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Exact wormhole solutions with nonminimal Kinetic coupling
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We consider static spherically symmetric solutions in the scalar-tensor theory of gravity with a scalar
field possessing the nonminimal kinetic coupling to the curvature. The Lagrangian of the theory contains
the term (eg" + nG*")¢ ¢, and represents a particular case of the general Horndeski Lagrangian, which
leads to second-order equations of motion. We use the Rinaldi approach to construct analytical solutions
describing wormholes with nonminimal kinetic coupling. It is shown that wormholes exist only if ¢ = —1
(phantom case) and 7 > 0. The wormhole throat connects two anti—de Sitter spacetimes. The wormhole
metric has a coordinate singularity at the throat. However, since all curvature invariants are regular, there is

no curvature singularity there.
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I. INTRODUCTION

Wormholes are topological handles in spacetime linking
widely separated regions of a single universe or “bridges”
joining two different universes. Interest in these configu-
rations dates back at least as far as 1916 [1] with punctuated
revivals of activity following both the classic work of
Einstein and Rosen in 1935 [2] and the later series of works
initiated by Wheeler in 1955 [3]. More recently, a fresh
interest in the topic has been rekindled by the work of
Morris and Thorne [4], leading to a flurry of activity
branching off into diverse directions [5—7].

A fundamental property of wormhole physics is that the
existence of traversable Lorentzian wormholes as solutions
to the equations of general relativity requires exotic matter,
which possesses a negative pressure and violates the null
energy condition [4,8]. The known classical forms of
matter are believed to obey the usual energy conditions;
hence, wormholes, if they exist, should belong to the realm
of “unusual” physics. In the literature, there are several
basic approaches to construct realistic physical models of
wormbholes. First, as is known, all energy conditions are
violated by certain quantum effects, such as the Casimir
effect and Hawking evaporation (see relevant comments in
[4,9]), and so wormhole solutions can be found in semi-
classical gravity [10]. Another way is to consider hypo-
thetical forms of matter possessing exotic properties.
Various models of such kind have been considered in
the literature, among them, wormholes supported by
phantom energy [11,12], the generalized Chaplygin gas
[13], tachyon matter [14], etc. It is worth noticing that due
to the problematic nature of Lorentzian wormholes, it is
useful to minimize the usage of exotic matter, and indeed a
wide variety of wormhole solutions have been analyzed
in the literature to this effect, ranging from thin-shell
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wormbholes [15] to rotating [16] and dynamic wormhole
geometries [17].

An alternative approach in wormhole physics is based on
the fact that generalized energy conditions could be violated
in various modified theories of gravity [18]. Therefore,
wormhole geometries could be theoretically constructed
even without the presence of exotic matter but would be
sustained in the context of modified gravity. Examples of
wormhole solutions in modified theories of gravity are
manifold and, in particular, include Brans-Dicke wormholes
[19], in f(R) gravity [20], wormholes in braneworlds [21],
and in the curvature-matter coupled generalization of f(R)
gravity [22], wormholes in conformal Weyl gravity [23], etc.
(see, also, the review [7] and references therein).

A natural way to modify general relativity consists in
taking into account possible nonminimal coupling
between matter fields and the curvature, and, more
specifically, nonminimal coupling which includes deriv-
atives of dynamic quantities of matter fields. The most
general scalar-tensor theory of such type was suggested in
the 1970s in the Horndeski work [24]. Horndeski devel-
oped his theory on the basis of mathematical facts, but
later, the same results were obtained on the basis of a
more intuitive approach from Galileon’s research [25].
The simplest Lagrangian in the Horndeski theory contains
a term G*¢ ,¢ , providing nonminimal Kinetic coupling
of a scalar field to the curvature. Cosmological applica-
tions of such theory have been intensively investigated
(see Ref. [26] and references therein). Less studied is a
problem of black hole existence in the theory of gravity
with nonminimal kinetic coupling. A while ago, Rinaldi
[27] found a class of exact solutions with characteristic
features of black holes, particularly, with event horizon.
Afterwards, the Rinaldi method was applied in [28-31]
to find new particular solutions with event horizons.

In Ref. [32], we have studied wormholes in the theory
of gravity with nonminimal kinetic coupling. Solutions
describing asymptotically flat traversable wormholes have
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been only obtained by means of numerical methods.
The aim of this work is to construct exact analytical
wormhole solutions with nonminimal kinetic coupling
by using the Rinaldi method.

II. ACTION AND FIELD EQUATIONS

Let us consider a gravitational theory with nonminimal
derivative coupling given by the action [33]

5= [ atvmal g e - nGulegt b )

where g, is a metric, g = det(g,, ), R is the scalar curvature,
G, is the Einstein tensor, ¢ is a real massless scalar field,
and # is a parameter of nonminimal kinetic coupling with
the dimension of length squared. The & parameter equals £1.
In the case ¢ = 1, we have a canonical scalar field with a
positive kinetic term, and the case € = —1 describes a
phantom scalar field with a negative kinetic term.

Variation of the action (1) with respect to the metric
9w and scalar field ¢ provides the following field
equations [26]:

G, = 8nleT,, +10O,,], (2a)
leg” +nG"IV,V,¢ =0, (2b)
where
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Because of the Bianchi identity V¥G,, = 0, Eq. (2a) leads
to a differential consequence,

VT, +10,,] = 0. (5)

One can check straightforwardly that the substitution of
expressions (3) and (4) into (5) yields Eq. (2b). In other
words, the equation of motion of scalar field (2b) is the
differential consequence of the system (2a).

III. STATIC SPHERICALLY SYMMETRIC
SOLUTIONS

Let us find static spherically symmetric solutions of the
field equations (2). Under the assumption of spherical
symmetry, the scalar field is a function of the radial
coordinate r, i.e., ¢ = ¢(r), and the spacetime metric
can be taken as follows:

ds* = —f(r)dt* + g(r)dr* + p*(r)d<?, (6)

where dQ? = d6? + sin’? 0dg?*. Note that a freedom in
choosing the radial coordinate allows us to fix the form of
one of the metric functions f(r), g(r), or p(r), but at this
stage we will not do it for the sake of generality. Now,
using the above-mentioned metric and scalar field ansatz,
we can represent the field equations (2) in the following
form:

!¢l 2
Pl g)e o

ol = 99 =P") = dmny?(g = 3p%) +dmeply?y o
f g— 12mny?

2\f g

where C, is an integration constant, and w =¢'. It is
worth noting that Eq. (7a) is a first integral of the equation
of motion (2b).

Then, following Rinaldi [27], we will search for ana-
lytical solutions of the system (7) in the particular case
supposing that

Cy=0. (8)
In this case, Eq. (7a) yields

oo’ (Jj g > _ 9lg=p" = pp") + 4z (20" + pp") + dmnpp' (y*)

g — 12zny?
|

R )

This gives the following expression for the function

f(r):

f(r :%exp (—/Md;’), (10)

npp
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where C; is an integration constant. From Eq. (7b), using
the relation (9), one can derive y?:

ep°g

2(r) = — .
v 8an(ep® —n)

(11)

The scalar curvature for the metric (6) takes the follow-
ing form:

B 2 2p/f/ 2p/g/ 2p/2 4p// + f/2 f// + g/f/
p* pgf g P9 pg 29 g9f 284S
(12)

By using the relation (9), one can eliminate the function
f(r) from the expression for R. As a result, we find

R 2ep* +n) 3y (p’ g’) 3p" g
np* 2o9\p g) pg 2p*p"
_eglep® =2n)  J(ep*=n) p"(ep> —n) (13)
2n°p? 2npp'g npp”*

Formulas (10), (11), and (13) state the functions f(r),
w(r), and R(r) in terms of g(r). The equation for g(r) can
be obtained by eliminating f(r) and y(r) from Eq. (7c) by
using the relations (9) and (11):

g (1
pp'(ep” = 2n) e (np“ —3ep® + 2n>g +p?(3ep” +21)

4 ,04 p/2

et —n

—2pp" (ep® = 2n) - 0. (14)

It is worth noting that a general solution of Eq. (14) could
be obtained analytically for an arbitrary function p(r).
Depending on the sign of en, the solution takes the
following forms.

A.en>0:
p/Z(pZ _212)2
9(r) =5 (15)
(p* = 1) F(r)
8 2
F(r):3——m—p—2—|——"arctanh£. (16)
p 3 p "
B. en <0:
p2(p* +20)?
g(r) :(2+l—2)2f77(r)’ (17)
P "
8m p* 1 p
F(r) =3 ——+ -+ Larctan-. 18
(r) p —1—313]—i-parcaml’7 (18)
Here, m is an integration constant, and [, = [en|"/? is a

characteristic scale of nonminimal kinetic coupling.
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For the specified function p(r), formulas (15)—(18)
together with (10) and (11) give a solution to the problem
of g(r), f(r), and w(r) construction. Below we consider
two special examples of the function p(r).

IV. SCHWARZSCHILD COORDINATES: p(r) =r

As was mentioned above, the freedom in choosing the
radial coordinate r allows us to specify, additionally, the
form of one of the metric functions. Let us make a choice:

p(r)=r. (19)
This case corresponds to Schwarzschild coordinates, so that
r is the curvature radius of coordinate sphere r = const > 0.

Substituting p(r) = r into the formulas (10), (11), and
(15)—(18) and calculating the integral in (10), we derive the
solutions for g(r), f(r)y(r). For the first time, the solutions
in the case p(r) = r were obtained by Rinaldi [27]. Below
we briefly discuss these solutions separately, depending on
a sign of the product en.

A. en > 0. In this case, the solution reads

f(r) = CiF(r), (20)
(r? - 21,%)2
=5 21
g(r) (rz _ Z%)ZF(r) > ( )
2(,2 212
5 e ri(rr=2I)
y(r) = ; (22)
8xly (r* — 17)°F(r)
where C; is an integration constant and
F(r) =3 AL — (23)
r) =3 —-— ——+ —arctanh—.
3 r oo I,

In the limit » — 0, the solution (20) for the function f(r)
takes the asymptotical form

To compare the derived asymptotic with the Schwarzschild
solution, it is convenient to set C; = %.

Note that the expressions (20)—(22) contain the function
(I,/r)arctanhr/I,, which is defined in the domain r €

(0,7,). To continue the solution into the interval
r € (l,. o), one should make use of identity

l L L, +r

7 arctanh— = A nt— |

r 0 2r l,1 —-r

L+r
L=r
asymptotic of the function f(r) with the domain extended
to the interval (/,, c0) has a form of de Sitter solution:

and then turn to the function %ln |. At r — oo, the
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3 2

f(r)%Z—?l%

Also note that at r =1, the function %ln i”J_r:| has
n

logarithmic singularity, and that is why its domain consists
of two disconnected parts R;:0 < r <[, and R,:[, <r <
co. This implies that we have two different classes of
solutions of the form (20)—(22) which are defined inde-
pendently within separate domains R and R,.

Further, let us take into account the fact that we consider
the real scalar field, so the value y? should be nonnegative,
i.e., w? > 0. In view of this requirement, the formula (22)
imposes additional restrictions on the r domain. In par-
ticular, it should be noted that in each of the intervals R,
and R, at fixed &, a sign of the function y?(r) is defined
by a sign of F(r) and reverses where the function F(r)
reverses its sign. Hence, we can conclude that the solution
(20)—(22) cannot be considered as a solution which
describes a black hole in the theory of gravity with
nonminimal kinetic coupling.

B. en < 0. In this case, the solution reads as follows:

f0) =3O, (24)

(r* + 21%)2
g(x) = W (25)

e r(rr+25)?

2(r) = — , 26
V) = R (P B E( (26)
where
F(r)=3+ o 8m + by arctan — (27)
r) = — — - .
3 r o L,

. . .1
Now the solution contains a function %arctanf and has a
n

domain r € (0, o). In the limit » — 0, the function f(r)

yields the Schwarzschild asymptotics f(r) ~ 1 — 22, and in

the limit r — oo, the anti-de Sitter one f(r) z%+#zlz.
n

However, the obtained solution cannot be considered as an
analogue of the Schwarzschild—anti—de Sitter solution, as in
the case of m > 0, the function F(r) reverses sign at a point
r, inside the interval r € (0, o), and, hence, the value of
w? becomes negative in one of the intervals (0,r;,) or
(ry, 00) according to the sign of e.

From a physical point of view, the case m = 0 may be of
some interest. In this case, the function F(r) is everywhere
positive and regular. About a zero point, the metric
functions have asymptotics f(r) =1+ O(r*) and
g(r) =14 0(2), as well as y2(r) = ;5 (1 + 0(r2)).

T8kl

Thus, at e = 41, we obtain a static spherically symmetric
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configuration with a regular center and the anti—de Sitter
structure at infinity.

V. WORMHOLE CONFIGURATION:
p(r) =vr*+a*

In this section, we consider static spherically symmetric
configurations with the metric function p(r) of the follow-
ing form:

p(r) =7+, (28)

where a > 0 is a parameter. Then, the metric (6) reads
ds®> = —f(r)dt* + g(r)dr* + (r* + a*)dQ?. (29)

If f(r) and g(r) are everywhere positive and regular
functions with a domain r € (-0, o), then the metric
(29) describes a wormhole configuration with a throat at
r = 0; parameter a is a throat radius.

Substituting p(r) = v/r* + a?* into the formulas (11) and
(15)—(18), we derive the solutions for g(r) and y?(r) in an
explicit form. The solution (10) for f(r) contains the
indefinite integral, which in this case cannot be expressed
in terms of elementary functions. Below we consider these
solutions for each sign of the product e.

A. en > 0. In this case, the solution for g(r) is given
by the formulas (15) and (16). The solution contains the
function (1,/Vr* + a*)arctanh(v/r* + a*/1,) with the
domain that could be found from condition v + a*/
l, <1, ie, |r] <r = (I} —a*)"? At the points |r| = ry,
the function (1,/v'r* 4 a*)arctanh(v/r* + a*/1,) logarith-
mically diverges. Consequently, the metric function g(r)
guides the singular behavior near |r| = r, which makes
this solution inconsiderable from a physical point of view.

B. en < 0. In this case, by substituting p(r) = Vr*> + a*
into the formulas (17), (18), and (10), we obtain the
following solutions for the metric functions g(r) and
f(r) and the function w?(r):

_ r(r* 4+ a* +203)?
9 = E AP @+ EPEG) (30)

F(r) =
r) =
NeEe
/r r(r* 4 a* + 21;)? J
X
exXp 0 l%(r2+a2>(r2+a2 +l$)F(}’) r,
(31)
e r2(rr +a® + 212)?
V) = PP+ @+ EFFD) (32)
n n
where
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8m r* + a?
F(r)=3- +
V=3 Tmrat e
V r2 + 612 ln ’

and the integration constant C; = a in the expression for
f(r) is chosen so that f(0) = 1. The function F(r) has a
minimum at r = 0; thus, to make it everywhere positive,
one should demand F(0) > 0. Hence, one can derive the
limitation on the upper value of the parameter m:

3 a2 1
2m < a (— + 20 arctan a) , (34)

4 12 4a

where a=a/l, is the dimensionless parameter which
defines the ratio of two characteristic sizes: the wormhole
throat radius a and the scale of nonminimal kinetic
coupling /,. In the particular case of a < [,, we get
2m < a. Further, we assume that the value of m satisfies
the condition (34), and, therefore, the function F(r) is
positively definite, i.e., F(r) > 0.

Let us consider asymptotical properties of the obtained
solution. Far from the throat in the limit |r| — oo, the metric
functions g(r) and f(r) have the following asymptotics:

F 1
g(r):3p+0 )

2
;
f(r) = A%+ 0(), (35)
n
where the constant A depends on the parameters a, [,, and
m and can be calculated only numerically. Let us note that
the derived asymptotics correspond to geometry of anti—de
Sitter space with the constant negative curvature.
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In the neighborhood of the throat » = 0, we obtain

2

g(r) = Bo+0(r),

2 flry=1+0(?), (36

where

(@ +1)*3+1a* -3+ larctana)”

It is worth noticing that at the throat r = 0, the metric
function g(r) vanishes, i.e., g(0) = 0. This implies that
there is a coordinate singularity at » = 0. To answer the
question whether there is a geometric singularity at this
point, one should compute the curvature invariants for
the metric (6). In this paper, we confine ourselves to a
discussion of the scalar curvature (13). By substituting the
solution (30) into (13), one can check that the curvature
near the throat is regular: R(r) = Ry + O(r?), where the
value Ry = R(0) is cumbersomely expressed in terms of
the parameters a, [,m. Far from the throat in the limit
|r| = oo, the scalar curvature tends asymptotically to a
constant negative value, i.e., R - R, where

5430
Ro=—"—F75"
21

(37)

It is worthwhile to note that the asymptotical value R is
determined only by the characteristic scale of nonminimal
kinetic coupling /, and does not depend on a and m.
We also note that R, — —oo in the limit /, — 0.

Finally, we discuss briefly the solution (32) for y2(r).
Since F(r) > 0, hence, the condition y?(r) > 0 holds only
for e = —1. Now taking into account that the solutions (30),
(31), and (32) were obtained in the case of en < 0, we can
conclude that n > 0.

I
o

1
v
o
o

T
-10 -5

FIG. 1.
given for a = 0.3,0.5, 1.5.

Graphs for the metric functions g(r), f(r), and the scalar curvature R(r) with [, = 1, m = 0.1. Curves, from thin to thick, are
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To illustrate the performed analysis, we show numerical
solutions for ¢(r), f(r), and the scalar curvature R(r)
in Fig. 1.

VI. CONCLUSIONS

In this paper, we have explored static spherically
symmetric solutions in the scalar-tensor theory of gravity
with a scalar field possessing the nonminimal kinetic
coupling to the curvature. The Lagrangian of the theory
contains the term (eg" +nG*)¢ ¢, and represents a
particular case of the general Horndeski Lagrangian [24],
which leads to second-order equations of motion.
Previously, Rinaldi [27] found a class of exact solutions
with nonminimal kinetic coupling with characteristic fea-
tures of black holes, particularly with event horizon. In this
work, using the Rinaldi approach, we have found and
examined analytical solutions describing wormholes. A
detailed analysis revealed a number of characteristic
features of the obtained solutions. In particular,
(i) The wormhole solution exists only if ¢ = —1 (phan-
tom case) and 5 > 0.

(ii) The wormhole metric has a specific coordinate
singularity at the wormhole throat. Namely, the
metric component g,, is vanished at r = 0. However,

PHYSICAL REVIEW D 90, 124025 (2014)

there is no curvature singularity at the throat, since
all the curvature invariants stay regular.

(iii) The wormhole throat connects two asymptotical
regions with anti—de Sitter geometry of spacetime.

The stability of wormhole configurations is an important
test of their possible viability. The stability of wormholes
supported by scalar fields was intensively investigated in
the literature [34]. To answer the question—are found
scalar wormholes with nonminimal derivative coupling
stable or not—we need additional investigations, which
are in progress.

Also, in the future, we intend to explore more carefully
the coordinate singularity of the obtained wormhole sol-
ution. In particular, we plan to study the geodesic motion of
test massive and massless particles and discuss their
behavior near the wormhole’s throat.
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