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Relative locality is a recent approach to the quantum-gravity problem which allows the taming of
nonlocality effects which may arise in some models which try to describe Planck-scale physics. I here
explore the effect of relative locality on basic special-relativistic phenomena. In particular I study the
deformations due to relative locality of special-relativistic transformation laws for momenta at all orders in
the rapidity parameter ξ. I underline how those transformations also define the relative locality
characteristic (momentum-dependent) invariant metric. I focus my analysis on the well studied de Sitter
momentum-space framework, and I investigate the differences and similarities between this model and
special relativity, from the definition of the boost parameter γ to a first discussion of transverse effects
characteristic of relative locality on clocks observables.
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I. INTRODUCTION

Relative locality (RL) is a quite young approach to the
quantum-gravity problem which formalizes nonlocalities
and other characteristic features of deformed symmetries
models, introducing some sort of momentum-space curva-
ture [1–4] that influences the localization process, at a
characteristic scale that we assume to be of the order of
the Planck-scale l ∼ 1=MP.

1 A strong motivation to
explore this feature has emerged both from the theoretical
and the phenomenological sides, since the Planck-scale
curvature of momentum space introduces corrections to the
travel times of particles, opening also an opportunity for
experimental tests [5].
So far many aspects of this theory have been examined:

from the implications for interaction vertices conservation
laws [2,6,7] to some attempts to generalize relative locality
to curve space-time scenarios [8,9]. However, in the
literature we are still lacking a clear explanation of the
properties of the theory transformation laws as deformation
of Lorentz ones, though the argument has been analyzed
so from the algebraical point of view [10–12], as from
the phenomenological one [13,14]. In this paper we will
discuss analogies and divergences between special rela-
tivity and its relative locality version, using the well-studied
de Sitter momentum-space formalism [3,4] at first order in
the deformation parameter l.
Relative locality was at first meant [15] as a realization of

deformed special relativity (DSR; see for instance Ref. [16]
and references therein) suggesting a way to introduce the

coordinate space. The curved momentum-space geometric
interpretation was later introduced [1,2] without explicitly
including a relativity principle. It may be possible, then, to
also formalize Lorentz symmetries breakdown models,
such as models with a preferential spacelike direction
[17], using a curved momentum-space framework. For
our purposes, however, we need a ten-generators symmetry
algebra, and therefore the choice to study a de Sitter-like
curved momentum space is pretty straightforward.
To give a satisfying characterization to the relative

locality features that we will encounter, we will need to
work with boost transformations at all orders in the rapidity
parameter ξ, in 2þ 1 dimensions (the 3þ 1-dimensional
generalization is straightforward). We will then give a brief
description of the RL-boost transverse effects [18,19] on
momenta, showing also how those l-deformed transfor-
mations naturally implement a Rainbow metric formalism
[20] for the invariant line element.
A key element of our analysis is the nontrivial coordinate

system, defined in analogy with de Sitter space-time con-
served charges Π0 ¼ p0 −Hxkpk, Πi ¼ pi [4,21]. These
coordinates satisfy the following nontrivial Poisson brackets:

fχi; χ0g ¼ lχi; ð1Þ

where in our case the index i can assume the values i ¼ L; T
(longitudinal and transverse direction). The reason why this
coordinatization is more suitable for this kind of discussion,
as we will explain later in detail, is that the worldline
expression in χα coordinates is momentum independent
[4,22], and therefore we do not encounter any theoretical
problem in fixing a reflexive, symmetric and transitive
definition for a time interval. Relative locality effects on
clocks observables in 2þ 1 dimensions will then be
discussed at the end of the paper.

*niccolo@accatagliato.org
1In this paper lengths will have the dimensions of an inverse

mass, since from now on we will adopt the natural units system
c ¼ ℏ ¼ 1.
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A. About de Sitter momentum space

Our mathematical formalism is based on deSitter
momentum space in 2þ 1 dimensions for which the
metric is

~ηαβðpÞ ¼

0
B@

1 0 0

0 −ð1þ 2lp0Þ 0

0 0 −ð1þ 2lp0Þ

1
CA: ð2Þ

Using this metric we can define the invariant line element in
momentum space as the geodesic distance from the
momentum-space origin

dk2ð0; pÞ ¼
Z
λ
~ηαβðpÞ_λα _λβds ¼ CðpÞ; ð3Þ

in which s is the variable with which we parametrize our
geodesic λðsÞ connecting the point at p in which a particle
lies at the point p ¼ 0; and in which

CðpÞ ¼ p2
0 − p2 − lp0p2; ð4Þ

where, by definition, in 2þ 1 dimensions p2 ¼ p2
L þ p2

T .
With the CðpÞ being invariant, we can identify it as the
Casimir operator of the de Sitter momentum-space trans-
formation generators algebra,

fp0; pig ¼ 0; fpi; pjg ¼ 0; fN ðiÞ;Rg ¼ ϵijN ðjÞ;

ð5Þ

fN ðiÞ;N ðjÞg ¼ ϵijR; fN ðiÞ; p0g ¼ −pi; ð6Þ

fN ðiÞ; pjg ¼ −δij

�
p0 − lp2

0 þ
l
2
p2

�
þ lpipj; ð7Þ

in which the boost N ðiÞ and the rotation R generators can
be represented in terms of the χμ coordinates as

N ðiÞ ¼ χ0pi þ χi
�
p0 − lp2

0 þ
l
2
p2

�
; ð8Þ

R ¼ χLpT − χTpL: ð9Þ

An important de Sitter momentum-space feature to take
into account is the deformation of the symplectic structure
between momenta and coordinates, given by the nontrivial
relation between the coordinate components (1). Therefore,

fp0; χ0g ¼ 1; fp0; χjg ¼ 0

fpi; χ0g ¼ −lpi; fpi; χjg ¼ δji : ð10Þ

It is easy to check that (10) and (1) satisfy all Jacobi
identities.

We can obtain the finite action of the boost trans-
formation by means of the Poisson brackets of its generator
N ðiÞ through the map

BðiÞ⊳fðx; pÞ ¼ fðx; pÞ − ξfN ðiÞ; fðx; pÞg

þ ξ2

2!
fN ðiÞ; fN ðiÞ; fðx; pÞgg þ � � � ð11Þ

However, in the following sections, instead of summing all
the ξn contributes, we will, for sake of simplicity, just
integrate the first-order term of the series expansion.

II. BOOST PARAMETERS IN
RELATIVE LOCALITY

In this first paragraph, we will review some basic concepts
of relative locality in 1þ 1 dimensions, and, at the end, we
will show how the special-relativistic parameter β and γ find
a rather simple interpretation even in a curve-momentum-
space framework. In special relativity, in order to identify the
physical meaning of β, we take advantage of the math-
ematical relation between hyperbolic sine and cosine,

cosh2ðξÞ − sinh2ðξÞ ¼ 1; ð12Þ

and then we redefine the two functions as

coshðξÞ ¼ γ sinhðξÞ ¼ βγ; ð13Þ

therefore, (12) determines the connection between the two
parameters (which still have no physical interpretation for
now),

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p : ð14Þ

Of course those relations find a useful application in
describing the coordinate and momenta transformations
between two observers boosted with respect to one another.
We let the special-relativistic boost generator N SR ¼
x1p0 þ x0p1 act on momenta pα through the Poisson-
bracket formalism. Then we find the infinitesimal variation
of momentum-space coordinates with respect the rapidity
parameter ξ:

( dp0

dξ ¼ −fN SR; p0g ¼ p1

dp1

dξ ¼ −fN SR; p1g ¼ p0:
ð15Þ

System (15) can be easily solved for example using the
ab initio conditions p0ð0Þ ¼ μ, p1ð0Þ ¼ 0. With this choice
we find the usual

p0ðξÞ ¼ μ coshðξÞ p1ðξÞ ¼ μ sinhðξÞ: ð16Þ
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Now from equation (12) it is straightforward to obtain the
special-relativistic invariant dispersion relation

p2
0 − p2

1 ¼ μ2

and also the physical interpretation for the β parameter,

β ¼ sinhðξÞ
coshðξÞ ¼

p1

p0

≡ v1;

which is the particle’s velocity we find in the expression of
special-relativistic worldlines.
In relative locality we proceed in a quite similar way. The

RL version of (15) was already found in DSR literature
[13,23] and defined in a curved momentum-space frame-
work in Ref. [3] at all orders in the deformation parameter
l. It is sufficient for our purposes to discuss the first-order
expansion formalism which was already used to explore
synchrotron radiation in deformed special relativity [14].
Indeed the transformations of our curve-momentum-space
coordinates can be obtained from the deformed boost
generator [see (8)] action:

8<
:

dp0ðξÞ
dξ ¼ −fN ; p0g ¼ p1ðξÞ

dp1ðξÞ
dξ ¼ −fN ; p1g ¼ p0ðξÞ − lp2

0ðξÞ − l
2
p2
1ðξÞ

: ð17Þ

This differential equation system can be solved by
perturbing the solutions we found in the classical case
(16) as

p0ðξÞ ¼ μ coshðξÞ þ laðξÞ;
p1ðξÞ ¼ μ sinhðξÞ þ lbðξÞ: ð18Þ

Thus, using (18), we reduce (17) to the relations

aðξÞ − d2aðξÞ
dξ2

¼ μ2
�
cosh2ðξÞ þ 1

2
sinh2ðξÞ

�
ð19Þ

bðξÞ ¼ daðξÞ
dξ

; ð20Þ

from which we finally obtain the solutions

p0ðξÞ ¼ μ coshðξÞ − l
μ2

2
sinh2ðξÞ ð21Þ

p1ðξÞ ¼ μ sinhðξÞ − lμ2 sinhðξÞ coshðξÞ: ð22Þ

We can now verify that if we assume the energy-momen-
tum dispersion relation to be deformed according to (4) we
still can obtain a coherent picture for the invariance of the
particle mass; in fact since

sinhðξÞ≃ p1

μ

�
1þ l

p0

μ

�
; coshðξÞ≃ p0

μ
þ l

2

p2
1

μ
;

ð23Þ

we can again rely on (12) (which is purely a relation
between hyperbolic functions and then not model depen-
dent at all) to define our modified dispersion relation
(MDR), invariant under deformed boost transformations

p2
0 − p2

1 − lp2
1p0 ¼ μ2:

We can now recover the generic definitions (13) for β, γ
(which as stated above still is not model dependent).
Therefore,

β ¼ tanhðξÞ ¼ jp1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ μ2

p þ ljp1j
�
1 −

p2
1

p2
1 þ μ2

�
: ð24Þ

This result is very important, since also in the l-deformed
framework β can be interpreted as the velocity of a boosted
particle in the laboratory reference frame. We can in fact
notice that relation (24) is exactly the coordinate velocity
found in previous relative locality works [4,22].

A. Velocity in relative locality

To better explain the liaison between the β parameter and
the velocity expression in relative locality, we need to
introduce some elements of its phase space formalisation.
In this framework we can describe particles worldlines in
terms of an auxiliary parameter τ. The dependence of
coordinates χα on the worldline parameter τ can be found
using Casimir (4) as a Hamiltonian: _χβ ¼ dχβ=dτ ¼
fC; χβg. This leads to

_χ0 ¼ fC; χ0g ¼ 2p0 þ lp2
1; ð25Þ

_χ1 ¼ fC; χ1g ¼ −2p1 − lp0p1: ð26Þ

The worldline expression can then be found pretty easily by
integrating

χ1 − χ̄1 ¼
Z

χ0

χ̄0

_χ1

_χ0
dχ0 ¼ vχðpÞðχ0 − χ̄0Þ: ð27Þ

It is not hard to verify that jvχ jðpÞ ¼ βðpÞ and then, as
stated before, that parameter β founds a simple physical
interpretation in the relative locality framework. In
Ref. [22] the quantity vχðpÞ was referred to as coordinate
velocity, since, in order to obtain a satisfactory formaliza-
tion of the entire particle emission-reception process, we
also need to take into account how to relate different
translated observers coordinatizations. In fact, taking into
account the nontrivial symplectic structure defined in (10),
we obtain deformed relations between the coordinates of an
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observer at the emission of a particle (Alice) and the
receiver’s (Bob) ones:

χμB ¼ χμA þ aνfpν; χμg ¼ χμA þ aνðδμν − lδ1νδ
μ
0p1Þ: ð28Þ

This means that an event, such as the emission of two
particles with different energies, defined as “local” by Alice
may not be local for Bob as well.
This nontrivial translation framework may result in being

a little bit confusing. The same process can be, however,
also expressed using coordinates xα with trivial symplectic
sector fpμ; xνg ¼ δνμ as explained in Ref. [4]. In this
framework the worldlines expression is

x1 − x̄1 ¼
Z

x0

x̄0

_x1

_x0
dx0 ¼ vxðpÞðx0 − x̄0Þ; ð29Þ

where

jvxjðpÞ ¼
∂p0

∂p1

¼ jp1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ μ2

p þ ljp1j

is the particle physical velocity, since in this formalism the
relative locality effect is only expressed through velocity
momentum dependence [15].
Those two formalisms, the nontrivial translation one,

formalized in terms of χα coordinates, and the physical
velocity one (which relates on a standard-symplectic
sector), coordinatized through xα, are not in contradiction
and predict the same physical effect as shown in Fig. 1.

It is important for phenomenological purposes to notice
that the identification between the β parameter and the
coordinate velocity vχ cannot be done in a symmetry-
breakdown scenario, since in this case we do not modify
(15), and then the relation between βLIV and worldline
velocity is unavoidably nontrivial: βLIV ¼ v1ð1 − lp0Þ.
The possibility of having a departure from the identification
between the β parameter and velocity v is usually not taken
into account in Lorentz-invariance violation literature (see
exempli gratia Refs. [24,25]) and maybe should be better
deepened.

B. Deformed Lorentz momenta transformations
in 2þ 1 dimensions

It is maybe important to deepen our exploration on
relative locality with de Sitter momentum space in more
than one spatial dimension, since it shows a peculiar feature
which in the literature is called transverse relative locality
[15,18,19,26]. This feature is an important aspect of
theories with relativity of locality since it provides inter-
esting phenomenological effects as we will see further. In
2þ 1 dimensions the system of differential equations (17)
is enriched by a transverse-component equation:

8>>><
>>>:

dp0ðξÞ
dξ ¼−fN ðLÞ;p0g¼pLðξÞ

dpLðξÞ
dξ ¼−fN ðLÞ;pLg¼p0ðξÞ−lp2

0ðξÞþl
2
jpj2ðξÞ−lp2

L

dpTðξÞ
dξ ¼−fN ðLÞ;pTg¼−lpLpT

:

ð30Þ

We can solve the system perturbatively as done in the
previous section with system (17), fixing the generic
ab initio conditions p0ð0Þ ¼ p̄0, pLð0Þ ¼ p̄L and pTð0Þ ¼
p̄T ; given those we find the generic solutions

p0ðξÞ ¼ p̄0 coshðξÞ þ p̄L sinhðξÞ −
l
2
ðcoshðξÞ − 1Þ

× ð−p̄2
T þ p̄2

0ðcoshðξÞ þ 1Þ þ p̄2
L coshðξÞ

þ 2p̄0p̄L sinhðξÞÞ; ð31Þ

pLðξÞ ¼ p̄L coshðξÞþ p̄0 sinhðξÞþl
�
p̄0p̄Lð1 − coshðξÞÞ2

þ
�
p̄2

2
− ðp̄2

0 þ p̄2
LÞ coshðξÞ

�
sinhðξÞ

�
; ð32Þ

pTðξÞ ¼ p̄T þ lp̄Tðp̄0ð1 − coshðξÞÞ − p̄L sinhðξÞÞ: ð33Þ
It is very easy to verify that those solutions reduces to (21)
and (22) if we fix the initial conditions as p̄0 ¼ μ, p̄L ¼ 0
and p̄T ¼ 0. Another important property of solutions (31),
(32) and (33) is that they verify the invariance of the
deformed dispersion relation defined by the Casimir (4) at
all orders in ξ; in fact we observe that

FIG. 1 (color online). Two photons are emitted in Alice’s
origin: a low-energetic one (in red on the right) and an ultraviolet
one (in blue on the left). The relative locality effect of this model
is represented by the time delay between the arrival of the two
photons in Bob’s spatial origin (at a certain distance a from the
emission). The effect is the same no matter what formalism Bob
uses to describe phenomena: both the nontrivial translation
formalism (dashed worldlines) and the physical velocity one
(straight worldlines) predict the same time delay Δt ¼ laΔp0

between the arrival of the high-energetic photon and the low-
energetic one.
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p2
0ðξÞ − ðp2

LðξÞ þ p2
TðξÞÞ − lp0ðξÞðp2

LðξÞ þ p2
TðξÞÞ

¼ p̄2
0 − ðp̄2

L þ p̄2
TÞ − lp̄0ðp̄2

L þ p̄2
TÞ ¼ μ2; ð34Þ

as we could expect, given relation fN ðiÞ; Cg ¼ 0. One thing
we can notice from Eq. (34) is that the invariance of the
dispersion relation is strictly related to the transformations

of all the components of momenta. While in special
relativity (SR) the transformation of the p0 and the pL
components leads to them compensating each other (where
L is chosen as the boost direction), in RL we need to take
into account also the transverse one to ensure the invariance
of the MDR. Since (32) and (33) balance each other
harmoniously, there is no point in studying the evolution
of the angle θ ¼ arctanðpTðβÞ=pLðβÞÞ between the two
momenta (we would obtain a practically indistinguishable
behavior from the SR one). On the other hand, it may be of
some interest to analyze the behavior of the single
momentum components (see Fig. 2).
While pLðβÞ basically follows the special relativistic

curve, pTðβÞ shows a sensitively different behavior than
the SR case, at some orders of magnitude below our
deformation scale l. This could be an important feature
for further phenomenological investigations of relative
locality, for example for what concerns the study of
deformed particle vertices. We will not deepen those
aspects in this paper for they might deserve dedicated
studies, and instead we are here more interested in
characterizing deformed Lorentz-transformations effects
also for space-time.

III. COORDINATE TRANSFORMATIONS
AND RAINBOW METRICS

In the literature many studies try to define the behavior of
relative locality in the presence of space-time curvature
[8,9]. To support those efforts, it may be of some interest to
develop a phenomenology of RL effects, for example at a
cosmological scale. An important mathematical tool which
could be very useful in this kind of analysis is the Rainbow
metrics formalism [20]. In this paper we have now the
possibility to suggest how those momentum-dependent
metrics should naturally arise in the Minkowskian limit
of relative locality. In fact, as done for momenta (30), we
can define the different space-time coordinatizations, which
two boosted observers would use to describe physical
phenomena, by solving the system

8>>><
>>>:

dχ0ðξÞ
dξ ¼ −fN ðLÞ; χ0g ¼ −χLðξÞ þ lðχLðξÞp0ðξÞ þ χ0ðξÞpLðξÞÞ

dχLðξÞ
dξ ¼ −fN ðLÞ; χLg ¼ −χ0ðξÞ

dχT ðξÞ
dξ ¼ −fN ðLÞ; χTg ¼ −lðχLðξÞpTðξÞ − χTðξÞpLðξÞÞ:

ð35Þ

As usual we opt for solving (35) perturbatively at first order in l, using the solutions we found in the last section (31), (32)
and (33), to write the explicit expressions for momenta pμðξÞ. The solutions of system (35) for generic ab initio conditions
χμð0Þ ¼ χ̄μ are

χ0ðξÞ ¼ χ̄0 coshðξÞ − χ̄L sinhðξÞ þ l sinhðξÞðχ̄Lp̄0 þ χ̄0p̄LÞ; ð36Þ

0.0 0.2 0.4 0.6 0.8 1.0
1

2

3
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6

0.0 0.2 0.4 0.6 0.8 1.0
0.70

0.75

0.80

0.85

0.90

0.95

1.00

FIG. 2 (color online). In those pictures we represent the
behavior respectively of the pL and the pT components of
momenta, for different values of the β parameter. The straight
lines obey (32) and (33) transformation laws, while the dashed
ones represent the special relativistic case. Of course in order to
show explicitly the differences between those two theories, the
momenta absolute value has been fixed at some consistent
fraction of our deformation scale (jpj ∼ 0.03l−1).
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χLðξÞ ¼ χ̄L coshðξÞ − χ̄0 sinhðξÞ
þ lð1 − coshðξÞÞðχ̄Lp̄0 þ χ̄0p̄LÞ; ð37Þ

χTðξÞ ¼ χ̄T þ lððcoshðξÞ − 1Þðχ̄Tp̄0 þ χ̄0p̄TÞ
− sinhðξÞðχ̄Lp̄T − χ̄Tp̄LÞÞ: ð38Þ

Those solutions can help us to define the relative-locality-
invariant line element ds2 at all orders in ξ, and in the same
exact way, we show the invariance of the dispersion relation
in (34). We can therefore observe that two boosted
observers will agree on

χ0ðξÞ2 − ðχLðξÞ2 þ χTðξÞ2Þð1 − 2lp0ðξÞÞ
þ 2lχ0ðξÞχiðξÞpiðξÞ

¼ ðχ̄0Þ2 − ððχ̄LÞ2 þ ðχ̄TÞ2Þð1 − 2lp̄0Þ þ 2lχ̄0χ̄ip̄i: ð39Þ

Relation (39) can be more synthetically expressed through
a metric formalism as

Δs2 ¼ ~ηðχÞμν ðpÞχμχν; ð40Þ
where the momentum-dependent 2þ 1-dimensional
Minkowskian metric ~η is defined as

~ηðχÞμν ðpÞ ¼

0
B@

1 lpL lpT

lpL −ð1 − 2lp0Þ 0

lpT 0 −ð1 − 2lp0Þ

1
CA: ð41Þ

This example shows explicitly how the Rainbow metrics
formalism is naturally implemented in the relative locality
theory. The main difference between the Rainbow formal-
ism used in Ref. [20] and the one we show in this paper is
that in relative locality the definition of metric ~η is not
obtained through the modified dispersion relation as
m2 ¼ gαβðRÞðpÞpαpβ. Vice versa in RL both MDR and the

space-time Rainbow metric are shaped on the curve
momentum-space metric (2).
It may seem that metric (41) may not be dual to the

momentum-space metric (2), because of the off-diagonal
elements. That is not a problem because we do not expect

metric ~ηðχÞαβ to be dual to the momentum-space one, since
noncommutative coordinates χμ have a nontrivial symplec-
tic sector (10). Duality is instead required for commutative
coordinates xβ which satisfy fpα; xβg ¼ δβα. The liaison
between χα and xβ coordinates is very well known in
relative locality literature [1,3,22] and is

χα ¼ ταβðpÞxβ ¼ ðδαβ − lδα0δ
j
βpjÞxβ; ð42Þ

where the ταβðpÞ are the translation de Sitter momentum-
space killing vectors (see Ref. [4] for a clear discussion of
the physical implications of this feature).

Using relation (42) we can find that

Δs2 ¼ ~ηðχÞμν ðpÞχμχν ¼ ~ημνðpÞxμxν; ð43Þ

where

~ημνðpÞ ¼

0
B@

1 0 0

0 −ð1 − 2lp0Þ 0

0 0 −ð1 − 2lp0Þ

1
CA: ð44Þ

Then, confronting (44) with (2), it is now clear how duality
between space-time and momentum-space metrics is mani-
fest, since ~ηαγ ~ηγβ ¼ δαβ .

A. Clocks and transverse effects

To explore special relative locality phenomenology, we
should now define the procedure we use to identify what
we call time intervals. As in usual special relativity, in RL
we can rely on the absoluteness of the speed of light, using
an Einstein clock of length a (see Fig. 3) to define time
units. The only problem we should be careful about is the
nontrivial relation between lengths and time intervals.
The procedure we are going to describe will make use of

the same formalism already introduced in Sec. II. A, paying
particular attention to the sign of photon velocities and
momenta pre- and postreflection (and other small formal
features that we will deepen throughout this section).
We can begin with noticing that according to (27) in χα

coordinates our photons have trivial worldlines

χT − χ̄T ¼ −ðχ0 − χ̄0Þ; ð45Þ

on the other hand, we have deformed translations [4,22]
due to the nontrivial symplectic sector (10). Then the ideal
interaction point between a photon emitted in A and the
mirror in B has coordinates

FIG. 3 (color online). Einstein synchronization convention: a
photon is sent from the emission point A, set as the spatial origin
of the coordinate frame in picture, at time χ0 ¼ 0 toward the
mirror in B. The following detection of the reflected photon in A
gives us the definition of time.
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χνðBÞ ¼ χ̄νðAÞ − aμfpμ; χνðAÞg ¼ χ̄νðAÞ − aμðδνμ − lδν0δ
i
μp̄iÞ;

ð46Þ

where with (χ̄LðAÞ ¼ 0, χ̄TðAÞ ¼ 0) we indicate the emission
point coordinates in the A frame. Then, using (46) with
(45), we obtain that, according to the translated observer
[whose spatial origin is in (χLðBÞ ¼ 0, χTðBÞ ¼ 0)], the
emission point has coordinates

χ̄0ðBÞ ¼ −a0 þ lap̄T; χ̄LðBÞ ¼ 0; χ̄TðBÞ ¼ −a: ð47Þ

Then the observer in B infers different emission times for
different photon energies. Moreover, using the worldline
expression (45), we can verify that also the photon time of
arrival at mirror in B is momentum dependent:

χ0ðBÞðχLðBÞ ¼ 0; χTðBÞ ¼ 0Þ ¼ a0 − a − lap̄T: ð48Þ

All this may result in being a little bit weird to a reader
facing relative-locality-related effects for the first time, but
we should keep in mind that all those features are merely a
coordinate artifact, due to the curvature of momentum
space. This concept is even clearer when one clarifies what
to expect from the entire emission-reflection-detection
process. In fact since the detector is placed in A, we can
check if such a momentum dependency is still present in
the time interval measured by our device, by calculating
where the observer in A would infer the emission point.
First of all, we have to fix, using the inverse of trans-
formations (46), how Awould express the photon reflection
point (48):

χνðAÞ ¼ χ̄νðBÞ þ aμfpμ; χνðBÞg ¼ χ̄νðBÞ þ aμðδνμ − lδν0δ
i
μp̄iÞ:
ð49Þ

Then, setting the result of (49) as a starting point for the
worldlines (45), and considering that momentum pT now
points in the opposite direction, we obtain that the observer
in A infers the emission time to be

χ̄0ðAÞ ¼ −2a − 2lap̄T: ð50Þ

Therefore, as we expected, since the momentum depend-
ence of the photon time of flight that B observes is a
physical effect (46), we obtain that the time interval
definition in relative locality depends explicitly on momen-
tum-space curvature:

Δχ0 ≃ 2að1 − lp̄0Þ: ð51Þ

The reason why we have formalized our theory using
coordinates with apparently complicated relations between
each other (1) and a nontrivial symplectic sector (10) is that
we have been able to express the physical effect just as a

feature of the deformed translations. If instead of using the
χα coordinates we had used the commutative xα ones, we
would have payed the simplification of the mathematical
formalism with a more complex description of the whole
synchronization mechanism (though the physical result
would have been the same).
Using this coordinatization, it is now easy to obtain the

time-interval expression for a boosted observer. In fact, if
we imagine observing the device in Fig. 3 from a reference
frame boosted along the χL direction, since any transverse
effect on momentum is suppressed by a factor Oðl2Þ,
according to (36) we would define the time interval just as

Δχ0ðβÞ ¼ 2aγð1 − lp̄0Þ; ð52Þ
where a is defined in the rest frame. However, a boosted
observer would not express the clock length in terms of a. If
instead we wish to express our time interval in terms of the
boosted reference frame observables, we should take into
account also the relatively local transverse effect. Then,
with LðaÞ being the clock length measured by the boosted
observer, using (38), Eq. (52) becomes

Δχ0ðβÞ ¼ 2LðaÞγð1 − lð2γ − 1þ βγÞp̄0Þ: ð53Þ

To imagine a way to detect this effect, we can borrow a
common idea in quantum-gravity literature, considering the
time delay of two simultaneously emitted photons carrying
different energies [5] in two different boosted reference
frames. While in the clock’s reference frame we expect a
momentum-dependent time delay only amplified from the
size of length a, on the other hand, according to a boosted
observer, the two photons should reach the detector at
different times, for which the difference for γ ≫ 1 is
δT ∼ lγ2LaδE. For this effect to have any significance,
an ideal gedanken experiment based on it should then
compare the observations of two boosted observers with
high boost parameter γ, for the ricochet of two photons with
big energy difference δE, in a clock with large La, to
compensate the tiny value of l.

IV. CLOSING REMARKS

In quantum-gravity phenomenology, it is always com-
plex to define observables and consequently to fix upper
bounds to the parameters we use to formalize the effects.
It is then, in my experience, useful to express those effects
as corrections to the classical models. This is precisely the
spirit of this whole article in which the manifestations of
momentum-space curvature are expressed as a deformation
of Lorentz transformations, modeled in terms of the usual β
and γ parameters. With this formalization it is pretty simple
to characterize the deformation effects, even the most
unexpected ones, like the boost-related transverse relative
locality. About this rather unexplored scenario of transverse
effects in de Sitter momentum space, it may be interesting
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to verify if such features can be of some help in identifying
an upper limit for phenomenological parameters, for
example for analysis such as the one reported in
Ref. [27], for which the identification of the origin point
of detected particles is crucial.
Also interesting for phenomenological purposes is the

discussion about the deformed (momentum-dependent) law
for time-intervals dilatation (the boost parameter γ appears
to act like a magnifier for RL effects), and it might require a
dedicated research program to identify the most promising
applications that might allow us to unveil such effects. But
the payout that could be expected appears to be worth the
effort, since such a novel window on the Planck-scale realm
could have particularly significant impact on our ability to
investigate the quantum-gravity problem.

Also for what concerns the more academic/conceptual
side of the issues here discussed, these studies should
motivate further investigation, particularly for what con-
cerns the identification of a characteristic metric formalism
for relative locality which could also be extremely impor-
tant from the phenomenological side, as discussed in
Sec. III.
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