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We study the motion of a charged particle around a weakly magnetized rotating black hole. We classify
the fate of a charged particle kicked out from the innermost stable circular orbit. We find that the final fate
of the charged particle depends mostly on the energy of the particle and the radius of the orbit. The energy
and the radius in turn depend on the initial velocity, the black hole spin, and the magnitude of the magnetic
field. We also find possible evidence for the existence of bound motion in the vicinity of the equatorial
plane.
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I. INTRODUCTION

Black holes (BHs) are ubiquitous in the Universe and
play an important role in the formation of galaxies [1]. BHs
produce intense radiation by converting the gravitational
binding energy of accreting plasmas [2]. Accreting BHs
immersed in large-scale magnetic fields also release their
rotational energy into powerful relativistic jets [3], which
are observed in active galactic nuclei, quasars, or x-ray
binaries. Numerical simulations demonstrated that power-
ful jets are generated by extracting energy from a spinning
BH along the magnetic field [4].
Moreover, the power of jets from BHs with thick

accretion disks depends mostly on BH spin, which may
explain the wide variety of radio luminosities of active
galactic nuclei [5]. BH spin is measured by the x-ray
reflection method [6] (see [7] for a recent review) and by
the continuum-fitting method [8] (see [9] for a recent
review), and it is found that a large fraction of astrophysical
BHs are rapidly rotating.
In this paper, in order to examine the effects of a magnetic

field and BH spin on particle motion, we investigate the
motion of a charged particle around a rotating black hole in
a uniform magnetic field. Although this is a simplified
problem, the dynamics are still nonintegrable due to the lack
of a third constant of motion (the Carter constant) in the
presence of a magnetic field. If we focus on equatorial
motion, a semianalytical approach is possible [10–12], but a
general orbit requires numerics [13–17]. More specifically,
we consider the motion of a charged particle kicked out
from the equatorial plane, and investigate the conditions
under which such a particle can escape to infinity. This
problem was studied in [13,14,16,18] for a nonrotating
black hole and in [15] for a slowly rotating black hole.
There, it was found that the charged particle is either
captured by the black hole, or escapes in a direction parallel
or antiparallel to the magnetic field. The final fate of this
particle is extremely sensitive to the initial conditions

determined by the strength of the magnetic field. Since
astrophysical BHs are rotating (sometimes rapidly), we
extend such an analysis to a rotating black hole.
The paper is organized as follows. In Sec. II, after

introducing a uniform magnetic field, we present the
equations of motion for a charged particle and study the
innermost stable circular orbits. In Sec. III, we present
the results of numerical calculations for particles kicked
out of these innermost stable circular orbits and discuss the
final fate of the particles. We summarize our results
in Sec. IV.
Appendix A contains an analysis of the magnetic flux

across a black hole for two field configurations. In
Appendix B, we present approximate solutions for the
innermost stable circular orbits. We use units in
which G ¼ c ¼ 1.

II. WEAKLY MAGNETIZED ROTATING
BLACK HOLE

We consider the motion of charged particles in a weakly
magnetized rotating black hole. By “weakly magnetized,”
we mean that the energy density of the magnetic field does
not significantly distort the background black hole geom-
etry which is assumed to be given by the Kerr metric (in the
Boyer-Lindquist coordinates),

ds2 ¼ gμνdxμdxν

¼ −
�
1 −

2M
Σ

�
dt2 −

4aMrsin2θ
Σ

dtdϕþ Σ
Δ
dr2

þ Σdθ2 þ ðr2 þ a2Þ2 − a2Δsin2θ
Σ

sin2θdϕ2; ð1Þ

where M is the gravitational mass of the black hole and
a is its angular momentum per unit mass and Σ ¼ r2 þ
a2 cos2 θ and Δ ¼ r2 þ a2 − 2Mr. The event horizon is
located at rH ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.
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The effect of the magnetic field on the background
geometry can be neglected if

GB2 ≪ ðGMÞ−2 or

B ≪ G−3=2M−1 ∼ 1019 GaussðM⊙=MÞ; ð2Þ
where we have momentarily restored the gravitational
constant G for clarity. This condition is satisfied for
astrophysical black holes (typically < 109 Gauss [19]).
Therefore, the magnetic field can be considered as a test
field in the background geometry. Although the magnetic
field is “weak” compared with the background, it can be
quite “strong” for charged particles. This can be seen by
taking the ratio of the Lorentz force to the gravitational
force acting on a charged particle with charge q and the rest
mass m in the Keplerian orbit. For the radius close to the
Schwarzschild radius, the ratio becomes

qBM
m

∼ 106
�
q
e

��
B

108 Gauss

��
M
M⊙

��
mp

m

�
; ð3Þ

where mp is the mass of proton. Thus it can be quite large
for charged particles (protons or electrons) around astro-
physical BHs.

A. Black hole in a uniform magnetic field

As long as the magnetic field can be treated as a test
field, we can choose any field configuration we like.
However, for a Ricci flat spacetime with Killing vectors,
it is well known that a Killing vector solves the
Maxwell equation for a 4-vector potential Aμ in the
Lorenz gauge: ∇μAμ ¼ 0. The Kerr spacetime is stationary
and axisymmetric with Killing vectors ξμ ¼ ð∂=∂tÞμ and
ψμ ¼ ð∂=∂ϕÞμ. Therefore, Aμ is a linear combination of
these Killing vectors. In particular, as shown by Wald [20],
for a neutral rotating black hole, the special choice

Aμ ¼ B
2
ðψμ þ 2aξμÞ ð4Þ

generates an asymptotically uniform magnetic field of
strength B. However, the second term in Eq. (4) is the
effect of Faraday induction due to the rotation of a BH,
which generates a difference in the electrostatic potential
between the event horizon and infinity. Consequently,
positively charged particles are accreted towards the
horizon. For a charged rotating black hole with charge
Q, Eq. (4) becomes

Aμ ¼ B
2
ðψμ þ 2aξμÞ − Q

2M
ξμ: ð5Þ

Thus, the accretion continues until the potential difference
disappears and the black hole will acquire an inductive
charge of Q ¼ 2aMB [10,20]. After the accretion is
complete, the 4-vector potential becomes

Aμ ¼ B
2
ψμ: ð6Þ

Note that as long as the condition Eq. (2) is satisfied, the
induced charge of the black hole is so smallQ=M ¼ 2aB ≤
2BM ≪ 1 that its effect on the background black hole
geometry can be neglected. Hence, we shall adopt this
choice of 4-vector potential [Eq. (6)] together with the
background black hole geometry [Eq. (1)].1 In Appendix A,
we calculate the magnetic flux across a black hole for two
typical field configurations [Eqs. (4) and (6)].

B. Motion of charged particles

The equation of motion for a test particle of mass m and
charge q is given by

muν∇νuμ ¼ qFμ
νuν: ð7Þ

Here, uμ ¼ _xμ ≡ dxμ=dτ is the particle 4-velocity with τ
being proper time and uμuμ ¼ −1. Also, Fμν ¼ ∇μAν −∇νAμ is the field strength. The equation is derived from the
Lagrangian

L ¼ 1

2
mgμνuμuν þ qAμuμ; ð8Þ

from which the momentum pμ conjugate to xμ is defined by

pμ ¼ muμ þ qAμ: ð9Þ

For a Kerr black hole immersed in the uniform magnetic
field Bð> 0Þ, Killing fields ξμ and ψμ yield a conserved
energy per rest mass E and an angular momentum per rest
mass L for the motion of a charged particle,

E ¼ −
1

m
pμξ

μ ¼
�
1 −

2Mr
Σ

�
_tþ 2aMrsin2θ

Σ

�
_ϕþ b

2M

�
;

ð10Þ

L ¼ 1

m
pμψ

μ ¼ −
2aMrsin2θ

Σ
_t

þ ðr2 þ a2Þ2 − a2Δsin2θ
Σ

sin2θ

�
_ϕþ b

2M

�
; ð11Þ

where we have used Eq. (6) and introduced b ¼ qBM=m
which is the ratio in Eq. (3).2 Hence, the azimuthal motion
is integrable. We note that E and L=M are dimensionless
quantities. In the presence of a magnetic field, we should
carefully consider the meaning of E and L because they
contain the magnetic field b in their definition. Solving
Eqs. (10) and (11) in terms of _t and _ϕ, we obtain

1The motion of charged particles for the choice of the magnetic
field Eq. (4) was studied in [17].

2Note that our b differs from that in [13,14] by a factor of 2,
bZFS ¼ b=2.
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_t ¼ ððr2 þ a2Þ2 − a2Δsin2θÞE − 2aMrL
ΔΣ

; ð12Þ

_ϕ ¼ −
b
2M

þ 2aMrE þ ð−a2 þ Δcsc2θÞL
ΔΣ

: ð13Þ

When we discuss the motion of particles on and outside the black hole horizon, we must impose the forward-in-time
condition _t ≥ 0 which means that the value of the time coordinate t increases along the trajectory of the particle. The radial
motion and the polar motion are obtained by solving the equation of motion [Eq. (7)],

Σ̈r ¼ −
a2rsin2θ þMðΣ − 2r2Þ

Δ
_r2 þ a2 sinð2θÞ_r _θþΔr_θ2 −

b2Δsin2θ
4M2Σ2

ðrΣ2 þ a2Msin2θðΣ − 2r2ÞÞ

þMðΣ − 2r2Þ
ΔΣ2

ðða2 þ r2ÞE − aLÞ2 þ rsin2θ
ΔΣ2

ðað2MrE − aLÞ þ LΔcsc2θÞ2; ð14Þ

Σ cscð2θÞθ̈ ¼ −
a2

2Δ
_r2 − 2r cscð2θÞ_r _θþ a2

2
_θ2 −

b2

8M2Σ2
ðΔΣ2 þ 2Mrða2 þ r2Þ2Þ

þMrðaE − Lcsc2θÞ2
Σ2

þ 1

2ΔΣ2
ðað2MrE − aLÞ þ LΔcsc2θÞ2: ð15Þ

We solve the above equations from a point xμ ¼ xμini with an
initial velocity _xμ ¼ uμini. Here we must choose uμini so that it
satisfies the normalization condition gμνu

μ
iniu

ν
ini ¼ −1 and

the forward-in-time condition u0ini > 0 if rini > rH. Since
Eqs. (12)–(15) are invariant under the transformation
a → −a; b → −b;L → −L and the redefinition of the polar
coordinates θ̄≔π − θ; ϕ̄≔− ϕ, we only need to consider
a ≥ 0. While we need numerics to study the general orbits
of charged particle, we can solve them analytically if we
focus on an orbit in the equatorial plane θ ¼ π=2, as wewill
discuss in the next section.

C. ISCO

Let us consider particle motion in the equatorial plane.
Then, the equation of motion becomes integrable, and
from uμuμ ¼ −1 we obtain the equation for radial motion
[10,11],

r3 _r2 ¼ Vðr; E;L; bÞ; ð16Þ

where

Vðr; E;L; bÞ ¼ ðr3 þ a2rþ 2Ma2Þ
�
E2 −

b2

4M2
Δ
�

− ðr − 2MÞL2 − 4MaEL − r

�
1 −

bL
M

�
Δ:

ð17Þ

The maximum of V determines the stable circular orbit and
hence V ¼ ∂V=∂r ¼ 0 there. The innermost of such orbits
is called ISCO (the innermost stable circular orbit), where
relativistic effects heavily influences the motion of charged

particles. The ISCO radius is determined by solving the
equations V ¼ ∂V=∂r ¼ ∂2V=∂r2 ¼ 0. These were first
solved by [10] and the results are

L ¼ −b
�
r −

a2

3r

�
�

ffiffiffi
λ

p
; ð18Þ

E2 ¼ η∓ b
M

�
1 −

2M
3r

� ffiffiffi
λ

p
; ð19Þ

which are derived from ∂V=∂r ¼ ∂2V=∂r2 ¼ 0, where the
upper sign (L > 0) refers to “prograde” (or anti-Larmor
according to [10]) motion and the lower sign (L < 0) refers
to “retrograde” (or Larmor) motion. We note that the sign of
L does not necessarily coincide with the sign of _ϕ. λ and η
are defined by

λ ¼ 2M

�
r −

a2

3r

�
þ b2

4M2

�
r2ð5r2 − 4Mrþ 4M2Þ

þ 2

3
a2ð5r2 − 6Mrþ 2M2Þ þ a4

�
1þ 4M2

9r2

��
; ð20Þ

η ¼ 1 −
2M
3r

−
b2

6

�
4 − 5

r2

M2
−

a2

M2

�
3 −

2M
r

þ 4M2

3r2

��
:

ð21Þ

Putting Eqs. (18) and (19) into V ¼ 0 gives the equation for
the ISCO radius rI:
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ðr3 þ a2rþ 2Ma2Þ
�
E2ðrÞ − b2

4M2
Δ
�

− ðr − 2MÞL2ðrÞ − 4MaEðrÞLðrÞ

− r

�
1 −

bLðrÞ
M

�
Δ ¼ 0: ð22Þ

In general, Eq. (22) can only be solved numerically. We
identify the root of Eq. (22) which is the closest to rH as the
ISCO radius rI, although there can be multiple solutions
[10]. We can find the corresponding energy and angular
momentum from Eqs. (18) and (19). Approximate solutions
for limiting values of a� ≡ a=M and b are given in

FIG. 2. The ISCO radius rI as a function of arctan b for several a� for L > 0 (left) and for L < 0 (right). For L > 0, a� ¼ 0, 0.3, 0.6,
0.9, 0.99, 1 from top to bottom, while from bottom to top for L < 0.

FIG. 1. The ISCO radius rI as a function of a� for several b. The upper two graphs show the dependence of rI on a� for L > 0 (upper
left) and for L < 0 (upper right), and the lower two graphs represent the difference between rI and rH for L > 0 (lower left) and for
L < 0 (lower right). For all graphs, b ¼ 0, 0.1, 1, 100 from top to bottom. For L < 0, the b ¼ 100 curve almost coincides with the
b ¼ 10 curve and is hardly discernible.
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Appendix B. Note that we should exclude the solutions of
Eq. (22) which do not satisfy _t > 0, where _t is given by
Eq. (12). The results of these calculations are given in
Figs. 1 and 2, where we plot rI as a function of a� for
several b (Fig. 1) and rI as a function of b for several a�
(Fig. 2) for both prograde and retrograde motions. The left
figure in Fig. 2 is the same as [11]. For ISCOs, we find that
the sign of L coincides with the sign of _ϕ.
From Fig. 1, we can see that rI is uniquely determined by

a� and b in the cases of both prograde and retrograde
motions. Focusing only on the region b ≥ 0 (or b < 0),
from Fig. 2 we can see that b, if it exists, is also uniquely
determined by a� and rI .

III. FATE OF CHARGED PARTICLES KICKED
OFF FROM ISCO

We consider the situation where a charged particle is
initially in the ISCO but acquires a “kick” by collisions (for
example) and then departs from the equatorial plane. The
initial velocity is three dimensional in general, but in order
to reduce the space of initial data, we consider as in [14,21]

the kick with transverse velocity v⊥ ≡ −rI _θ without
changing L. Even under this restriction, the space of the
initial data is large enough to find a wide variety of
trajectories. The problem was studied for a nonrotating
black hole in [14] and only recently for a rotating black hole
in [21], but the analysis was limited to a fixed value of
bð¼ 0.2Þ. The slowly rotating case (a� ¼ 0.5) was studied
by neglecting Oða2�Þ terms in the equation of motion
in [15].
More concretely, we numerically solve Eqs. (14) and

(15) under the initial conditions

rini ¼ rI; θini ¼
π

2
; ð23Þ

_rini ¼ 0; _θini ¼ −
v⊥
rI

; ð24Þ

where v⊥ð> 0Þ is a constant, and we choose the angular
momentum L as that of ISCO corresponding to the ISCO
radius rI . The energy E is determined from the normali-
zation condition uμuμ ¼ −1 as

E ¼ 4aMLþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2I − 2MrI þ a2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4L2r2I þ ðr3I þ a2ð2M þ rIÞÞY

p
2ðr3I þ a2ð2M þ rIÞÞ

; ð25Þ

FIG. 3 (color online). The typical trajectories of the charged particle kicked off from ISCO for prograde motion ðL > 0Þ. We set
the parameters as a� ¼ 0.5, b ¼ 0.24, and the corresponding ISCO radius is rI=M ¼ 3.1081. The figures are that of z → −∞ orbit
for E ¼ 1.24058 (left), z → ∞ for E ¼ 1.90728 (middle left), capture orbit for E ¼ 1.56367 (middle right) and bound orbit for
E ¼ 0.761303 (right), respectively.
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with

Y ¼ 4_θ2inir3I þ ðb=MÞ2ðr3I þ a2ð2M þ rIÞÞ
þ 4rIð1 − bL=MÞ: ð26Þ

For a given a�; b and v⊥, we solve Eqs. (14) and (15)
under the above initial conditions. We assume b > 0 in the
following. We checked the accuracy of our numerical
calculations by verifying constancy of E.
We find that there are four different final states for the

particle: capture by the black hole, escape to z → �∞, and
bound motion. In our calculations, the maximum integra-
tion time was chosen to be τ ¼ τmax ¼ 2M × 105. We
consider the particle to have “escaped” if jzj > 103M,
“captured” when r reaches rH, or otherwise in a “bound
orbit.” Typically, the error in the energy is less than 10−6,
but sometimes grows to 10−2 when the integration time is
very long, which is the case with escape to jzj → ∞ (the
increase of the error for the escape orbit was also discussed
in [14]). The typical trajectories of the charged particle are
depicted in Figs. 3 (for L > 0) and 4 (for L < 0).

Figure 5 shows the basin of attraction for L > 0 for
several a�. Figure 6 is for L < 0. The horizontal axis
denotes the ISCO radius rI normalized by M for bð> 0Þ
and the vertical axis denotes the energy E which is
determined from v⊥ ¼ −rH _θini using Eqs. (25) and (26).
We note that rI is a function of b for a fixed a� as shown in
Fig. 2. The resolution of the plots in these figures is
300 × 300. The color of each dot in these figures deter-
mines the fate of the particle motion: black for capture, gray
for escape to z → ∞, light gray for escape to z → −∞, and
red for bound motion. The white areas correspond to
regions forbidden for ISCO orbits. The top left graphs in
Figs. 5 and 6 are for a� ¼ 0 and agree with those in [14].
From Fig. 5, we see that the allowed region becomes

smaller as a� increases. This is because rI decreases as a�
increases for a fixed b. In particular, rIjb¼0 decreases at an
almost constant rate but rIjb¼∞ almost coincides with rH,
irrespective of a� (see Fig. 1). We also find that for the
same E and rI , the fates of the charged particles are almost
the same. The allowed region is gradually “eaten” with
increasing a�. In the a� ¼ 0 figure (top left), the left area
(black) corresponds to the region near the black hole

FIG. 4 (color online). The typical trajectories of the charged particle kicked off from ISCO for retrograde motion ðL < 0Þ. We set the
parameters as a� ¼ 0.5, b ¼ 0.02, and the corresponding ISCO radius is rI=M ¼ 7.2223. The figures are that of z → −∞ orbit for
E ¼ 1.08614 (upper left), z → ∞ for E ¼ 1.17061 (upper right), capture orbit for E ¼ 1.56367 (lower left) and bound orbit for
E ¼ 1.00021 (lower right), respectively.
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horizon, so the orbits are almost all captured. In the right
area (gray), rI is much larger rH and the effect of the gravity
is relatively weak, so the particle can escape to z → ∞ for
sufficiently large v⊥ð> 0Þ as in the case of Minkowski
spacetime. The intermediate region looks rather compli-
cated, but it was shown in [14,21] that the basin of
attraction is a fractal. The effect of increasing a� is to
cut the allowed region for a� ¼ 0 from the right.
Similarly, we can understand the features of Fig. 6. This

time, the allowed region gets larger as a� increases. This is
because for retrograde ISCOs, rI increases as a� increases
for a fixed b in contrast to the case of prograde ISCOs. In
this case, both rIjb¼0 and rIjb¼∞ increase and the difference
between them also increases as a� increases (see Fig. 1).
Moreover, since rI of the retrograde motion is larger than
that of the prograde motion, the effect of the gravity is
rather weak for any a�. Hence, we expect that the particle

can escape to z → ∞ for large v⊥. Thus, the allowed region
becomes larger and shifts toward right as a� increases.
In Figs. 5 and 6, we plot several red dots between black

and white regions. These dots correspond to the bound
motion; if the energy is close to that of ISCO, the particle
neither escapes to z → �∞ nor is captured by the black
hole until at least τ ¼ τmax ¼ 2M × 105 (these orbits are
also observed in [21]). These bound orbits are located
around ISCO orbits as shown in the right of Fig. 3. For
some of these red dots, we checked that the motion remains
bound even if we extend the maximum integration time to
10 × τmax ¼ 2M × 106. The energy error was less than
1.3 × 10−3. We note that there might exist quasibound
orbits around ISCO which survive for a long time, which
may have implications for the high energy particle collision
scenario proposed in [11]. We leave the detailed analysis
for future work.

FIG. 5 (color online). Fate of charged particles kicked off from the prograde ISCO (L > 0) for a� ¼ 0, 0.1, 0.3, 0.5, 0.7, 0.85, 0.9, 0.99
from left to right and down. The dots represent capture (black), escape to z → ∞ (gray), escape to z → −∞ (light gray) and bound
motion (red), respectively. No allowed motion in ISCO in the white area.
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IV. SUMMARY

We have studied the motion of charged particles around a
weakly magnetized rotating black hole. First, we have
studied in detail the effects of black hole spin and an
external magnetic field on the ISCOs of charged particles.
We found that the radius of the ISCO decreases as the
magnetic field increases. Next, we have studied the motion
of a charged particle kicked out from the ISCO. We found
that trajectories of the particle are full of variety. However,
the asymptotic behavior is classified into four types: capture
by the black hole, escape to z → �∞, and the boundmotion.
We found that the final fate depends on the energy of the
particle and mainly on the radius of ISCO. The energy and
the radius depend on the initial velocity, the black hole spin,
and the magnetic field. According to our numerics, particles
in bound motion stay in the vicinity of the equatorial plane.
It would be interesting to study the possible existence

and stability of bound orbits near the equatorial plane

which may widen the region where high energy particle
collisions take place [11]. It would also be important to
study particle motion in other field configurations and
examine the robustness of our results.
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Note added.—During the preparation of our paper, we
became aware of a work on similar topics [21]. While it has

FIG. 6 (color online). The same as Fig. 5, but for the retrograde ISCO (L < 0).
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some overlaps with our paper, the analysis of motion of a
particle kicked out from a circular orbit in [21] is limited to
a fixed value of a magnetic field. Our analysis is comple-
mentary to the results of [21].

APPENDIX A: Magnetic Fluxes Across Black holes

In this Appendix, we calculate the flux of an asymp-
totically uniform magnetic field across one half of the
horizon of a rotating black hole. The flux of a magnetic
field threading the upper half of the horizon is given by [22]

Φ ¼
Z

2π

0

dϕ
Z

π=2

0

dθFθϕjr¼rH : ðA1Þ

For a charge neutral black hole, the 4-vector potential is
Eq. (4) and the flux is well known [22] and is given by

Φ ¼ πBr2H

�
1 −

a4

r4H

�
¼ 4πBM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ðA2Þ

The flux decreases as a increases, which is sometimes
called a “Meissner-like” effect. However, for a black hole
with vanishing electrostatic potential, the 4-vector potential
is Eq. (6) and this time the flux is given by

Φ ¼ 4πBM2; ðA3Þ

which is independent of a. Hence, the presence of a
Meissner-like effect depends on the choice of the field
configuration and does not occur in general.

APPENDIX B: APPROXIMATE SOLUTIONS
FOR ISCO

Although Eq. (22) can only be solved numerically for
general a� and b, it can be solved analytically for limiting
values of a� and b. However, the previous analyses were
limited to the ISCO of a maximally rotating black hole
(a� ¼ 1) [10] or to the prograde orbit for a nearly
maximally rotating black hole [11]. We extend these
analyses to include retrograde motion.

1. ISCO for prograde motion

For a maximally rotating black hole (a� ¼ 1), the radius
of the ISCO for a prograde motion (L > 0) is given by [10]

ra�¼1
I =M ¼ 1; ðB1Þ

independently of b. For a nearly maximally rotating black
hole (a� ≃ 1), the correction to Eq. (B1) is [11]

rI=M − ra�¼1
I =M

¼ 22=3ð1 − a�Þ1=3 þ
7þ b2ð5 − 8b2 − 6b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4b2

p
Þ

25=3ð1þ b2Þ2
× ð1 − a�Þ2=3 þOð1 − a�Þ: ðB2Þ

Then E and L are given by

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4b2

p
− b

3
þ 22=3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4b2

p
− bÞ2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4b2

p ð1 − a�Þ1=3 −
45 − 7b4 þ 4bð3þ 4b2Þ3=2

25=33ð3þ 4b2Þ3=2 ð1 − a�Þ2=3 þOð1 − a�Þ; ðB3Þ

L=M ¼ 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4b2

p
− bÞ

3
þ 25=3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4b2

p
− bÞ2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4b2

p ð1 − a�Þ1=3

þ 9þ 2bð72bþ 86b3 − 5ð3þ 4b2Þ3=2Þ
22=33ð3þ 4b2Þ3=2 ð1 − a�Þ2=3 þOð1 − a�Þ: ðB4Þ

On the other hand, for a Schwarzschild black hole, the ISCO radius for a prograde motion for b → ∞ is given by

ra�¼0
I =M ¼ 2: ðB5Þ

For a slowly rotating black hole with large b (1 ≫ 1=b ≫ a�), the correction to Eq. (B5) is [11]

rI=M − ra�¼0
I =M ¼ 2ffiffiffi

3
p

b
−

8

9b2
þ
�
−

2

31=4b1=2
þOðb−3=2Þ

�
a� þOðb−3Þ þOða2�Þ; ðB6Þ

and E and L becomes

E ¼ 2

33=4b1=2
þ
�
b
2
þOðb0Þ

�
a� þOðb−3=2Þ þOða2�Þ; ðB7Þ
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L=M ¼ 2bþ 2
ffiffiffi
3

p
þ ð−2ð33=4Þb1=2 þOðb−1=2ÞÞa�

þOðb−1Þ þOða2�Þ: ðB8Þ

2. ISCO for retrograde
motion

We seek a solution to Eq. (22) for a retrograde motion
(L < 0). As found by Aliev and Ozdemir [10], in the case a

maximally rotating black hole (a� ¼ 1), the radius of the
ISCO for a retrograde motion for b → ∞ is given by

ra�¼1
I =M ¼ 2þ 4 cos

�
1

3
arctan

� ffiffiffi
7

p

3

��
≃ 5.884: ðB9Þ

For a nearly maximally rotating and a large b [specifically
we consider the case Oð1=b2Þ ∼Oð1 − a�Þ], the correction
to Eq. (B9) is

rI=M − ra�¼1
I =M ¼ αð1 − a�Þ þ βb−2 þOð1 − a�Þ2 þOðb−3Þ; ðB10Þ

α ¼
8
�
4466012þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

79916110092053
p

cos
�
1
3
arctan

�
2870281010308837411

ffiffi
7

p
5715327328333426410209

���
−25156453þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
158178564944911

p
cos
�
2π
3
þ 1

3
arccos

�
−324799494986675497691

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

22596937849273

p
180775502794184

��
≃ −1.42114;

β ¼
−22

�
56057þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
298562594

p
cos
�
1
3
arctan

�
2220413061871

ffiffi
7

p
40850566758917

���
−75469359þ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
158178564944911

p
cos
�
2π
3
þ 1

3
arccos

�
−324799494986675497691

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

22596937849273

p
180775502794184

��
≃ 1.55107 × 10−2: ðB11Þ

The asymptotic form of E and L is given by

E ¼ ð7.82673bþ 8.72195 × 10−2b−1Þ þ ð−2.07312bþ 1.80836 × 10−2b−1Þð1 − a�Þ
þOð1 − a�Þ2 þOðb−3Þ; ðB12Þ

L=M ¼ ð−42.614b − 0.37131b−1Þ þ ð20.0393bþ 5.03812 × 10−3b−1Þð1 − a�Þ þOð1 − a�Þ2 þOðb−3Þ; ðB13Þ

which seems to agree with Eq. (43) in [10] although the limiting value of L slightly deviates from theirs.
On the other hand, for a Schwarzschild black hole, the ISCO radius for a retrograde motion for b → ∞ is given by

ra�¼0
I =M ¼ 5þ ffiffiffiffiffi

13
p

2
≃ 4.30278: ðB14Þ

For a slowly rotating black hole with large b (1 ≫ 1=b ≫ a�), the correction to Eq. (B14) is

rI=M − ra�¼0
I =M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
107þ 41

ffiffiffiffiffi
13

p

78

s
a� þ

1

234
ð41

ffiffiffiffiffi
13

p
− 143Þb−2 þOðb−3Þ þOða2�Þ: ðB15Þ

Then E and L take the forms

E ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3
ð46þ 13

ffiffiffiffiffi
13

p
Þ

r
bþ 1

6b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
ð
ffiffiffiffiffi
13

p
− 2Þ

r �
þ
�
4þ ffiffiffiffiffi

13
p

3
bþ ð−5019þ 1250

ffiffiffiffiffi
13

p Þ
11934b

�
a� þOðb−3Þ þOða2�Þ; ðB16Þ

L=M ¼
�
−
47þ 13

ffiffiffiffiffi
13

p

4
bþ 1 −

ffiffiffiffiffi
13

p

6b

�
þ
 
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6
ð1013þ 281

ffiffiffiffiffi
13

p
Þ

r
bþ 81

13b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

439183þ 121829
ffiffiffiffiffi
13

p
s !

a�

þOðb−3Þ þOða2�Þ; ðB17Þ

which coincide with the results by Frolov and Schoom [13] in the limit of a� → 0.
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