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We present an implementation of the Galerkin-Collocation method to determine the initial data for
nonrotating distorted three-dimensional black holes in the inversion and puncture schemes. The numerical
method combines the key features of the Galerkin and Collocation methods which produces accurate initial
data. We evaluated the ADMmass of the initial data sets, and we have provided the angular structure of the
gravitational wave distribution at the initial hypersurface by evaluating the scalar Ψ4 for asymptotic
observers.
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I. INTRODUCTION

The full 3D evolution of the Einstein field equations
figures as the most-challenging task for numerical relativity
despite the progress achieved so far [1]. In order to evolve
any 3D code, one needs to specify the initial data represent-
ing a physically relevant system. Among all possible
configurations, those involving black holes are of interest.
The strong gravitational fields produce the ideal arena in
which the fully general relativistic effects take place.
In this direction, there is a class of the black hole initial

data known as distorted black holes that Bernstein et al.
[2] introduced. They assumed the axisymmetric initial
that consists in a black hole with or without rotation in
interaction with a cloud of gravitational waves of variable
intensity about the black hole. Later, Brandt et al. [3] relaxed
the axisymmetry and considered the most general three-
dimensional distorted black holes. An important motivation
in establishing and evolving distorted black holes is to
reproduce the late stages of binary black hole coalescence. In
addition, the dynamics of distorted black holes can provide a
simple framework to study in detail the efficiency of
gravitational wave extraction, together with the determina-
tion of wave templates perceived by a distant observer.
Recently, we have applied the Galerkin-Collocation

spectral method [4] to determine accurately two initial
data sets for numerical relativity: pure Brill waves, and
axisymmetric nonrotating distorted black holes. These
problems were considered previously in the realm of
traditional pseudospectral [5] and finite difference methods
[6]. Several relevant works dealing with pseudospectral

codes for the determination of single black hole initial data
can be found in Refs. [7–11].
There are two main strategies to describe the initial data

sets for single and multiple black holes. We mention the use
of isometry conditions at the inner boundaries in order to
represent the black holes throats [2]. Another approach is
the puncture method proposed by Brandt and Brugmann
[12]. This method proved to be very effective in describing
initial data for multiple black holes, in particular binary
black hole systems. Basically, it consists in splitting the
conformal factor of the spatial metric into singular and
nonsingular terms. Brown and Lowe [13] applied the
puncture method for the determination of distorted black
hole spacetimes with the implementation of adaptive mesh
refinement in their finite difference code to solve the elliptic
equation resulting from the Hamiltonian constraint. As they
have pointed out, it was necessary to perform the compu-
tation on a large grid with high resolution near the black
hole. The puncture data for binary black holes or neutron
stars using single and multidomain spectral methods were
considered by Grandclement et al. [14], Ansorg et al.
[8,15,16], Pfeiffer [9,17], Foucart et al. [18], Ruchlin et al.
[19], Lovelace et al. [20] and Koutarou et al. [21].
The main goal of the present paper is to apply the

Galerkin-Collocation method [4,22,23] to obtain three-
dimensional distorted black hole initial data sets. We have
developed algorithms in the realm of the inversion method
and the puncture method with domain decomposition. We
have organized the paper as follows. Section II presents
briefly the basic equations of the 3þ 1 formulation for the
initial data problem in both inversion and puncture meth-
ods. Section III is devoted the describe the numerical
implementation of the Galerkin-Collocation method in both
methods, where the choice of basis functions that satisfy the
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boundary conditions constitutes the cornerstone of the
codes. The spherical harmonics are the most natural basis
functions for the angular domain, whereas the radial basis
functions are expressed as suitable linear combinations of
the Chebyshev polynomials. The condition of inversion
symmetry had to be satisfied by imposing a relation
between the unknown modes. We have implemented the
puncture method with a simple version of the domain
decomposition that consists in dividing the spatial domain
into several regions, wherein each region we solve the
Hamiltonian constraint and match these solutions across
the domains. Section IV shows the convergence tests
together with the asymptotic behavior of the spin-weighted
scalar Ψ4 which provides the pattern of the gravitational
field associated to the distorted black hole at the initial
slice. Finally, in Sec. V we make some concluding remarks.

II. THE INITIAL DATA PROBLEM:
BASIC EQUATIONS

The basic equations for the initial data we are going
to solve arise from the 3þ 1 formulation [24,25] of the
Einstein’s field equations. The initial data cannot be speci-
fied arbitrarily, but it must satisfy in vacuum four constraint
equations given by

ð3ÞRþ K2 − KijKij ¼ 0; ð1Þ
ð3Þ∇jðKij − KγijÞ ¼ 0; ð2Þ

where γij and Kij are the metric and extrinsic curvature of
the three-dimensional spacelike hypersurfaces that foliate
the spacetime, respectively. All quantities are evaluated
on the three-dimensional hypersurfaces, and K ¼ γijKij.
These four equations are known as the Hamiltonian and
momentum constraints, respectively.
Following Brandt et al. [3] we are going to consider the

initial data at the moment of time symmetry, meaning that
the extrinsic curvature is zero, Kij ¼ 0 at the initial slice or
hypersurface. In this case, three constraint equations vanish
identically remaining the Hamiltonian constraint ð3ÞR ¼ 0
which fixes the three-metric or initial data. It is appropriate
to follow the York-Lichnerowicz [25] approach expressing
the metric γij in conformal form,

γij ¼ Ψ4γ̄ij; ð3Þ

where Ψ is the conformal factor and the metric γ̄ij are
given. The Hamiltonian constraint becomes

∇̄2Ψ −
1

8
R̄Ψ ¼ 0: ð4Þ

Here, ∇̄2 and R̄ are the Laplace operator and the Ricci
scalar associated to the metric γ̄ij, respectively. Therefore,

the Hamiltonian constraint (1) becomes an elliptic equation
for the conformal factor Ψ whose solution determines the
initial data or the initial metric γij.
The metric of the initial hypersurface corresponding to a

three-dimensional distorted black hole is expressed as [2,3]

ds2 ¼ Ψ4½e2qðdr2 þ r2dθ2Þ þ r2sin2θdϕ2�; ð5Þ
where the function q ¼ qðr; θ;ϕÞ represents the distribu-
tion of gravitational wave amplitude [26] that satisfies
certain boundary conditions to ensure the regularity and
the asymptotic flatness of the metric. These boundary
conditions are

qðr; 0;ϕÞ ¼ qðr; π=2;ϕÞ ¼ 0; lim
r→∞

q ¼ Oðr−2Þ: ð6Þ

We have considered the gravitational wave amplitude
distribution function introduced by Bernstein et al. [2],

qðr; θ;ϕÞ ¼ A0sinnθ
h
e−ð

ηþη0
σ Þ2 þ e−ð

η−η0
σ Þ2

i
ð1þ ccos2ϕÞ;

ð7Þ

where A0 denotes the amplitude of the Brill wave [26], the
free parameter c indicates the deviation from axisymmetry,
η ¼ lnðr=aÞ and n ≥ 2 is an even integer; η0, σ are
constants associated to the position and width, respectively,
of the Brill wave.
The conformal factor must satisfy the condition

Ψ ¼ 1þM
2r

þOðr−2Þ ð8Þ

at r → ∞ as a consequence of the Robin boundary
condition asymptotically, and parameter M is the ADM
mass. The inner boundary is placed at the throat of the
black hole and satisfies the isometry condition,

�∂Ψ
∂r þ Ψ

2a

�
r¼a

¼ 0; ð9Þ

where a ¼ M0=2, andM0 is the mass of the black hole that
results from setting q ¼ 0. Therefore, the Bernstein data
sets are obtained after solving the Hamiltonian constraint in
the region r ≥ a satisfying the boundary conditions (6)
and (8).
An alternative way of constructing isometric distorted

black hole data sets is provided by the so-called puncture
method [12]. The central idea of the puncture method is to
split the conformal factor into singular and nonsingular
terms, and to consider the whole spatial domain instead of
being restricted to the region outside the throat of the hole.
Accordingly, the conformal factor is written as

Ψ ¼ uþ m
2r

; ð10Þ
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where m is a new parameter of the method. Notice that the
term m=2r is singular at the origin, whereas the function u
is the nonsingular term.
We present the Hamiltonian constraint expressed in

function of u after substituting the decomposition (10)
into Eq. (4), which results in

∇̄2u −
1

8
R̄u ¼ m

16
R̄: ð11Þ

This equation is identical to Eq. (4) with an addition source
term 16m=R̄. Brown and Lowe [13] have shown that the
data sets obtained after solving Eq. (11) satisfy automati-
cally the isometry condition ifm ¼ M0 ¼ 2a. Furthermore,
it is possible to generate initial spacetimes that do not
satisfy the isometry condition by setting m ≠ M0.

III. THE NUMERICAL SCHEME

A. The inversion method

We follow the procedure we have employed in Ref. [4] to
deal with the axisymmetric distorted black hole data sets.
The starting point is to establish an approximate expression
for the conformal factor given by

Ψaðr; θ;ϕÞ ¼ 1þ
XNx;Ny

k;l¼0

Xl

m¼−l
cklmχkðrÞYlmðθ;ϕÞ; ð12Þ

where cklm represents the unknown modes and Nx, Ny are
the truncation orders that limit the number of terms in the
above expansion. The angular patch has the spherical
harmonics, Ylmðθ;ϕÞ, as the basis functions, whereas the
radial basis functions, χkðrÞ, are the same used for the
axisymmetric case,

χkðrÞ ¼
1

2
ðTLkþ1ðrÞ − TLkðrÞÞ; ð13Þ

where the rational Chebyshev polynomials TLkðrÞ are
defined according to [27]

TLkðrÞ ¼ Tk

�
x ¼ r − a − Lr

r − aþ Lr

�
; ð14Þ

where TkðxÞ is the traditional Chebyshev polynomials. The
radial domain a ≤ r < ∞ is equivalent to −1 ≤ x ≤ 1 (see
Fig. 1) with Lr being the map parameter whose convenient
choice improves the accuracy of the approximate solution.
It can be shown that χkðrÞ ¼ Oðr−1Þ as r → ∞ reproduces
the boundary condition Ψðr; θÞ ¼ 1þOðr−1Þ.
The spherical harmonics are complex functions implying

that the modes cklm must be complex, but they satisfy
certain symmetry relations in order to produce a real
conformal factor. These symmetry relations are

c�kl−m ¼ ð−1Þ−mcklm; ð15Þ
since Y�

l−m¼ð−1Þ−mYlm. As a consequence, the total num-
ber of independent unknown coefficients is ðNx þ 1Þ×
ðNy þ 1Þ2.
The inversion symmetry condition (9) is satisfied in an

approximate way according to
��∂Ψ

∂r þ
Ψ
2a

�
r¼a

;Ylm

�
¼
Z
Ω

�∂Ψ
∂r þ

Ψ
2a

�
r¼a

Y�
lmðθ;ϕÞdΩ

¼ 0; ð16Þ

for all l ¼ 0; 1;…; N, m ¼ −l;…; l. The integrals
are evaluated using quadrature formulas, which is
typical of the G-NI (Galerkin with numerical integration)
method [28]:

FIG. 1. The angular variables ðθ;ϕÞ cover the surface of the sphere, or the subdomain r ¼ constant (figure on the top). We have
covered the entire spatial domain with the coordinates ðx; y;ϕÞ. We have shown in the left and right panels the subdomains x ¼ constant
(r ¼ constant) and ϕ ¼ constant, respectively. Notice that the spatial infinity (r → ∞) is placed at x ¼ 1. The initial data has equatorial
plane symmetry due to the form of the gravitational wave amplitude with n even [see Eq. (9)] (0 ≤ θ ≤ π=2 or −1 ≤ y ≤ 1). In addition,
the angular dependence on ϕ allows us to consider only the patch 0 ≤ ϕ ≤ ϕ=2.
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Z
Ω

�∂Ψ
∂r þ Ψ

2a

�
a
Y�
lmðθ;ϕÞdΩ≃ XN1;N2

j;k¼0

�∂Ψ
∂r þ Ψ

2a

�
ða;θj;ϕkÞ

× Y�
lmðθj;ϕkÞwjvk ¼ 0;

ð17Þ

where ðθj;ϕkÞ with j ¼ 0; 1;…; N1, k ¼ 0; 1;…; N2,
respectively, are the collocation points on the angular
domain and given by

θj¼ arccosðyjÞ; and yj¼−1; zeros of
dP2N1

dy
; 1 ð18Þ

ϕk ¼
2πk

N2 þ 1
: ð19Þ

The quantities wj, vk are the corresponding weights [29],
and we have chosen N1 ¼ N2 ¼ 2Ny for better accuracy in
the calculation of the integrals (see also Refs. [23,30]). We
have obtained ðNy þ 1Þ2 linear algebraic relations for the
unknown coefficients cklm from (17) that can be solved to
express the ðNy þ 1Þ2 coefficients cNxlm in function of the
remaining ones. Therefore, we ended up with a total of
Nx × ðNy þ 1Þ2 independent coefficients. The use of the
new coordinates x, y together with ϕ covers the entire
spatial domain as illustrated in Fig. 1.
The residual equation associated to the Hamiltonian

constraint is obtained by substituting the approximate
conformal factor Ψðr; θ;ϕÞ, into Eq. (4). We represent this
equation by Resðr; θ;ϕÞ recognizing that it does not vanish
identically due to the approximated conformal factor. Next,
the coefficients are determined such as to force the residual
equation to zero in an approximate sense [31] as we have
done with the inversion symmetry condition. Then, it
follows that

hRes; ξkðrÞYlmi ¼
Z

∞

a
ξkðrÞdr

×
Z
Ω
Resðr; θ;ϕÞY�

lmðθ;ϕÞdΩ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ReslmðrÞ

¼ 0;

ð20Þ
where the ξkðrÞ are known as the test functions [31], and
l¼0;1;…;Ny, m ¼ −l;−lþ 1;…; l and k ¼ 1; 2;…; Nx.
As before we have evaluated the integrals over the angular
domain using the Gauss quadrature formulas, or

ReslmðrÞ ≈
XN1;N2

j;k¼0

Resðr; θj;ϕkÞY�
lmðθj;ϕkÞwjvk: ð21Þ

Now, by choosing test functions as delta of Dirac functions
ξkðrÞ ¼ δðr − rkÞ, where rk represents the collocation

points on the radial patch, we obtain the set of equations
for the independent coefficients cklm expressed as

hRes; ξkðrÞYlmi ¼ ReslmðrkÞ ¼ 0; ð22Þ

where k ¼ 1; 2;…; Nx. The radial collocation points rk are

rk ¼ aþ Lr
ð1þ xkÞ
1 − xk

; where

xk ¼ cos

�
kπ
Nx

�
: ð23Þ

The set of equations (22) has Nx × ðNy þ 1Þ2 linear and ill-
conditioned algebraic equations for the same number of
unknown coefficients cklm. The preconditioning technique
(see Ref. [7] and references therein) allows one to reduce
the number of iterations in solving ill-conditioned linear
systems especially those with an enormous number of
equations. In the present case we have reduced further
the number of independent coefficients by taking into
account the symmetries of the gravitational wave amplitude
[cf. Eq. (7)]. Therefore, the resulting equations are solved
using standard linear solvers of MAPLE or MATLAB,
determining the coefficients and consequently the approxi-
mate conformal factor.

B. The puncture method

For the Galerkin-Collocation implementation of punc-
ture method it is likewise necessary to establish an
approximate expression for the function uðr; θ;ϕÞ. The
fulfillment of the Robin condition implies that asymptoti-
cally u ¼ 1þOðr−1Þ, and due to the nonsingular nature of
u, it follows that

uaðr; θ;ϕÞ ¼ 1þ
XNx;Ny

k;l¼0

Xl

m¼−l
cklmχkðrÞYlmðθ;ϕÞ: ð24Þ

This expression is identical to the approximate conformal
factor given by Eq. (12), where again the cklm represents
the unknown modes, Nx, Ny are the truncation orders,
and the spherical harmonics are the angular basis functions.
The radial basis functions are given by Eq. (12), but the
rational Chebyshev polynomials are given by

TLkðrÞ ¼ Tk

�
x ¼ r − Lr

rþ Lr

�
; ð25Þ

in order to cover the whole radial domain 0 < r < ∞ being
equivalent to −1 < x < 1.
The determination of the coefficients cklm follows

the same steps we have devised previously. Since we
are interested in the isometric data sets, we have set
m ¼ 2a [13].
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The domain decomposition technique [9,27] can be
implemented more naturally in the scheme of the puncture
method. It consists in dividing the spatial domain into two
or more distinct regions, each one with approximate
expressions for the function u. We present here a simple,
but efficient version of the domain decomposition by
establishing two regions: the first region D1∶ 0 < r ≤ r0
and the second region defined by D2∶ r ≥ r0. In Fig. 2 we
present the general scheme of the domain decomposition
viewed in the plane ðr; θÞ, where the bold line corresponds
to the boundary r ¼ r0 separating the regions D1 and D2.
Naturally, the junction conditions,

uð1Þðr0; θ;ϕÞ ¼ uð2Þðr0; θ;ϕÞ;
∂uð1Þ
∂r

����
r0

¼ ∂uð1Þ
∂r

����
r0

; ð26Þ

must be satisfied at the boundary r ¼ r0. Numerically these
relations are approximated, in the same way, as described
by Eqs. (16) and (17). In Table I, we summarize the
approximate functions u at these regions in which the radial
basis functions are chosen conveniently in each region,
whereas the angular basis functions remain the same. These
expansions have the spherical harmonics as the angular
basis functions with the same truncation order Ny, but the
truncation orders of the radial sector may be different in
each region.

IV. NUMERICAL RESULTS: CONVERGENCE
TESTS, ADM MASS AND THE ANGULAR

PATTERN OF GRAVITATIONAL RADIATION

We present compelling numerical experiments showing
the exponential convergence of the Galerkin-Collocation
implementation for solving the initial data problem of
three-dimensional distorted black holes using inversion and
puncture methods. We have selected three tests in this
direction: the convergence of the ADM mass, the L2 norm
associated to the difference of the solutions corresponding
to successive truncation orders, and the L2 norm associated
to the residual Hamiltonian constraint equation considering
increasing radial resolution.
We start with the calculation of the ADM masses of

distorted black holes which are evaluated more efficiently
using a formula derived by Ó Murchada and York [32],

E − Ē ¼ −
1

2π

I
∞
∇αΨdSα; ð27Þ

where E is the total energy of the hypersurface while Ē
is the energy associated to the conformal metric. As
pointed out by Bernstein et al. [2] this last term vanishes
since the conformal factor decays more rapidly than 1=r,
therefore, the ADM mass is given by the integral on the
rhs of the above equation. By inserting ∇αΨ ¼
ð∂Ψ=∂r; 1=r∂Ψ=∂θ; 1=ðr sin θÞ∂Ψ=∂ϕÞ the final expres-
sion for the ADM mass becomes

MADM ¼ − lim
r→∞

1

2π

Z
2π

0

Z
1

−1

�∂Ψ
∂r r2

�
dydϕ: ð28Þ

We have evaluated the above limit without approximating
the infinity to some finite radius r ¼ rmax. This feature is a
consequence of defining the conformal factor in the whole
spatial domain. Therefore, after obtaining the approximate
conformal factor the ADM mass could be calculated by
direct integration.
We have obtained the convergence of the ADM mass by

calculating the difference of the ADM masses correspond-
ing to approximate solutions with distinct truncation orders.

FIG. 2. Illustration of the regions D1 and D2 viewed from the
plane ðr; θÞ, where the bold line represents the boundary r ¼ r0.

TABLE I. Approximate functions uðr; θ;ϕÞ defined at the
regions D1 and D2. Notice that the radial basis functions are
distinct in each region according to the boundary conditions. In
the first region, we have considered the redefined Chebyshev
polynomial functions with the map x ¼ 2r=r0 − 1 that connects
0 < r ≤ r0 to −1 < x ≤ 1. In the second region, we have used the
same radial basis function defined for the inversion method.
Although not indicated explicitly, we have adopted Nð1Þ

x and Nð2Þ
x

as the radial truncation orders for the radial expansion in the first
and second regions, respectively.

D1∶ 0 < r ≤ r0 D2∶ r ≥ r0

uð1Þa ðr; θ;ϕÞ ¼ 1

þP
cð1ÞklmTLkðrÞYlmðθ;ϕÞ

uð2Þa ðr; θ;ϕÞ ¼ 1

þP
cð2ÞklmχkðrÞYlmðθ;ϕÞ

Radial basis function: Radial basis function:
TLkðrÞ ¼ Tkðx ¼ 2r

r0
− 1Þ χkðrÞ ¼ 1

2
ðTLkþ1ðrÞ − TLkðrÞÞ

TLkðrÞ ¼ Tk

�
x ¼ r−r0−Lr

r−r0þLr
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To be more specific, we have fixed Ny ¼ 6 and established
that δMðNxÞ ¼ MADMðNx þ 5Þ −MADMðNxÞ. In Fig. 3
we present the exponential decay of δM for the inversion
method and the puncture method with domain decompo-

sition in which we have fixed Nð1Þ
x ¼ 30 in the first domain.

In both cases the saturation occurs at approximately Nx ¼
70 (cf. Fig. 3), and A0 ¼ σ ¼ η0 ¼ c ¼ 1, n ¼ 4, but the
puncture method with domain decomposition presents a
better convergence rate. In the case of the puncture method,
only the conformal factor defined in the second region,
r ≥ a, is used to calculate the ADMmass. The values of the
ADM masses evaluated in both methods is unaffected to
almost all significant digits. As a last comment, we have
found that the puncture method without domain decom-
position in the realm of the Galerkin-Collocation imple-
mentation is not efficient in the sense of producing a poor
convergence rate.
We have noticed that in this first round of numerical

experiments, the rate of convergence of the ADM mass is

FIG. 3. Exponential decay of δMðNxÞ ¼ MADMðNx þ 5Þ −
MADMðNxÞ for the inversion method (boxes) and puncture

method with domain decomposition (circles) with Nð1Þ
x ¼ 30.

In both cases Ny ¼ 6 is fixed, as well A0 ¼ 1, σ ¼ η0 ¼ c ¼ 1.
We have set Lr ¼ 9.0 in both methods.

FIG. 4. First: L2ðδΨÞ, inversion method. We have fixed Ny ¼ 6
and the difference corresponds to the approximate solutions with
Nx þ 5 and Nx; the error L2 is evaluated for r ≥ a. Second:

L2ðδΨÞ, Nð1Þ
x ¼ 20 (box), Nð1Þ

x ¼ 30 (circle); puncture method
with domain decomposition; Ny ¼ 6 remains fixed and the
difference corresponds to the approximate solutions with Nx þ
5 and Nx; the error L2 is evaluated for r ≥ a, i.e., the second
domain. In all cases L0 ¼ 9.0.

FIG. 5. ADM masses evaluated for the first initial data with
c ¼ −2, −1, 1, respectively, from top to bottom.
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sensitive to the choice of the map parameter Lr. In both the
inversion and the puncture method, we have found that
Lr ¼ 9.0 is the best value and adopted hereafter. The main
criterion for choosing the map parameter is to coincide it
approximately with the scale of the problem under con-
sideration (cf. Ref. [27], page 369), but some trial and error
was inevitable.
For the convergence of the L2 norm of δΨ, L2ðδΨÞ, we

have considered the approximate solutions as described
above. The calculation of L2ðδΨÞ for both the inversion and
the puncture method takes into account the region outside
the throat r ≥ a. This quantity is given by

L2ðδΨÞ ¼


1

4π

Z
2π

0

dϕ
Z

1

−1
dx

Z
1

0

δΨðx; y;ϕÞ2dy
�
1=2

;

ð29Þ

where δΨðx; y;ϕÞ is obtained from (8) after changing the
variables ðr; θÞ to ðx; yÞ according to θ ¼ arccos y and
r ¼ aþ Lrð1þ xÞ=ð1 − xÞ. We have used the property

Ψðx; y;ϕÞ ¼ Ψðx;−y;ϕÞ as a consequence of the reflec-
tion symmetry about the plane θ ¼ π=2 or y ¼ 0. The L2

norm was calculated using quadrature formulas [4], and its
exponential decay in both methods is presented in Fig. 4. In
the case of the puncture method, we have exhibited the
results for distinct, but fixed values of the radial truncation
order at the first region, namely Nð1Þ

x ¼ 20, 30. In the later
case the convergence is better.
For the sake of completeness, we have exhibited in Fig. 5

the behavior of the ADMmass in function of the amplitude
A0 for n ¼ 4, η0 ¼ 1, a ¼ 1 and c ¼ 1, −1, −2. We noticed
the same counterintuitive behavior of the ADMmass found
in Refs. [2,3], that is, MADM initially decreases when A0

increases for A0 ≥ 0.
The last numerical test is to show the convergence of the

L2 norm of Resðx; y;ϕÞ, i.e., the residual equation asso-
ciated to the Hamiltonian constraint (4). We have consid-
ered the inversion method and introduced the variables x, y
as before. We show the results in Fig. 6 corresponding to
two cases. In the first, we have fixed Ny ¼ 10 and increase
Nx for some values of the amplitude A0, namely A0 ¼ 0.01,
0.5, 1.0. Notice that L2ðResÞ achieves a limit minimum
value after some value of Nx that depends on A0. In the
second plot we have explored this aspect by fixing A0 ¼ 1,
and for each value of Ny, evaluate the norm choosing Nx

FIG. 6. Exponential decay of the L2 norm associated to the
residual equation in two situations. In the first, we have fixed
Ny ¼ 10 and increased Nx for three values of the amplitude,
A0 ¼ 1.0, 0.5, 0.01, that corresponds to the curves from up to
down. The exponential decay of the L2 norm is also observed for
fixed A0 ¼ 1 by increasing Ny and Nx until achieving the
saturation value for the combination Nx, Ny.

FIG. 7. From top to bottom we show the three-dimensional and
bidimensional polar plots (plane ϕ ¼ 0) of Ψ4 for the axisym-
metric case (c ¼ 0). The lobe structure is symmetric as expected
from the time symmetry condition imposed on the initial data.
Also, it can be seen that the quadrupole mode is dominant.
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such as to get the minimum value, according to the upper
graph. For instance, as we can see from the upper graph,
forNy ¼ 10, we setNx ¼ 13 (for A0 ¼ 1). In both cases we
have set σ ¼ η0 ¼ c ¼ 1, n ¼ 4, and the decay of the
L2ðResÞ is indeed exponential.
We now turn to the problem of gravitational waveform

extraction, whose accurate calculation is the most relevant
problem in numerical relativity. The spin-weighted scalar
Ψ4 defined in the Newman-Penrose formalism [33] pro-
vides a measure of the outgoing gravitational radiation
[34,35]. Therefore, we shall determine the pattern of
radiation perceived by a distant observer from the source
by examining the dominant terms resulting the limit r → ∞
of Ψ4. This scalar is expressed by the following projection
of the Weyl tensor Cμναβ:

Ψ4 ¼ Cμναβlμm̄νlαm̄β; ð30Þ

where lμ and m̄ν belong to the null tetrad basis adopted
by Bernstein et al. [2] and shown in the Appendix. The
complete expressions for the real and imaginary parts ofΨ4

in the initial slice are also shown in the Appendix. Taking
into account the asymptotic expression of the conformal
factor, the choices of unit lapse and zero shift, and since the
function qðr; θ;ϕÞ decays exponentially with r, we have
found that Ψ4 ∼Oðr−3Þ at the initial slice, instead the

typical decay Oðr−1Þ which characterizes the wave zone.
We attribute this behavior to the condition of time sym-
metry demanding that Kjk ¼ 0 at the initial slice. We may
recover the standard asymptotic behavior of Ψ4 at sub-
sequent slices in a dynamical setting. Notwithstanding
this fact, we can consider the dominant terms of Ψ4 for
large r as characterizing the structure of gravitational wave
distribution at the initial slice. The asymptotic expression
of Ψ4 is

lim
r→∞

r3Ψ4 ¼ −ðrΨÞ;θθ þ ðrΨÞ;θ cotðθÞ þ ðrΨÞ;ϕϕcsc2θ

þ 3i
2 sin θ

½ðrΨÞ;θϕ − ðrΨÞ;ϕ cot θ�: ð31Þ

We have considered the approximated conformal factor
with Nx ¼ 20, Ny ¼ 16 corresponding to the first initial
data and obtained the expressions for the above asymptotic
real and imaginary parts of Ψ4. Hereafter, these pieces are
denoted by Ψreal

4 and Ψim
4 , respectively. We also have set

n ¼ 4, η0 ¼ 1 and σ ¼ 1 reducing the parameter space to
ðA0; cÞ. In general, the angular distribution of Ψ4 has the
same symmetric of the conformal factor, but it depends on
the parameters ðA0; cÞ. For the sake of convenience, all
graphs correspond to A0 ¼ −1, and the parameter c can
assume one of these values: −2, −1, 0, 1. In Fig. 7 we show

FIG. 8. Sequence of three-dimensional and bidimensional polar plots (plane ϕ ¼ π=2) Ψreal
4 with c ¼ −2, −1, 1, from left to right. In

all cases A0 ¼ −1, n ¼ 4, η0 ¼ 1, σ ¼ 1 in the first initial data. The deviation from axisymmetry produces a rich multipole structure.
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the three-dimensional and bidimensional polar plots of Ψ4

for the axisymmetric case (c ¼ 0). In Fig. 8 we present a
sequence of three-dimensional and bidimensional polar
plots of Ψreal

4 . It can be seen the role of the parameter c in
changing the angular or lobe structure of the pattern. On the
other hand, the angular pattern of Ψim

4 , shown in Fig. 9,
does not change significantly with respect to c.

V. FINAL REMARKS

In this paper, we have implemented a Galerkin-
Collocation spectral algorithm to solve the Hamiltonian
constraint corresponding to three-dimensional distorted
black holes. These configurations can describe two plau-
sible astrophysical situations: the late stages of black hole
coalescence or the interaction of a black hole with a cloud
of gravitational waves.
We have solved the Hamiltonian constraint in the realm

of the inversion method as a direct generalization of the
axisymmetric case [4], and also implemented the Galerkin-
Collocation version of the puncture method. According to
this method, the black hole interior is not excised, and the
spatial domain 0 < r < ∞ is taken into consideration. We
have developed a simple version of the domain decom-
position when compared with other versions found in the
literature [7–10,13–16]. In this case, we have divided the
spatial domain into two regions, 0 < r ≤ r0 and r ≥ r0.
The numerical experiments indicated that the boundary r ¼
r0 is better placed at the black hole throat. For the sake of
comparison, we have exhibited the convergence of the
ADM mass for both, puncture with domain decomposition
and inversion methods, in Fig. 3.
In both methods the conformal factor is expressed as a

series expansion of radial and angular basis functions
constituted by, respectively, a suitable combination of the
rational Chebyshev polynomials and spherical harmonics.
With respect to the angular basis, we, metaphorically speak-
ing, are dealing with a double-edged sword. These func-
tions are the best basis on the sphere offering exponential

convergence for regular functions defined on the sphere.
On the other hand, spherical harmonics are more compli-
cated than any other basis functions because they are two
dimensional [27].
It is worth commenting the similarities and differences of

the present numerical implementation with the one by
Pfeiffer et al. [7] since it is a spectral code with similar basis
functions. The first difference is that we have adopted radial
basis functions that are suitable linear combinations of the
pure Chebyshev polynomials, instead of pure Chebyshev
polynomials of Ref. [7]. The linear combination is such
that each basis function satisfies the boundary conditions.
As pointed out by Heinrichs [36], a combination of pure
Chebyshev polynomials produces accurate results due to
lower accumulated round-off error when solving higher
order differential equations. Another difference comes
from the use of mappings. We have considered the
algebraic map [27] that is more adequate to describe
functions with algebraic asymptotic behavior, which is
the case of the conformal factor. In spite of considering
the same angular basis of Ref. [7], we have employed the
Galerkin method with numerical integration, GN-I, in
the angular domain instead of the Collocation method.
However, the Collocation method was used in the radial
domain. Finally, we point out that in Ref. [7] the spatial
domain is divided into several regions, whereas we have
considered only two regions. The simplicity is due to the
specific initial data problem we are dealing with.
We remark that the conformal factor is defined in the

entire spatial domain under consideration in each method.
This feature provides a natural and simple determination of
the ADM mass by calculating the asymptotic spatial limit
of the term r2∂Ψ=∂r [cf. Eq. (28)]. In addition, we have
examined the angular pattern associated to the dominant
term of the spin-weighted scalarΨ4 at the spatial infinity. In
the present case we have found that Ψ4 ≃Oðr−3Þ. We can
interpret such patterns as the indicators of the gravitational
waves at a large distance from the distorted black hole. The
angular patterns present a rich structure that depend upon
the parameters of the initial data, and can be understood as
gravitational-wave fingerprint distorted black holes.
The Galerkin-Collocation method is a viable alternative

to solve the initial data problem of distorted three-
dimensional black holes. The next natural direction of
the present research is to study the dynamics of distorted
black holes. There are two issues on which we will be
focusing, namely, the gravitational wave templates pro-
duced in this dynamical process and the efficiency of the
gravitational wave extraction. The previous works on the
dynamics of distorted nonrotating [37,38] and rotating
black holes [39] have not discussed in details these issues.
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FIG. 9. The structure of Ψim
4 does not change considerably

with c, A0.
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APPENDIX: NULL TETRAD BASIS
AND SCALAR Ψ 4

We present here the null tetrad basis assuming unit
lapse and zero shift on the initial slice. With the three-
dimensional metric given by Eq. (5), we have,

lμ ¼ 1ffiffiffi
2

p
�
1;

−1
Ψ2eq

; 0; 0

�
; ðA1Þ

kμ ¼ 1ffiffiffi
2

p
�
1;

1

Ψ2eq
; 0; 0

�
; ðA2Þ

mμ ¼ 1ffiffiffi
2

p
�
0; 0;

1

rΨ2eq
;

i
rΨ2 sin θ

�
; ðA3Þ

m̄μ ¼ 1ffiffiffi
2

p
�
0; 0;

1

rΨ2eq
;

−i
rΨ2 sin θ

�
: ðA4Þ

The real and imaginary parts of the scalar Ψ4 are

ΨðrealÞ
4 ¼ 1

Ψ4r2e2q

�
1

2
q;θ cotθ−

Ψ;r

Ψ
r2q;rþ

Ψ;θ

Ψ
q;θ − rq;r

−
Ψ;θθ

Ψ
−
1

2
q;θθ þ 3

Ψ2
;θ

Ψ2
þΨ;θ

Ψ
cotθ−

1

2
r2q;rr

�

−
1

Ψ4r2e2qsin2θ

�
3
Ψ2

;ϕ

Ψ2
−
1

2
q;ϕϕþ

Ψ;ϕ

Ψ
q;ϕ −

Ψ;ϕϕ

Ψ

�
;

ΨðimÞ
4 ¼−

1

Ψ4r2eq sinθ

�
−
3Ψ;θϕ

2Ψ
−
3

4
q;θϕþ

3Ψ;θ

2Ψ
q;ϕ

þ 3Ψ;ϕ

2Ψ
cotθþ 3

4
q;ϕ cotθþ

9

2

Ψ;θΨ;ϕ

Ψ2

�
: ðA5Þ
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