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The cosmic blackbody background radiation pervades the entire Universe, and so falls into every
astrophysical black hole. The blueshift of the infalling photons, measured by a static observer, is infinite at
the event horizon. This raises a question as to whether a “firewall” of high energy density may form just
outside the horizon, or whether the effect can be attributed exclusively to a singular behavior of the static
observer’s frame at the horizon. In principle, the presence of such a firewall may alter the motion of the
infalling matter, influence the black hole evolution, or even invalidate the vacuum Einstein field equation
solution as a realistic approximation for black holes. In this paper we show by means of analytic
calculations that all these effects indeed exist, but their magnitude is typically negligibly small, even though
the matter stress tensor is divergent in the static frame at r ¼ 2M. That is not surprising because of the
divergent relation of that frame to a freely falling frame as r → 2M; however, it represents a kind of
classical analogue for the black hole complementarity principle that has been proposed for quantum effects
near a black hole. What is perhaps more surprising is the divergence of the radiation stress tensor for
massive particles moving on circular geodesic orbits for values of r approaching r ¼ 3M. However such
orbits will not occur for infalling matter in realistic accretion discs.
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I. INTRODUCTION

In this paper, we investigate several aspects of the
interplay between the Schwarzschild black hole and the
cosmic blackbody radiation (CBR). The Universe is filled
with the CBR, which was emitted from the hot big bang
era. Its present temperature is [1],

TCBR ¼ 2.73 ½°K�: ð1:1Þ
The presentHubble time, i.e. the “age of theUniverse,” is [1]

tHubble ¼ 1.37 × 1010 ½yrs�: ð1:2Þ
The “astrophysical” black holes, i.e. those about which
astrophysicists have observational data, belong to three
classes,1 depending on their observed masses M,

stellar M ∼ 10M⊙ ð1:3aÞ
intermediate M ∼ f102M⊙ − 104M⊙g ð1:3bÞ
supermassive M ∼ f106M⊙ − 1010M⊙g: ð1:3cÞ

Here M⊙ ¼ 1.99 × 1033 ½g� is the mass of the Sun.
The black hole mass M determines several characteristic

scales relevant for our discussion. In particular, for the
Schwarzschild black hole it is

sizeRG ¼ 2GM
c2

¼ 2.95 × 105
�

M
M⊙

�
½cm� ð1:4aÞ

areaAG ¼ 4πðRGÞ2 ¼ 1.10 × 1012
�

M
M⊙

�
2

½cm�2 ð1:4bÞ

time tG ¼ 4π
RG

c
¼ 1.23 × 10−4

�
M
M⊙

�
½s� ð1:4cÞ

Hawking temperatureTH ¼ ℏc3

8πGkM

¼ 6.17 × 10−8
�

M
M⊙

�
−1

½°K�

ð1:4dÞ

*maciek.wielgus@gmail.com
1The existence of the intermediate-mass black holes is neither

firmly established nor commonly accepted. The majority opinion
is against its reality. The brilliant recent estimateM ¼ 400M⊙ for
a black hole in the M82 cluster comes not from the unquestion-
able Kepler-law-based measurements (as in the stellar and
supermassive cases), but from a far less certain argument based
on scaling properties of the so-called 3:2 twin peak QPOs (see
[2,3]). Despite long-lasting and continuous efforts, no observa-
tional indications for “primordial” mini black holes with M ≪
M⊙ have been found (see e.g. [4,5]).
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Hawking powerLH ¼ ðσT4
HÞAG

¼ 9.02 × 10−22
�

M
M⊙

�
−2

½erg= sec�

ð1:4eÞ

Hawking time tH ¼ Mc2

LH
¼ 6.28 × 1067

�
M
M⊙

�
3

½yrs�

ð1:4fÞ

Eddington powerLE ¼ 4πGmpcM

σT

¼ 1.26 × 1038
�

M
M⊙

�
½erg=s� ð1:4gÞ

Eddington temperatureTE ¼
�

LE

AGσ

�
1=4

¼ 3.77 × 107
�

M
M⊙

�
−1=4

½erg=s�

ð1:4hÞ

Eddington time tE ¼ Mc2

LE
¼ 4.51 × 108 ½yrs� < tHubble

ð1:4iÞ

CBRpowerLCBR ¼ ðσT4
CBRÞAG

¼ 3.45 × 109
�

M
M⊙

�
2

½erg=s� ð1:4jÞ

CBR time tCBR ¼ Mc2

LCBR
¼ 1.64 × 1037

�
M
M⊙

�
−1

½yrs�:

ð1:4kÞ

Symbols in (1.4)–(1.4k) have their standard meaning, e.g.
G ¼ Newtońs gravitational constant, ℏ ¼ Planck’s con-
stant, σ ¼ Stefan-Boltzman’s constant, σT Thomson scat-
tering cross section. The Eddington luminosity LE is a
convenient scale for accretion radiative power—accretion
disks have their luminosities of the order or smaller than
LE, [6]. The Edington time tE estimates the time scale of a
black hole evolution due to accretion of matter: in the time
tE, a black hole will (roughly) double its mass due to
accretion.
From Eqs. (1.1)–(1.2), (1.4d)–(1.4f) and (1.4i) a well-

known conclusion yields that for the astrophysical black
holes it is

TH ≪ TCBR; tH ≫ tHubble and tH ≫ tE; ð1:5Þ
i.e. that the astrophysical black holes are much (orders of
magnitude) cooler than the thermal CBR bath in which
they are immersed, and therefore they should radiate no

Hawking radiation. Even if they would, the time scale of
their evaporation would be absurdly long—orders of
magnitude longer than the Hubble time. Thus, assuming
correctness of the standard Einstein’s general relativity, and
of the original semiclassical Hawking’s arguments which
lead to (1.4d), one may be tempted to conclude that
Hawking’s radiation plays no role for the astrophysical
black holes.
However, the issue here is more subtle. Hawking

radiation introduces a matter of principle problem of a
fundamental importance for physics: the information
paradox—with Hawking’s radiation and black hole evapo-
ration, the black hole evolution cannot be unitary [7,8].
Considerable excitement has followed a recent suggestion
that “the only solution” of the paradox may be given by a
Planck-scale (size, density) “firewall” that should form, as
it was claimed, at the black hole horizon due to both
(a) infinite blueshift of the Hawking radiation photons and
(b) their quantum entanglement.2 It was also claimed [9,11]
that the firewall would burn up any infalling object at the
horizon.
We will not discuss the issue of the quantum firewalls

here. Instead, we ask the question whether somehow similar
“classical”’ firewalls could exist. This question arises from
the very obvious remark that the crucial ingredient of the
quantum firewall arguments is the “infinite blueshift” of the
Hawking radiation at the black hole event horizon. Such an
infinite blueshift is measured by the “zero angular momen-
tum observers” (ZAMO), who are static observers in the
Schwarzschild spacetime.3 Obviously, the infinite blueshift
in the static observer’s frame occurs at the black hole event
horizon for all photons, also these which originate from
standard and familiar astrophysical situations—the infinite
bluesift is not peculiar to the quantum entanglement of
Hawking radiation. Would the infinite blueshift of these
“classical” photons form a “classical” firewall at the black
hole horizon?

2Almheiri et al. [9] argue that two standard assumptions made
in discussions of quantum properties of black holes, namely, that
(i) Hawking radiation is in a pure state and (ii) the information
carried by the radiation is emitted near the horizon, with low
energy effective field theory valid beyond some distance from the
horizon, are incompatible with a statement that (iii) the infalling
observer encounters nothing unusual at the horizon. Here we
pick up and stress just one crucial issue in their arguments—the
“infinite blueshift” at the horizon.
Other authors, e.g. Ref. [10], picked up other problems.

3The ZAMO observers are accelerated; they do not follow
geodesic lines. They are mathematically convenient, as they
naturally (but not uniquely) foliate the Schwarzschild and Kerr
spacetimes, thus providing definitions of “space,” “time,” and
“rest frame”. In addition, in the case of static spacetimes (e.g.
Schwarzschild), they embrace the Killing time symmetry, as their
trajectories coincide with the trajectories of the timelike Killing
vector. Thus they define a geometrically preferred rest frame.
Further we refer to ZAMO simply as a “static observer,” since we
limit these investigations to the static Schwarzschild spacetime.
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Here, as an example, we will only consider the CBR
photons. Not only because of their fundamental impor-
tance, but also because of their well-known properties and
of unquestionable presence. While characteristics of pho-
tons which originate due to local accretion depend primarly
on specific, unknown, local circumstances related to
specific sources, the entire Universe is pervaded the
CBRwith explicitly known properties. At the event horizon,
the CBR photons experience infinite blueshift in the static
observer’s frame. Consequently the energy density of the
radiation as measured by such observers diverges as
r → 2M. A classic firewall (shell of extremely energetic
photons) is formed in the static observer’s frame. What are
the astrophysical consequences of this? In particular, what
do freely infalling objects experience as they cross this
firewall? Is there any backreaction effect on the black hole
itself due to this hypothetical firewall of infinitely blue-
shifted CBR infalling radiation?
One should be aware of the fact that the question about a

possible importance of the CBR for the black hole
evolution due to accretion is not directly relevant for the
question of the “burning the infalling objects” aspect of the
firewall physics. Indeed, one may easily conclude from
Eqs. (1.4h), (1.1) and (1.4i), (1.4k) that the effect of the
CBR accretion is by many orders of magnitude smaller than
the ordinary Eddington accretion,

TCBR ≪ TE; tCBR ≫ tE; ðhowever tCBR ≪ tHÞ:
ð1:6Þ

Exactly like the “Hawking inequalities” (1.5) do not imply
whether the (hypothetical) Hawking firewall would burn
the infalling objects, the similar “CBR inequalities” (1.6)
do not imply whether the (hypothetical) CBR firewall
would burn (or slow down) the infalling objects. In both
cases a more detailed analysis is needed.
Motivated by this, we first performed analytic calcula-

tions of the CBR stress-energy tensor at an arbitrary
distance from the event horizon (located at r ¼ RG in
the Schwarzschild coordinates), showing that not only the
CBR temperature diverges, as expected, in the static
observer’s frame as r → 2M, but also its stress-energy
tensor in that frame diverges there. Putting this divergent
stress tensor in the field equations might perhaps lead to a
spacetime singularity; however, we show this is not the
case. We investigated the influence of the CBR on the
dynamics of material particles in the black hole vicinity as
they fall in, characterizing the classic firewall and the
energy that it can deposit on an infalling material object.
We discuss the backreaction of the radiation stress-energy
tensor on the metric, showing how it is negligible on small
time scales. Additionally, we calculate the total rate of mass
increase due to the infalling radiation and find the non-
stationary Vaidya spacetime that partly accounts for the
stress-energy tensor of the CBR field. Our conclusion is

that the classical CBR firewall “exists” in principle but has
no significant effect on freely infalling observers or on the
evolution of the black hole. This is perhaps not surprising in
that it relates to the divergent behaviour of the ZAMO rest
frame as r → 2M. However our analysis also shows that for
radial observers moving at r ¼ rC ¼ const, the CBR
energy momentum diverges as rc → 3M: this happens
quite outside the horizon at r ¼ 2M. This divergence
therefore cannot be associated with the singular properties
of the ZAMO frame as r → 2M. However infalling
particles will not ‘naturally’ move on these geodesics.
Thus this divergence also will not significantly affect real
black hole dynamics.
Black hole firewalls of any kind are not possible without

the “infinite blueshift” of photons as measured at the black
hole horizon by the static observers. In this paper we have
proven that, according to the standard Einstein general
relativity theory, no classic CBR firewalls will be formed.
Possible formation of Hawking radiation firewalls is still
under debate, despite arguments against it mentioned
earlier. Arguments presented here should convince the
firewall enthusiasts that the “infinite redshift” is only a
necessary, but NOT a sufficient condition for all postulated
firewalls, with or without the quantum entanglement.

II. CBR STRESS-ENERGY TENSOR

Let us consider a sphere of radius r0 ≫ 2M in a
Schwarzschild spacetime that emits radiation isotropically
in its rest frame. We will now compute the stress-energy
tensor Tμν of such a radiation field at any point outside of
the event horizon. This is a very symmetric problem,
closely resembling one considered by Abramowicz et al.
[12], i.e. uniformly radiating static spherical object in
the Schwarzschild spacetime. While some results can be
deduced based on the findings of [12], we choose a
systematic self-contained approach to our calculations,
performing them from first principles.
The Schwarzschild metric is given by

ds2 ¼ gttdt2 þ grrdr2 þ r2ðdθ2 þ sin2θdφ2Þ; ð2:1Þ

where the signature is ð−;þ;þ;þÞ,

gtt ¼ −ð1 − 2M=rÞ; grr ¼ −g−1tt ð2:2Þ

and G ¼ c ¼ 1. The Schwarzschild basis is
ð∂t;∂r;∂θ;∂φÞ where ∂t and ∂φ are Killing vectors
associated with temporal and azimuthal symmetries. The
orthonormal basis of the static observer is ðuS; er; eθ; eφÞ
where ei ¼ ∂i=

ffiffiffiffiffi
gii

p
and

uS ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−1=gtt

p
; 0; 0; 0Þ ð2:3Þ

is the static observer’s four-velocity.
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A. Intensity

Due to spacetime symmetries, the following quantities
are conserved along a null geodesic with tangent
four-vector u:

E ¼ −ut; L ¼ uφ: ð2:4Þ

The motion of photons in Schwarzschild spacetime is
planar because of the spherical symmetry. Assuming
without loss of generality uθ ¼ 0 and θ ¼ π=2, the equa-
tion of motion reads

1

L2

�
dr
dλ

�
2

þ UðrÞ ¼ l−2; ð2:5Þ

where λ is an affine parameter, l ¼ L=E is the rescaled
angular momentum and

UðrÞ ¼ 1 − 2M=r
r2

: ð2:6Þ

The potential UðrÞ reaches a maximum UM ¼ 1=27 at
r ¼ 3M. Let us consider a photon at some radius r0 > 3M
with dr=dλ < 0. It can have any value of l provided
l−2 ≥ Uðr0Þ, thus l ∈ ½0; 1= ffiffiffiffiffiffiffiffiffiffiffiffi

Uðr0Þ
p �. The character of

the photon’s trajectory depends on the value of l, i.e.
(i) if l−2 > UM then the photon will fall into the

black hole;
(ii) if l−2 ¼ UM then the photon can circularize at

r ¼ 3M, but the equilibrium is unstable and any
perturbation will send it either to infinity or into the
black hole;

(iii) if l−2 < UM, the photon will go to smaller radii until
it reaches a radius rm defined byUðrmÞ ¼ l−2. At rm,
dr=dλ ¼ 0. As it cannot go to smaller r (it hits the
potential barrier) it will return to bigger radii and
escape to infinity with dr=dλ > 0.

The bolometric intensity IðrÞ transported along a null
geodesic and measured by a static observer satisfies

IðrÞ
ðu · uSÞ4ðrÞ

¼ const; ð2:7Þ

where u is the photon trajectory tangent vector. Thus the
intensity measured by an observer at coordinate radius r,
coming from any direction, is

IðrÞ ¼ I∞
g2ttðrÞ

; ð2:8Þ

where I∞ is the intensity emitted on the sphere at infinity,
and as thermal radiation obeys Stefan-Boltzmann law,

I∞ ¼ σT4
CBR; ð2:9Þ

where σ denotes a Stefan-Boltzmann constant. The cosmic
background radiation temperature is presently equal to
TCBR ¼ 2.726 K, but was as large as 3000 K at the moment
of its emission, which corresponds to an intensity change of
12 orders of magnitude. The current intensity of the CBR is

I∞ ¼ 3.131 × 10−3 ½erg=cm2=s�: ð2:10Þ

The expression given in Eq. (2.8) is valid no matter whether
the photon went “straight” to the observer, or orbited many
times around the black hole. This is because the blueshift of
the infalling radiation depends only on the potential
difference between the point of emission and the point
of observation. The observer location and photon direction
seen at this location are uniquely related to the emission
location and direction on the “infinite CBR sphere” (they
are connected by a unique null geodesic). As the “infinite
CBR sphere” is radiating homogeneously and isotropically
with intensity I∞, the observer’s sky is also uniformly
bright, with the value of the intensity given by Eq. (2.8),
except for a dark circle due to the presence of the black hole
(no photons arrive from those directions). One needs to
relate the angular size of the dark sky region to the static
observer’s coordinate radius r.

B. Dark sky region

Let us label a photon reaching the observer by the angle
a ∈ ½0; π� between the er vector (pointing outwards) and the
incoming photon tangent vector (this is the same notation
as in [12], Fig. 3). This angle is defined so that a ¼ 0means
a photon moving radially away from the black hole, and
a ¼ π a photon falling radially towards the black hole.
Thus a ¼ π is the observer’s zenith. Clearly, there will be
some angle a0ðrÞ such that the sky will be uniformly bright
for a ∈ ½a0; π� and dark otherwise. Thus 2a0ðrÞ is the
perceived angular diameter of the black hole on the
observer’s local sky. Our goal is now to derive a0ðrÞ.
Let us consider a photon reaching the observer with

angle a and with some angular momentum l. Let us
consider the four-vector p equal to the projection of the
photon tangential four-vector u orthogonal to the static
observer four-velocity. It is easy to show that

p ¼ ð0; uiÞ: ð2:11Þ

Moreover

p ¼ cos aer þ sin aeφ ¼ cos affiffiffiffiffiffi
grr

p ∂r þ
cos affiffiffiffiffiffiffigφφ
p ∂φ

¼ ur∂r þ uφ∂φ ¼ dr
dλ

∂r þ gφφL∂φ: ð2:12Þ

Thus,
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cos a ¼ ffiffiffiffiffiffi
grr

p dr
dλ

¼ � ffiffiffiffiffiffi
grr

p
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l−2 −U

p
;

sin a ¼ Lffiffiffiffiffiffiffigφφ
p ;

tan a ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2UðrÞ

1 − l2UðrÞ

s
; ð2:13Þ

where the � sign is given by the sign of dr=dλ at r. If
r ≥ 3M, photons coming to the observer with dr=dλ < 0
come from infinity and correspond to bright regions of
the sky. Thus all a ∈ ½π=2; π� are bright. Photons with
dr=dλ > 0 can reach the observer provided they satisfy
l−2 < UM. Thus the limiting a0 value is given by

a0ðr ≥ 3MÞ ¼ arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðrÞ=UM

1 − UðrÞ=UM

s !
∈ ½0; π=2�:

ð2:14Þ

If r < 3M, no photons can reach the observer with
dr=dλ > 0, thus all a ∈ ½0; π=2� are dark. Photons with
dr=dλ < 0 can reach the observer provided they satisfy
l−2 > UM. Thus the limiting a0 value is given by

a0ðr < 3MÞ ¼ π − arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðrÞ=UM

1 −UðrÞ=UM

s !
∈ ½π=2; π�:

ð2:15Þ
For both cases, the sky is bright for

abright ∈ ½a0; π�: ð2:16Þ
Let us quickly investigate extreme cases. If r ¼ ∞ then the
sky is totally bright except in the direction a ¼ 0. For
r ¼ 3M, the sky is bright for a ∈ ½π=2; π�, thus half-bright.
For r ¼ 2M, sky is only bright in the direction a ¼ π (local
zenith) and dark for all other directions, see Fig. 1.

C. Explicit tensor components

Knowing the specific intensity at every radius r > 2M,
we can calculate the stress-energy tensor components in the
static observer’s frame, by integrating the intensity over the
observer’s local sky. Hereafter we denote a static observer’s
tetrad components with indices in brackets. We have

TðμÞðνÞ ¼
Z

IðrÞnðμÞnðνÞdΩ; ð2:17Þ

where n is a unit spacelike vector obeying

nðμÞ ¼ pðμÞ=pðtÞ; ð2:18Þ
and dΩ is the solid angle element. Noting there is only a
contribution from the bright region of the sky, where the

intensity does not depend on the direction, one finds all
nonzero components of TðμÞðνÞ by elementary integration
[cf. Abramowicz et al., Eqs. (3.31)–(3.36)],

TðtÞðtÞ ¼ 2πIðrÞð1þ cos a0Þ; ð2:19Þ

TðtÞðrÞ ¼ −πIðrÞsin2a0; ð2:20Þ

TðrÞðrÞ ¼ 2

3
πIðrÞð1þ cos3a0Þ; ð2:21Þ

TðθÞðθÞ ¼ TðϕÞðϕÞ ¼ 1

3
πIðrÞð2þ 3 cos a0 − cos3a0Þ:

ð2:22Þ

Based on Eqs. (2.14)–(2.15) the explicit formula for a0ðrÞ
can be given

a0ðrÞ ¼

8>>><>>>:
arcsin

�
3
ffiffi
3

p
Mð1−2M=rÞ1=2

r

�
for r ≥ 3M

π − arcsin

�
3
ffiffi
3

p
Mð1−2M=rÞ1=2

r

�
for r < 3M

ð2:23Þ
It is easy to check that the trace of the TðμÞðνÞ tensor is zero,

TðμÞðμÞ ¼ 0; ð2:24Þ

as is expected from the radiation field stress-energy tensor.
One can also see that the form of the flux component in
Eq. (2.20) corresponds simply to ∇μðTμνηνÞ ¼ 0 (which
follows because ην is the time-symmetry Killing vector).
The behavior of the TðμÞðνÞ tensor in the close vicinity of

the horizon is of particular interest to us. The asymptotic
behavior of the components as r → 2M can be found by
utilizing Eqs. (2.19)–(2.22), evaluating the following quan-
tities in the limit of r → 2M:

2.0001 2.01 3 100 10000
0

0.5

1

1.5

2

2.5

3

r  [M]

a 0 [r
ad

]

FIG. 1 (color online). The angle a0 as a function of radius.
Dashed lines denote the location of the photon orbit, where the
dark sky region extends to half of the local sky.
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TðtÞðtÞjgttj →
27

4
πI∞; ð2:25Þ

TðtÞðrÞjgttj → −
27

4
πI∞; ð2:26Þ

TðrÞðrÞjgttj →
27

4
πI∞; ð2:27Þ

TðθÞðθÞ ¼ TðϕÞðϕÞ →
�
3

2

�
6

πI∞: ð2:28Þ

Hence TðtÞðtÞ, TðtÞðrÞ and TðrÞðrÞ are divergent at the horizon.
Note that the asymptotic relation between the tensor
components at the horizon corresponds to a point-source
stress-energy tensor, for which TðtÞðtÞ ¼ TðrÞðrÞ ¼ jTðtÞðrÞj.
Since the bright sky viewing angle ðπ − a0Þ goes to zero at
the horizon, this should not be surprising. The radial
dependence of the TðμÞðνÞ tensor components, calculated
from Eqs. (2.19)–(2.22), is illustrated in Fig. 2.
Schwarzschild coordinate components Tμν can be calcu-
lated with a simple coordinate substitution.
In summary, two opposite effects are present as we

approach the event horizon. On the one hand the bolometric
intensity diverges with g−2tt . On the other hand, the viewing
angle of the bright sky region approaches zero. We found
that the intensity divergence effect dominates and that
photon density TðtÞðtÞ, photon flux TðtÞðrÞ and pressure
component TðrÞðrÞ diverge in the static observer’s ortho-
normal frame as r approaches 2M. While the single photon
infinite blueshift is a well-recognized black hole feature,
our calculations indicate the existence of a radiation field
that is divergent in terms of its energy density.

D. Stress-energy tensor in Eddington-Finkelstein
coordinates

The line element of the Schwarzschild spacetime in
Eddington-Finkelstein coordinates takes the following
form,

ds2 ¼ −
�
1 −

2M
r

�
dv2 þ 2dvdrþ r2ðdθ2 þ sin2θdϕ2Þ;

ð2:29Þ

with advanced null coordinate

v ¼ t − r − 2M lnðr=2M − 1Þ: ð2:30Þ

Unlike the Schwarzschild coordinates, Eddington-
Finkelstein coordinates penetrate the black hole horizon
and therefore are not prone to the coordinate singularity
effects at r ¼ 2M. The CBR stress-energy tensor compo-
nents can be found explicitly,

Tvv ¼ 2

3
πI∞

�
1þ cos a0
1 − 2M=r

�
3

; ð2:31Þ

Tvr ¼ 1

3
πI∞ð2 cos a0 − 1Þ

�
1þ cos a0
1 − 2M=r

�
2

; ð2:32Þ

Trr ¼ 2

3
πI∞ð1 − cos a0 þ cos2a0Þ

�
1þ cos a0
1 − 2M=r

�
: ð2:33Þ

Other components of the Tμν tensor are identical to their
counterparts in the Schwarzschild coordinates. Since the
quantity in square brackets is finite at the horizon,�

1þ cos a0
1 − 2M=r

�
→

�
3

2

�
3

; ð2:34Þ

the CBR stress-energy tensor is finite in the Eddington-
Finkelstein coordinates.
At this pointwemay definitely conclude, that the diverging

energy density implied by the Eqs. (2.19)–(2.21) is an effect
of the Schwarzschild coordinate singularity at r ¼ 2M where
the timelike Killing vector ∂t, which determines the four-
velocity of the static observers, becomes asymptotically null.
The remaining problem is to evaluate the magnitude of

the CBR-related effects in the vicinity of the horizon. Since
black holes do attract CBR photons and influence their
trajectories, some growth of the energy density in the
vicinity of the horizon should be expected even for
observers more physically meaningful than the static one.

III. RADIATION INFLUENCE ON
THE OBSERVERS

While the infinite value of the radiation energy density at
the horizon is attributed to the coordinate singularity, the
Schwarzschild coordinates are nonsingular for r ¼ 2M þ ϵ
for every ϵ > 0. Hence the energy density measured by
a static observer is arbitrarily large for adequately small
values of ϵ. Such an observer would most certainly be burnt
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FIG. 2 (color online). Radial dependance of the TðμÞðνÞ
components.
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upon an attempt to remain at rest at a very small distance ϵ
above the horizon. In this section we investigate, whether
the CBR could influence observers in some more realistic
astrophysical context.

A. TðμÞðνÞ in a boosted frame

Having calculated the static observer’s orthonormal
tetrad photon density TðtÞðtÞ, we may ask about the
component Tðt0Þðt0Þ in other local orthonormal frames. In
new coordinates corresponding to radial motion, the
radiation tensor is expressed as

Tðμ0Þðν0Þ ¼ Λðμ0Þ
ðμÞ Λ

ðν0Þ
ðνÞ T

ðμÞðνÞ; ð3:1Þ

where Λ is a Lorentzian boost matrix in the radial direction,
parametrized with velocity v. After some algebra one finds
that

Tðt0Þðt0Þ ¼ 2πI∞½ð1þ cos a0Þð1þ v2Þ þ vsin2a0�
ð1 − v2Þg2tt

; ð3:2Þ

which becomes

Tðt0Þðt0Þ ≈
27M2πI∞
r2jgttj

1þ v
1 − v

≈
1þ v
1 − v

TðtÞðtÞ ð3:3Þ

close to the horizon. The last formula is particularly
significant, since it shows that for any −1 < v ≤ 1 the
singularity of energy density remains and may disappear
only for v ¼ −1, corresponding to infalling with the speed
of light (c ¼ 1). However, for a particle in a geodesic
motion, v ¼ −1 is exactly the limit of the velocity as the
particle approaches r ¼ 2M.

B. Energy density for nonstatic geodesic observers

From Eq. (3.3) we see that the necessary condition for
the energy density measured by the observer to remain
finite at the horizon is that observer’s velocity goes to the
speed of light at the horizon relative to static observers.
Considering a freely falling observer following a geodesic
trajectory, we know this to be true. We now check whether
the free fall assumption is also a sufficient condition for
finite energy density.

1. Radial free fall

The four-velocity of an observer in a radial free-fall
motion is

uFF ¼ ½−ð1 − 2M=rÞ−1;−
ffiffiffiffiffiffiffiffiffiffiffiffi
2M=r

p
; 0; 0�: ð3:4Þ

We evaluate the energy density as

ρ ¼ Tμνuμuν: ð3:5Þ

The following formula can be derived,

ρFFðrÞ ¼ 2πI∞
1þ b0 þ 2M

3r ð1þ b30Þ − 2
ffiffiffiffiffi
2M
r

q
ð1 − b20Þ

ð1 − 2M=rÞ3 ;

ð3:6Þ

where b0 ¼ cos a0. In the limit of r → 2M this results in a
“½0=0�” type of indeterminacy, which can be evaluated to
give the finite value

ρFFð2MÞ ¼
�
3

2

�
8

πI∞; ð3:7Þ

which is only about ten times more than the CBR energy
density measured at infinity by the static observer. This is of
course very small at the present time, but not so small in
the early Universe soon after decoupling of matter and
radiation.

2. Circular geodesic

Similarly, we can evaluate the energy density as mea-
sured by an observer executing a circular geodesic orbit, i.e.
moving with four-velocity

uCO ¼ ð1 − 3M=rÞ−1=2½−1; 0; 0;M1=2r−3=2�: ð3:8Þ

The corresponding energy density

ρCOðrÞ ¼
ð1 − 2M=rÞTðtÞðtÞ þ M

r5
TðϕÞðϕÞ

1 − 3M=r
ð3:9Þ

diverges at r → 3M. In Fig. 3 the radial dependence of the
energy density for static, free-falling and circular geodesic
observers are compared. The divergence of the energy
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FIG. 3 (color online). Energy density as measured by radially
freely-falling observers (continuous line), static observers
(dashed line) and observers on a circular geodesic orbit
(dash-dot line).
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density for the circularly moving observers at r ¼ 3M is
rather dramatic. Does this mean a spacetime singularity will
occur there because of the infalling CBR radiation?
There is an apparent singularity in the four-velocity

there, Eq. (3.8), and this is the root of the problem. It occurs
because no circular timelike geodesic orbits (stable or
unstable) are allowed in Schwarzschild spacetime at or
below the photon orbit r ¼ 3M. No massive particle can
execute circular geodesic orbit at r ¼ 3M—this demands
that the particle moves with the speed of light. Indeed a
circle at r ¼ 3M is a null geodesic line, a photon trajectory.
So there really is no circular timelike geodesic orbit of this
kind. The zero in the denominator of Eq. (3.9) comes from
the four-velocity given by uCO, Eq. (3.8), and not from the
intrinsic nature of the stress-energy tensor.
Actually, coordinate singularity is not needed to expe-

rience a divergent energy density of the CBR. Considering
the situation far from the black hole, a0 ¼ 0 in Eq. (3.2),
then for jvj → 1 we also have an infinite value of Tðt0Þðt0Þ.
Such an observer would indeed experience an unbounded
energy density, but this divergence is really because of the
extreme velocity and not because of the spacetime curva-
ture. The situation is similar for the circular motion and the
r ¼ 3M limit—the infinity is more because of the extreme
velocity than because of spacetime curvature effects. So the
spacetime is not singular at r ¼ 3M, despite what Fig. 3
seems to suggest. We discuss these implications further
in Sec. V.

C. Radiation flux and saturation velocity

In reality, the test particle would not follow a geodesic
trajectory exactly. Instead, its motion would be influenced
by the radiation field, the energy of which diverges, at least
in the static observer’s frame. It takes infinite force pointing
outwards to prevent the particle from crossing the horizon
with the velocity of light, yet this may be the case for the
considered radiation field. Being singular at r ¼ 2M, it
may result in an asymptotically infinite force.
Following Abramowicz & Sharp [13], for purely radial

motion, we find the expression for the radial radiation flux

Frðr; βÞ ¼ hrμTμνuν

¼ ð1þ β2ÞTðtÞðrÞ − βðTðtÞðtÞ þ TðrÞðrÞÞ
ð1 − 2M=rÞ−1=2ð1 − β2Þ3=2 ; ð3:10Þ

where hρμ is the projection tensor and the velocity of the
particle is parametrized as

β ¼ �
�
−grrðurÞ2
gttðutÞ2

�
1=2

: ð3:11Þ

Equation (3.10) can be decomposed into two parts:
radiation pressure, proportional to TðtÞðrÞ, and radial drag,
proportional to TðtÞðtÞ þ TðrÞðrÞ. The latter disappears for a

static observer (β ¼ 0), and always acts against the motion.
In the considered context, for an infalling particle radiation
pressure acts by accelerating the particle, yet the drag has a
decelerating effect. As discussed by [12], there is a velocity
βF0 for which radiation pressure balances drag, i.e. effective
radiation four-force equals zero:

Frðr; βF0Þ ¼ 0: ð3:12Þ

The radial dependence of the βF0 is plotted with a thick
continuous line in Fig. 4. If the particle moves towards the
black hole faster than βF0, the effective radiation four-force,
dominated by the drag component, acts against the motion.
An interesting quantity is the saturation velocity βs, for
which radial radiation drag is not only strong enough to
dominate the radiation pressure term, but also balances the
effective gravity. Thus, it is the radial velocity for which the
particle does not instantaneously accelerate (strictly,
dβ=dr ¼ 0 is implied for βs ≠ 0, see [12]). Obviously
jβsj ≥ jβF0j. While it can be conceptually counter intuitive,
radiation coming from behind will be slowing down the
particle for sufficiently large β, 1 > jβj > jβsj. Exact values
of βs can be calculated from the algebraic equation

mpσTr2

2cGM
ð1 − β2sÞFrðr; βsÞ ¼ 1; ð3:13Þ

where Frðr; βÞ is given in Eq. (3.10), mp is the test particle
(proton) mass, and σT is Thomson cross section (we only
account for the Thomson scattering process). We evaluated
the saturation velocity for a black hole of 1010 solar masses
and CMB temperature equal to 103T0, T0 ¼ 2.726 K. In
Fig. 4 it is shown as the dashed line closest to the βF0 plot.
Other subsequent dashed lines represent the factor MT4

diminished by 2, 4 and 6 orders of magnitude. The
particular thing to notice is that at the horizon both βF0
and βs go to β ¼ −1. If we put the limits of TðμÞðνÞ
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FIG. 4 (color online). The zero flux βF0 line (continuous) and
the saturation velocity βs lines for M · T4, M ¼ 1010M⊙,
T ¼ 103T0 and M · T4 smaller by factor of 102, 104, 106.
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at r → 2M into Eq. (3.10), which we can do if the limit of
Fr is unique, we find

Fr ≈ −
πI∞

½ð1 − 2M=rÞð1 − β2Þ�1=2
1þ β

1 − β
: ð3:14Þ

Equation (3.14) indicates, that the radiation flux is either
zero (possible for β ¼ −1) or negative, i.e. directed in the
black hole direction—radiation pressure wins over the
radiation drag force. This means that the radiation drag
influence cannot prevent the test particle from crossing the
horizon with a velocity of light, it can only add acceleration
in the direction of motion. Hence, close to the horizon, the
energy density measured by the observer in free fall
overestimates the energy density measured by the observer
whose trajectory is influenced by the radiation field.

D. Equations of motion

Consider the test-particle equation of motion under the
radiation four-force fμ influence in a Schwarzschild space-
time, [see [12,14]]. The motion is governed simply by

fμ ¼ mpaμ ¼ mpuν∇νuμ; ð3:15Þ

where uμ is the particle’s four-velocity and aμ is the four-
acceleration. This can be rewritten as

1

rG

duμ

dτ
¼ σT

mpc3
Fμ − Γμ

νρuνuρ; ð3:16Þ

where rG ¼ GM=c2, Γμ
νρ are Christoffel’s symbols and Fμ

is the radiation flux and dτ ¼ ds=rG is a dimensionless line
element. The flux is related to the radiation stress-energy
tensor Tνρ according to

Fμ ¼ hμνTν ρuρ; ð3:17Þ

where hμν is the projection tensor orthogonal to the
particle’s four-velocity. We introduce the dimensionless
quantity

cTμν ¼ Tμν

πIðrÞ ; ð3:18Þ

to find

duμ

dτ
¼ D

�
M
M⊙

��
TCBR

2.726

�
4 hμνcTνρuρ
ð1 − 2M=rÞ2 − rGΓ

μ
νρuνuρ:

ð3:19Þ

M⊙ denotes mass of the Sun. The dimensionless quantityD
present in the above equation can be evaluated to be
equal to

D ¼ πGM⊙σTσ2.7264

mpc5
¼ 2.145 × 10−29; ð3:20Þ

while the factor �
M
M⊙

��
TCBR

2.726

�
4

ð3:21Þ

may be as large as 1020 in astrophysically relevant
situations. A crude comparison between the two compo-
nents of the right hand side of Eq. (3.19) suggests little
impact of the CBR on the particle dynamics in the black
hole vicinity. This was confirmed with numerical calcu-
lations of test particles trajectories using the codes
described in [14,15].

E. Far away from the black hole

Figure 4 shows that radiation drag dominates far away
from the black hole. At large distance from the black hole,
i.e. M=r → 0 and a0 → 0, we find the nonzero TðμÞðνÞ
components

TðtÞðtÞ ¼ 4πI∞; ð3:22Þ

TðrÞðrÞ ¼ TðθÞðθÞ ¼ TðϕÞðϕÞ ¼ 4

3
πI∞: ð3:23Þ

The flux is zero, as the radiation is isotropic. A moving
particle experiences a radiation drag force that can be
represented as

fr ¼ σTβ½TðtÞðtÞ þ TðrÞðrÞ�
cð1 − β2Þ3=2 ¼ 16πσTI∞β

3cð1 − β2Þ3=2 : ð3:24Þ

Without loss of generality we assumed here a radial motion
in our spherical coordinates system. Equation (3.11) sim-
plifies to β ¼ ur=cut. The drag force fr always acts against
the direction of motion and is proportional to the velocity β,
therefore it constitutes a motion damping effect forcing the
particles to remain at rest with respect to the CMB frame.
Under the influence of the constant force, a particle will
only accelerate until the saturation velocity βs is reached,
for which accelerating force is balanced by the drag force.
In cgs units this means that protons moving with velocity β
experience a drag force of

fr ¼ 1.164
β

ð1 − β2Þ3=2 × 10−36
�
TCBR

2.726

�
4

½dyn�: ð3:25Þ

While this force may be negligible today, shortly after the
recombination it was of order of 1 dyn per 1 mole of
hydrogen gas and could have significant impact on the gas
dynamics.
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F. Influence on the infalling observer

At this point we are able to estimate the amount of
energy deposited on the observer plunging into the black
hole by the CBR field. We take two strong assumptions to
get a rather crude overestimation. First, we assume free fall
motion of the observer (see subsection III C). Second, we
assume that the observer absorbs all of the measured CBR
energy density, which is a good approximation only very
close to the horizon, where the CBR is hotter than the
observer. Hence, we simply integrate the energy density
along the observer trajectory,

ΔQ ¼ χ

Z
Tμνuμuνdτ; ð3:26Þ

where constant χ combines specific heat and surface area of
the infalling object. Assuming free fall motion we have

dτ ¼ −
ffiffiffiffiffiffiffi
r
2M

r
dr ð3:27Þ

and

ΔQ ¼ χ

Z
r0

2M
ρFFðrÞ

ffiffiffiffiffiffiffi
r
2M

r
dr ≈

χρFFð2MÞðr0 − 2MÞ
ðr0=2MÞ−1=2 :

ð3:28Þ

The energy density ρFFðrÞ is given by the Eq. (3.6) and
plotted in Fig. 3. We are only interested in the region close
to horizon, i.e. r0 > 2M but r0 ≈ 2M. This integral is
clearly finite. It is also small—the infalling observer will
not be burned by the CBR energy, unlike the static observer
in the horizon vicinity.

IV. BACKREACTION ON
SPACETIME GEOMETRY

So far we assumed that the radiation may influence
observers, but its energy is sufficiently small that one may
neglect its backreaction effect on the metric. Hence, we
were using the Schwarzschild spacetime, being a vacuum
solution to the Einstein field equation. However, the Ricci
tensor components do not equal zero exactly, because
of the radiation field. The Ricci scalar remains zero; see
Eq. (2.24). From the Einstein field equations with Ricci
scalar set to zero, we have

Rμν ¼ κTμν: ð4:1Þ

To estimate the Ricci curvature, we calculate the following
scalar R,

R ¼ RμνRμν ¼ κ2TμνTμν ¼ κ2π2I2ðrÞWðcos a0Þ; ð4:2Þ

where κ ¼ 8π and WðbÞ is a polynomial

WðbÞ ¼ 2

3
ðbþ 1Þ4ðb2 − 4bþ 5Þ: ð4:3Þ

The WðbÞ polynomial has a zero of multiplicity 4 for
b ¼ −1, which corresponds to the location of the horizon,
a0 ¼ π. Then one finds

RðrÞ ¼ 2

3
κ2π2I2∞ðcos2a0 − 4 cos a0 þ 5Þ

�
1þ cos a0
1 − 2M=r

�
4

;

ð4:4Þ

and the factor in square brackets at the horizon limit is
evaluated in the Eq. (2.34). Overall we find that R at the
horizon of the Schwarzschild black hole is finite and obeys

Rð2MÞ ¼ 10ð3=2Þ11ð8π2I∞Þ2

¼ 4.014 × 10−118
�
TCBR

2.726

�
8

; ð4:5Þ

so it does not depend on the black hole mass.
We may evaluate the importance of the radiation to the

underlying spacetime geometry by comparing the magni-
tudes of the Ricci and Weyl tensor components of the
Riemann tensor. Because the Schwarzschild solution is a
vacuum solution, the Kretschmann scalarK∶ ¼ RabcdRabcd
simply measures the magnitude of the Weyl tensor. It has
the value

KðrÞ ¼ CabcdCabcd ¼
48M2

r6
; ð4:6Þ

thus,

Kð2MÞ ¼ 1.576 × 10−21
�

M
M⊙

�
−4
: ð4:7Þ

The ratio between these two quantities [Eq. (4.4), Eq. (4.6)]
indicates whether the Ricci component of the Riemann
tensor can be neglected in comparison to the Weyl
component and therefore whether utilizing vacuum solu-
tion to the Einstein field equations is appropriate

Rð2MÞ
Kð2MÞ ¼ 2.547 × 10−97

�
M
M⊙

�
4
�
TCBR

2.726

�
8

: ð4:8Þ

Hence, on the basis of this linear (since Tμν is evaluated
assuming Schwarzschild geometry) calculation, under no
realistic astrophysical circumstances may the energy of the
CBR radiation be large enough to have a dominant
influence on the Riemann tensor. On the contrary, even
for supermassive black hole in the Universe filled with
CBR as hot as 3000 K, the Weyl tensor dominates by at
least 30 orders of magnitude. This justifies neglecting the
CBR stress-energy tensor and describing astrophysical
black holes by vacuum Einstein field equation solutions.
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On the other hand, Eq. (4.8) shows what temperature of the
thermal radiation is necessary to invalidate this assumption.
This could be relevant for some much more energetic
astrophysical processes. Also this does not take into
account the nonlinearities of general relativity theory; this
issues is discussed further in Sec. VI.

A. Feeding the black hole with CBR

The infalling radiation will increase the mass (or energy,
using units where c ¼ G ¼ 1) of the central object. We
now calculate this effect. Following Eq. (4.23) from [16]
for the null hypersurface r0 ¼ 2M we find

ðdMÞrad ¼
Z
r0¼2M

Tr
υ
ffiffiffiffiffiffi
−g

p
dϕdθdv ¼ 108π2I∞M2dv:

ð4:9Þ

For a distant static observer, for whom dv ¼ dt, we may
cast Eq. (4.9) in the form of a mass increase rate due to the
CBR absorption,

dM
dt

¼ 108π2I∞M2: ð4:10Þ

This exact result is more than one would get from a simple
estimation (ignoring black hole influence on radiation
field),

dM
dt

≈ 4π · ð2MÞ2I∞ ¼ 16πI∞M2 ð4:11Þ

by a factor of 6.75π ≈ 20. The difference will quantitatively
influence black hole evolution models, such as the one
given in [17]. We can use Eq. (4.10) to evaluate the mass
increase rate in the cgs units

dM
dt

¼ 1.616 × 10−10
�

M
M⊙

�
2
�

T
2.726

�
4

½g=s�: ð4:12Þ

In every second supermassive black holes grow thousands
of tons just by absorbing the CBR. Nevertheless, since the
Eddington accretion rate is of order of 1017M=M⊙ ½g=s�,
quantity given by Eq. (4.12) is vanishingly small.

B. The Vaidya solution with CBR

When the evolution of the black hole on cosmological
time scales is considered, the nonstationary character of the
metric indicated by Eq. (4.12) must be taken into account.
One can represent the effect of the infalling radiation on the
spacetime metric by an approximation based on the Vaidya
solution to the Einstein field equation [18]. Although the
Vaidya solution only accounts for the photon radial motion,
neglecting their angular momentum (hence it ignores Tθθ

and Tϕϕ components), it takes the backreaction of such an
approximated radiation field into account exactly.

The line element of the Vaidya ingoing radiation metric
is given by

ds2 ¼ −
�
1 −

2MðvÞ
r

�
dv2 þ 2dvdrþ r2ðdθ2 þ sin2θdϕ2Þ;

ð4:13Þ

where v is an advanced null coordinate and MðvÞ is an
arbitrary function. Obviously it is increasing with time due
to the CBR infall. When MðvÞ ¼ M0 ¼ const, Eq. (4.13)
reduces to the Schwarzscild spacetime line element in the
Eddington-Finkelstein coordinates. Now, if we calculate
the Tvv component of the radiation stress-energy tensor in
Schwarzschild spacetime, expanding the result around
r ¼ 2M, we find

Tvv ≈ 27πI∞ðM=rÞ2: ð4:14Þ

For the Vaidya metric to take proper account of the
presence of the radiation tensor component Tvv, one needs
to fulfill

Tvv ¼
1

4πr2
dMðvÞ
dv

; ð4:15Þ

hence

dMðvÞ
dv

¼ 108π2I∞M2; ð4:16Þ

which is consistent with the finding from Eq. (4.9). When
provided with a model of CBR cooling TðvÞ, Eq. (4.16) can
easily be integrated to give the equation for the evolution of
the black hole mass. The Hawking radiation, [see [19,20]]
has been neglected, since in any known astrophysical
context (except for the distant future of the Universe), its
influence on the black hole mass evolution is many orders
of magnitude smaller than the CBR influence.

V. DISCUSSION: A SPACE-TIME SINGULARITY?

So is there a spacetime singularity? This is a surprisingly
tricky question. Arguably a singularity has the potential to
arise when nonlinear backreaction effects are taken into
account, but this may not occur in astrophysical reality.
The Einstein equation (4.1) shows that in the static

observer’s orthonormal tetrad frame,

RðμÞðνÞ ¼ κTðμÞðνÞ: ð5:1Þ

Some of the right hand terms diverge at r ¼ 2M, by
Eqs. (2.19)–(2.20), so the left hand sides diverge also.
This strongly suggest that a spacetime singularity occurs in
this frame when feedback effects are taken into account.
This is also true in any other orthonormal frame where
jvj ≠ 1 in the limit r → 2M [see Eq. (3.3)]. However it is, in
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terms of the classification of singularities [21], a nonscalar
singularity because the trace R vanishes [see Eq. (2.24)]
and the scalar RabRab is finite, see Eq. (4.5). That is why
the curvature can be finite in the radially freely falling
frame, as shown above.
In fact it is an intermediate singularity [21], that is one

that is finite in some orthonormal frames but not in others.
This is similar to what happens in some tilted homogeneous
cosmologies, [22,23], except that here the situation is
reversed: in those cases the Ricci tensor diverges in a
parallel transported orthonormal frame but is finite in a
group invariant frame; here the situation is the other way
round. The root of this issue is the divergence of parallel
propagated vectors as opposed to group invariant vectors
that always occurs when there is a bifurcate Killing horizon
[24], which of course occurs in the Schwarzschild solution.
Now it is true that if the density ρ has a finite value in one
frame ua, one can always make it appear to diverge by a
Lorentz transformation from the frame ua to a frame u0a
with velocity v that diverges to the speed of light
(jvj=c → 1). The question is whether this is just a coor-
dinate singularity, or should be regarded as a physical
singularity. That depends on whether the frame u0a can be
regarded as physically meaningful or not. If it is for
example the timelike eigenvector of the Ricci tensor, this
would be a spacetime singularity; however, that is not the
case here. The static observer’s frame is geometrically
preferred because it is defined by the timelike symmetry;
but as explained above, no object can move on those
nongeodesic orbits when close enough to R ¼ 2M, because
that would take unbounded rocket engine power (because
the acceleration of the static orbits diverges in this limit).
This cannot happen for real physical objects, so in the end
this is like a coordinate rather than physical singularity.
However this argument does not apply to tangentially

moving particles in circular orbits. The key feature here is
shown in Figure 3: the energy density diverges for particles
on circular orbits at fixed radius r as r → 3M. This is not
directly due to the event horizon and coordinate singularity
at r ¼ 2M, as this occurs further out. There exist timelike
circular geodesic orbits for 3M þ ϵ for all ϵ > 0; they are
geodesically complete orbits that represent possible particle
motion, although they are unstable. If we consider releasing
a particle at an inward angle α on such an orbit at
r ¼ 3M þ ϵ0, for α ¼ 0 one will have a circular orbit;
for α ¼ π=2, radial infall; by the existence and uniqueness
theorems for geodesics, for small enough α, there will be a
geodesic path that travels in as slowly as one cares through
all values r ¼ ϵ, 0 < ϵ < ϵ0, and the effective radiation
energy density on that path will diverge as ϵ → 0. This will
cause major heating that would indeed be experienced as a
real firewall, and so will lead to release of γ-radiation. It
will also cause refocusing of timelike geodesics, so if one
released a cloud of particles on such orbits, their density
would increase and diverge as a conjugate point is reached

at a finite affine parameter distance; this nonlinear feedback
effect has the potential to create a scalar singularity where
the energy density diverges and the particle paths end [25].
This then qualifies as a physical spacetime singularity.
However, such a particle motion is not what occurs in
realistic accretion situations: although this can occur in
principle, the cosmic censor may prevent it happening
in practice. What particles in real accretion disks do is that
they spiral in until the last stable circular orbit at r ¼ 6M
and then they fall in almost radially, when nothing
untoward occurs. They do not accumulate at r ¼ 3M,
and so do not experience this diverging energy density.
The potential singularity due to the infalling CBR radiation
is probably not realised in real astrophysical contexts. The
photon orbit divergence is related to the fact that such a
hypothetical observer would have to travel with the speed
of light to remain on the circular orbit at r ¼ 3M so the
photons that travel towards him are very much blueshifted.
Thus the very reason for the behaviour noted here is the

infinite blueshift of infalling photons at the event horizon in
the ZAMO frame, accentuated for Killing vector frames
with a tangential velocity component. We have calculated
the effect for the CBR, but it occurs for any infalling
photons—originating in accretion disk around the black
hole, incoming from the host galaxy and other galaxies.
In these cases the effect may be non-negligible; see,
e.g. Eq. (3.7).
It is clear that there are indeed potential classical firewall

effects that occur for a black hole imbedded in such a
radiation field. They may however be avoided in practice.
Susskind et al. [26] proposed a principle of black hole
complementarity for black holes when quantum effects are
taken into account: information is both reflected at the
event horizon and passes through the event horizon and
can’t escape, but no observer can experience both views.
According to an external observer, infalling information
heats up a region just above the event horizon which then
reradiates it as Hawking radiation, so information is
reflected there, while according to an infalling observer,
nothing special happens at the event horizon itself, so the
information is lost in the interior and no heating takes place
near the event horizon. We see now that in the classical case
there is also a somewhat similar kind of complementarity,
but a bit different: according to an external observer who
remains outside, infalling radiation heats up a region just
above the event horizon to the extent that the stress tensor
of matter diverges in the rest frame of such observers; they
would expect backreaction from this matter tensor to cause
a spacetime singularity there. However according to an
infalling observer, nothing special happens at the event
horizon itself, so there is no reason to believe a singularity
will occur there when backreaction is take into account,
despite the experiences of the ZAMO observers. Then the
key point is that in astrophysically realistic cases, there will
be no physical entities corresponding to ZAMO observers:
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their potential experience is not realised by any family of
particles hovering at close to the event horizon for extended
periods. The crucial difference seems to be that according
to Susskind et al., quantum effects will indeed occur
for reference frames that correspond to the physically
meaningful existence of ZAMO observers.

VI. CONCLUSIONS

We have examined the consequences of the infinite
blueshift of the cosmic background radiation photons,
measured in the ZAMO (static) frame at the horizon of
a Schwarzschild black hole. With analytic calculations we
investigated several aspects of the CBR interaction with
black hole. We found that such effects have typically little
importance for the astrophysical processes (even in the past
hot CBR era). In particular, provided backreaction effects
are not large, these photons do not form a physically
important “firewall.” However, work still needs to be done

to check that nonlinear backreaction effects associated with
circular orbits near r ¼ 3M, as discussed in the last section,
do not win the day. If some mechanism injected matter or
photons into such orbits, the effects discussed here would
not be negligible.
While we focused on the CBR field influence, the results

can be easily used to evaluate the impact of other symmetric
radiation fields, e.g. averaged radiation flux from the stars
forming a spherical galaxy with a supermassive black hole
in its center.
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