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In the quasistatic regime, generic modifications to gravity can give rise to novel scale dependence of the
gravitational field equations. Crucially, the detectability of the new scale-dependent terms hinges upon the
existence of an effective mass scale or length scale at which corrections to general relativity become
relevant. Starting from only a few basic principles, we derive the general form of this scale dependence.
Our method recovers results previously known in the specific case of Horndeski gravity, but also shows that
they are valid more generally, beyond the regime of scalar field theories. We forecast the constraints that
upcoming experiments will place on the existence of a new fundamental mass scale or length scale in
cosmology.
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I. INTRODUCTION

Our current working hypothesis is that the dominant
force acting on large scales in the Universe is gravity, and
that gravity is accurately described by general relativity
(GR). In practice, we often focus on cosmological systems
that are smaller than the Hubble scale; this permits us to
make a set of simplifications referred to as the quasistatic
(QS) limit.
The QS regime corresponds to a window of length scales

that are considerably smaller than the cosmological hori-
zon, such that H=k ≪ 1, but sufficiently large such that
linear perturbation theory is still valid. In concrete figures, a
reasonable estimate would be distances less than
600h−1 Mpc but greater than 10 − 20h−1 Mpc. The usual
argument is that within this window of length scales the
time derivatives of metric potentials are significantly
smaller than their spatial derivatives. In GR this statement
is a natural consequence of the subhorizon condition
(H=k ≪ 1), since the linear gravitational potentials evolve
on the Hubble time scale. In practical terms, implementing
conditions such as jΦ̈j ≪ j∇2Φj makes the linearized field
equations easy to work with.
When we go over to a modified theory of gravity, the

situation is less clear cut. On one hand we can reason that
any gravity theory consistent with current observations
must behave in a manner very similar to ΛCDM, so we
expect our quasistatic limit to be preserved. On the other
hand, when we modify GR we naturally introduce new
dynamical degrees of freedom (d.o.f.) which might have

evolutionary time scales different from H. In this paper we
will assume that the new d.o.f. are sufficiently subdominant
that a QS limit still exists for most of the history of the
Universe.
The largest distances that can be probed by current and

next-generation galaxy surveys fall predominantly within
the QS regime. To use these experiments to test the laws of
gravity, we need to understand the typical behavior of non-
GR theories in the QS limit. There is a longstanding
intuition that modified gravity theories generically lead
to a novel dependence of observables on the length scale at
which they are measured, e.g. the density-weighted growth
rate, fσ8ðzÞ, becomes a function of wave number k. Work
has already begun to search for such signatures [1].
The goal of this paper is to make concrete these

intuitions. What are the implications of a (non)detection
of scale dependence for the host of gravity theories in the
current literature [2]? What are the most theoretically
motivated parameters for observers to measure? We present
three main results:
(1) Considering a frequently used parametrization of the

linearized gravitational field equations, we show that
only a few key physical principles are needed to
derive the fixed scale dependence of many gravity
theories in the QS regime. Our results apply to any
theory with second-order equations of motion and
one new spin-0 degree of freedom, which does not
have to be a scalar field. This generalizes the results of
[3–6] beyond single-scalar field theories (see [7] for
related ideas). The derivation is compact and does not
require knowledge of a gravitational action—hence
its generality.

(2) We show that the detectability of this non-GR scale
dependence hinges crucially on the existence of new

*tessa.baker@astro.ox.ac.uk
†p.ferreira1@physics.ox.ac.uk
‡danielle.leonard@astro.ox.ac.uk
§mariele.motta@unige.ch

PHYSICAL REVIEW D 90, 124030 (2014)

1550-7998=2014=90(12)=124030(11) 124030-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.124030
http://dx.doi.org/10.1103/PhysRevD.90.124030
http://dx.doi.org/10.1103/PhysRevD.90.124030
http://dx.doi.org/10.1103/PhysRevD.90.124030


physical quantities (characteristic masses, lengths,
etc.) that are generically introduced when modifying
GR. If all such parameters are tuned to be compa-
rable to the Hubble scale, it is highly unlikely that
any novel scale dependence of observables will be
detectable in the QS regime.

(3) Turning these ideas around, we isolate the leading-
order scale-dependent terms and estimate the
constraints placed upon them by next-generation
cosmological experiments. The headline results are
displayed in Fig. 2.

The structure of this paper is as follows: In Sec. II we
discuss how characteristic physical quantities enter most
popular theories of gravity. In Sec. III we derive the result
described in (1) above. In Sec. IV we discuss the impli-
cations of a (non)detection of scale dependence, i.e. point
(2) above. We also isolate the leading-order contribution to
scale dependence; in Sec. V we carry out example forecasts
for future constraints on this leading-order term [point
(3) above]. We conclude in Sec. VI. Some technical details
are relegated to the Appendixes.

II. NEW SCALES AND SETUP

New physical scales are a near-universal feature of
alternative gravity theories. This is no surprise: the success
of GR in describing the Solar System generally forces us
to introduce a “transition scale” into gravitational physics,
positing that gravity reduces to GR on one side of this
transition scale, but receives modifications on the other
side.
Let us elaborate with some examples. Probably the most

familiar example of a new scale arises in scalar-tensor
theories, where a mass scale emerges from second deriv-
atives of the potential, VðϕÞ;ϕϕ. In fðRÞ gravity the new
scale is more often thought of as a Compton wavelength for
the scalaron, but is similarly derived from derivatives of an
effective potential (a function of f;RR) [8]. New scales can
arise in a different way when there is nontrivial coupling
between the matter energy-momentum tensor and the scalar
degree of freedom, e.g. in theories which display chame-
leon screening, the transition scale is marked by a potential
well depth, jΦj ∼ 10−6 [9,10].
Vector-tensor theories are often endowed with an energy

(mass) scale at which violations of Lorentz invariance
become manifest. This new scale can be an explicit
parameter in the Lagrangian of the theory (as, for example,
in Horava-Lifschitz gravity [11,12]), or it can arise implic-
itly via spontaneous Lorentz violation at the level of the
field equations (e.g. in the effective field theory of a vector
coupled to gravity [13]).
It is well known that current bimetric theories not only

have an explicit mass scale (the mass of the graviton), but
also a system-dependent length scale, the Vainshtein radius,
which signals the onset of screening [14]. Similarly, higher-
dimensional theories such as Dvali-Gabadadze-Porrati

gravity and other [15] braneworld models can have both
an explicit scale such as a warp factor or crossover scale, as
well as Vainshtein radii.
Finally, there has been recent interest in nonlocal theories

[16–19] containing Lagrangian terms such as R□−2R. The
solutions for□−1R involve integrals over Green’s functions
for the □

−1 operator, Gðx; x0Þ. This naturally suggests a
characteristic scale between the spacetime points x and x0
over which nonlocal interactions occur.
In essence, new transition scales can be dependent on a

variety of physical quantities such as energy, ambient
density, acceleration, potential, etc. Throughout this paper
we will be agnostic about the origin of any new transition
scale. In many gravity theories the new scale(s) are tuned to
be of order the Hubble scale today, in the hope that they
might replace the cosmological constant as the driver for
accelerated expansion. In other theories, however, an effec-
tive cosmological constant is included in the theory (some-
times explicitly, sometimes via a “back door”) [20,21]. Then,
since cosmic acceleration is already taken care of, new mass
or length scales inherent in the theorymay take a much wider
range of values.
Let us define a wave number kgal that represents the

largest perturbation mode that can be reasonably well
measured by next-generation cosmological surveys. Let us
also introduce a mass scale M that represents the transition
scale accompanying some generic modifications to gravity;
in what follows we will also frequently interpret M as an
inverse length scale. (Note that we can extract a mass or
length scale from any of the physical quantities discussed
above by using appropriate factors of c, ℏ etc., and taking
appropriate powers.)
We can then envisage three scenarios:

(a) M ∼H ⇒ M ≪ kgal in the QS regime.
(b) H ≪ M ≲ kgal.
(c) kgal ≪ M.
In this paper we will treat situations (a) and (b). We will
work with one new dynamical degree of freedom, denoting
its perturbations by χ. χ does not have to be a scalar field,
but could instead be a spin-0 perturbation of a new vector or
tensor field, a new d.o.f. excited in the metric (i.e. a metric
d.o.f. which is nondynamical in GR), a Stuckelberg field, or
several other possibilities [22].
For the purposes of this paper we are only interested in

the relative orders of magnitude of terms, not in precise
factors of order unity. We can therefore write time deriv-
atives of χ as _χ ¼ Γχχ, where Γχ is the evolutionary time
scale of the new d.o.f. perturbation. There are two pos-
sibilities for this time scale: it could either be approximately
the Hubble time scale (like for the metric potentials), or it
could be a new, shorter time scale determined by M (note
that with appropriate factors of c a mass is dimensionally
equivalent to an inverse time scale). For now we will
maintain generality, but later on we will we see that setting
Γχ ∼H or Γχ ∼M can have different consequences.
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We will not consider situation (c), because in this
scenario the existence of a quasistatic limit becomes
questionable. If M is very large and Γχ ∼M, then we have
that _χ is very rapidly evolving, violating quasistaticity.
Furthermore, the novel effects that occur at wavelengths
close to the length scale M−1 are likely to occur inside the
nonlinear regime, which is beyond the scope of this paper.
Consideration of the Friedmann equation suggests that

the background (zeroth-order) values of any new fields
present are constrained to evolve on Hubble time scales.
Using the example of a scalar field to illustrate, we mean
that _ϕ2 ∼H2ϕ2. Now one might well argue that if a field
evolves like H on the background, its perturbations must
evolve like H too, that is, only the case Γχ ∼H is of
interest. In Sec. IV we will argue that if this is true, it seems
unlikely that the scale-dependent properties of modified
gravity will be measurable any time soon.

III. DERIVATION

To obtain result (1) of Sec. I, we first need to take a step
back to the linearized gravitational field equations.
Our definitions of the gravitational potentials are indicated
by the following conformal Newtonian line element:

ds2 ¼ aðηÞ2½−ð1þ 2ΨÞdη2 þ ð1 − 2ΦÞdxidxi�: ð1Þ

A combination of two linearized components of the tensor
field equations gives the gravitational Poisson equation,
while the transverse spatial component gives the “slip”
relation (shown here at late times):

−k2Φ ¼ 4πGμða; kÞa2ρ̄mΔm ð2Þ

Φ ¼ γða; kÞΨ ð3Þ

where ρ̄m is the mean matter density, Δm is the gauge-
invariant density contrast, and a sum over all matter species
is implied.
In the expressions above we have introduced two

functions, μða; kÞ and γða; kÞ, that have been used exten-
sively as a parametrization of modified field equations in
the QS regime [23–27]. This parametrization is convenient
for theoretical work because it parametrizes the “raw”
gravitational field equations obtained directly from the
action. However, a slightly different parametrization
[“f ~μ;Σg”—see Eq. (14)] is preferred for data analyses,
because it leads to minimal parameter degeneracy when
combining redshift-space distortions and weak lensing
surveys. For this reason we will present our theoretical
results in terms of fμ; γg, then rotate to the basis f~μ;Σg for
the forecasts in Sec. V.
To manipulate a particular gravity theory into the form of

Eqs. (2) and (3), one begins with the full (i.e. unparame-
trized) Poisson equation and slip relation of the theory, and

the linearly perturbed equation of motion for the new d.o.f.
The steps are as follows:
(1) Apply the quasistatic approximation to the metric

terms in the three equations listed above, that is, drop
terms containing Φ̈, _Φ, Ψ̈, and _Ψ. Of the remaining
terms, discard those with prefactors that evolve on
Hubble time scales, i.e. drop H2Φ, but keep ∇2Φ.
Time derivatives of χ should be replaced by _χ ≈ Γχχ
and χ̈ ≈ Γχ

2χ but not discarded.
(2) Take two linear combinations of the unparametrized

slip equation and the equation of motion for the
d.o.f.: one combination that eliminates χ, and one
that eliminatesΨ. The form of γða; kÞ can be read off
from the first linear combination.

(3) Substitute the ratios Ψ=Φ and χ=Φ obtained in the
previous step into the right-hand side of the Poisson
equation, so that it is written purely in terms of Φ
(plus the usual GR term in Δ). Rearrange this
equation into the form of Eq. (2) and read off μða; kÞ.

We wish to avoid laboriously carrying out these steps for
many individual gravity theories. So instead we will apply
this procedure to a set of “template” field equations that
reflect the structure of real theories. A similar derivation
was presented first in [7]; the addition we make is the
explicit consideration of a new mass scale,M, as discussed
in Sec. II.
We will write down these templates in the conformal

Newtonian gauge. To maintain transparent correspondence
with the usual linearized Einstein equations we will not use
an explicitly gauge-invariant combination of variables to
represent the new d.o.f. However, we will use the fact that
the equations must ultimately have a gauge-invariant
formulation to guide the construction of our templates.
For example, the usual gauge-invariant Bardeen poten-

tials Φ̂ and Ψ̂ contain first- and second-order time deriv-
atives respectively. This means that Ψ̂ can only appear in

the Poisson equation as part of the combination _̂ΦþHΨ̂
(in which the second time derivatives cancel out—see
Appendix A or [22]) to avoid converting the Poisson
equation from a constraint into a dynamical equation.
An example will help to clarify this point and allow us to

introduce some notation. For the case where the dimen-
sionless new d.o.f. χ is a scalar field or a fluid energy
density, the Poisson equation has the form:

−2k2Φ ¼ 8πGa2ρ̄mΔm þ Φðh1k2 þ h2½H2;M2;HM�Þ
þ h3½H;M� _Φþm2½H2;M2;HM�Ψ
þ χðg1k2 þ g2½H2;M2;HM�Þ þ g3½H;M�_χ ð4Þ

where M is the potential new mass scale. Throughout this
paper we will use notation like ½H2;M2;HM� to indicate a
function of time which has dimensions of mass squared.
Terms appearing in this function can have three possible
order of magitudes: H2, M2, or HM. The numerical

NEW GRAVITATIONAL SCALES IN COSMOLOGICAL SURVEYS PHYSICAL REVIEW D 90, 124030 (2014)

124030-3



coefficients accompanying these order-of-magnitude terms
are unimportant for our purposes. We will use the dimen-
sionless order-unity coefficients hi, gi etc. simply as a
convenient way to refer to individual terms. In complete
analogy, ½H;M� denotes a time-dependent function with the
dimension of mass, which can have two possible orders of
magnitude: ∼H or ∼M.
Note thatΨ appears up to one derivative order lower than

Φ in Eq. (4). This is due to the aforementioned requirement
that it must be possible to “repackage” these terms into the
combination α _Φþ βð _ΦþHΨÞ, where α and β are numeri-
cal coefficients.
Carrying out step 1 of our procedure, Eq. (4) becomes

−2k2Φ ¼ 8πGa2ρΔþ Φ½h1k2 þ h2M2� þΨ½m2M2�
þ χ½g1k2 þ g2M2 þ g3MΓχ �: ð5Þ

For brevity we will not write here the nonquasistatic
templates for the slip relation and equation of motion, for
this scalar field/fluid example; they are given in Eqs. (A6)
and (A9). We move straight to their QS limits, which are

χ½d1Γχ
2 þ d2MΓχ þ d3M2 þ d4k2�

þ Φ½b2M2 þ b3k2� þΨ½c2M2 þ c3k2� ¼ 0; ð6Þ

Φ −Ψ ¼ e0Φþ j0Ψþ f0χ: ð7Þ

Carrying out steps 2 and 3 described above, we obtain
the following forms for μ and γ:

γ ¼ p1 þ p2
M2

k2 þ p3
ΓχM
k2 þ p4

Γχ
2

k2

q1 þ q2
M2

k2 þ q3
ΓχM
k2 þ q4

Γχ
2

k2

; ð8Þ

μ ¼
�
p1 þ p2

M2

k2
þ p3

ΓχM

k2
þ p4

Γχ
2

k2

�

×

�
t1 þ t2

M2

k2
þ t3

ΓχM

k2
þ t4

Γχ
2

k2
þ t5

M4

k4
þ t6

ΓχM3

k4

þ t7
Γχ

2M2

k4

�
−1

ð9Þ

where the pi, qi, and ti are simple algebraic combinations
of the order-unity coefficients in Eqs. (5)–(7). Their precise
forms are given in Table A 1 in Appendix A.
We immediately recognize that Eqs. (8) and (9) subsume

some results already known for scalar field theories [3–7],
but note that we have not needed to use the complex form
of the Horndeski Lagrangian [28–30] to obtain them here.
For example, we see that μ and γ share the same numerator;
an equivalent result was proved in [5,7] [note that other
authors use slightly different parametrization variables to
ours, equivalent to the set f~μ; γg, where ~μ is defined
in Eq. (14)].

Our expression for μ contains three terms—t5, t6, and
t7—which have not been included in works focused on
Horndeski theories. In all Horndeski-type theories we have
seen investigated this k−4 dependence of μ and γ is not
present, because the terms represented by h2,m2, g2, and g3
in Eq. (5) do not feature in the QS limit of their field
equations [31]. However, we will leave these terms in our
general expressions because they could exist in some as-
yet-undiscovered gravity theory. It is in the spirit of this
paper to remain as agnostic as possible.
We stress that these forms for μ and γ have been derived

using purely a few basic principles, such as gauge invari-
ance and restriction to second-order equations of motion.
We have used neither a model-specific action nor one
inspired by an effective field theory approach. In fact, if we
repeat steps 1–3 for the case where the new d.o.f. is the
spatial spin-0 perturbation of a timelike vector field (i.e.
jχj ∼ jkjV), such as occurs in Einstein-Aether theories
[32,33], we reach exactly the same form as Eqs. (8) and
(9). The derivation is given in Appendix A, and only differs
from the one shown here in small details.
Note also that the authors of [34,35] have recently

derived expressions equivalent to μ and γ in a particular
bigravity model, and found them to have a form contained
by Eqs. (8) and (9)—see Eqs. (85) and (86) of [35]. This is
not unexpected, since bigravity—despite its complex field
equations [not fully encapsulated by Eqs. (5)–(7)]—
ultimately has the same physical features as the cases
treated explicitly here, i.e. it introduces only one new spin-0
degree of freedom and respects gauge invariance and
locality. If the current stability issues surrounding generic
bigravity models [36] can be resolved, then Eqs. (8) and (9)
can be used as a universal parametrization for virtually all
theories with second-order equations of motion and a single
d.o.f. of any type.

IV. REGIMES OF INTEREST

As discussed in Sec. II, there are essentially two choices
for the scale M that we have introduced. Either we can set
M to be of order the Hubble scale, or we can posit a new
scale, M ≫ H, which marks the transition from the GR
limit to some larger theory of gravity. This choice governs
whether it makes sense to invest effort searching for scale-
dependent signatures of modified gravity [1].
Case (a).Many gravity theories explicitly tune their new

scale(s) to be of order H0 ∼ 10−3 eV in order to produce a
viable expansion history. For example, in recent bigravity
models the graviton mass is taken to be of order the present
Hubble scale. In this case there is no choice other than
setting M ¼ Γχ ¼ H. If we carry out the full QS approxi-
mation, all scale-dependent terms in Eqs. (8) and (9) must
be discarded and we are left with only the simple time-
dependent expressions. Scale dependence in μ and γ only
arises if we consider the first-order corrections in ðH=kÞ2 to
the QS approximation, which leads to [37]
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γðaÞ ¼ p1 þ ðp2 þ p3 þ p4ÞH2

k2

q1 þ ðq2 þ q3 þ q4ÞH2

k2
; ð10Þ

μðaÞ ¼ p1 þ ðp2 þ p3 þ p4ÞH2

k2

t1 þ ðt2 þ t3 þ t4ÞH2

k2
: ð11Þ

Expressions of precisely this form have been worked out
explicitly for numerous theories [3,34,35].
In this scenario any scale dependence of observables will

be very weak. Until we are able to survey a substantial frac-
tion of our Hubble volume, it is arguably better to focus our
efforts on tightly constraining the time dependence of fμ; γg
or f ~μ;Σg by combining information from all scale bins.
Case (b). In this scenario one posits a new physical

transition scale M−1 below the cosmological horizon
distance, such that M ≫ H. Fig. 1 illustrates an example
hierarchy of the relevant distance scales (expressed in terms
of wave numbers). For example, in fðRÞ gravity the new
mass scale is approximately given by M2 ∝ 1=f;RR, and
f;RRR ≪ 1 ⇒ 1=f;RR ≫ H2 is needed to ensure stability in
the matter-dominated era [38].
Recall that in Sec. II we introduced a wave number kgal

that typified the maximum distance scale that could be well
constrained by near-future galaxy surveys. Given the lack
of deviations from ΛCDMþ GR to date, one might naively
assume the maximum value for M is of order kgal. In
principle one should then attempt to constrain the full form
of Eqs. (8) and (9). However, it has been shown that in
practice it will be difficult to constrain all the individual pi,
qi, and ti [39].
This motivates us to consider a slightly less accurate but

simpler approach. We perform a Taylor expansion of
Eqs. (8) and (9) in the vicinity of the naive assumption
M ≲ kgal, and keep only the leading-order terms. We show
in Appendix B that this gives the following expressions:

μða; kÞ≃ 1þ AμðaÞ
�
1þ

�
MμðaÞ

k

�
2
�
; ð12Þ

γða; kÞ≃ 1þ AγðaÞ
�
1þ

�
MγðaÞ

k

�
2
�
: ð13Þ

The precise content of MμðaÞ and MγðaÞ depends on
whether Γχ ∼M or Γχ ∼H, but this kind of detail is not
important here. The thrust of our argument is that Eqs. (12)

and (13) provide a simple, general, and theoretically well-
motivated description of scale dependence that should be
easily applicable to observations. They include case (a) as a
limit, if MμðaÞ and MγðaÞ are set to be of order H.
From the discussion of this paper, we now understand

that a nonzero detection ofMγ ,Mμ, Aμ, or Aγ would signify
one of two possible things:
(1) A breakdown of the QS approximation H=k ≪ 1.

The scale dependence would then be due to first-
order corrections in H2=k2.

(2) The existence of a new scale in gravitational
physics [40].

Either of these scenarios would have profound implications
for our understanding of gravity on large scales.

V. DETECTING SCALE DEPENDENCE

We now speculate on the constraints that can be placed
on the kind of parametrization introduced above with future
cosmological surveys. As we mentioned in Sec. III, the
function set fμ; γg is the most convenient for theoretical
work. However, a change of basis will enable us to
minimize parameter degeneracies when using redshift-
space distortion (hereafter RSD) and weak lensing data
[26,41]. We introduce the new function set f ~μ;Σg, related
to the old set by

~μða; kÞ ¼ μða; kÞ
γða; kÞ ; Σða; kÞ ¼ μða; kÞ

2

�
1þ 1

γða; kÞ
�
:

ð14Þ
Effectively, ~μ parametrizes the geodesic equation for non-
relativistic particles that governs the linear collapse of cold
dark matter; Σ parametrizes the geodesic equation for
photons that governs weak gravitational lensing. However,
it is important to note that gravitational lensing is also
sensitive to ~μ, because the lensing convergence and shear
spectra involve integrals over the matter power spectrum,
which is affected by modified structure growth [26,42].
We will write the new function set in a form analogous to

Eqs. (12) and (13), that is

~μða; kÞ≃ 1þ A~μðaÞ
�
1þ

�
M ~μðaÞ

k

�
2
�
; ð15Þ

Σða; kÞ≃ 1þ AΣðaÞ
�
1þ

�
MΣðaÞ

k

�
2
�
: ð16Þ

We stress that we are more interested in the general form of
the scale dependence rather than the precise (and lengthy)
expressions relating A~μ, AΣ,M2

~μ, andM
2
Σ to the coefficients

of the field equations (though for completeness the relation-
ships between the fμ; γg and f ~μ;Σg parametrizations are
given in Appendix C).
An unavoidable feature of model-independent tests of

gravity is that ansatzes must be chosen for the time-
dependent functions. There must be enough parameters

FIG. 1. Schematic diagram illustrating the arguments of Sec. IV
[case (b)].
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in the ansatz to capture important signatures in the data
without weakening the constraints too severely. As a
simplicity-motivated test case, we will choose our ansatz
to be (partially following [26])

A~μðaÞ ¼ ~μ0
ΩGR

Λ ðaÞ
ΩGR

Λ0

; ð17Þ

AΣðaÞ ¼ Σ0

ΩGR
Λ ðaÞ
ΩGR

Λ0

; ð18Þ

M ~μ ¼ m~μð20H0Þ; ð19Þ

MΣ ¼ mΣð20H0Þ; ð20Þ

where m~μ and mΣ are constants. Remembering that we will
want to be able to interpret the M−1

i as length scales, it is
convenient to introduce a subhorizon distance unit of
ð20H0Þ−1 and express M−1

i in units of this distance. In
the simple forecasts here we will focus on perturbative
observables, fixing the background expansion history to
match that of the ΛCDMþ GR model and using Planck
best-fit cosmological parameters [43]. For an analysis that
accounts for a modified expansion history see [42].
In principle we should really allow M ~μ and MΣ to be

functions of time. Treating them as constants simply
corresponds to imposing the same overall time-dependent
amplitudes AiðaÞ on both the scale-free and scale-dependent
modifications to the QS field equations.
The set of four parameters that we will forecast for is

~μ0;Σ0; ~μ0m2
~μ;Σ0m2

Σ: ð21Þ

Note that the scale-dependent parts of the parametrization
are sensitive to a degenerate combination of the time-
dependent amplitude and the possible new effective mass/
length scale; we cannot constrain M ~μ and MΣ individually.
We consider a Dark Energy Task Force stage 4 (DETF4)

experiment that combines a galaxy clustering survey and a
dedicated tomographic weak lensing survey. Weak lensing
utilizes scale-dependent information naturally, as the stan-
dard quantities to calculate are angular power spectra. RSD
measurements, however, generally do not. Usually we talk
about the density-weighted growth rate, fσ8ðzÞ, implicitly
assuming data from all scales (k-bins) has been combined.
We modify this situation by dividing each redshift bin

of our hypothetical survey into five bins in k-space, with
edges ½0.005; 0.02; 0.05; 0.08; 0.12; 0.15�h Mpc−1; the
choice of k-binning is analogous to [1], and the upper
limit is chosen to cut off before nonlinearities start to
dominate. It seems likely that as our survey sizes increase
large-scale measurements will improve, while small-scale
measurements will remain dominated by a lack of under-
standing of baryonic physics and the effects of nonlinear-
ities. For this reason we will take our k-bins to have the

following fractional errors at all redshifts, from large scale
to small scale: [0.01, 0.03, 0.03, 0.09, 0.09].
For the tomographic gravitational lensing, we consider

five source bins. These are constructed by taking the total
distribution of source galaxies as

nðzÞ ∝ zαe−ð
z
z0
Þβ ð22Þ

with α ¼ 2, β ¼ 1.5, and z0 ¼ zm=1.412 where zm is the
median redshift of the survey [44,45]. nðzÞ is then divided
into five bins between z ¼ 0.5 and z ¼ 2, each with equal
numbers of galaxies. The lensing errors are encoded in the
covariance matrices:

CijðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð2lþ 1Þfsky

s �
Pκ;GR
ij ðlÞ þ δij

hγ2inti
n̄i

�
ð23Þ

where Pκ;GR
ij ðlÞ is the cross-correlated convergence power

spectrum sourced by galaxies in bins i and j, and fsky is the
fraction of the sky covered by the survey. hγ2inti

1
2 is the rms

intrinsic shear and n̄i is the number of galaxies per steradian
in source bin i. For further details see [42,46].
Our model-agnostic approach to the field equations

[Eqs. (5)–(7)] means that factors of order unity are of no
relevance here. For this reason we do not attempt a detailed,
experiment-specific forecast (for which the k-bin errors and
maximum k value would evolve with redshift). More
precise forecasts can be found in, for example, [47,48].
Other model-independent tests of ΛCDM using the growth
rate have recently appeared in [49].
Figure 2 shows marginalized 2D constraints on the scale-

independent and scale-dependent parts of the parametriza-
tion [Eqs. (15) and (16)]. RSDs (green contours) constrain
only ~μ0 and ~μ0M2

~μ, while weak lensing (red contours) is
sensitive to all four parameters. The authors of [26] have
applied a scale-independent parametrization to CFTHLensþ
WiggleZ data, finding that lensing is only weakly sensitive
to ~μ0. We agree with these scale-independent results, but find
that the scale-dependent parts of the “lensing function’
Σða; kÞ and the “RSD function” ~μða; kÞ are more strongly
correlated [42]; see the right panel of Fig. 2.
A rough estimate of the precision with which we will be

able to measure these new effective mass/length scales in
cosmology gives us σðm2

~μÞ ∼ σð~μ0m2
~μÞ=σð ~μ0Þ ∼ 6.7 and

σðm2
ΣÞ ∼ σðΣ0m2

ΣÞ=σðΣ0Þ ∼ 13.2. Interpreting these limits
as distance scales, we find lower bounds of order M−1

~μ ≥
364 Mpc andM−1

Σ ≥ 260 Mpc. We see that RSDs are more
sensitive than weak lensing to new fundamental scales.
That is, we should be able to pin down a new characteristic
distance scale all the way up to 364 Mpc with growth rate
measurements.
Given that the bounds we have found on the Mi are

comparable to kgal, the Taylor expansion of Eqs. (8) and (9)
(see Appendix B) may not be accurate enough. Yet, the
well-behaved form of Eqs. (8) and (9) (ratios of quadratic
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polynomials) suggests that subsequent corrections in higher
powers of M2=k2 might change the bounds placed on M ~μ

and MΣ by, at most, a factor of a few.

VI. CONCLUSIONS

The spirit of this work has been to take a step back from
detailed model-specific investigations in alternative theo-
ries of gravity. Ultimately, the expressions collected in
Appendix A link the parametrization we presented in
Eqs. (15) and (16) to the field equations of a specific
gravity theory; but, as we hope has been clear, this is not the
strategy we are advocating. Instead, the goal of this paper
has been to highlight the fact that even the exotic plethora
of gravity theories on the market today share basic physical
features which endow them with the same structure in the
quasistatic regime.
We have found that the scale dependence of gravity

theories is closely linked to an effective mass scale or
length scale which the linearized field equations inherit
from their parent quadratic action. Our derivation has
allowed for the evolutionary time scale of the new degree
of freedom to be affected by this new scale in the system,
rather than relying too heavily on GR-based intuitions that
might suggest _χ is negligible in the QS regime.
In many theories a new mass scale is tuned to be ∼H in

order to produce accelerated expansion. Indeed, the moti-
vation behind much of the current bestiary of modified
gravity theories is to render the cosmological constant
obsolete. Generally this renders the scale dependence
undetectable in the quasistatic regime. We conjecture that
most of the theories giving rise to detectable scale depend-
ence are those which introduce a new scale much larger than
the Hubble scale (M ≫ H), and meanwhile rely on a
cosmological constant to achieve a viable expansion history.

We caution, though, that theories with screening mech-
anisms complicate the issue somewhat. One can envisage a
smaller, plausibly detectable length scale emerging if it is a
compound of fundamental scales and couplings to the
energy-momentum tensor.
Note that at no point in this paper have we needed a

concrete action from which to start our calculations: knowl-
edge of the basic physical properties of a theory (e.g. second-
order equations of motion and a single dynamical spin-0
perturbation) is sufficient. We have trivially recovered results
of [3–6], and have found them to be more general than
previously realized (see [7] for a similar analysis along
these lines).
We advocate that measurement of scale-dependent

observables is an important and feasible target for next-
generation cosmology experiments. They have the potential
to unveil a scale at which new physics beyond ΛCDMþ
GR kicks in. More conservatively, scale-dependent mea-
surements would also act as an essential test of the
quasistatic approximation that has rapidly grown in pop-
ularity over the past few years.
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FIG. 2 (color online). Forecast constraints on the scale-independent (left panel) and scale-dependent (right panel) parts of the f ~μ;Σg
parametrization, using a DETF stage 4-like experiment. Redshift-space distortions (green contours) constrain only the two parameters in
the ~μðz; kÞ function, ~μ0 and m ~μ. Gravitational weak lensing (red contours) predominantly constrain the parameters in Σðz; kÞ, but also
have some dependence on ~μ0. Blue contours show the combined constraints. The parameters m ~μ and mΣ are M ~μ and MΣ expressed in
distance units of ð20H0Þ−1 Mpc; see Eqs. (19) and (20).
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APPENDIX A: DERIVATION OF μ AND γ

In this Appendix we show explicitly how the forms of
Eqs. (8) and (9) were reached.

1. Simple scalar/fluid case

Consider a theory of a single scalar field with second-
order equations of motion. For this to be a valid theory of
gravity, we know that the linearized equation of motion
(hereafter e.o.m.) of the scalar must have a gauge-invariant
formulation. It must therefore be possible to group all terms
in the e.o.m. into gauge-invariant combinations; there
cannot be any gauge-varying terms “left over” after this
regrouping has happened.
More explicitly: let us write the perturbed line element in

a general gauge as (recall ϵ ¼ ν ¼ 0 in the conformal
Newtonian gauge):

ds2 ¼ aðηÞ2½−ð1þ 2ΨÞdη2 − 2ð ~∇iϵÞdηdxþ ð1 − 2ΦÞγij
þ ðDijνÞdxidxj� ðA1Þ

where Dij ¼ ~∇i
~∇j − 1

3
δij ~∇k

~∇k
. A gauge-invariant combi-

nation containing the scalar field perturbation is (hats
signify gauge-invariant variables):

δ̂ϕ ¼ δϕþ
_ϕ

H
ðΦþ k2νÞ: ðA2Þ

This means that, because the linearized e.o.m. contains a
term in δϕ̈, it must also contain Φ̈ so that the two can be

packed together (along with other terms) as ̈δ̂ϕ.
An additional subtlety surrounds the Newtonian poten-

tial Ψ. The gauge-invariant version of Ψ is one of the well-
known Bardeen variables:

Ψ̂ ¼ Ψ −
1

2
ðν̈þ 2_ϵÞ − 1

2
Hð_νþ 2ϵÞ: ðA3Þ

Note that the combination above contains a second-order

time derivative, ν̈. This is potentially dangerous: if _̂Ψ or ̈Ψ̂
appeared in the equations of motion, they would generi-
cally introduce the Ostrogradski instability [50].
Yet one sees _Ψ appearing all the time in field equations

of gravity theories. How can this be? A careful examination
of field equations reveals that it always appears accom-
panied by terms in Φ̈ and _Φ, such that they can be
regrouped into the following combination and its time
derivative:

α̂ ¼ _̂ΦþHΨ̂ ¼ _ΦþHΨþ 1

2
ð _H −H2Þð_νþ 2ϵÞ ðA4Þ

where Φ̂ is the other standard Bardeen variable:

Φ̂ ¼ Φ −
1

6
k2νþ 1

2
Hð_νþ 2ϵÞ: ðA5Þ

The dangerous second time derivative has been eradicated
from Eq. (A4). Therefore _̂α can appear in a second-order
e.o.m. without causing any instabilities. Similarly, the
combination α̂ can appear in a constraint (first-order)
equation.
Now, when we view equations in the conformal

Newtonian gauge we do not “see” the ν or ϵ terms,
but the above arguments still control the structure of the
e.o.m.s. We have deduced that Ψ must always present
at one derivative order lower than Φ, and a brief glance
at the perturbed Horndeski equations in [3] confirms
that this is indeed always the case in scalar field
theories.
Using these ideas we can write down a general template

for the e.o.m. We make use of dimensional consistency, and
the fact that the only objects with dimensions of mass we
have to work with are H (recall we are setting c ¼ 1) and
the new scale in our theory, M. The result is [where the
notation implied by square brackets is explained below
Eq. (4) in the main text]:

d1δ̈ϕþ d2½H;M� _δϕþ d3½H2;M2;HM�δϕþ d4k2δϕ

þ b0Φ̈þ b1½H;M� _Φþ b2½H2;M2;HM�Φ
þ b3k2Φþ c1½H;M� _Ψþ c2½H2;M2;HM�Ψ
þ c3k2Ψ ¼ 0: ðA6Þ

In fact this template holds not only for a scalar field, but
also for the fractional energy density of a fluid or effective
fluid, whose gauge-invariant version is

δ̂ ¼ δ − ð1þ wÞ
�
3Φ −

1

2
k2ν

�
: ðA7Þ

This means that Eq. (A6) is also valid for a generic dark
fluid or Dvali-Gabadadze-Porrati gravity (in which the new
d.o.f. in the 4D effective theory can be treated as perturba-
tions of a radiationlike “Weyl fluid”).
Moving on to the linearized gravitational field equations

themselves, similar logic applies. However, the Poisson
equation is a constraint equation and therefore can only
contain _δϕ, _Φ, and Ψ, plus undifferentiated δϕ and Φ.
This leads us to the template of Eq. (4), which we reproduce
here for convenience:

−2k2Φ ¼ 8πGa2ρΔþ Φðh1k2 þ h2½H2;M2;HM�Þ
þ h3½H;M� _Φþm2½H2;M2;HM�Ψ
þ δϕðg1k2 þ g2½H2;M2;HM�Þ þ g3½H;M� _δϕ:

ðA8Þ

The transverse spatial Einstein equation has no time-
derivative terms, because it already has dimensions of
mass squared from the spatial derivatives:
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kikjðΦ −ΨÞ ¼ kikjðe0Φþ j0Ψþ f0δϕÞ;
where i ≠ j: ðA9Þ

We usually pull off the spatial derivatives to obtain the slip
relation of Eq. (7).
When we apply the quasistatic approximation, M

dominates over H in all the coefficient brackets; the
result is Eqs. (5)–(7). The straightforward algebraic steps
outlined in Sec. III then lead to the expressions for μ and
γ in Eqs. (8) and (9). The coefficients in Eqs. (8) and (9)
are combinations of those in Eqs. (A6), (A8), and (A9) as
shown below:

Coefficient Relation to field equations

p1 f0c3 − ð1þ j0Þd4
p2 f0c2 − ð1þ j0Þd3
p3 −ð1þ j0Þd2
p4 −ð1þ j0Þd1
Coefficient Relation to field equations

q1 ðe0 − 1Þd4 − b3f0
q2 ðe0 − 1Þd3 − b2f0
q3 ðe0 − 1Þd2
q4 ðe0 − 1Þd1
Coefficient Relation to field equations

s1 ðe0 − 1Þc3 − b3ð1þ j0Þ
s2 ðe0 − 1Þc2 − b2ð1þ j0Þ
t1 p1ð1þ h1

2
Þ − 1

2
g1s1

t2 p2ð1þ h1
2
Þ þ 1

2
ðh2p1 þm2q1 − g1s2 − g2s1Þ

t3 p3ð1þ h1
2
Þ − 1

2
g3s1

t4 p4ð1þ h1
2
Þ

t5
1
2
ðh2p2 þm2q2 − g2s2Þ

t6
1
2
ðh2p3 þm2q3 − g3s2Þ

t7 1
2
ðh2p4 þm2q4Þ

2. Vectorlike case

What about gravity theories where the new d.o.f.
comes not from a scalar field, but a vector field? For
example, in Einstein-Aether gravity there is a single new
spin-0 perturbation V contained within the spatial part
of a timelike vector field: δAi ¼ 1=að∇iVÞ. The appro-
priate gauge-invariant version of V is reminiscent of the
scalar field case (a general algorithm for finding such
gauge-invariant field combinations was given in [22]):

V̂ ¼ V −
1

H

�
Φ −

k2ν
6

�
: ðA10Þ

However, the difference here is that V has dimensions of
inverse mass. This affects the terms and coefficient
dimensions that can appear in the e.o.m., Poisson equation,
and slip relation. The full (non-QS) versions are shown
below:

d1V̈ þ d2½H;M� _V þ d3½H2;HM�V þ d4k2V

þ b0
Φ̈
H

þ b1 _Φþ b2½H;M�Φþ b3
k2

H
Φ

þ c2 _Ψþ c3½H;M�Ψ ¼ 0; ðA11Þ

−2k2Φ ¼ κa2ρΔþ Φðh1k2 þ h2½H2;M2;HM�Þ

þ _Φ

�
h3½H;M� þ h4

k2

H

�
þΨðm2½H2;M2;HM� þm4k2Þ
þ g1½H�k2V þ g3k2 _V; ðA12Þ

Φ −Ψ ¼ e0Φþ e1
_Φ
H

þ j0Ψþ f0½H�V þ f1 _V: ðA13Þ

There are several terms in the equations above that were
not present in the scalar field/fluid case, namely b0, b3, e1,
and h4. This is due to the denominator in Eq. (A10)—we
need to add these terms to make sure that the combination
V̂ and its derivatives can be formed [51].
There are also some possible terms missing, e.g. we have

not allowed a term proportional to M2V to appear in
Eq. (A11). If this was present, the requirement of a gauge-
invariant formulation means that we would also need to
have a term proportional to M2Φ=H for it to partner with.
IfM ∼H, this has already been accounted for in Eq. (A11).
If M ≫ H then such terms dominate the equations and
force μ → 0, γ → 0.
Similar considerations, after carrying out steps 1–3

described in Sec. III, indicate that for the vector case we
require ΓV ∼H to avoid the situation μ → 0, γ → 0. This
greatly reduces the number of terms that survive to the final
expressions, which are (using overbars just to avoid
confusion with Table A 1):

γ ¼ p̄1 þ p̄2
M2

k2

q̄1 þ q̄1
M2

k2
; ðA14Þ

μ ¼ p̄1 þ p̄2
M2

k2

t̄1 þ t̄2 M2

k2 þ t̄5 M4

k4
; ðA15Þ

where

Coefficient Relation to field equations

p̄1 −ð1þ j0Þd4
p̄2 c3f0
q̄1 ðe0 þ e1 − 1Þd4
q̄2 −b2f0
t̄1 p̄1ð1þ h1þh4

2
Þ þ 1

2
m4q̄1 þ 1

2
g1b3ð1þ j0Þ

t̄2 p̄2ð1þ h1þh4
2

Þ þ 1
2
ðh2p̄1 þm2q̄1 þm4q̄2Þ

t̄5 1
2
ðh2p̄2 þm2q̄2Þ
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We conclude that, apart from some pathological cases,
Eqs. (8) and (9) act as a universal form for theories with one
spin-0 degree of freedom and second-order e.o.m.s.

APPENDIX B: EXPANSION OF fμ;γg
In this Appendix we show how the parametrization of

Eqs. (12) and (13) is obtained from the expansion of Eqs. (8)
and (9). For ease of notation we define y ¼ ðM=kÞ2, and
perform a Taylor expansion about the point y → 0.
Effectively, y → 0 corresponds to very small scales inside
both the cosmological horizon and the new length scale
M−1, where μ and γ are virtually scale independent. We are
expanding μ and γ “upwards” in distance scales from the full
QS limit, to find the first scale-dependent corrections that
occur. (Of course, when taken far enough, the limit y → 0
enters the nonlinear regime. Implicitly we stop before this
point, i.e. we are taking y → ϵ, a very small number.)
To simplify the expressions, we will present here the case

where Γχ ∼H. The case with Γχ ∼M is analogous but
more algebraically cumbersome.
For y < 1 the Taylor expansion of γða; kÞ yields

(suppressing arguments of conformal time):

γðyÞ ≈ γðy ¼ 0Þ þ γ0jy¼0yþOðy2Þ; ðB1Þ

γðyÞ ≈ p1

q1
þ p1

q1

�
p2

p1

−
q2
q1

�
y ðB2Þ

¼ p1

q1

�
1þ

�
p2

p1

−
q2
q1

�
M2

k2

�
: ðB3Þ

It is convenient to separate out the GR limit explicitly by
writing p1=q1 ¼ 1þ Aγ:

γðyÞ ¼ 1þ Aγ

	
1þ

�
p2

p1

−
q2
q1

��
1þ Aγ

Aγ

�
y



ðB4Þ

which is our desired form with

M2
γ ¼

�
p2

p1

−
q2
q1

��
1þ Aγ

Aγ

�
;

M2 ¼
�
p2

p1

−
q2
q1

�
p1

p1 − q1
M2: ðB5Þ

The expressions for Aμ andMμ are entirely analogous, with
the simple replacement qi → ti.
One may be concerned that, given the fairly small lower

bound found on the length scale M−1 in Sec. V, we cannot
guarantee that the entire extent of a galaxy survey satisfies
the conditionM ≤ k. However, Eq. (B5) makes it clear that
the true length scale (M−1) and the parameter we constrain
(M−1

γ ) are related by an unknown factor. A factor of order
unity here would be enough to push the true scale above the
reach of galaxy surveys, so that the condition M ≤ k is
always satisfied. The error associated with dropping the
higher-order terms in Eq. (B1) will not change our
estimates by orders of magnitude, which is the only
precision we are aiming for in the generalized analysis
of this paper.

APPENDIX C: CONVERSION OF fμ;γg TO f ~μ;Σg
We reproduce here the relationship between the

fμ; γg theory-convenient parametrization and the f~μ;Σg
observations-convenient one,

~μða; kÞ ¼ μða; kÞ
γða; kÞ ;

Σða; kÞ ¼ μða; kÞ
2

�
1þ 1

γða; kÞ
�
: ðC1Þ

We can write f~μ;Σg in the form of Eqs. (15) and (16).
The relationship to the coefficients used in the fμ; γg basis
[Eqs. (12)–(13)] is not particularly illuminating, but we
give it here for completeness (suppressing the time argu-
ment throughout):

A ~μ ¼
Aμ − Aγ

1þ Aγ
;

AΣ ¼ 1

2
ðAμ þ A~μÞ; ðC2Þ

M2
~μ ¼

AμM2
μð1þ AγÞ − AγM2

γð1þ AμÞ
ðAμ − AγÞð1þ AγÞ

; ðC3Þ

M2
Σ ¼ AμM2

μ þ A~μM2
~μ

Aμ þ A~μ
: ðC4Þ
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