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In the case of general relativity, one can interpret the Noether charge in any bulk region as the heat
content TS of its boundary surface. Furthermore, the time evolution of the spacetime metric in Einstein’s
theory arises due to the difference (Nsur − Nbulk) of suitably defined surface and bulk degrees of freedom.
We show that this thermodynamic interpretation generalizes in a natural fashion to all Lanczos-Lovelock
models of gravity. The Noether charge, related to the time evolution vector field, in a bulk region of space is
equal to the heat content TS of the boundary surface with the temperature T defined by using local Rindler
observers and S being the Wald entropy. Using the Wald entropy to define the surface degrees of freedom
Nsur and the Komar energy density to define the bulk degrees of freedom Nbulk, we can also show that the
time evolution of the geometry is sourced by (Nsur − Nbulk). When it is possible to choose the foliation of
spacetime such that the metric is independent of time, the above dynamical equation yields the holographic
equipartition for Lanczos-Lovelock gravity with Nsur ¼ Nbulk. The implications are discussed.
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I. INTRODUCTION

A surprising connection between gravity and thermo-
dynamics was first demonstrated in the context of black
hole mechanics by the fact that one can associate an
entropy [1,2] and temperature [3,4] with black holes. It
was soon realized that a similar connection exists in the
case of several other horizons [5,6] and that the ideas have a
far greater domain of applicability [7,8]. Further work in
the past decade suggests that these results could be just the
tip of the iceberg [9–12]. Recent studies have revealed
several curious connections between gravitational dynam-
ics and horizon thermodynamics such as the following:

(i) The gravitational field equations reduce to thermo-
dynamic identities on horizons for a wide class of
gravity theories more general than Einstein gravity
[13–18].

(ii) The action describing gravity can be separated into
a bulk term and a surface term with a specific
(“holographic”) relation between them, not only in
Einstein gravity but also in a more general class of
theories [19–22]. In fact, the action functional in all
Lanczos-Lovelock gravity can be given a thermo-
dynamic interpretation [22–25].

(iii) Gravitational field equations in all Lanczos-Lovelock
models can be obtained from thermodynamic ex-
tremum principles [26,27] involving the heat density
of null surfaces in the spacetime.

(iv) Gravitational field equations reduce to Navier-
Stokes equations of fluid dynamics in arbitrary

spacetime projected on a null surface generalizing
previous results on black hole spacetime [28–30].

More recently [31], these ideas have been taken signifi-
cantly further in the context of general relativity. One of us
(T.P.) demonstrated that, in the context of general relativity,
the following results hold: (a) The total Noether charge in a
3-volume R, related to the time evolution vector field,
can be interpreted as the heat content of the boundary ∂R
of the volume. This provides yet another holographic result
connecting the bulk and boundary variables. (b) The time
evolution of the spacetime itself can be described in an
elegant manner by the equationZ

R

d3x
8π

hab£ξpab ¼ ϵ
1

2
kBTavgðNbulk − NsurÞ; ð1Þ

where hab is the induced metric on the t ¼ const surface,
the pab is its conjugate momentum, and ξa ¼ Nua is the
time evolution vector corresponding to observers with four-
velocity ua ¼ −N∇at that is the normal to the t ¼ const
surface. Nsur and Nbulk are the degrees of freedom in the
surface and bulk, respectively, of a three-dimensional
region R, and Tavg is the average Davies-Unruh temper-
ature of the boundary. (The parameter ϵ ¼ �1 ensures that
Nbulk is positive even when the Komar energy turns
negative.) This equation shows that the rate of change of
gravitational momentum is driven by the departure from
holographic equipartition, measured by (Nbulk − Nsur). The
metric will be time independent in the chosen foliation if
Nsur ¼ Nbulk, which can happen for all static geometries.
The validity of Eq. (1) for all observers (i.e., foliations)
implies the validity of Einstein’s equations. In short,
deviation from holographic equipartition leads to the time
evolution of the metric.
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In the past, virtually every result indicating the emergent
nature of gravity in the context of general relativity could be
generalized to all Lanczos-Lovelock models of gravity. It is
therefore worth investigating whether the above description
can be generalized to Lanczos-Lovelock models. This is
very important, because the expression for horizon entropy
in general relativity is rather trivial and is just a quarter of
the horizon area. In Lanczos-Lovelock models, the corre-
sponding expression is much more complex which, in turn,
modifies the expression for Nsur. It is, therefore, not clear a
priori whether our results—interpretation of the Noether
charge and Eq. (1)—will generalize to Lanczos-Lovelock
models. We will show here that these results indeed possess
a natural generalization to Lanczos-Lovelock gravity
as well.
Note that, throughout the paper, the term holographic has

been used in the primitive sense of that term, i.e., to
represent a correspondence between bulk and boundary
properties of the same theory. We also emphasize that the
results derived in this work are mathematically rigorous,
self-contained, and well within the domain of classical
gravity with a single quantum input being the Davies-
Unruh temperature. Thus, these results do not rely on any
speculative models of microscopic physics or quantum
gravity. We believe such a deeper connection possibly
exists (as discussed in several previous publications), but
the results of this paper do not depend on any such
connection.
The rest of the paper is organized as follows: In Sec. II,

we review the known results for Einstein gravity and clarify
some technical points. (In particular, in Sec. II C, we give
some explicit examples to illustrate what happens when the
same spacetime admits both static and nonstatic foliations.)
In Sec. III, we generalize all these results to Lanczos-
Lovelock models of gravity. Section III A provides a brief
introduction to Lanczos-Lovelock models and sets up the
notation, etc. In Sec. III B, we relate the Noether charge to
the surface heat content in the Lanczos-Lovelock models,
and in Sec III C, we derive the evolution equation in terms
of surface and bulk degrees of freedom. The last section
summarizes the conclusions. We work with a mostly
positive signature in D-dimensional spacetime and use
units with G ¼ ℏ ¼ c ¼ 1.

II. WARMUP: REVIEW OF THE RESULTS
FOR EINSTEIN GRAVITY

A. The foliation of spacetime

We start with a spacetime foliated by a series of spacelike
hypersurfaces each being determined by the constant value
of a scalar field tðxÞ, such that on each hypersurface
tðxÞ ¼ const. The unit normal to the constant tðxÞ hyper-
surface is ua ¼ −N∇at, which reduces to −Nδ0a when t is
considered as one of the coordinates in this spacetime. For
this spacetime foliation, we have g00 ¼ −1=N2, and

uaua ¼ −1. Given such a foliation, we can introduce a
time evolution vector ζa by the condition ζa∇at ¼ 1, which
in the coordinate system with t as a coordinate becomes
ζa ¼ δa0 . In general, we can readily obtain the following
decomposition: ζa ¼ −ðζbubÞua þ Na, with the property
Naua ¼ 0 and Na ¼ habζ

b, where hab ¼ δab þ uaub is the
projection tensor. This decomposition also introduces
another vector

ξa ¼ Nua → −N2δ0a; ð2Þ
where the last result holds in the preferred foliation. If we
impose the coordinate condition that t becomes one of the
spacetime coordinates and g0α ¼ 0, this vector reduces to
ζa. Furthermore, in static spacetimes ξa turns out to be the
timelike Killing vector. It was shown in Ref. [31] that this
vector plays a crucial role in the thermodynamic interpre-
tation and has a rich structure as far as the Noether current
and spacetime dynamics are concerned.

B. Noether charge and evolution equation
in general relativity

We begin by calculating the Noether charge for the
vector field ξa. The Noether current in general relativity can
be written in an elegant manner by using a new set of
variables ðfab; Nc

abÞ in terms of which several expressions
in general relativity become simpler. These variables,
defined as

fab ¼ ffiffiffiffiffiffi−gp
gab; Nc

ab ¼ Qcd
aeΓe

bd þQcd
beΓe

ad; ð3Þ

where 2Qab
cd ¼ ðδacδbd − δadδ

b
cÞ, were earlier used in

Refs. [32,33] and their thermodynamic interpretation was
provided in Ref. [34]. The variation of the Einstein-Hilbert
action in terms of these conjugate variables results into

δð ffiffiffiffiffiffi−gp
RÞ ¼ Rabδfab − ∂cðfabδNc

abÞ
¼ ffiffiffiffiffiffi−gp ½Gabδgab − ∇cðgikδNc

ikÞ�: ð4Þ

If the above variation results from a Lie variation with
respect to some vector field va, then from the above
expression a conserved current Ja emerges with the
property ∇aJa ¼ 0. This conserved current is the
Noether current and has the following expression:

16πJaðvÞ ¼ 2Rabvb þ gij£vNa
ij: ð5Þ

(The factor 16π is conventional when we use units with
G ¼ 1; obviously, any multiple of Ja is conserved.) Given
the fact that ∇aJa ¼ 0, we can write the Noether current in
terms of an antisymmetric second-rank tensor Jab, the
Noether potential as Ja ¼ ∇bJab. This in the case of
general relativity becomes

16πJabðvÞ ¼ ∇avb − ∇bva: ð6Þ
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Though in the above discussion the Noether current has
been derived by using the Lie variation, it should be
stressed that the same result can be obtained by using
differential geometry without ever using diffeomorphism
invariance of the action principle for gravity. This has been
shown explicitly in Ref. [31], and hence we will not repeat
the arguments here.
Next, we will calculate the Noether current for the time

evolution vector ξa. For the evaluation we shall use a
relation between the Noether current of two vector fields qa

and va such that va ¼ fðxÞqa, for arbitrary function fðxÞ.
In part 2 of the Appendix [see Eq. (A6)], it is shown that

16πfqaJaðvÞ − fðxÞqaJaðqÞg
¼ ∇bðfqaqb − gabq2g∇afÞ: ð7Þ

The usefulness of this relation can be realized by noting that
for qa ¼ ∇aϕ for some scalar ϕ the Noether current
vanishes. Thus, applying the above result for ua and then
for ξa, one can arrive at the following simple relation for the
Noether current of ξa [see part 2 of the Appendix;
Eq. (A9)]:

16πuaJaðξÞ ¼ 2DαðNaαÞ; ð8Þ

where ai ¼ uj∇jui represents the four acceleration which
satisfies the relation Diai ¼ ∇iai − a2, with Di represent-
ing the surface covariant derivative for the t ¼ const
surface. Then we can integrate Eq. (8) over the t ¼
const hypersurface with

ffiffiffi
h

p
d3x being the integration

measure and bounded by the N ¼ const surface leading
to the total Noether charge contained in the 3-volume.
Then, dividing both sides of Eq. (8) by 16π, we arrive at

Z
V
d3x

ffiffiffi
h

p
uaJaðξÞ ¼

Z
V

d3x
ffiffiffi
h

p

8π
DαðNaαÞ

¼
Z
∂V

ffiffiffi
σ

p
d2x
8π

Nrαaα; ð9Þ

which holds for any arbitrary region V of the spacetime,
with the bounding region being the Nðt;xÞ ¼ const surface
within the t ¼ const hypersurface. This allows us to
identify the vector ra to be normal to this Nðt;xÞ ¼
const hypersurface as ra ¼ ϵDaNðDbNDbNÞ−1=2 ¼
ϵhia∇iN=a, where the ϵ factor is introduced to ensure that
ra is always the outward-pointing normal. (When the
acceleration ai is outward pointing, ϵ ¼ 1; otherwise,
ϵ ¼ −1.) Here a ¼

ffiffiffiffiffiffiffiffi
aiai

p
is the magnitude of the accel-

eration. So we can also write the normal rα as rα ¼ ϵaα=a,
with a representing the magnitude of the acceleration. Then
we obtain

Nrαaα ¼ Nϵ
aα
a
aα ¼ ϵNa: ð10Þ

The Tolman redshifted Davies-Unruh temperature on the
boundary surface N ¼ const is T loc ¼ Na=2π for observers
with four velocity ua ¼ −Nδ0a. Locally free-falling observ-
ers will observe these observers moving normal to the t ¼
const hypersurface with an acceleration a, and, as a
consequence, the local vacuum will appear as a thermal
state with temperature T loc to these observers. By using all
these results, Eq. (9) can be written as

2

Z
V
d3x

ffiffiffi
h

p
uaJaðξÞ ¼ ϵ

Z
∂V

ffiffiffi
σ

p
d2x
2

�
Na
2π

�

¼ ϵ

Z
∂V

ffiffiffi
σ

p
d2x

�
1

2
T loc

�
: ð11Þ

The above result can be interpreted as twice the Noether
charge contained in the N ¼ const surface is equal to the
equipartition energy of the surface. With the interpretation
of

ffiffiffi
σ

p
=4 as entropy density, the above result also gives

Z
V
d3x

ffiffiffi
h

p
uaJaðξÞ ¼ ϵ

Z
∂V

ffiffiffi
σ

p
d2x
4

T loc ¼ ϵ

Z
∂V

d2xT locs;

ð12Þ

which is the heat density of the bounding surface. The
interpretation of

ffiffiffi
σ

p
=4 as the entropy density comes

naturally when the boundary surface becomes a horizon.
Thus, even in the most general (nonstatic) context, the
Noether charge of the time development vector in the bulk
spacetime region has a simple interpretation as the surface
heat content.
We will next obtain the dynamics of gravity in terms of

bulk and surface degrees of freedom using the Noether
current formalism. For this, we again start with Eq. (8) and
use Eq. (5) leading to

uagij£ξNa
ij ¼ Dαð2NaαÞ − 2NRabuaub: ð13Þ

Then we integrate the above expression as in the earlier
situation over the three-dimensional region R with the
boundary surface being N ¼ const within the t ¼ const
surface leading to

Z
R
d3x

ffiffiffi
h

p
uagij£ξNa

ij ¼
Z
∂R

d2x
ffiffiffi
σ

p
rαð2NaαÞ

−
Z
R
d3x

ffiffiffi
h

p
2NRabuaub; ð14Þ

where we have used d3x
ffiffiffi
h

p
as the integration measure.

Introducing the dynamics through Einstein’s equation
Rab ¼ 8πðTab − ð1=2ÞgabTÞ ¼ 8πT̄ab and dividing the
whole expression by 8π gives
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Z
R

d3x
ffiffiffi
h

p

8π
uagij£ξNa

ij ¼
Z
∂R

d2x
ffiffiffi
σ

p
rα

�
Naα

4π

�

−
Z
R
d3x

ffiffiffi
h

p
2NT̄abuaub: ð15Þ

Using Eq. (10) and introducing the Komar energy density
by the definition ρKomar ¼ 2NT̄abuaub, we obtain

1

8π

Z
R
d3x

ffiffiffi
h

p
uagij£ξNa

ij ¼ ϵ

Z
∂R

d2x
ffiffiffi
σ

p �
1

2
T loc

�

−
Z
R
d3x

ffiffiffi
h

p
ρKomar: ð16Þ

We define the surface degrees of freedom by

Nsur ≡ A ¼
Z
∂R

ffiffiffi
σ

p
d2x; ð17Þ

which is always positive. We can define an average
temperature over the surface such that

Tavg ≡ 1

A

Z
∂R

ffiffiffi
σ

p
d2xT loc: ð18Þ

Finally, we introduce the bulk degrees of freedom by the
definition

Nbulk ¼
ϵ

ð1=2ÞTavg

Z
d3x

ffiffiffi
h

p
ρKomar: ð19Þ

When the bulk region is in equipartition at the temperature
Tavg, then Nbulk represents the correct number of bulk
degrees of freedom. Here also we need the factor ϵ to ensure
that Nbulk is positive definite. We choose ϵ ¼ þ1 if the total
Komar energy within the volume is positive and ϵ ¼ −1 if
the total Komar energy in the volume is negative so as to
keep Nbulk always positive. With all these definitions,
Eq. (16) can be written in the following manner (this
corrects a minor typo in Ref. [31]):

1

8π

Z
R
d3x

ffiffiffi
h

p
uagij£ξNa

ij ¼
ϵ

2
TavgðNsur − NbulkÞ: ð20Þ

Thus, for comoving observers in static spacetime, we have
the holographic equipartition Nsur ¼ Nbulk. When the
difference (Nsur − Nbulk) is nonzero for a given foliation,
we have a departure from holographic equipartition, and
this leads to the time evolution of the metric, as is evident
from the left-hand side of Eq. (20). The implications of this
result has been discussed extensively in Ref. [31].

C. Aside: Some illustrative examples

An important aspect of the dynamical evolution equation
is the following: The structure of Eq. (20) shows that, while

it is covariant, it is foliation dependent through the
normal ui. For example, even in a static spacetime (which
possesses a timelike Killing vector field), the nonstatic
observers will perceive a time dependence of the metric and
hence a departure from holographic equipartition [so that
both sides of Eq. (20) are nonzero], while static observers
(with velocities along the Killing direction) will perceive a
time-independent metric and holographic equipartition
[with both sides of Eq. (20) being zero]. This contrast is
most striking when we study two natural classes of
observers in a static spacetime. The first set are observers
with four-velocities along the timelike Killing vector who
have a nonzero acceleration. In this foliation the metric
components are independent of time, and the left-hand side
of Eq. (20) vanishes, leading to holographic equipartition
Nsur ¼ Nbulk. But we know that any spacetime metric can
be expressed in the synchronous frame coordinates with the
line element:

ds2 ¼ −dτ2 þ gαβdxαdxβ: ð21Þ

In the synchronous frame, the observers at xα ¼ const
are comoving with four velocity: ua ¼ ð−1; 0; 0; 0Þ.
Obviously, the comoving observer is not accelerating
(i.e., the curves xα ¼ const are geodesics), and hence
the local Davies-Unruh temperature for these observers
will vanish. We want to consider Eq. (20) in two such
coordinate systems to clarify some of the issues.
Let us begin with the synchronous frame in which

Tavg → 0, TavgNsur → 0 with TavgNbulk remaining finite,
so that Eq. (20) reduces to the following form:

1

8π

Z
R
d3x

ffiffiffi
h

p
uagij£ξNa

ij ¼ −
ϵ

2
TavgNbulk

¼ −
Z
R
d3x

ffiffiffi
h

p
ρKomar: ð22Þ

The quantity uagij£ξNa
ij in an arbitrary synchronous frame

is given by

ffiffiffi
h

p
uagij£ξNa

ij ¼ 2
ffiffiffi
h

p
ðKabKab − ua∇aKÞ

¼
ffiffiffi
h

p �
gαβ∂2

τgαβ þ
1

2
∂τgαβ∂τgαβ

�
; ð23Þ

where we have used Eq. (A11). It can be shown that
equating this expression to −16πT̄abuaub correctly repro-
duces the standard time-time component of Einstein’s
equation in the synchronous frame. So, our Eq. (20) gives
the correct result, as it should.
As an explicit example, consider the Friedmann

universe for which gαβ ¼ a2ðtÞδαβ leading to the following
expressions:
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∂τgαβ ¼ 2a _aδαβ; ∂2
τgαβ ¼ ð2_a2 þ 2aäÞδαβ;

∂τgαβ ¼ −2
_a
a3

δαβ; ð24Þ

and T̄abuaub ¼ ð1=2Þðρþ 3pÞ. On substitution of
Eq. (24), in Eq. (23) we arrive at the following expression
for the time evolution of the scale factor:

ä
a
¼ −

4π

3
ðρþ 3pÞ: ð25Þ

The above equation supplemented by the equation of state
leads to the standard results. Thus in the Friedmann
universe the dynamical evolution of spacetime leads to
the dynamical evolution equation of the scale factor
sourced by the Komar energy density. Before proceeding
further, it is worthwhile to clarify the following point: In the
case of the Friedmann universe, one can also obtain [35]
the following result:

dV
dt

¼ Nsur −
X

ϵNbulk; ð26Þ

where V ¼ ð4π=3ÞH−3 is the areal volume of the Hubble
radius sphere if we define the degrees of freedom using the
temperature T ≡H=2π. (The ϵ factor has to be chosen for
each bulk component appropriately in order to keep all
Nbulk positive as indicated by the summation; see [35] for a
detailed discussion.) Though this is also equivalent to
Einstein’s equation, it is structurally quite different from
the evolution equation in Eq. (20) (and should not be
confused with it) for the following reasons: (a) The left-
hand sides of Eqs. (20) and (26) are different. (b) The
placement of ϵ’s are different in the right-hand sides of
Eqs. (20) and (26). (c) One uses the Friedmann time
coordinate in the left-hand side of Eq. (26) but still
attributes a temperature T ≡H=2π to define the degrees
of freedom. (d) Most importantly, Eq. (26) holds only for
the Friedmann universe, while Eq. (20) is completely
general.
Coming back to the consequences of Eq. (20), since this

result is true for any Friedmann universe, it is also true for
the de Sitter spacetime written in synchronous (Friedmann)
coordinates. The de Sitter metric, as seen by comoving
observers, has an explicit time dependence aðtÞ∝ expðHtÞ,
and for these observers the perceived Davies-Unruh tem-
perature vanishes. Nevertheless, Eq. (20) will of course
give the correct evolution equation. On the other hand, de
Sitter spacetime can also be expressed in static coordinates
with the line element:

ds2 ¼ −
�
1 −

r2

l2

�
dt2 þ dr2

ð1 − r2

l2Þ
þ r2ðdθ2 þ sin2θdϕ2Þ:

ð27Þ

The observers with xα ¼ const in this coordinate system are
not geodesic observers. They have the following four
velocity and four acceleration, respectively:

ua ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

r2

l2

�s
ð−1; 0; 0; 0Þ; ð28Þ

ai ¼ ð0;−ðr=l2Þ; 0; 0Þ: ð29Þ

Let us see what happens when we use this foliation.
In this case, the acceleration ai and the normal ri are

directed opposite to each other as ri is the outward-directed
normal. (Note that in the de Sitter spacetime the free-falling
observers are moving outwards, and with respect to them
the static observers are moving inwards opposite to the
outward-pointing normal.) Hence, in this situation we have
ϵ ¼ −1. The magnitude of the acceleration is

a ¼ r
l2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − r2

l2Þ
q ; ð30Þ

which is obtained from Eq. (29). Thus, the local Davies-
Unruh temperature turns out to be

T loc ¼
Na
2π

¼ r
2πl2

¼ Tavg: ð31Þ

Since the spacetime is static, ξi becomes a timelike
Killing vector and the Lie derivative of the connection
present in Eq. (20) vanishes. Therefore, in this foliation,
holographic equipartition should hold. To verify this
explicitly, we start by calculating surface degrees of free-
dom. From Eq. (17), the surface degrees of freedom turn
out to be

Nsur ≡ A ¼
Z
∂R

ffiffiffi
σ

p
d2x ¼ 4πr2: ð32Þ

Again, the bulk degree of freedom can be obtained from
Eq. (19) as

Nbulk ¼ 4π
8π
3
ρr3

rl−2
: ð33Þ

Note that the ϵ factor in the definition of the bulk degrees of
freedom keeps it positive, even though the Komar energy
density is negative. Then in de Sitter spacetime we have
8πρ ¼ ð3=l2Þ, from which we readily observe that

Nbulk ¼ ð8πρÞðl2=3Þ4πr2 ¼ 4πr2 ¼ Nsur: ð34Þ

Hence, for de Sitter spacetime in static coordinates, holo-
graphic equipartition does hold, as it should. [Alternatively,
setting Nbulk ¼ Nsur will lead to the correct identification of
l in the metric with a source by 8πρ ¼ ð3=l2Þ.]
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One can easily verify, by explicit computation, how these
results generalize to any static spherically symmetric one,
with the line element:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð35Þ

which covers several interesting metrics with horizons. In
these static coordinates, the holographic equipartition
holds, as can be easily checked. A more interesting
situation is in the case of geodesic observers in a synchro-
nous frame. To check this, we start with a coordinate
transformation: ðt; r; θ;ϕÞ → ðτ; R; θ;ϕÞ in which the var-
iables are related by the following equations:

dt ¼ dR −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − fðrÞp dr
fðrÞ ; ð36Þ

dR ¼ dτ þ drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞp : ð37Þ

In terms of these newly defined variables, the line element
reduces to the synchronous form:

ds2 ¼ −dτ2 þ ½1 − fðrÞ�dR2 þ r2dΩ2: ð38Þ

The comoving observers, having four velocities
ua ¼ ð−1; 0; 0; 0Þ, are geodesic observers with zero accel-
eration, and thus the local Davies-Unruh temperature also
becomes zero. We can use Eqs. (22) and (23) to describe the
evolution. The relevant derivatives are

∂τgRR ¼ −f0ðrÞ_r; ∂2
τgRR ¼ −f0ðrÞ̈r − f00ðrÞ_r2;

∂τgRR ¼ f0ðrÞ_r
½1 − fðrÞ�2 ;

∂τgθθ ¼ 2r_r; ∂2
τgθθ ¼ 2r̈rþ 2_r2; ∂τgθθ ¼ −

2_r
r3

;

∂τgϕϕ ¼ 2r_rsin2θ; ∂2
τgθθ ¼ ð2r̈rþ 2_r2Þsin2θ;

∂τgθθ ¼ −
2_r
r3

1

sin2θ
: ð39Þ

On substitution of these in Eq. (23), we obtain the
following differential equation satisfied by the unknown
function fðrÞ:

f00ðrÞ þ 2f0ðrÞ
r

¼ 16πT̄ττ ¼ −16πT̄0
0: ð40Þ

It can be easily verified that this is the correct field equation
in this case (see, e.g., p. 302 of Ref. [19]). For example,
if we consider the metric of a charged particle with
T̄ττ ¼ Q2=8πr4, the above equation can be solved to
give fðrÞ ¼ 1 − ð2M=rÞ þ ðQ2=r2Þ, which, of course, is
the Reissner-Nordström metric. The description being

covariant but foliation dependent is actually a very desir-
able and inevitable feature from the thermodynamical point
of view [36,37].

III. GENERALIZATION TO LANCZOS-
LOVELOCK GRAVITY

In the previous section, we have reviewed, in the context
of Einstein-Hilbert action, how the departure from holo-
graphic equipartition leads to the dynamics of the space-
time and have also shown that in static spacetime the
surface degrees of freedom equal the bulk degrees of
freedom. We will now generalize the above description
to Lanczos-Lovelock gravity.

A. A brief introduction to Lanczos-Lovelock gravity

Consider, in a D-dimensional spacetime, an action
functional which is made from the metric and the curvature
tensor but does not contain any derivatives of curvature
tensor, such that

A ¼
Z
V
dDx

ffiffiffiffiffiffi
−g

p
Lðgab; Ra

bcdÞ: ð41Þ

Let us define

Pabcd ¼
� ∂L
∂Rabcd

�
gij

; ð42Þ

which has all the algebraic properties of the curvature
tensor. We next define another tensor (which is a gener-
alization of Ricci tensor in general relativity) by

Rab ≡ PaijkRb
ijk: ð43Þ

This tensor is actually symmetric, though the result is
nontrivial to prove (for this result and more properties of
these tensors, see [38]). The variation of the action func-
tional leads to

δA ¼ δ

Z
V
dDx

ffiffiffiffiffiffi
−g

p
L

¼
Z
V
dDx

ffiffiffiffiffiffi
−g

p
Eabδgab þ

Z
V
dDx

ffiffiffiffiffiffi
−g

p ∇jδvj; ð44Þ

where we have the following expression for equation of
motion term Eab and the boundary term δva:

Eab ≡ 1ffiffiffiffiffiffi−gp
�∂ ffiffiffiffiffiffi−gp

L

∂gab
�

Rabcd

− 2∇m∇nPamnb

¼ Rab −
1

2
gabL − 2∇m∇nPamnb; ð45Þ

δvj ¼ 2Pibjd∇bδgdi − 2δgdi∇cPijcd: ð46Þ
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This is fairly general, but we impose the condition that the
field equation should be second order in the metric. Since
the quantity Pabcd involves the second derivative of the
metric, the term ∇m∇nPamnb in Eab contains the fourth-
order derivative of the metric. We can get a second-order
field equation by imposing an extra condition on Pabcd such
that

∇aPabcd ¼ 0: ð47Þ

Thus, finding an action functional which would lead to
equations of motion which are second order in the metric
reduces to finding scalars such that Eq. (47) is satisfied.
Such an action functional is unique and coincides with the
Lanczos-Lovelock Lagrangian in D dimensions given by
[39–42]

L ¼
X
m

cmLðmÞ ¼
X
m

cmðδaba2b2…ambm
cdc2d2…cmdm

Rc2d2
a2b2

…Rcmdm
ambm

ÞRcd
ab:

ð48Þ

Because of the complete antisymmetry in the indices of
the determinant tensor, we have in a D-dimensional
spacetime the following restriction: 2m ≤ D. (Otherwise,
the determinant tensor would vanish identically.) In four
dimensions, this property uniquely fixes the result to be the
Einstein-Hilbert action for m ¼ 1. The nature of Lanczos-
Lovelock models at D ¼ 2m is of quiet importance, as
these are known as critical dimensions for a given Lanczos-
Lovelock term. In these situations, the variation of the
action functional reduces to a pure surface term [43].
To proceed further, we need the expression for the

Noether current in Lanczos-Lovelock gravity. Recall that
the standard result for the Noether current, for diffeo-
morphism invariance of a Lagrangian Lðgab; Ra

bcdÞ, is
given by [9]

16πJa ¼ 2Ea
bξ

b þ Lξa þ δξva; ð49Þ

where Eab is defined in Eq. (45) and δξva represents the
surface term in the Lagrangian variation. The following
three relations can be used:

2Ea
bξ

b þ Lξa ¼ 2Ra
bξ

b; ð50Þ

δξva ¼ −£ξva ¼ −2Ra
bξ

b þ 2Pabdi∇b∇dξi; ð51Þ

δξvi ¼ 2Pa
bci£ξΓa

bc ð52Þ

to express the Noether current in two different, useful,
forms as follows:

16πJa ¼ 2Ra
bξ

b þ δξva ¼ 2Pabcd∇b∇cξd ð53Þ

¼ 2Ra
bξ

b þ 2Pi
jka£ξΓi

jk: ð54Þ

The corresponding expression for the Noether potential in
Lanczos-Lovelock gravity is given by [9]

16πJabðξÞ ¼ 2Pabcd∇cξd: ð55Þ

We can obtain the entropy of horizons from the relevant
Noether charge. In Lanczos-Lovelock gravity, the entropy
is defined in terms of the tensor Pabcd and is known asWald
entropy with the expression [44–51]

S ¼ −
1

8

Z
dD−2x

ffiffiffi
σ

p
Pabcdμabμcd ≡

Z
dD−2xs; ð56Þ

where σ is the metric determinant over the ðD − 2Þ-dimen-
sional hypersurface and μab is the binormal to the hyper-
surface. The last equation defines the entropy density s
which will be used frequently in our later discussion.

B. Heat content of spacetime in
Lanczos-Lovelock gravity

We will work with the same spacetime foliations defined
in Eq. (2) throughout and thus will use the vectors ua; ξa.
We begin by performing the same calculation as before, viz.
connecting the Noether charge in a volume to the heat
content of the boundary. To do this, we will start by relating
the Noether current for a vector qa to that of another vector
fðxÞqa ¼ va for any arbitrary function fðxÞ. From part 2 of
the Appendix, using Eq. (A16) we obtain the desired
relation as

16πfqaJaðfqÞ − fqaJaðqÞg ¼ ∇bð2Pabcdqaqd∇cfÞ:
ð57Þ

The usefulness of the above equation again originates from
the fact that, if qa ¼ ∇aϕ, then its Noether current
vanishes, and thus the Noether current for va ¼ fðxÞqa
acquires a particularly simple form. Applying the above
result for the two natural vector fields ua and ξa from
Eq. (A24), we obtain the simple relation

16πuaJaðξÞ ¼ 2DαðNχαÞ; ð58Þ
where we have introduced a new vector field χa given by
[see Eq. (A18)]

χa ¼ −2Pabcdubudac; ð59Þ

which satisfies the condition uaχa ¼ 0 (so that it is a spatial
vector) and also has the property Diχ

i ¼ ∇iχ
i − aiχi. We

can integrate Eq. (58) over ðD − 1Þ-dimensional volume
bounded by the N ¼ const surface within the t ¼ const
hypersurface leading to

Z
V
dD−1x

ffiffiffi
h

p
uaJaðξÞ ¼

Z
∂V

dD−2x
ffiffiffi
σ

p
8π

Nrαχα: ð60Þ
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As in general relativity, here also the vector rα is the unit
normal to the N ¼ const hypersurface. This vector is either
parallel or antiparallel to the acceleration four vector such
that rα ¼ ϵaα=a, where ϵ ¼ þ1 implies parallel to accel-
eration and vice versa. With this notion, we obtain the
following result from the vector field χα:

ffiffiffi
σ

p Nrαχα

8π
¼ ϵ

�
Na
2π

��
1

2

ffiffiffi
σ

p
Pαbdβrαubudrβ

�
: ð61Þ

The term in brackets is closely related to the entropy
density of the surface in Lanczos-Lovelock gravity, defined
in Eq. (56) as [9,45]

s ¼ −
1

8

ffiffiffi
σ

p
Pabcdμabμcd ¼

1

2

ffiffiffi
σ

p
Pαbdβrαubudrβ: ð62Þ

Using this expression for entropy density in Eq. (61), we
obtain

ffiffiffi
σ

p Nrαχα

8π
¼ ϵT locs; ð63Þ

where T loc ¼ Na=2π is the redshifted local Unruh-Davies
temperature as measured by the observers moving
normal to the t ¼ const surface, with respect to the local
vacuum of freely falling observers. We thus see that the
results in general relativity have a natural generalization to
Lanczos-Lovelock models. With all these results, Eq. (60)
reduces toZ

V
dD−1x

ffiffiffi
h

p
uaJaðξÞ ¼ ϵ

Z
∂V

dD−2xT locs: ð64Þ

Thus in Lanczos-Lovelock gravity as well the Noether
charge in a bulk region is equal to the surface heat content
of the boundary. The similar result derived for general
relativity can be thought of as a special case of Lanczos-
Lovelock gravity; the connection between the bulk Noether
charge and the surface heat content goes way beyond
general relativity. This result is nontrivial, because the
expression for entropy density in the general Lanczos-
Lovelock models is nontrivial in contrast with general
relativity in which it is just one-quarter per unit area.

C. Evolution equation of spacetime in
Lanczos-Lovelock gravity

Let us next generalize our result presented in Eq. (1) for
Lanczos-Lovelock models obtaining the dynamical evolu-
tion as due to deviation from holographic equipartition. We
will start by substituting the Noether current expression for
ξa as presented in Eq. (54) to Eq. (58) which leads to the
following result:

2uaPi
jka£ξΓi

jk ¼ Dαð2NχαÞ − 2NRabuaub: ð65Þ

Let us first consider the pure Lanczos-Lovelock theory with
the mth-order Lanczos-Lovelock Lagrangian. (We shall
consider the generalization to Lanczos-Lovelock models
with a sum of Lagrangians, at the end.) Contracting the field
equation Rab − ð1=2ÞgabL ¼ 8πTab in Lanczos-Lovelock
gravity with gab, we get L ¼ ½8π�=½m − ðD=2Þ�T, where D
is spacetime dimension. Therefore, the field equation can
also be rewritten as

Rab ¼ 8πT̄ab ¼ 8π

�
Tab −

1

2

1

ðD=2Þ −m
gabT

�
≡ 8πT̄ab:

ð66Þ

Using this and integrating Eq. (65) over (D − 1)-dimensional
volume, we arrive at

Z
R

dD−1x
ffiffiffi
h

p

8π
2uaP

jka
i £ξΓi

jk ¼
Z
∂R

dD−2x
ffiffiffi
σ

p
4π

Nχαrα

−
Z
R
dD−1x

ffiffiffi
h

p
2NT̄abuaub:

ð67Þ

As before, the rα is the normal to the N ¼ const surface
within the t ¼ const surface and is either parallel or
antiparallel to the four acceleration. The energy-momentum
term can be written in an identical fashion by using the
Komar energy density, defined as ρKomar ¼ 2NT̄abuaub. We
can proceed by using Eq. (61), which on substitution into
Eq. (67) leads to

Z
R

dD−1x
ffiffiffi
h

p

8π
2uaPi

jka£ξΓi
jk

¼ −2ϵ
Z
∂R

dD−2x
ffiffiffi
σ

p
Pαbβdrαubrβud

�
1

2
T loc

�

−
Z
R
dD−1x

ffiffiffi
h

p
ρKomar: ð68Þ

The rest of the analysis requires proper definition of Nsur,
Nbulk, etc., which we do in analogy with the case of general
relativity. The number of surface degrees of freedom is
defined as 4 times the entropy as in the case of general
relativity:

Nsur ≡ 4S ¼ 2

Z
∂R

dD−2x
ffiffiffi
σ

p
Pαbdβrαubudrβ: ð69Þ

The average temperature is properly defined by using the
surface degrees of freedom as the local weights leading to
ensure that the total heat content is reproduced:

1

2
NsurkBTavg ¼

1

2

Z
dNsurkBT loc; TavgS ¼

Z
T locdS:

ð70Þ
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This result can be written more explicitly as

Tavg ¼
R
∂R dD−2x

ffiffiffi
σ

p
PαbβdrαubrβudT locR

∂R dD−2x
ffiffiffi
σ

p
Pαbβdrαubrβud

¼ 1

S

Z
dST loc ¼

1

Nsur

Z
dNsurT loc: ð71Þ

Once Tavg is defined, the number of bulk degrees of freedom
is given by the equipartition value:

Nbulk ¼
ϵ

ð1=2ÞTavg

Z
R
dD−1x

ffiffiffi
h

p
ρKomar; ð72Þ

with ϵ included (as in general relativity), to ensure that Nbulk
is always positive. Inserting Eqs. (69), (71), and (72) in
Eq. (68), we find that the dynamical evolution of the
spacetime in Lanczos-Lovelock gravity is determined by
the following relation:

Z
R

dD−1x
ffiffiffi
h

p

8π
2uaPi

jka£ξΓi
jk ¼ ϵ

�
1

2
Tavg

�
ðNsur − NbulkÞ;

ð73Þ
which is a direct generalization of the corresponding result
for general relativity.
For a static spacetime, the Lie variation of connection

vanishes as ξa becomes a timelike Killing vector. Hence, in
that situation we have, even in Lanczos-Lovelock gravity,
the holographic equipartition given by

Nsur ¼ Nbulk: ð74Þ

(This result has been obtained earlier in terms of equi-
partition energies in Ref. [52].) When the foliation leads to
a time-dependent metric, the departure from holographic
equipartition drives dynamical evolution of the metric
through the Lie derivative term on the left-hand side
of Eq. (73).
The above result was derived for the mth-order Lanczos-

Lovelock Lagrangian. The definition of T̄ab, ρKomar, and
Nbulk introduces the m dependence though the expression
for Rab in Eq. (66). If, instead, we consider a Lanczos-
Lovelock Lagrangian made of a sum of Lagrangians with
different m, then the equation of motion Rab −
ð1=2ÞgabL ¼ 8πTab on contraction with gab leads to the
result X

m

cm½m − ðD=2Þ�LðmÞ ¼ 8πT; ð75Þ

which cannot be solved in closed form for L in terms of T.
However, one can take care of this issue by redefining
ρKomar and Nbulk formally in terms of Rab. That is, we
define the Komar energy density as ρ ¼ 2NðRab=8πÞuaub,

and then the bulk degrees of freedom reduce to the
following form:

Nbulk ¼
ϵ

ð1=2ÞTavg

Z
R
dD−1x

ffiffiffi
h

p
ρ: ð76Þ

Then we again obtain the same result:

Z
R

dD−1x
ffiffiffi
h

p

8π
2uaPi

jka£ξΓi
jk ¼ ϵ

�
1

2
Tavg

�
ðNsur − NbulkÞ

ð77Þ

with the understanding that, for a given model, one should
reexpress the variables in terms of Tab.
The above results provide a direct connection between

the evolution of spacetime and departure from holographic
equipartition. The results also encode the holographic
behavior of gravity by introducing naturally defined bulk
and surface degrees of freedom. The difference between the
description of evolution along these lines and that of
standard field equation Rab − ð1=2ÞgabL ¼ 8πTab is the
following: For the standard gravitational field equations,
the left-hand side does not have a clear physical meaning.
There is also no distinction between static and dynamic
spacetime, and hence the standard treatment cannot answer
the question: what drives the time dependence of the
metric? The answer is obviously not Tab, since we can
obtain time-dependent solutions even when Tab ¼ 0 and
static solutions with Tab ≠ 0. In contrast, the evolution
depicted in Eq. (77) addresses all these issues, and we have
a natural separation between static and evolving metrics via
holographic equipartition. When the surface and bulk
degrees of freedom are unequal, resulting in departure
from holographic equipartition, it drives the time depend-
ence of the metric. Thus, the driving force behind the
dynamical evolution of spacetime is the departure from
holographic equipartition, providing a physically trans-
parent statement about spacetime dynamics.

IV. DISCUSSION

Our aim in this work was to consider the relationship
between the Noether current and gravitational dynamics in
a useful manner. Noether currents can be thought of as
originating from mathematical identities in differential
geometry, with no connection to the diffeomorphism
invariance of gravitational action [31]. This result holds
not only in general relativity but also in Lanczos-Lovelock
gravity (see part 1 of the Appendix).
Even though such conserved currents can be associated

with any vector field, the time development vectors are
always special. This is the motivation for introducing the
vector ξa in the spacetime through Eq. (2). The vector ξa is
parallel to velocity vector ua for fundamental observers and
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represents proper time flow normal to the t ¼ const surface.
As we saw, its Noether charge and current associated with
this vector have an elegant and physically interesting
thermodynamic interpretation. We showed that, for the
vector field ξa in Lanczos-Lovelock gravity in arbitrary
spacetime dimension, the total Noether charge in any bulk
volume V, bounded by a constant lapse surface, equals the
heat content of the boundary surface. Also, the equiparti-
tion energy of the surface equals twice the Noether charge.
While defining the heat content, we have used the local
Unruh-Davies temperature and Wald entropy. This result
holds for Lanczos-Lovelock gravity of all orders and does
not rely on static spacetime or the existence of Killing
vectorlike criteria.
The above identification allows us to study holographic

equipartition for static spacetime and relate the time
evolution of the metric as due to departure from holo-
graphic equipartition. With a suitable and natural definition
for the degrees of freedom in the surface and in the bulk, we
find that for static spacetimes (described in the natural
foliation) the surface and the bulk degrees of freedom are
equal in number, yielding holographic equipartition. It is
the departure from this holographic equipartition that drives
spacetime evolution. This result holds not only in general
relativity but also in Lanczos-Lovelock gravity.
All the results derived above are generally covariant, but

they do depend on the foliation. This implies that these
results depend on observers and their acceleration, which is
inevitable, since the Davies-Unruh temperature is intrinsi-
cally observer dependent. Since the dynamical evolution is
connected to thermodynamic concepts in this approach,
different observers must perceive the dynamical evolution
differently. For example, the de Sitter spacetime is time
dependent when written in the synchronous frame and
becomes time independent in static spherically symmetric
coordinates. Our description adapts naturally to the two
different situations.
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APPENDIX: CALCULATIONAL DETAILS

Some calculations are not presented in an explicit format
in the main text, which would affect the flow of ideas in the
paper. Most of these relations exist in the literature;
however, we collect the derivations together here with
the hope that they will be useful to the reader.

1. Derivation of Noether current from differential
identities in Lanczos-Lovelock gravity

In this section, the Noether current for Lanczos-
Lovelock gravity will be derived by starting from identities
in differential geometry without using any diffeomorphism
invariance of action principles. The conceptual importance
of this approach has already been emphasized in Ref. [31],
in the context of Einstein gravity, and we shall generalize
the result for Lanczos-Lovelock models. We start with the
fact that the covariant derivative of any vector field can be
decomposed into a symmetric and an antisymmetric part.
From the antisymmetric part, we can define another
antisymmetric tensor field as

16πJaj ¼ 2Pajki∇kvi ¼ Pajkið∇kvi −∇ivkÞ: ðA1Þ

It is evident from the antisymmetry of Pabcd that a
conserved current exists such that Ja ¼ ∇jJaj. We recall
the identities

ð∇j∇k −∇k∇jÞvi ¼ Ri
cjkvc ðA2Þ

and

LvΓi
jk ¼ ∇j∇kvi − Ri

kjmvm ðA3Þ

and use them in the definition in Eq. (43) to get

Rabvb ¼ PaijkRb
ijkvb ¼ −Paijkð∇j∇k −∇k∇jÞvi

¼ Paijk∇k∇jvi þ ðPakij þ PajkiÞ∇j∇kvi

¼ Paijk∇k∇jvi þ Pakij∇j∇kvi þ∇jðPajki∇kviÞ;
ðA4Þ

where in the second line we have used the identity
PaðbcdÞ ¼ 0. Then from Eq. (A1) we obtain

16πJa ¼ 2Rabvb − 2Paijk∇k∇jvi − 2Pakij∇j∇kvi

¼ 2Rabvb þ 2Pi
ajk∇k∇jvi − 2Pi

jak∇j∇kvi

¼ 2Rabvb þ 2Pi
ajkðLvΓi

kj þ Ri
jkmvmÞ

− 2Pi
jakðLvΓi

jk þ Ri
kjmvmÞ

¼ 2Rabvb þ 2Pi
jkaLvΓi

jk; ðA5Þ

while arriving at the third line we have used Eq. (A3)
and for the last line we have used the fact that
PijakRikjm ¼ PakijRikjm ¼ −PkaijRikjm ¼ PkaijRkijm. Thus,
Eq. (54) can be derived without any reference to the
diffeomorphism invariance of the gravitational action, by
using only the identities in differential geometry and
various symmetry properties.
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2. Identities regarding Noether current in
Lanczos-Lovelock action

The Noether potential Jab is antisymmetric in ða; bÞ, and
from its expression given by Eq. (6) it is evident that JabðqÞ
would identically vanish for qa ¼ ∇aϕ. We will use the
above fact in order to obtain a relation between the Noether
current for two vector fields qa and va connected by
va ¼ fðxÞqa. This result in the case of general relativity is
detailed in Ref. [31]. Expanding the expression for Noether
current for va ¼ fqa and taking the dot product with qa
along with subtracting the Noether current for qa, one can
show that

16πfqaJaðfqÞ − fqaJaðqÞg ¼ ∇b½ðqaqb − q2gabÞ∇af�:
ðA6Þ

This is the result used in the main text. By using this result,
it is easy to determine the Noether currents for ua ¼
−N∇at and ξa ¼ Nua. Using Eq. (A6) with qa ¼
−ua=N and f ¼ −N, we obtain

16πuaJaðuÞ ¼ ∇iai − a2 ¼ Dαaα; ðA7Þ

where the acceleration is defined as

aj ¼ ui∇iuj ¼ ðui∇iNÞ uj
N

þ Nui∇j

�
ui
N

�
¼ hij

∇iN
N

:

ðA8Þ

Next, in order to obtain the Noether current for ξa we use
Eq. (A6) with qa ¼ ua and f ¼ N leading to

16πuaJaðξÞ ¼ NuaJaðuÞ þ∇jðNajÞ ¼ 2N∇jaj

¼ Dαð2NaαÞ; ðA9Þ

which is the desired relation in Eq. (8).
In general relativity the quantity uagij£ξNa

ij can be
evaluated in terms of the extrinsic curvature [19]. Then
from the standard identity

∇iai − Rabuaub ¼ KijKij − ua∇aK ðA10Þ

we obtain

uagij£ξNa
ij ¼ 2Nð∇iai − RabuaubÞ
¼ 2NðKijKij − ua∇aKÞ: ðA11Þ

Next, we will generalize the above results to Lanczos-
Lovelock gravity. For that purpose, we note that even in
Lanczos-Lovelock gravity the Noether potential Jab for a
vector field qa ¼ ∇af vanishes identically. Thus, the
Noether current for a vector field va ¼ fðxÞqa can be
decomposed as

16πJabðvÞ ¼ 2Pabcd∇cðfqdÞ
¼ 2Pabcdqd∇cf þ 2fPabcd∇cqd: ðA12Þ

Then the corresponding Noether current has the following
expression:

16πJaðvÞ ¼ 2Pabcd∇bðqd∇cfÞ þ 2Pabcd∇bðf∇cqdÞ
¼ 2Pabcdqd∇b∇cf þ 2Pabcd∇cf∇bqd

þ 2Pabcd∇bf∇cqd þ 2fPabcd∇b∇cqd:

ðA13Þ
From the above equation we readily arrive at

16πfJaðvÞ − fJaðqÞg ¼ 2Pabcdqd∇b∇cf

þ 2Pabcd∇cf∇bqd

þ 2Pabcd∇bf∇cqd

¼ Pabcd∇bAcd þ 16πJabðqÞ∇bf;

ðA14Þ
where we have defined the antisymmetric tensor Acd as
Acd ¼ qd∇cf − qc∇df. Now consider the following result:
qa∇bAcd ¼ ∇bðqaAcdÞ − Acd∇bqa, which leads to

Pabcdqa∇bAcd ¼ ∇bðPabcdqaAcdÞ − 2Pabcdqd∇cf∇bqa

¼ ∇bðPabcdqaAcdÞ − 16πqaJabðqÞ∇bf:

ðA15Þ
Then Eq. (A14) can be rewritten in the following manner:

16πfqaJaðfqÞ − fqaJaðqÞg ¼ 16πJabðqÞ∇bfqa

þ∇bðPabcdqaAcdÞ
− 16πqaJabðqÞ∇bf

¼ ∇bð2Pabcdqaqd∇cfÞ:
ðA16Þ

It can be easily verified that in the general relativity limit
Pabcd ¼ Qabcd ¼ ð1=2Þðgacgbd − gadgbcÞ, under which the
above equation reduces to Eq. (A6).
Applying the above equation to ua ¼ −N∇at with qa ¼∇at ¼ −ua=N and f ¼ −N, we arrive at

16πuaJaðuÞ ¼ 2N∇b

�
Pabcduaud

∇cN
N2

�
: ðA17Þ

In order to proceed, we define a new vector field such that

χa ¼ −2Pabcdubud
∇cN
N

¼ −2Pabcdubud

�
ac −

1

N
ucuj∇jN

�
¼ −2Pabcdubacud: ðA18Þ
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Note that in the general relativity limit this vector reduces to
the acceleration four vector as follows:

χa ¼ −2Pabcdubacud ¼ −ðgacgbd − gadgbcÞubacud
¼ −ububaa þ ubabua ¼ aa: ðA19Þ

Also just as in the case of acceleration for the vector χa as
well we have

uaχa ¼ −2aPabβduaubrβud ¼ 0; ðA20Þ

where antisymmetry of Pabcd in the first two components
has been used. We can also have the following relation for
the vector field χa:

Nabχb ¼ χb∇bN þ χbubuj∇jN ¼ χb∇bN; ðA21Þ

where we have used the relation uaχa ¼ 0 from Eq. (A20).
Thus, Eq. (A17) can be written in terms of the newly
defined vector field χa in the following way:

16πuaJaðuÞ ¼ N∇b

�
χb

N

�

¼ ∇bχ
b −

∇bN
N

χb

¼ Dαχ
α: ðA22Þ

The last relation follows from the fact that

Dαχ
α ¼ Dbχ

b ¼ ∇bχ
b − abχb ¼ ∇bχ

b −
∇bN
N

χb: ðA23Þ

Then it is straightforward to get the Noether current for ξa

by using qa ¼ ua and f ¼ N in Eq. (A16) with Eq. (A22)
as

16πuaJaðξÞ ¼ 16πNuaJaðuÞ þ∇bðNχbÞ
¼ NDαχ

α þ∇bðNχbÞ
¼ Dαð2NχαÞ: ðA24Þ

Here also we have used the following identity:

DαðNχαÞ ¼ ðgij þ uiujÞ∇iðNχjÞ
¼ ∇iðNχiÞ þ uiuj∇iðNχjÞ
¼ N∇iχ

i þ Nχiai − Nχjðui∇iujÞ
¼ N∇iχ

i: ðA25Þ

Thus, we have derived the desired relation for the Noether
current of the vector field ξa, and it turns out to have an
identical structure as that of general relativity action with χa

playing the role of four acceleration.

[1] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
[2] J. D. Bekenstein, Phys. Rev. D 9, 3292 (1974).
[3] S. Hawking, Commun. Math. Phys. 43, 199 (1975).
[4] S. Hawking, Phys. Rev. D 13, 191 (1976).
[5] P. C. W. Davies, S. A. Fulling, and W. G. Unruh, Phys. Rev.

D 13, 2720 (1976).
[6] W. G. Unruh, Phys. Rev. D 14, 870 (1976).
[7] T. Padmanabhan, Phys. Rep. 406, 49 (2005).
[8] R. M. Wald, Living Rev. Relativity 4, 6 (2001).
[9] T. Padmanabhan, Rep. Prog. Phys. 73, 046901 (2010).

[10] A. D. Sakharov, Sov. Phys. Dokl. 12, 1040 (1968).
[11] T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).
[12] G. E. Volovik, Phys. Rep. 351, 195 (2001).
[13] T. Padmanabhan, Classical Quantum Gravity 19, 5387

(2002).
[14] R. G. Cai and S. P. Kim, J. High Energy Phys. 02 (2005) 050.
[15] A. Paranjape, S. Sarkar, and T. Padmanabhan, Phys. Rev. D

74, 104015 (2006).
[16] M. Akbar and R. G. Cai, Phys. Lett. B 635, 7 (2006).
[17] T. Padmanabhan, AIP Conf. Proc. 861, 179 (2006).
[18] D. Kothawala and T. Padmanabhan, Phys. Rev. D 79,

104020 (2009).
[19] T. Padmanabhan, Gravitation: Foundation and Frontiers

(Cambridge University Press, Cambridge, England, 2010).

[20] A. Mukhopadhyay and T. Padmanabhan, Phys. Rev. D 74,
124023 (2006).

[21] S. Kolekar and T. Padmanabhan, Phys. Rev. D 82, 024036
(2010).

[22] S. Kolekar, D. Kothawala, and T. Padmanabhan, Phys. Rev.
D 85, 064031 (2012).

[23] T. Padmanabhan, Braz. J. Phys. 35, 362 (2005).
[24] T. Padmanabhan, Mod. Phys. Lett. A 25, 1129 (2010).
[25] G. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752

(1977).
[26] T. Padmanabhan and A. Paranjape, Phys. Rev. D 75, 064004

(2007).
[27] T. Padmanabhan, Gen. Relativ. Gravit. 40, 529 (2008).
[28] T. Padmanabhan, Phys. Rev. D 83, 044048 (2011).
[29] S. Kolekar and T. Padmanabhan, Phys. Rev. D 85, 024004

(2012).
[30] T. Damour, in Proceedings of the Second Marcel Gross-

mann Meeting on General Relativity, 1982 (unpublished).
[31] T. Padmanabhan, Gen. Relativ. Gravit. 46, 1673 (2014).
[32] S. Babak and L. Grishchuk, Phys. Rev. D 61, 024038

(1999).
[33] J. Kijowski, Gen. Relativ. Gravit. 29, 307 (1997).
[34] K. Parattu, B. R. Majhi, and T. Padmanabhan, Phys. Rev. D

87, 124011 (2013).

SUMANTA CHAKRABORTY AND T. PADMANABHAN PHYSICAL REVIEW D 90, 124017 (2014)

124017-12

http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1103/PhysRevD.9.3292
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRevD.13.191
http://dx.doi.org/10.1103/PhysRevD.13.2720
http://dx.doi.org/10.1103/PhysRevD.13.2720
http://dx.doi.org/10.1103/PhysRevD.14.870
http://dx.doi.org/10.1016/j.physrep.2004.10.003
http://dx.doi.org/10.12942/lrr-2001-6
http://dx.doi.org/10.1088/0034-4885/73/4/046901
http://dx.doi.org/10.1103/PhysRevLett.75.1260
http://dx.doi.org/10.1016/S0370-1573(00)00139-3
http://dx.doi.org/10.1088/0264-9381/19/21/306
http://dx.doi.org/10.1088/0264-9381/19/21/306
http://dx.doi.org/10.1088/1126-6708/2005/02/050
http://dx.doi.org/10.1103/PhysRevD.74.104015
http://dx.doi.org/10.1103/PhysRevD.74.104015
http://dx.doi.org/10.1016/j.physletb.2006.02.035
http://dx.doi.org/10.1063/1.2399577
http://dx.doi.org/10.1103/PhysRevD.79.104020
http://dx.doi.org/10.1103/PhysRevD.79.104020
http://dx.doi.org/10.1103/PhysRevD.74.124023
http://dx.doi.org/10.1103/PhysRevD.74.124023
http://dx.doi.org/10.1103/PhysRevD.82.024036
http://dx.doi.org/10.1103/PhysRevD.82.024036
http://dx.doi.org/10.1103/PhysRevD.85.064031
http://dx.doi.org/10.1103/PhysRevD.85.064031
http://dx.doi.org/10.1590/S0103-97332005000200023
http://dx.doi.org/10.1142/S021773231003313X
http://dx.doi.org/10.1103/PhysRevD.15.2752
http://dx.doi.org/10.1103/PhysRevD.15.2752
http://dx.doi.org/10.1103/PhysRevD.75.064004
http://dx.doi.org/10.1103/PhysRevD.75.064004
http://dx.doi.org/10.1007/s10714-007-0555-7
http://dx.doi.org/10.1103/PhysRevD.83.044048
http://dx.doi.org/10.1103/PhysRevD.85.024004
http://dx.doi.org/10.1103/PhysRevD.85.024004
http://dx.doi.org/10.1007/s10714-014-1673-7
http://dx.doi.org/10.1103/PhysRevD.61.024038
http://dx.doi.org/10.1103/PhysRevD.61.024038
http://dx.doi.org/10.1023/A:1010268818255
http://dx.doi.org/10.1103/PhysRevD.87.124011
http://dx.doi.org/10.1103/PhysRevD.87.124011


[35] T. Padmanabhan, Res. Astron. Astrophys. 12, 891 (2012).
[36] T. Padmanabhan, AIP Conf. Proc. 1483, 212 (2012).
[37] T. Padmanabhan, AIP Conf. Proc. 1241, 93 (2010).
[38] T. Padmanabhan, Phys. Rev. D 84, 124041 (2011).
[39] C. Lanczos, Z. Phys. 73, 147 (1932); Ann. Math. 39, 842

(1938).
[40] D. Lovelock, J. Math. Phys. (N.Y.) 12, 498 (1971).
[41] T. Padmanabhan and D. Kothawala, Phys. Rep. 531, 115

(2013).
[42] A. Eddington, The Mathematical Theory of Relativity

(Cambridge University Press, Cambridge, England,
1924); E. Schrodinger, Space-time Structure (Cambridge
University Press, Cambridge, England, 1950).

[43] A. Yale and T. Padmanabhan, Gen. Relativ. Gravit. 43, 1549
(2011); N. Kiriushcheva and S. Kuzmin, Mod. Phys. Lett. A
21, 899 (2006).

[44] R. M. Wald, Phys. Rev. D 48, R3427 (1993); V. Iyer and
R. M. Wald, Phys. Rev. D 50, 846 (1994); R. M. Wald and
A. Zoupas, Phys. Rev. D 61, 084027 (2000).

[45] T. Padmanabhan, Gen. Relativ. Gravit. 44, 2681 (2012).
[46] B. R. Majhi and T. Padmanabhan, Eur. Phys. J. C 73, 2651

(2013).
[47] B. R. Majhi and T. Padmanabhan, Phys. Rev. D 85, 084040

(2012).
[48] B. R. Majhi, Adv. High Energy Phys. 2013, 386342 (2013).
[49] A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996).
[50] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Phys.

Rev. Lett. 80, 904 (1998); J. M. Garcia-Islas, Classical
Quantum Gravity 25, 245001 (2008).

[51] L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, Phys.
Rev. D 34, 373 (1986).

[52] T. Padmanabhan, Phys. Rev. D 81, 124040 (2010).

EVOLUTION OF SPACETIME ARISES DUE TO THE … PHYSICAL REVIEW D 90, 124017 (2014)

124017-13

http://dx.doi.org/10.1088/1674-4527/12/8/003
http://dx.doi.org/10.1063/1.4756971
http://dx.doi.org/10.1063/1.3462738
http://dx.doi.org/10.1103/PhysRevD.84.124041
http://dx.doi.org/10.1007/BF01351210
http://dx.doi.org/10.2307/1968467
http://dx.doi.org/10.2307/1968467
http://dx.doi.org/10.1063/1.1665613
http://dx.doi.org/10.1016/j.physrep.2013.05.007
http://dx.doi.org/10.1016/j.physrep.2013.05.007
http://dx.doi.org/10.1007/s10714-011-1146-1
http://dx.doi.org/10.1007/s10714-011-1146-1
http://dx.doi.org/10.1142/S0217732306020202
http://dx.doi.org/10.1142/S0217732306020202
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://dx.doi.org/10.1103/PhysRevD.50.846
http://dx.doi.org/10.1103/PhysRevD.61.084027
http://dx.doi.org/10.1007/s10714-012-1418-4
http://dx.doi.org/10.1140/epjc/s10052-013-2651-z
http://dx.doi.org/10.1140/epjc/s10052-013-2651-z
http://dx.doi.org/10.1103/PhysRevD.85.084040
http://dx.doi.org/10.1103/PhysRevD.85.084040
http://dx.doi.org/10.1155/2013/386342
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://dx.doi.org/10.1103/PhysRevLett.80.904
http://dx.doi.org/10.1103/PhysRevLett.80.904
http://dx.doi.org/10.1088/0264-9381/25/24/245001
http://dx.doi.org/10.1088/0264-9381/25/24/245001
http://dx.doi.org/10.1103/PhysRevD.34.373
http://dx.doi.org/10.1103/PhysRevD.34.373
http://dx.doi.org/10.1103/PhysRevD.81.124040

