
consist of 10 metric variables ψ ðμνÞ ¼ 1

2
hμν and 6 tetrad

variables ψ ½μν� ¼ 1
2
ϕμν. These variables are all intertwined

in the linearized field equations of NLG.
It is shown in Appendix B that the field equation for h̄00

can be combined with constraint (74) to derive Eq. (B30)
for C

̬

0 ¼ Oðc−2Þ. Assuming that C
̬

0 can be determined in
terms of T00 from Eq. (B30), we can then calculate U0μ via

U0μ ¼ −
Z

Rðx − yÞC
̬

0;μðyÞd4y: ð111Þ

The general solution of Eq. (107) involves the super-
position of a particular solution of the inhomogeneous
equation plus a general solution of the wave equation.
Assuming the absence of incoming gravitational waves, we
are interested in the special retarded solution

h̄0μðx0;xÞ ¼
κ

2π

Z ½T 0μ − ðp=κÞU0μ�ðx0 − jx − yj; yÞ
jx − yj d3y:

ð112Þ

The other variables cannot be simply decoupled in general.
In connection with the propagation of gravitational

waves, let us note that very far from the source, where
T μν ≈ 0, Eqs. (107)–(109) and constraints (74)–(75) are
consistent in the transverse-traceless gauge with h̄0μ ¼ 0
and ϕμν ¼ 0. Then,

□h̄ij þ
Z

Wðx − yÞh̄ij;0ðyÞd4y ≈ 0; ð113Þ

n general agreement with Refs. [15,16]. In this field
equation for h̄ij, it is interesting to note a nonlocal damping
feature that has been studied in Ref. [16]. Thinking about
Eq. (113) in terms of a simple analogy with the mechanics
of a linear damped oscillator, we note that the term ∂h̄ij=∂t
in Eq. (113) is reminiscent of the “velocity” of the
corresponding oscillator. It is interesting that such a non-
local damping is completely absent in Eq. (107), which for
h̄00 is the physical basis for the modified Poisson equation
in the Newtonian regime of nonlocal gravity. The general
solution of the linearized field equations of NLG is beyond
the scope of this investigation. However, some special cases
of particular physical interest are treated in Secs. V and VI.
To go further, it is necessary to have knowledge of the

reciprocal nonlocal kernels K and R. This is the subject of
the next section.
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IV. RECIPROCAL KERNEL R OF
LINEARIZED NLG

The reciprocity between the nonlocal kernels K and R
implies that it is in principle sufficient to determine only
one of them. This section is therefore primarily devoted to
the determination of R, since it is more directly connected
to astrophysical applications. The first step involves the
Newtonian limit of nonlocal gravity, which can be used to
determine R in the Newtonian regime from the comparison
of the theory with observational data regarding dark matter
in spiral galaxies as well as clusters of galaxies [17].

A. Newtonian limit

The Newtonian regime is marked by instantaneous
action at a distance; therefore, it is natural to assume that
for c → ∞, gravitational memory is purely spatial and all
retardation effects vanish. It follows that in the Newtonian
limit

Kðx − yÞ ¼ δðx0 − y0Þχðx − yÞ ð114Þ

and then reciprocity requires that

Rðx − yÞ ¼ δðx0 − y0Þqðx − yÞ: ð115Þ

In fact, the substitution of these Newtonian kernels in our
basic relations (88) and (89) results in the reciprocity
relation for spatial kernels, namely,

χðx − yÞ þ qðx − yÞ þ
Z

χðx − zÞqðz − yÞd3z ¼ 0:

ð116Þ

We will assume that these spatial kernels are symmetric in
the sense that χðx − yÞ is only a function of jx − yj, etc.
Thus in the Fourier domain, we have

χ̂ðjξjÞ þ q̂ðjξjÞ þ χ̂ðjξjÞq̂ðjξjÞ ¼ 0: ð117Þ

Let us now use Eq. (115) in the linearized field
equation (107) to determine the generalization of
Poisson’s equation of Newtonian gravity as we formally
let c → ∞. We assume that the dominant term of the matter
energy-momentum tensor is given by T00 ¼ ρc2, where ρ is
the density of matter, and h̄00 ¼ −4Φ=c2. Moreover, it
follows from Eq. (B30) of Appendix B that C

̬
¼ Oðc−2Þ.

Thus, we find from Eq. (107) that as c → ∞,

∇2ΦðxÞ ¼ 4πGðρþ ρDÞ;

ρDðxÞ ¼
Z

qðx − yÞρðyÞd3y; ð118Þ

where ρD is the density of dark matter and we have
suppressed the dependence of Φ, ρ and ρD upon time t

for the sake of simplicity. We take the view that dark matter
is essentially a consequence of the nonlocal aspect of the
gravitational interaction [10–17]. That is, nonlocality sim-
ulates dark matter at least at the linear order, and hence this
nonlocality should be able to account for the observational
aspects of the astrophysical phenomena attributed to dark
matter. A beginning has already been made in this direction
in Ref. [17], which also contains an essentially complete
description of the Newtonian regime of nonlocal gravity.
We therefore briefly review here the steps by which
qðx − yÞ has been determined thus far.
Starting from the Newtonian laws of motion and taking

into account the observational data regarding the nearly flat
rotation curves of spiral galaxies [33–35], one finds that in
the absence of dark matter, the Newtonian attraction of
gravity on the galactic scale must vary essentially as the
inverse of the distance from the center of the galaxy. That
is, the gravitational force acting on a star of massm circling
the bulge in the galactic disk would be essentially mv20=r,
where v0 is the constant rotation speed that corresponds to
the flat rotation curve of the spiral galaxy. This means that
the Newtonian inverse-square law of gravity, which is valid
on solar-system scales, must be suitably modified on
galactic scales and beyond. Moreover, the spatial kernels
q and χ must be smooth functions of the kind discussed in
the previous section. This problem has been dealt with in
depth in Ref. [14], where two simple possible solutions to
the problem were investigated in detail. These are

q1 ¼
1

4πλ0

1þ μða0 þ rÞ
ða0 þ rÞ2 e−μr ð119Þ

and

q2 ¼
1

4πλ0

1þ μða0 þ rÞ
rða0 þ rÞ e−μr; ð120Þ

where r ¼ jx − yj and λ0, a0 and μ are constant parameters
such that λ0, the fundamental length scale of NLG, is
expected to be of the order of 1 kpc and

0 < μλ0 < 1; 0 < μa0 ≪ 1; 0 < a0=λ0 ≪ 1:

ð121Þ

It turns out that Eqs. (118)–(120) constitute a generali-
zation of the phenomenological Tohline-Kuhn approach to
modified gravity [36–38]; in fact, kernels (119) and (120)
are suitable generalizations of the Kuhn kernel [38] within
the framework of nonlocal gravity.
In conformity with the requirements of the previous

section (cf. Sec. III A), kernels q1 and q2 are continuous
positive functions that are integrable as well as square
integrable over all space. The Fourier transform of q1 is a
real positive function if a0=λ0 is sufficiently small compared
to unity. On the other hand, the Fourier transform of q2 is
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always real and positive regardless of the value of a0=λ0.
These results imply, via the Fourier transform method, that
the corresponding kernels χ1 and χ2 exist, are symmetric and
have other desirable physical properties [14].
In many situations of physical interest, a0=λ0, 0 < a0=

λ0 ≪ 1, can be neglected, in which case q1 and q2 both
reduce to [17]

q0 ¼
1

4πλ0

ð1þ μrÞ
r2

e−μr; ð122Þ

which is integrable over all space such that

Z
q0ðxÞd3x ¼ α; α ≔

2

λ0μ
: ð123Þ

It is then straightforward to work out, using Eqs. (118) and
(122), the nonlocal generalization of Newton’s inverse-
square law of gravity, namely,

FNLG ¼ −
Gmxmyðx − yÞ

r3

�
1þ α − α

�
1þ 1

2
μr

�
e−μr

�
:

ð124Þ
This represents the attractive central conservative force
acting on point mass mx at x due to the presence of point
mass my at y. It is interesting to note that FNLG is a linear
superposition of an attractive Newtonian force of gravity
augmented by (1þ α), where α ≈ 11, and a repulsive
Yukawa-type force with a spatial galactic decay length
of μ−1 ≈ 17 Kpc [17]. Newton’s inverse-square force law
is recovered when r can be neglected in comparison with
μ−1. On the other hand, on the scales of clusters of galaxies
and beyond, where μr ≫ 1, the Yukawa-type force can be
neglected and the force of gravity is then essentially
Newtonian but with G → Gð1þ αÞ. Moreover, regarding
the exterior gravitational field of an extended source, we
find from the integration of Eq. (124) over a spherical mass
distribution of radius R0 that the mass distribution can, in
effect, be treated approximately as a point mass if R0 is
completely negligible compared to μ−1 [12,17].
A detailed investigation has revealed that Eq. (124) is

consistent with gravitational dynamics in the Solar System,
spiral galaxies and clusters of galaxies with

α ¼ 10.94� 2.56; μ ¼ 0.059� 0.028 kpc−1 ð125Þ

and λ0 ≈ 3� 2 kpc, where λ0 ¼ 2=ðαμÞ [17].

B. Beyond the Newtonian regime

Memory generally dies out; therefore, we expect non-
local kernels K and R to decay exponentially in space and
time. The exponential decay term in q already indicates that
the distance scale associated with spatial gravitational
memory is μ−1 ≈ 17 Kpc. We should therefore expect a

similar temporal behavior in K and R; moreover, causality
requires that these kernels be proportional to the Heaviside
unit step function as in Eqs. (58) and (92). Thus the Dirac
delta function δðx0 − y0Þ that appears in Eqs. (114) and
(115) should be suitably generalized for finite c to satisfy
these requirements.
Consider the set of functions δnðsÞ for n ¼ 1; 2; 3;…

given by

δnðsÞ ≔ νne−νnðs−r
nÞΘ

�
s −

r
n

�
; ð126Þ

where ν > 0 and r ≥ 0 are constants. These functions are
normalized,

Z
∞

−∞
δnðsÞds ¼ 1; ð127Þ

and form a Dirac sequence, since it can be shown that for
any smooth function fðsÞ,

lim
n→∞

Z
∞

−∞
δnðsÞfðsÞds ¼ fð0þÞ: ð128Þ

Therefore, the Dirac delta function δðsÞmay be regarded as
a certain distributional limit of the sequence of normalized
functions δnðsÞ as n → ∞. Moreover, we note that the
singularity of this Dirac delta function occurs at 0þ, the
positive side of the origin.
In Eq. (126), let us now formally replace s by tx − ty, r

by jx − yj and n by the speed of light c; then, it is
straightforward to check that in the limit as c → ∞, we
have

νce−νcðtx−ty−
jx−yj
c ÞΘ

�
tx − ty −

jx − yj
c

�
→ δðtx − tyÞ

ð129Þ

in the distributional sense of Eq. (128). It follows from
these considerations that when the finite magnitude of the
speed of light is taken into account, δðx0 − y0Þ in Eq. (115)
can be replaced by

νe−νðx0−y0−jx−yjÞΘðx0 − y0 − jx − yjÞ; ð130Þ

where we recall that x0 ¼ ctx, y0 ¼ cty and δðtx − tyÞ ¼
cδðx0 − y0Þ. Here, ν−1 is a constant length that should
ultimately be determined on the basis of observational data.
As in Ref. [15], we speculate that ν−1 is a galactic length
that is equal to, or comparable with, μ−1.
Henceforward, we assume that

Rðx − yÞ ¼ νe−νðx0−y0−jx−yjÞΘðx0 − y0 − jx − yjÞqðx − yÞ:
ð131Þ
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This reciprocal kernel R is consistent with our physical
requirements and depends only upon x0 − y0 and jx − yj.
An important consequence of the normalization property of
Eq. (130), namely,

Z
νe−νðx0−y0−jx−yjÞΘðx0 − y0 − jx − yjÞdy0 ¼ 1; ð132Þ

is that

Z
Rðx − yÞZðyÞd4y ¼

Z
qðx − yÞZðyÞd3y ð133Þ

for any smooth purely spatial function ZðxÞ. In the Fourier
domain, this relation amounts to

R̂ð0; ξÞ ¼ q̂ðξÞ; ð134Þ

which implies, via Eq. (95), when ξ0 ¼ 0, and Eq. (117),
that

K̂ð0; ξÞ ¼ χ̂ðξÞ; ð135Þ

or, in the spacetime domain,

Z
Kðx − yÞZðyÞd4y ¼

Z
χðx − yÞZðyÞd3y: ð136Þ

Finally, it is interesting to note that for Z ¼ 1, the integral
of the reciprocal kernel R over the whole spacetime is given
by

Z
RðxÞd4x ¼

Z
qðxÞd3x ¼ q̂ð0Þ; ð137Þ

which can be easily computed for q1 and q2 given in
Eqs. (119) and (120), respectively. That is, for I ¼ 1; 2,

αI ¼ q̂Ið0Þ ¼ 4π

Z
∞

0

r2qIðrÞdr

¼ α − ð3 − IÞ a0
λ0

eμa0E1ðμa0Þ; ð138Þ

where α is given by Eq. (123) and E1 is the exponential
integral function given by [39]

E1ðxÞ ≔
Z

∞

x

e−t

t
dt: ð139Þ

We recall that, for x∶0 → ∞, E1ðxÞ is a positive mono-
tonically decreasing function that behaves like − ln x near
x ¼ 0 and decays exponentially as x → ∞. It follows that
0 < α − αI ≪ 1 for sufficiently small a0=λ0, since 0 <
a0=λ0 ≪ 1 and 0 < μa0 ≪ 1 (cf. Appendix A of Ref. [17]).
Moreover, it follows from Eq. (136) that

Z
KðxÞd4x ¼

Z
χðxÞd3x ¼ χ̂ð0Þ; ð140Þ

where χ̂ð0Þ is related to q̂ð0Þ via Eq. (117).

C. Kernel K of linearized NLG

The procedure followed above for the determination of
kernel R cannot be simply repeated for kernel K, since it
turns out that the fundamental reciprocity relation (91)
could not be satisfied in this way. It is therefore necessary to
determine K via the Fourier transform method of Sec. III
(cf. Sec. IIIA). Let us note that our basic expression for R in
Eq. (131) implies that

R̂ðξÞ ¼ ν

ν − iξ0

Z
eiξ

0jxjqðxÞe−iξ·xd3x: ð141Þ

Then K̂ðξÞ is given by Eq. (96) and KðxÞ can, in principle,
be determined by inverse Fourier transformation.
For a more tractable result, we can employ an approxi-

mation scheme that has already been introduced in
Ref. [15] and involves neglecting certain retardation effects
in Eq. (131). This means in practice that we replace x0 −
y0 − jx − yj in Eq. (131) by x0 − y0; that is, instead of
Eq. (131), we consider

Rðx − yÞ ≈ νe−νðx0−y0ÞΘðx0 − y0Þqðx − yÞ: ð142Þ
The Fourier transform of this approximate kernel is

R̂ðξÞ ≈ ν

ν − iξ0
q̂ðjξjÞ: ð143Þ

If in Eq. (142) we use for q the spatial kernel q0 given by
Eq. (122), we get [16]

q̂0ðjξjÞ ¼
μ

λ0ðμ2 þ jξj2Þ þ
1

λ0jξj
arctan

�jξj
μ

�
: ð144Þ

We note that relation (134) is satisfied by both Eqs. (141)
and (143).
For Eq. (143), 1þ R̂ ≠ 0; hence, KðxÞ can be obtained

from

K̂ðξÞ ≈ −
νq̂ðjξjÞ

ν½1þ q̂ðjξjÞ� − iξ0
: ð145Þ

Let us note that in this case, Eq. (135) is satisfied. It can be
shown, by means of contour integration and Jordan’s
Lemma, that [15]

KðxÞ ≈ −
ν

ð2πÞ3 Θðx
0Þ
Z

q̂ðjξjÞeiξ·xe−νð1þq̂Þx0d3ξ: ð146Þ

Moreover, it is straightforward to verify, by integrating this
expression for KðxÞ over all spacetime, that Eq. (140) is
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satisfied in this case. Our approximation method has thus
led to a manageable expression for kernel K; the nature and
limitations of this simplification have been studied in
Appendix C of Ref. [15].
Following the determination of the reciprocal kernel R in

Eq. (131) and the approximate determination of kernel K, it
is now possible to treat more explicitly the gravitational
field of an isolated source in the linear post-Newtonian
approximation of nonlocal gravity. We begin with the
treatment of the time-independent field of a stationary
source in the next section, which amounts to a nonlocal
extension of steady-state gravitoelectromagnetism (GEM)
of GR [40]. A dynamic nonlocal generalization of the
standard GEM appears to be intractable.

V. GRAVITATIONAL FIELD OF
A STATIONARY SOURCE

The purpose of this section is to study the implications of
the linearized nonlocal field equations in the transverse
gauge (h̄μν;ν ¼ 0) for the weak time-independent gravita-
tional field of an isolated stationary source. To this end, let
us note that in the field equations (107)–(108),

T μνðxÞ ¼ TμνðxÞ þ
Z

qðx − yÞTμνðyÞd3y; ð147Þ

as a result of Eq. (133). In a similar way, we can show that
Sμν ¼ 0, since Sμν ¼ 0 in this case. To see this, let us
consider Eq. (62) that defines Sμν; for a time-independent
torsion field, Eq. (62) takes the form

∂i

Z
χðx − yÞCμ

i
νðyÞd3y

¼ −Sμν þ
Z

χðx − yÞ0GμνðyÞd3y; ð148Þ

as a consequence of Eq. (136). Following essentially the
same steps as in our discussion of Eq. (62), we find that
Sμν ¼ 0, since the boundary surface in this case is at spatial
infinity. Here, the seeming disappearance of the light cone
is consistent with the complete temporal independence of
the gravitational field. It follows from Sμν ¼ 0 and Eq. (72)
that the integral constraints in the stationary case reduce to
U½μν� ¼ 0, which contain only ϕμν and the constraints vanish
for ϕμν ¼ 0. We can therefore set ϕμν ¼ 0 in the gravita-
tional potentials of a stationary source. In the transverse
gauge, the linearized field equations (106) of nonlocal
gravity thus reduce in the stationary case to the 10 field
equations

∇2h̄μνðxÞ ¼ −2κ½TμνðxÞ þ
Z

qðx − yÞTμνðyÞd3y�:
ð149Þ

The spatial reciprocal kernel q is independent of the
speed of light; therefore, the standard static GEM approach

can be adopted in this nonlocal case. Let us write the
energy-stress tensor for a slowly rotating source with jvj ≪
c as T00 ¼ ρc2 and T0i ¼ cji, where j ¼ ρv is the matter
current; moreover, the matter stresses are assumed to be
independent of c and of the form Tij ∼ ρvivj þ Pδij, where
P is the pressure. Then, with h̄00 ¼ −4Φ=c2, we have a
static gravitoelectric potential ΦðxÞ that satisfies Eq. (118)
of the Newtonian regime of nonlocal gravity. Next,
h̄0i ¼ −2Ai=c2, where AðxÞ is the static gravitomagnetic
vector potential that satisfies

∇2AðxÞ ¼ −
8πG
c

�
jðxÞ þ

Z
qðx − yÞjðyÞd3y

�
: ð150Þ

It is interesting to note here the contribution of the dark
current, jDðxÞ, which is the convolution of the regular
current with the reciprocal spatial kernel q, to the grav-
itomagnetic vector potential. The solution of Eq. (150) is
thus given by

1

2
AðxÞ ¼ G

c

Z
jðyÞ þ jDðyÞ

jx − yj d3y: ð151Þ

Finally, Eq. (149) implies that h̄ij ¼ Oðc−4Þ and is there-
fore neglected. Indeed, all terms of Oðc−4Þ are neglected in
the standard linear GEM analysis [40].
It is simple to check that the energy-momentum con-

servation law, Eq. (51), reduces in our nonlocal steady-state
GEM treatment to ∇ · j ¼ 0, which leads to ∇ · jD ¼ 0 as
well, and is consistent with the transverse gauge condition
∇ ·A ¼ 0. With these conditions, one can develop a
nonlocal version of the steady-state GEM for any suitable
stationary source [41]. In fact, with Eg ¼ ∇Φ and
Bg ¼ ∇ ×A, we have GEM fields with dimensions of
acceleration such that

∇ ·Eg ¼ 4πGðρþ ρDÞ; ∇ ×Eg ¼ 0; ð152Þ

∇ ·

�
1

2
Bg

�
¼ 0; ∇ ×

�
1

2
Bg

�
¼ 4πG

c
ðjþ jDÞ:

ð153Þ

These are the steady-state field equations of nonlocal GEM.
The GEM spacetime metric in this nonlocal case has the

usual form [40]

ds2 ¼ −c2
�
1þ 2

Φ
c2

�
dt2 −

4

c
ðA · dxÞdt

þ
�
1 − 2

Φ
c2

�
δijdxidxj: ð154Þ

Here, ΦðxÞ is the gravitoelectric potential of nonlocal
gravity in the Newtonian regime given by Eq. (118) and
AðxÞ ¼ Oðc−1Þ is the gravitomagnetic vector potential
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given by Eq. (151). It is now possible to discuss the motion
of test particles and null rays that follow geodesics
associated with this metric. For instance, for the motion
of test particles, we recover the gravitational analog of the
Lorentz force law [40].
In view of possible astrophysical applications, it is

convenient to assume that the reciprocal kernel is q0 given
by Eq. (122); then, Φ and A are given by

ΦðxÞ ¼ −G
Z �

1þ αð1 − e−μrÞ þ r
λ0

E1ðμrÞ
�

ρðyÞ
jx − yj d

3y

ð155Þ

and

1

2
AðxÞ ¼ G

c

Z �
1þ αð1 − e−μrÞ þ r

λ0
E1ðμrÞ

�
jðyÞ

jx − yj d
3y;

ð156Þ

where r ¼ jx − yj and E1 is the exponential integral
function defined in Eq. (139). Moreover, we note that [39]

α

2

μr
μrþ 1

e−μr <
r
λ0

E1ðμrÞ ≤
α

2
e−μr: ð157Þ

These potentials can be explicitly calculated in any given
situation involving an isolated material source using gen-
eral methods familiar from classical electrodynamics [28].
We are particularly interested in the propagation of light
rays in this gravitational field. This is necessary in order to
explain astrophysical phenomena associated with gravita-
tional lensing without invoking dark matter. In linearized
nonlocal gravity, just as in linearized GR, the effects due to
gravitoelectric and gravitomagnetic fields could be treated
separately and then linearly superposed. Thus, as is well
known, the bending of light rays due to the gravitoelectric
potential Φ is given by twice the Newtonian expectation as
worked out in detail in Ref. [17]. The influence of the
gravitomagnetic field on the propagation of light in GR has
been discussed in Refs. [42,43]. As explained in Ref. [42],
according to GR, the gravitomagnetic bending of light rays
passing near a slowly rotating source is generally smaller in
magnitude than the gravitoelectric deflection by a factor of
the order of jvj=c ≪ 1. It is therefore usually ignored in the
discussion of gravitational lensing [44–46]. The situation
regarding the gravitomagnetic deflection of light in non-
local gravity is, however, somewhat more complicated. For
instance, if the integration in Eqs. (155) and (156) extends
over a structure such as a cluster of galaxies for which
μr ≫ 1, then the quantity in square brackets in these
equations essentially reduces to 1þ α. Therefore, we are
in effect working in the domain of linearized GR, but with
enhanced gravity, i.e., with G → Gð1þ αÞ.
Imagine the propagation of light in the gravitational field

of an isolated static source that moves uniformly with speed

cβ, −1 < β < 1 in the background Minkowski spacetime.
This case is of interest in connection with the Bullet Cluster
[47,48] and is treated in the next section; however, the
general case of a time-dependent source is beyond the
scope of this paper.

VI. LIGHT DEFLECTION DUE TO
A UNIFORMLY MOVING MASS

Consider the stationary case treated in Sec. V with no
matter current. In the rest frame of such a static gravitational
source, it is convenient to think of this body in terms of a
collection of fixed mass elements mj; j ¼ 0; 1; 2;…; N.
Then in Eq. (155), we can write

ρðxÞ ¼
X
j

mjδðx − xjÞ; ΦðxÞ ¼
X
j

mjφðjx − xjjÞ;

ð158Þ
where,

φðrÞ ¼ −
G
r

�
1þ αð1 − e−μrÞ þ r

λ0
E1ðμrÞ

�
: ð159Þ

The spacetime metric in the rest frame of the source is given
by Eq. (154) with A ¼ 0. Let us remark here that for
μr ≫ 1, φðrÞ ≈ −ð1þ αÞG=r in NLG, which is 1þ α
times the Newtonian gravitational potential per unit mass.
To return to GR, we can formally set λ0 ¼ ∞ and α ¼ 0
in NLG.
In the background global inertial frame with coordinates

xμ ¼ ðt; x; y; zÞ, the gravitational source under considera-
tion here moves uniformly with speed β, jβj < 1, along the
x axis. The source acts as a gravitational lens in deflecting a
ray of light that, in its unperturbed state, is parallel to the z
axis, pierces the ðx; yÞ plane at the point ða; bÞ and passes
over the body. We assume that the lens is relatively thin and
its matter is mostly distributed in and near the ðx; yÞ plane.
We are interested in the deflection of the ray by the lens
when the point ða; bÞ and the lens are in a definite
geometric configuration as recorded by the static inertial
observers at spatial infinity. It will turn out that the end
result is independent of such a configuration. Let us assume
that the desired configuration—i.e., the observationally
preferred position of the source relative to the unperturbed
ray of light—occurs at time t ¼ t0, when, for instance, mass
element mj of the lens is at xj. The source is then
completely at rest in a comoving frame with coordinates
x0μ ¼ ðt0; x0; y0; z0Þ. To write the Lorentz transformation that
connects the two frames, let us choose mass point m0 to be
the origin of the comoving system; then,

t0 ¼ γ½ðt − t0Þ − βðx − x0Þ�;
x0 ¼ γ½ðx − x0Þ − βðt − t0Þ�;
y0 ¼ y − y0; z0 ¼ z − z0: ð160Þ
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Here, γ is the Lorentz factor corresponding to β. Thus m0

with coordinates xμ0 ¼ ðt0; x0; y0; z0Þ is at the origin of
coordinates in the rest frame of the source, namely,
x0μ0 ¼ ð0; 0; 0; 0Þ. As the whole static source is at rest in
the comoving frame at t0, Eq. (160) can be written with
respect to any other mass point mj as

t0 − t0j ¼ γ½ðt − t0Þ − βðx − xjÞ�;
x0 − x0j ¼ γ½ðx − xjÞ − βðt − t0Þ�;
y0 − y0j ¼ y − yj;

z0 − z0j ¼ z − zj; ð161Þ

where t0j ¼ −γβðxj − x0Þ, etc. The result of the Lorentz
transformation is that the invariant spacetime interval (154)
can be written in the observers’ rest frame as

ds2 ¼ ðημν þ hμνÞdxμdxν; ð162Þ

where the nonzero components of hμν are given by

h00 ¼ h11 ¼ −2γ2ð1þ β2ÞΦ; ð163Þ

h01 ¼ h10 ¼ 4βγ2Φ; h22 ¼ h33 ¼ −2Φ: ð164Þ

Here, Φ depends upon time and is given by

Φ ¼
X
j

mjφðujÞ; ð165Þ

where uj ¼ jx0 − x0
jj is the positive square root of

u2j ¼ γ2½ðx − xjÞ − βðt − t0Þ�2 þ ðy − yjÞ2 þ ðz − zjÞ2;
ð166Þ

in accordance with Eq. (161). In practice, jβj ≪ 1; never-
theless, we perform the calculations in this section for
arbitrary β, but then we set jβj ≪ 1 in the end result. To
maintain our linear weak-field approximation scheme,
however, β2 cannot be too close to unity. Moreover,
ϕμν ¼ 0, and the transverse gauge condition is also main-
tained under Lorentz transformation.
In the geometric optics approximation, a light ray

propagates along a null geodesic

dkμ

dλ
þ 0Γμ

αβk
αkβ ¼ 0; ð167Þ

where the spacetime propagation vector kμ ¼ dxμ=dλ is
tangent to the corresponding world line and λ is an affine
parameter along the path. Let ~kμ ¼ dxμ=d~λ represent the
unperturbed light ray whose trajectory is given by

xðtÞ ¼ a; yðtÞ ¼ b; zðtÞ ¼ ζ þ t − t0; ð168Þ

where a, b and ζ are constants. To simplify matters in this
case, we can choose ~λ ¼ t − t0, so that ~kμ ¼ ð1; 0; 0; 1Þ.
A comment is in order here regarding the physical

significance of ζ. In the regime of geometric optics,
Eq. (167) with kμ ¼ dxμ=dλ represents the equation of
motion of the light particle (“photon”) along the null ray.
At t ¼ t0, ζ indicates the position of the unperturbed
photon along the z axis away from the ðx; yÞ plane.
To calculate the deflection of light from Eq. (167), we

consider the net deviation Δkμ,

Δkμ ¼ kμðþ∞Þ − kμð−∞Þ ¼ −
Z

∞

−∞

0Γμ
αβk

αkβdλ; ð169Þ

where kμð−∞Þ ¼ ~kμ. The integrand here is computed along
the null geodesic. To linear order, however, the calculation
can be performed along the unperturbed light ray, namely,

Δkμ ¼ −
Z

∞

−∞
Lμðt0 þ ~λ; a; b; ζ þ ~λÞd~λ; ð170Þ

where ~λ ¼ t − t0 and

LμðxÞ ¼ 0Γμ
αβðxÞ~kα ~kβ: ð171Þ

Here, the Christoffel symbols,

0Γμ
αβ ¼

1

2
ημνðhνα;β þ hνβ;α − hαβ;νÞ; ð172Þ

are determined from Eqs. (163)–(166). A detailed calcu-
lation reveals that Lμðt0 þ ~λ; a; b; ζ þ ~λÞ can be expressed
as

L0 ¼ 2γ2
X
j

mj
1

uj

dφðujÞ
duj

½γ2 ~λ − β3γ2ða − xjÞ

þ ð1þ β2Þðζ − zjÞ�; ð173Þ

L1 ¼ 2γ2
X
j

mj
1

uj

dφðujÞ
duj

½βγ2 ~λþ ð1 − β2γ2Þða − xjÞ

þ 2βðζ − zjÞ�; ð174Þ

L2 ¼ 2γ2
X
j

mj
1

uj

dφðujÞ
duj

ðb − yjÞ; ð175Þ

L3 ¼ 2βγ2
X
j

mj
1

uj

dφðujÞ
duj

½ða − xjÞ þ βðζ − zjÞ�: ð176Þ

In principle, the integration in Eq. (170) can now be carried
through to determine the net deviation of the ray due to the
gravitational attraction of the moving source; however, this
calculation would involve
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1

r
dφ
dr

¼ G
r3

�
1þ α − α

�
1þ 1

2
μr

�
e−μr

�
: ð177Þ

We address the problem of calculating the relevant integrals
in Appendix C. Using the results of Appendix C, we find
that for β ≠ 0,

Δk0 ¼ βΔk1 ¼ Δk3

¼ −4βγG
X
j

mjPj

Pj
2 þQj

2

×
h
1þ α − αI

�
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pj

2 þQj
2

q �i
; ð178Þ

Δk2 ¼ −4γG
X
j

mjQj

Pj
2 þQj

2

×
h
1þ α − αI

�
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pj

2 þQj
2

q �i
; ð179Þ

where

Pj ¼ ða − xjÞ þ βðζ − zjÞ; Qj ¼ b − yj: ð180Þ

Moreover, IðxÞ ≔ J 2ðxÞ þ ðx=2ÞJ 1ðxÞ, where J 1 and
J 2 are discussed in Appendix C; indeed,

IðxÞ ¼
Z

∞

0

ð1þ 1
2
x cosh υÞe−x cosh υ
cosh2υ

dυ; ð181Þ

so that Ið0Þ ¼ 1 and Ið∞Þ ¼ 0. For α ¼ 0, formulas
(178)–(180) extend the results of previous work on light
deflection in GR [43,49,50].
With z as the line-of-sight coordinate, the overall effect

of the deflection of the light ray in the plane of the sky can
be expressed via the angles α̂ ¼ −ðΔk1;Δk2Þ, where

α̂ ¼ 4γG
X
j

mj
ðPj;QjÞ
Pj

2 þQj
2
½1þ α − αIðμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pj

2 þQj
2

q
Þ�:

ð182Þ

Other than an overall factor of γ, the effect of the motion of
the gravitational source appears here in βðζ − zjÞ contained
in Pj.
The end result for the deflection angle α̂, and hence Pj

and Qj, is independent of t0 and any specific configuration
of the lens and the photon. To illustrate this important point,
we note that the photon crosses the ðx; yÞ plane at time
t̄0 ¼ t0 − ζ, when the point mass mj, say, is at ðx̄j; ȳj; z̄jÞ;
then, repeating our calculation in this case would yield
Pj ¼ ða − x̄jÞ − βz̄j and Qj ¼ b − ȳj. These are the same
quantities as given in Eq. (180), since the lens has moved
during the time interval ζ; that is, xj ¼ x̄j þ βζ, yj ¼ ȳj
and zj ¼ z̄j.

Let us now suppose that the gravitational lens is thin—
i.e., the extent of the deflecting mass in the z direction is
small [44]. Therefore, we may neglect βzj ¼ βz̄j in Pj,
since in practice jβj ≪ 1. Then, at the instant that the
unperturbed photon crosses the lens plane, it is possible to
express Eq. (182) for a moving extended lens in a form that
can be incorporated into the standard lens equation,
namely,

α̂ðθÞ ¼ 4G
c2

Z
θ − θ̄

jθ − θ̄j2 ½1þ α − αIðμjθ − θ̄jÞ�Σðθ̄Þd2θ̄;

ð183Þ
where Σðθ̄Þ is the surface mass density of the deflecting
source (“thin lens”) and the integration is carried over the
lens plane, which coincides with the ðx; yÞ plane. Thus, in
Eq. (183),

θ ¼ ða; bÞ; θ̄ ¼ ðx̄; ȳÞ; ð184Þ
where θ is the unperturbed position of the photon as it
crosses the lens plane and θ̄ indicates the position of a point
of the extended lens at that instant. Furthermore, it is
possible to write α̂ ¼ ∇Ψ, where the lensing potential Ψ is
given by

ΨðθÞ ¼ 4G
c2

Z
½ln jθ − θ̄j þ αNðμjθ − θ̄jÞ�Σðθ̄Þd2θ̄: ð185Þ

Here, the first term in the integrand is the GR result, which
follows from ∇ ln jxj ¼ x=jxj2, while the nonlocal con-
tribution to the lensing potential involves N, which is
related to I via dN=dx ¼ ½1 −IðxÞ�=x.
It follows from these results that in the theoretical

interpretation of gravitational lensing data in accordance
with nonlocal gravity, due account must be taken of the
existence of the repulsive “Yukawa” part of the gravita-
tional potential as well. This may lead to the resolution of
problems associated with light deflection by colliding
clusters of galaxies. However, the confrontation of the
theory with lensing data would require a separate detailed
investigation that is beyond the scope of this work.

VII. DISCUSSION

This paper contains a new formulation of nonlocal
gravity. Previous work on NLG [10–17] adopted the
standpoint of gauge theories of gravitation, since GR∥,
the teleparallel equivalent of general relativity that is
rendered nonlocal in NLG via a constitutive ansatz, is
indeed the gauge theory of the group of spacetime trans-
lations. In this approach to GR∥, the energy-momentum
tensor Tμν is not necessarily symmetric. There is, however,
another way to approach GR∥, which is much closer to the
spirit of GR. Within the Riemannian framework of GR, one
can introduce a preferred tetrad frame and the associated
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Weitzenböck connection; then, Einstein’s gravitational
field equations with an a priori symmetric Tμν can be
formulated in terms of the Weitzenböck torsion tensor. This
is the approach that is adopted in the present paper.
The distant parallelism of the preferred frame field

can be viewed as a natural scaffolding on the spacetime
manifold, reminiscent of the parallel frame field on
Minkowski spacetime that would correspond to the parallel
tetrad frames of the static inertial observers at rest in a
global inertial frame [23]. It turns out that the nonlocal
constitutive ansatz of the previous approach [10–17] must
now be modified, since the linearized field equations of
NLG with Tμν ¼ Tνμ turn out to be inconsistent with the
old ansatz. The general linear approximation of NLG with
the new constitutive ansatz is then presented and the
solutions of the linearized field equations are investigated.
These new developments do not affect the main physical
results of previous work [10–17] that consisted of the
Newtonian regime of NLG and the treatment of linearized
gravitational waves. In fact, our modification of the
constitutive ansatz, which involves a constant overall
parameter p ≠ 0, primarily influences the gravitational
field of time-varying sources in their near zones. All such
complications disappear, however, for a stationary source.
Indeed, it is possible to describe time-independent gravi-
tational fields in terms of a simple GEM metric familiar
from GR.
Nonlocality simulates dark matter. This important con-

sequence of NLG is confirmed here in the linear approxi-
mation while preserving causality. With regard to possible
astrophysical applications of linearized NLG to gravita-
tional lensing, we consider the problem of deflection of
light by a moving source. The results may be of interest in
connection with gravitational lensing by merging clusters
of galaxies.

APPENDIX A: TORSION AND CONTORSION

The torsion tensor, defined in Eq. (10) in terms of the
preferred frame field eμα̂ðxÞ has 24 independent compo-
nents. It is interesting to note that

1ffiffiffiffiffiffi−gp ∂
∂xμ ð

ffiffiffiffiffiffi
−g

p
eμα̂Þ ¼ −Cα̂; ðA1Þ

where the torsion vector Cα is the trace of the torsion tensor.
Moreover, it is possible to introduce a torsion pseudovector
C
̬

α via the totally antisymmetric part of the torsion tensor
C½αβγ�. Indeed, this axial vector is given by the dual ofC½αβγ�,
namely,

C
̬

α ¼ −
1

6
EαβγδC½βγδ�; C½αβγ� ¼ −EαβγδC

̬
δ; ðA2Þ

where Eαβγδ ¼ ffiffiffiffiffiffi−gp
ϵαβγδ is the Levi-Civita tensor and ϵαβγδ

is the alternating symbol with ϵ0123 ¼ 1 in our convention.

It is therefore possible to introduce a reduced torsion tensor
Tαβγ ¼ −Tβαγ with 16 independent components by sub-
tracting out from Cαβγ , in an appropriate fashion, its vector
and pseudovector parts. In fact, the torsion tensor can be
decomposed as

Cαβγ ¼ −
1

3
ðCαgβγ − CβgαγÞ þ C½αβγ� þ Tαβγ: ðA3Þ

It is straightforward to check from this definition of the
reduced torsion tensor that Tαβγ is totally traceless
and T ½αβγ� ¼ 0.
Similarly, from the definition of the contorsion tensor

(13) as well as Eq. (18), we find that

K½αβγ� ¼ C½αβγ� ¼ −
1

2
C½αβγ�; ðA4Þ

Kαβγ ¼ −
1

3
ðCβgαγ − CγgαβÞ þ K½αβγ�

þ 1

2
ðTαγβ þ Tβγα − TαβγÞ ðA5Þ

and

Cαβγ ¼
2

3
ðCαgβγ − CβgαγÞ þ C½αβγ�

þ 1

2
ðTαβγ þ Tαγβ − TβγαÞ: ðA6Þ

Let us note here the following useful formulas

gμνKμν
σ ¼ Cσ; gμνCσμν ≔ −Cσ ¼ 2Cσ; ðA7Þ

Γα
βα ¼ 0Γα

βα ¼
1ffiffiffiffiffiffi−gp ∂

∂xβ ð
ffiffiffiffiffiffi
−g

p Þ; Γα
αβ ¼ Γα

βα þ Cβ;

ðA8Þ

gμνΓα
μν ¼ −Cα −

1ffiffiffiffiffiffi−gp ∂
∂xβ ð

ffiffiffiffiffiffi
−g

p
gαβÞ; ðA9Þ

Kα
μνKμνβ ¼ −Kα

μνΓγ
μνgγβ ¼ −

1

2
Kα

μνCμνβ ðA10Þ

and ∇γgαβ ¼ 0, which can be written as

gαβ ;γ ¼ −Γα
γδg

δβ − Γβ
γδg

δα: ðA11Þ

APPENDIX B: CONSTITUTIVE
RELATION OF NLG

This appendix is devoted to a discussion of the con-
stitutive relation of nonlocal gravity. More precisely, we
wish to examine the local connection between Xμνρ and the
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torsion tensor in Eq. (27) and its implications for linearized
NLG. Ultimately, of course, the confrontation of the theory
with observation can determine the right relation.
Imagine, for instance, the possibility of choosing Xμνρ ¼

C½μνρ�. Returning to the general form of the linearized field
equations (59)–(60), we have in this case

XðμσνÞ ¼ 0; X½μσν� ¼
1

2
ησρϕ½μρ;ν�; ðB1Þ

since in the linear approximation C½μρν� ¼ 1
2
ϕ½μρ;ν�. Thus

Eq. (59) is the same here as in the linearized Einstein
equation of GR and Eq. (60) takes the form

ησρ∂σ

Z
Kðx − yÞϕ½μρ;ν�ðyÞd4y ¼ 0: ðB2Þ

In this case, we have a complete separation of the 10
dynamic metric variables h̄μν from the 6 tetrad variables
ϕμν. The integral constraints (B2) can be satisfied with

ϕμν ¼ 0: ðB3Þ

Thus at the linear level, this theory of nonlocal gravity is
essentially equivalent to local GR; therefore, the connection
between nonlocal gravity and dark matter disappears in
this case.
In connection with the separation of the metric variables

from the tetrad variables, let us consider the possibility that

Xμνρ ¼ Cμνρ þ
1

2
Cρμν: ðB4Þ

It is useful to note that we now have in Eqs. (59)–(60),

XðμσνÞ ¼ CðμσνÞ; X½μσν� ¼
3

4
ησρϕ½μρ;ν�: ðB5Þ

The constraint equations in this case contain the secondary
tetrad variables ϕμν exclusively. Thus to simplify matters,
one can again assume that ϕμν ¼ 0; then, the constraint
equations are satisfied and the ten dynamic nonlocal field
equations depend solely upon h̄μν. However, we note that in
this case Xμνρ ≠ −Xνμρ, so that N μν in Eq. (33) does not in
general transform as a tensor under arbitrary coordinate
transformations. Thus this case violates the basic geometric
structure of nonlocal gravity theory.
Clearly, one can concoct other combinations and study

their consequences; however, the rest of this appendix is
devoted to a detailed discussion of the difficulty associated
with the simplest possibility, namely, Xμνρ ¼ Cμνρ,
adopted, along with the possibility that Tμν ≠ Tνμ, in
previous work on this subject [10–17]. In the present
work, Tμν ¼ Tνμ as in GR; however, Xμνρ ¼ Cμνρ then
leads, in a manner that is independent of any gauge
condition, to a contradiction. The field equations in this

case can be obtained from Eqs. (61)–(80) for p ¼ 0, and we
recall here that S0μ ¼ 0. Let us take

0G00 ¼ κT 00 ðB6Þ
from the set of field equations for the metric variables and
write it using Eq. (47) as

h̄00;ii − h̄ij;ij ¼ −2κT 00; ðB7Þ

where T 00 is the total energy density of the source defined
by Eq. (97). Next, we take Eq. (74) from the set of integral
constraint equations, namely,

Z
Kðx − yÞδðx0 − y0 − jx − yjÞWiðyÞd4y ¼ 0; ðB8Þ

where, in agreement with Eq. (73), Wi is given by

Wi ¼ −ϕij;
j − ðh̄00;i − h̄ij;jÞ: ðB9Þ

Integrating over the temporal coordinate in Eq. (B8), we
find
Z

Kðjx − yj;x − yÞWiðx0 − jx − yj; yÞd3y ¼ 0: ðB10Þ

We note that

δikWi;k ¼ −h̄00;ii þ h̄ij;ij; ðB11Þ
since ϕij ¼ −ϕji. Hence, we find from Eq. (B7) the
interesting result that

δijWi;j ¼ 2κT 00: ðB12Þ

To demonstrate that Eq. (B12) is in general incompatible
with Eq. (B10), we apply the partial derivative operator
∂=∂xj to Eq. (B10). To simplify the calculation, let us
define the functions η and F by

η ≔ x0 − jx − yj; Fðx − yÞ ≔ Kðjx − yj;x − yÞ:
ðB13Þ

Then, we have that

∂η
∂xj ¼ −

∂η
∂yj ;

∂F
∂xj ¼ −

∂F
∂yj : ðB14Þ

Hence, taking the derivative of Eq. (B10) results in

∂j

Z
FWid3y

¼
Z �

−
∂F
∂yj Wiðη; yÞ þ F

∂η
∂xjWi;0ðη; yÞ

�
d3y ¼ 0:

ðB15Þ
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Using integration by parts, we find that

Z ∂
∂yj ðFWiÞd3y

¼
Z

F

� ∂
∂yjWiðη; yÞ þ

∂η
∂xjWi;0ðη; yÞ

�
d3y: ðB16Þ

From

∂
∂yj Wiðη; yÞ ¼

∂η
∂yjWi;0ðη; yÞ þWi;jðη; yÞ ðB17Þ

and Eq. (B14), we see that in Eq. (B16) terms involving
Wi;0 cancel; thus, Eq. (B16) can be written as

Z ∂
∂yj ðFWiÞd3y ¼

Z
FWi;jd3y: ðB18Þ

Taking the trace of this equation and using Gauss’s
theorem, we finally get from Eq. (B12) that

Z
FðδijWi;jÞd3y

¼ 2κ

Z
Kðjx − yj;x − yÞT 00ðη; yÞd3y ¼ 0: ðB19Þ

This important result can also be expressed as

Z
Wðx − yÞT00ðyÞd4y ¼ 0; ðB20Þ

where kernel W is given by Eq. (103).
The source of the gravitational field has been assumed to

be finite and isolated in space, but is otherwise arbitrary.
It is conceivable that Eq. (B20) could be satisfied for rather
special source configurations. In general, however,
Eq. (B20) is not satisfied for an arbitrary source, which
indicates that a solution of the field equations does not
exist. We have thus shown, without using any gauge
condition, that the metric part of the field equations of
NLG is in general incompatible with the tetrad part for
Xμνρ ¼ Cμνρ. The incompatibility proof can be directly
extended to constitutive relations of the forms Xμνρ¼
Cμνρþp0C½μνρ� and Xμνρ¼Cμνρþp00EμνρσCσ , where p0≠0
and p00 ≠ 0 are constant parameters.
Let us now consider the constitutive relation adopted in

the present paper. Then, instead of Eq. (B6), we have

0G00 ¼ κT 00 − pU00; ðB21Þ

where

U00 ¼
Z

Kðx − yÞC
̬

0;0ðyÞd4y;

U00 ¼ −
Z

Rðx − yÞC
̬

0;0ðyÞd4y ðB22Þ

and we have used here the reciprocity relation (91).
It follows from Eqs. (47) and (B11) that

δijWi;j ¼ 2κT 00 þ 2p
Z

Rðx − yÞC
̬

0;0ðyÞd4y: ðB23Þ

Next, the relevant integral constraint is in this case
S½i0� ¼ pU½i0�, orZ

Kðjx − yj;x − yÞWiðx0 − jx − yj; yÞd3y ¼ 4pU½i0�:

ðB24Þ
Hence, using the approach adopted above for the p ¼ 0
case, we have

Z
Kðjx − yj;x − yÞðδijWi;jÞðx0 − jx − yj; yÞd3y

¼ 4pδij∂jU½i0�: ðB25Þ

It follows from Eq. (B23) that

κ

Z
Kcðx − yÞT 00ðyÞd4y

þ p
Z Z

Kcðx − zÞRðz − yÞC
̬

0;0ðyÞd4yd4z

¼ 2pδij∂jU½i0�; ðB26Þ

where Kc is defined by Eq. (76). Calculating U½i0� from
Eq. (69) and using C

̬
σ
;σ ¼ 0, we find

δij∂j

Z
Kðjx − yj;x − yÞC

̬

iðη; yÞd3y

¼
Z

Kcðx − yÞC
̬
0;0ðyÞd4y: ðB27Þ

Moreover,

δij∂j

Z
Kðx − yÞC

̬

½i;0�ðyÞd4y

¼ 1

2
∂σ

Z
Kðx − yÞðC

̬
σ
;0 − C

̬
0;
σÞðyÞd4y; ðB28Þ

which, after using Gauss’s theorem and C
̬
σ
;σ ¼ 0, results in

δij∂j

Z
Kðx − yÞC

̬

½i;0�ðyÞd4y

¼ −
1

2

Z
Kðx − yÞð□C

̬

0ÞðyÞd4y: ðB29Þ
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Putting all these results together and using the definition of
kernel W in Eq. (103), we finally arrive at a nonlocal
integral constraint for C

̬

0,

κ

Z
Wðx − yÞT00ðyÞd4y

¼ −p
Z

½Wðx − yÞC
̬

0;0ðyÞ þ Kðx − yÞ□C
̬

0ðyÞ�d4y:

ðB30Þ

We assume that this equation for C
̬

0 can be solved—for
example, via Fourier analysis—in terms of T00, the energy
density of the gravitational source. In this way, for p ≠ 0,
we avoid the contradiction that has forced us to introduce
the additional term in the constitutive relation of this work.

APPENDIX C: LIGHT DEFLECTION INTEGRALS

In Eqs. (173)–(176) of Sec. VI, consider

1

r
dφ
dr

¼ Gð1þ αÞ
r3

− αG

�
1þ 1

2
μr

�
e−μr

r3
; ðC1Þ

where the first part on the right-hand side is simply due to
Newtonian attraction augmented by 1þ α, while the
second repulsive “Yukawa” part is due to the requirements
of nonlocality. To compute the net deflection of light, the
integrals due to the first part of Eq. (C1) are simpler and we
therefore treat them first.
Let wðXÞ > 0 be given by

wðXÞ ¼ Aþ 2BX þ CX2; ðC2Þ
where ~Δ ≔ AC − B2 ≠ 0. It is then straightforward to
verify that

Z
dX

w3=2 ¼
B þ CX
~Δw1=2

;
Z

XdX

w3=2 ¼ −
Aþ BX
~Δw1=2

; ðC3Þ

where only positive square roots are considered throughout.
Let us now assume that C > 0 and ~Δ > 0, so that

CwðXÞ ¼ ðCX þ BÞ2 þ ~Δ: ðC4Þ
Hence, w > 0 for X∶ −∞ → þ∞. In this case, we have

I1 ¼
Z

∞

−∞

dX

w3=2 ¼
2C1=2

~Δ
; I2 ¼

Z
∞

−∞

XdX

w3=2 ¼ −
2B
~ΔC1=2

:

ðC5Þ
For the problem of light deflection discussed in Sec. VI,

we have wðt − t0Þ ¼ u2j , where uj is given by Eq. (166).
That is, along the unperturbed ray,

u2j ¼ Aj þ 2Bjðt − t0Þ þ Cjðt − t0Þ2; ðC6Þ

where

Aj ¼ γ2ða − xjÞ2 þ ðb − yjÞ2 þ ðζ − zjÞ2;
Bj ¼ −βγ2ða − xjÞ þ ðζ − zjÞ

ðC7Þ

and Cj ¼ γ2. Moreover, we find that ~Δj ¼ AjCj − Bj
2 ¼

γ2ðPj
2 þQj

2Þ, where Pj and Qj are defined in Eq. (180)

and ~Δj, by assumption, never vanishes. Thus the conditions
for the applicability of Eq. (C5) are satisfied and with
X ¼ t − t0, we find that the integrals for the first part are
given by

I1 ¼
Z

∞

−∞

dX
u3j

¼ 2γ−1

Pj
2 þQj

2
;

I2 ¼
Z

∞

−∞

XdX
u3j

¼ 2γ−1½βPj − ðζ − zjÞ�
Pj

2 þQj
2

; ðC8Þ

which, together with the results given below for the second
part of Eq. (C1), eventually lead to Eqs. (178)–(179)
of Sec. VI.
To treat the integration of the second (“Yukawa”) part of

Eq. (C1), let us first note that

uj ¼ ðû2j þ Δ̂2
jÞ1=2; ðC9Þ

where

ûj ¼ γX þ γ−1Bj; Δ̂j ¼ ðPj
2 þQj

2Þ1=2: ðC10Þ

As X∶ −∞ → þ∞, ûj also goes from −∞ to þ∞; there-
fore, it proves useful to introduce a new variable υ∶ −∞ →
þ∞ such that

ûj ¼ Δ̂j sinh υ; uj ¼ Δ̂j cosh υ: ðC11Þ

The calculation of the integrals for the second part then
ultimately reduces to the determination of J 1ðϑjÞ and
J 2ðϑjÞ, where

ϑj ≔ μΔ̂j > 0 ðC12Þ

and

J nðϑÞ ≔
Z

∞

0

e−ϑ cosh υ

coshnυ
dυ ðC13Þ

for n ¼ 1; 2; 3;…. It is interesting to observe that J nð0Þ ¼
ð ffiffiffi

π
p

=2ÞΓðn
2
Þ=Γðnþ1

2
Þ and J nð∞Þ ¼ 0.

To determine J 1 and J 2, let us first note that J 1ð0Þ ¼
π=2 and J 2ð0Þ ¼ 1. Moreover, for 0 < jϵj ≪ 1, we find
from Eq. (C13) that for ϑ > 0,

J 1ðϑþ ϵÞ ¼ J 1ðϑÞ − ϵK0ðϑÞ þ…; ðC14Þ
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J 2ðϑþ ϵÞ ¼ J 2ðϑÞ − ϵJ 1ðϑÞ þ
1

2
ϵ2K0ðϑÞ þ…; ðC15Þ

where K0ðϑÞ is the modified Bessel function given by [39]

K0ðϑÞ ¼
Z

∞

0

e−ϑ cosh υdυ: ðC16Þ

For x∶0 → ∞, K0ðxÞ behaves as − ln x for x → 0, but then
rapidly decreases monotonically with increasing x and
vanishes exponentially as x → ∞. In fact,

K0ðxÞ ∼
ffiffiffiffiffi
π

2x

r
e−x ðC17Þ

for x → ∞ [39]. It follows from Eqs. (C14)–(C15) that

dJ 1

dϑ
¼ −K0ðϑÞ;

dJ 2

dϑ
¼ −J 1ðϑÞ: ðC18Þ

Therefore, the series expansion for K0 [39] can be
employed to find J 1

J 1ðϑÞ ¼
π

2
−
Z

ϑ

0

K0ðxÞdx; ðC19Þ

which in turn will help determine J 2 via

J 2ðϑÞ ¼ 1 −
Z

ϑ

0

J 1ðxÞdx: ðC20Þ

In practice, the polynomial approximation for K0 [39] can
be used to develop corresponding polynomial approxima-
tions for J 1 and J 2.
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