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The ability of a plasma surrounding spinning black holes to extract rotational energy and power
energetic emissions has been recognized as a key astrophysical phenomenon. Important insights into the
nature of this process are obtained through the analysis of the interplay between a force-free magnetosphere
and the black hole. This task involves solving a complicated system of equations, often requiring complex
numerical simulations. Recent analytical attempts at tackling this problem have exploited the fact that the
near-horizon region of extreme Kerr (NHEK) is endowed with an enhanced symmetry group. We continue
in this direction and show that for some conformally self-similar solutions, the NHEK force-free equations
reduce to a single nonlinear ordinary differential equation which is difficult to solve with straightforward
integration. We here introduce a new approach specifically tailored to this problem and describe how one
can obtain physically meaningful solutions.
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I. INTRODUCTION

Energetic, highly collimated emissions emanating from a
localized central engine are observed throughout our
Universe. A leading model to explain the engine powering
these jets involves, at a basic level, a spinning black hole
feeding its rotational energy into the kinetic and thermal
energy of the surrounding plasma, through a process such as
the Blandford-Znajek mechanism [1]. While this basic
picture is widely accepted, a detailed understanding of these
systems remains elusive. This status of affairs is due to the
inability of detecting clean electromagnetic signals from the
depths of the central engine and complexities involved in a
first-principles description of the underlying processes.
Recently however, strong momentum has been gained at
the observational level [2] (with further exciting opportu-
nities via near-future very long baseline interferometry
observations, e.g. [3]) as well as in the theoretical front
thanks to simulations of relevant systems, e.g. [4–7]. A large
body of such simulations models the behavior of the plasma
and accompanying electromagnetic fields by adopting a
force-free electrodynamics (FFE) approach [1,8]. Such
model assumes (the physically realistic condition) that in
the magnetosphere region, the matter contribution to the
stress-energy tensor is negligible when compared to that of
the electromagnetic field. This assumption accounts for the

plasma behavior implicitly through suitable constraints,
allowing one to derive a closed set of evolution equations
that involve only the electric and magnetic fields, suitably
coupled to a description of the spacetime curvature.
These equations constitute a highly nonlinear hyperbolic

partial differential equation system as long as FabFab ¼
2ðB2 − E2Þ ≥ 0 (i.e. the system is magnetically dominated)
[9,10], of which few analytical solutions are known
[11–18]. As a result, much of our current detailed under-
standing has been obtained via numerical simulations
which have provided important insights in the behavior
of force-free black-hole systems. For instance, how the
black hole-plasma interaction sustains a steady and ener-
getic Poynting flux as well as the dependency of the latter
with black-hole spin [5,6,19–33]. Despite the knowledge
that can be gained through simulations, it is certainly
desirable to obtain analytical or semianalytical solutions for
their invaluable power to provide further clarity, allow for a
broader generality and to provide additional guidance to the
simulations’ results.
Among relevant scenarios, the regime of rapidly spinning

black holes1 is of particular importance due to the challenges
they present to numerical simulations and the seemingly
more intricate phenomena allowed. For instance, subtle
differences in the dependence of Poynting flux luminosity
on the spin of highly spinning black holes have already been
indicated by simulations [7]. Additionally, it has been
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suggested that rapidly spinning black holes [36–38] possess
slowly decaying quasinormal modes, which may reveal
nonlinear instabilities if the mode-mode coupling is suffi-
ciently strong [39]. Further interesting phenomena in the
plasma can consequently arise and a first step towards
understanding it requires examining the plasma behavior
on a fixed background. Further reasons for studying this
regime are provided by the Kerr/CFT duality conjecture
[40,41] which relates the near-horizon region of extreme
Kerr (NHEK) to a suitable conformal field theory (CFT) in
2þ 1 dimensions. Therefore, analytical solutions on the
(near-) extremal Kerr black-hole background are particularly
interesting.
In our pursuit to find such solutions, we are fortunate in

that the NHEK metric [42,43] that describes the near-
horizon region of extremal holes possesses an enhanced
symmetry as compared to the generic Kerr metric. This
allows one to concentrate on obtaining highly symmetric
(i.e. more restricted) FFE solutions. Earlier attempts in this
direction include Ref. [44] that found singular partial
solutions near the poles or at large radius, and in particular
Ref. [17] that made explicit and sophisticated use of the
symmetries to find a large family of exact solutions that are
explicitly known everywhere (albeit not magnetically
dominated).
In this paper, we use an alternative (to Ref. [17])

FFE-solving framework to reduce the force-free equations
to a single nonlinear ordinary differential equation (ODE).
Namely, we adopt the geometric language of Refs. [18,
45–51] that simplifies the exploitation of symmetry con-
siderations, and impose self-similarity under the conformal
transformations. We essentially work under the H repre-
sentation described in Ref. [17] instead of the L represen-
tation utilized in that paper. The resulting family of
solutions also differs from those found in Ref. [17], and
includes those that are magnetically dominated. As we will
discuss, the final ODE has the peculiarity that at light
surfaces, its character changes from second to first order
making it delicate to solve via standard methods. We
instead develop a new procedure that circumvents this
difficulty and apply it to generate two specific regular and
globally magnetically dominated solutions. As the exist-
ence of light surfaces is generic, we expect this method to
be widely applicable. In addition, our approach of imposing
constraints to help reduce the problem to a single ODE is
systematic, and should also prove useful in other scenarios.
Specifically for the NHEK problem, aside from contribut-
ing a pair of particular solutions without physical or
mathematical pathologies (which has not previously been
found in literature), our discussion also lays down all the
necessary tools for generating more interesting conformally
self-similar solutions in future explorations.
The paper is organized as follows. We begin by sum-

marizing the background information such as the NHEK
metric and the geometric FFE formalism in Sec. II, before

moving on to impose the conformal self-similarity con-
dition and obtain a final stream equation in Sec. III. In
Sec. IV, we analyze some predictable properties of the
solutions to this stream equation, and in Sec. V, we propose
a minimization-based method to solve it. We then present
two nonsingular and globally magnetically dominated
solutions in Sec. VI.

II. THE NHEK SPACETIME AND
THE FFE EQUATIONS

A. The NHEK metric

To obtain the NHEK metric, we begin with the Kerr
metric in Boyer-Lindquist (BL) coordinates (denoted by the
hat ∧ symbol)

ds2 ¼ −e2νdt̂2 þ e2Ψðdϕ̂ − ωdt̂Þ2
þ ρ2ðΔ−1dr̂2 þ dθ̂2Þ; ð2:1Þ

where

ρ2 ¼ r̂2 þ a2cos2θ̂; Δ ¼ r̂2 − 2Mr̂þ a2;

ω ¼ 2Mr̂a
Δρ2

e2ν; e2ν ¼ Δρ2

ðr̂2 þ a2Þ2 − Δa2sin2θ̂
;

e2Ψ ¼ Δsin2θ̂e−2ν; ð2:2Þ

and then carry out the transformation

θ ¼ θ̂; R ¼ r̂ −M
2M2ζ

; T ¼ ζt̂; ϕ ¼ ϕ̂ −
t̂

2M
;

ð2:3Þ

into NHEK coordinates, before taking the limit ζ → 0 (not
directly evaluating the Kerr metric at ζ ¼ 0 which is
indeterminate) that stretches the horizon region r̂ ≈ M
out along the R direction, while setting a ¼ M. This gives
us finally

ds2 ¼ 2M2ΓðθÞ

×

�
−R2dT2 þ dR2

R2
þ dθ2 þ Λ2ðθÞðdϕþ RdTÞ2

�
;

ð2:4Þ

where

ΓðθÞ ¼ 1þ cos2θ
2

; ΛðθÞ ¼ 2 sin θ
1þ cos2θ

: ð2:5Þ

In NHEK coordinates, the value of R ¼ 0 corresponds to
the horizon at r̂ ¼ M, while any finite R corresponds to a
point infinitesimally away from the horizon in the Boyer-
Lindquist coordinates [40].
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Besides time independence and rotational invariance, we
note that this NHEK spacetime possesses an additional
continuous symmetry, namely the conformal symmetry

R → λR; T → T=λ; ð2:6Þ

with the symmetry generator

HC ¼ T∂T − R∂R: ð2:7Þ

This symmetry corresponds to a rescaling of the ζ param-
eter in Eq. (2.3) that does not affect the final metric.
Following the discussion in Ref. [45], we divide the total

NHEK spacetime into a “poloidal” subspace and a “toroi-
dal” subspace, with their respective area two-forms being

ϵT ¼
ffiffiffiffiffiffiffiffi
−gT

p
dT ∧ dϕ; ϵP ¼

ffiffiffiffiffi
gP

p
dR ∧ dθ; ð2:8Þ

with

ffiffiffiffiffiffiffiffi
−gT

p
¼ 2M2ΓðθÞRΛðθÞ;

ffiffiffiffiffi
gP

p
¼ 2M2ΓðθÞ 1

R
:

ð2:9Þ

B. Nonextremal black holes

Recall that the highest spin of astrophysical black holes
has been estimated at 0.998 using thin-disk models [52].
It is then important to consider how to map a NHEK solution
out to subextremal black-hole spacetimes. Fortunately it is
possible to do so by writing down a transformation between
the BL coordinates of subextremal black holes to the NHEK
coordinates.
Following the discussion in [53], we define κ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2
p

and the following coordinate system

r ¼ r̂ − rþ
rþ

; t ¼ t̂
2M

; ϕ ¼ ϕ̂ −
t̂

2M
; ð2:10Þ

which is a simple transformation from the BL coordinates
in Kerr. Here rþ ≡Mð1þ κÞ is the radius of the outer
horizon. By taking the near-horizon limit r ≪ 1 in such
coordinates, we find that the metric reduces to

ds2 ¼ 2M2ΓðθÞ
�
−rðrþ 2κÞdt2 þ dr2

rðrþ 2κÞ

þ dθ2 þ Λ2ðθÞðdϕþ ðrþ κÞdtÞ2
�
: ð2:11Þ

More importantly, the above metric can be transformed
to a NHEK metric by the following transformation

T ¼ −e−κt
rþ κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðrþ 2κÞp ;

R ¼ eκt

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðrþ 2κÞ

p
;

Φ ¼ ϕ −
1

2
log

r
rþ 2κ

; ð2:12Þ

which justifies applying the NHEK solutions to the case of
subextremal black holes. In addition, under the same
transformation, it is straightforward to show that the
conformal Killing vector in NHEK maps to the Killing
vector in the time direction of the BL coordinates

HC↔ −
1

κ
∂t: ð2:13Þ

In later sections, we obtain FFE solutions without exact
conformal symmetries in the NHEK coordinates, and the
same solutions describe time-dependent (in BL coordi-
nates) FFE solutions of subextremal black holes.

C. Force-free equations

Let us turn now to the force-free equations in NHEK.
The assumption that the plasma contribution to the stress-
energy tensor is negligible implies [23,24]

0 ¼ ∇aTab ≈ ∇aTab
EM ¼ −Fabjb; ð2:14Þ

which is called the force-free condition, as its spatial part
implies the vanishing of the Lorenz force on the plasma.
It has long been known that the Maxwell equations can be
written in their most economic form using differential
forms, in which case they become

dF ¼ 0; d�F ¼ J; ð2:15Þ
where F is the Faraday tensor, while J is the current three-
form—the Hodge dual to the 4D current one-form j. It has
also been shown that the force-free condition (2.14) can be
written in the same geometric language. In particular, the
force-free condition implies (but not necessarily vice versa)
that the field must be degenerate: F ∧ F ¼ 0, and that F
can be written as the wedge product of two one-forms:

F ¼ dϕ1 ∧ dϕ2; ð2:16Þ
where ϕ1 and ϕ2 are called Euler potentials. In the case that
the background metric and the FFE solution are both
stationary and axisymmetric, Refs. [45,50] further showed
that ϕ1 and ϕ2 can be written as

ϕ1 ¼ ψðR; θÞ; ϕ2 ¼ ψ2ðR; θÞ þ ϕ −ΩFðψÞT; ð2:17Þ

where ψ is the magnetic flux function, in the sense that

ψðR; θÞ ¼ 1

2π

Z
P
F; ð2:18Þ
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with P being any two-dimensional surface bounded by a
loop of constant ðT; R; θÞ but varying ϕ. It is also frequently
referred to as the stream function.
The full force-free condition then translates into

dϕ1 ∧ J ¼ 0 ¼ dϕ2 ∧ J: ð2:19Þ
Using Eq. (2.15), these two expressions can be rewritten as

dϕ1 ∧ d�F ¼ 0; dϕ2 ∧ d�F ¼ 0; ð2:20Þ

where the first expression corresponds to the conservation
of energy and angular momentum, while the second is
called the stream equation [45].
Finally, it is important to note that there is a hidden

constraint for FFE that is not automatically guaranteed by
Eq. (2.20). Namely the solution must be magnetically
dominated with B2 − E2 ≥ 0. The physical significance
of this condition can be understood by noting that
ðE × BÞ=B2 is the drift velocity for the advection of the
charge density [21,24]. The inequality E2 > B2 then
implies superluminal motion for the plasma. A symptom
of this unphysical scenario is that some characteristic
speeds of the force-free equations become complex, so
the evolution system ceases to be hyperbolic [9,10].
Equation (2.20) do not enforce this condition however,
as they are derived without referencing the plasma equa-
tions of motion, and simply do not know that superluminal
plasma motion is an issue. Therefore, magnetic dominance
should be checked after solving Eq. (2.20).

III. THE STREAM EQUATION FOR
SELF-SIMILAR SOLUTIONS

In general, the solutions to the FFE equations can be less
symmetric than the underlying spacetime metric. However,
imposing extra symmetries can help us narrow down the
choice for ΩF, ψ2 and ψ , at the cost of restricting ourselves
to a more specialized subset of solutions. From here on,
we will consider solutions that are self-similar under the
conformal transformation (2.6), namely that the Faraday
tensor transforms into some constant times itself [we also
require time-stationary and rotational symmetry, so that we
can use expression (2.17)]. Furthermore, because we are
trying to constrain and simplify the FFE equations as much
as possible, we further demand that the two Euler potentials
be separately self-similar (therefore in general, our solution
is a special subset of all conformally self-similar solutions).
We have explicitly

F ¼ dψðR; θÞ ∧ ðdψ2ðR; θÞ þ dϕ −ΩFðψÞdTÞ; ð3:1Þ

and as dϕ is invariant under Eq. (2.6), we need ΩFdT
and dψ2 to also be invariant, which is easily accomplished
with ΩF ¼ gðθÞR and ψ2 ¼ hðθÞ. We also want dψ to be
self-similar, therefore ψ should have a dependence on R of

the form ψðR; θÞ ¼ RαfðθÞ, with the power α yet to be
determined. We note that this means ψ ¼ 0 on the horizon
for any α > 0. Indeed, the condition that

dψ ¼ αRα−1fðθÞdRþ Rαf0ðθÞdθ ð3:2Þ

and subsequently F as given by Eq. (3.1) remain regular at
the horizon R ¼ 0 requires α ≥ 1 [of all the coordinate
one-forms, only dT diverges as R−1 on the horizon, and this
cancels with the R factor in ΩF within Eq. (3.1), so F is
regular as a whole as long as dψ is regular]. In addition,
since ΩF is a function of ψ only, the function gðθÞ can be
expressed in terms of fðθÞ as

gðθÞ ¼ CfðθÞ1=α; ð3:3Þ

with C being some constant, and ΩF ¼ Cψ1=α. We notice
that the self-similarity property of the above solution can be
expressed in terms of the Lie derivative

LHC
F ¼ −αF: ð3:4Þ

Notice that for any α ≠ 0 the associated solutions do not
respect the exact conformal symmetry, so that they are
time dependent when mapped to the BL coordinates of
near-extremal Kerr black holes.
We can also compute the polar current I, which is

defined as [45]

�ðdψ ∧ dψ2Þ ¼
I
2π

dT ∧ dϕ; ð3:5Þ

and can be seen as essentially a substitute for ψ2 or h.
Explicitly, we find that

�ðdψ ∧ dψ2Þ ¼ �
�
α
ψ

R
h0ðθÞdR ∧ dθ

�

¼ αψh0ðθÞRΛðθÞdT ∧ dϕ; ð3:6Þ

where we have used �ϵP ¼ ϵT , as well as Eqs. (2.8) and
(2.9). We have then

I ¼ 2παh0ðθÞΛðθÞψR; ð3:7Þ

where the prime denotes derivative against θ.
By applying the energy and angular momentum con-

servation [i.e. the first equation in (2.20)], one concludes
that I ¼ IðψÞ, which implies dψ ∧ dI ¼ 0 [see Eqs. (75)
and (76) of [45] for more details]. For our specific case, this
means that

�
αfðθÞ
R

dRþ f0ðθÞdθ
�

∧ fðθÞ½h0ðθÞΛðθÞdR

þðh0ΛÞ0Rdθ� ¼ 0: ð3:8Þ
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Assuming fðθÞ ≠ 0 as well as h0 ≠ 0 to avoid trivial
solutions, we then must have

f0

αf
−
ðΛh0Þ0
Λh0

¼ 0; ð3:9Þ

which further implies

h0Λ ¼ DfðθÞ1=α; ð3:10Þ
with D being a constant. The current is then

I ¼ 2παDψ1þ1=α: ð3:11Þ
By requiring the solution to be conformally self-similar, we
have thus fixed the functional forms of both ΩF and I,
which is one of the toughest hurdles to obtaining analytical
FFE solutions [45].
We have now only the stream equation—the second

equation in (2.20)—that still needs to be satisfied.
Expressed under the quantities appearing in the Euler
potentials, the stream equation takes the form [45]

∇aðjηj2∇aψÞ þ ΩF;ψ hdt; ηijdψ j2 −
II;ψ
4π2gT

¼ 0; ð3:12Þ

where jj and hi simply denote contractions using the NHEK
metric, and

η≡ dϕ −ΩFðψÞdT: ð3:13Þ

The quantities jηj2 and hdt; ηi are given in Eqs. (87)–(89) of
Ref. [45], which for our case become

jηj2 ¼ 1

2M2ΓðθÞ
�

1

Λ2ðθÞ −
�
ΩF

R
þ 1

�
2
�

¼ 1

2M2ΓðθÞ
�

1

Λ2ðθÞ − ðgðθÞ þ 1Þ2
�
; ð3:14Þ

hdt; ηi ¼ 1

2M2ΓðθÞR ½gðθÞ þ 1�; ð3:15Þ

and so the terms in the stream equation are

−
II;ψ
4π2gT

¼ α2D2ðg=CÞαþ2Rαð1þ 1=αÞ
4M4Γ2Λ2

;

ΩF;ψhdt; ηijdψ j2 ¼
C−ααRαgα−1ð1þ gÞ½ðg0Þ2 þ g2�

4M4Γ2
ð3:16Þ

and

∇aðjηj2∇aψÞ ¼ Rααðg=CÞα
4M4g2Γ2

��
g00 þ ð1þ αÞg

�
g

�
1

Λ2
− ð1þ gÞ2

�
−
�
1 − α

Λ2
þ ð1þ gÞ

�
α − 1þ ð1þ αÞg

��
ðg0Þ2

−
�
cot θ þ cos θΛ

��
1

Λ2
þ ð1þ gÞ2

�
gg0

�
: ð3:17Þ

Combining the three expressions and multiplying by Cα,
we can then replace D2=C2 with a parameter ξ, and note
that the remaining C can be factored out of the equation
and ignored. We can also divide out the Rα term so the
equation reduces to one depending on θ only. We can
further multiply the equation by Λ2Γ5 to ensure all terms
in it remain regular at the poles (θ ¼ 0 or π) as well as to
get rid of spurious overall factors. It is this form of the
equation that we will solve later in Sec. VI. For reference,
we note that when specializing to α ¼ 1 and defining
x ¼ cos θ, we can rewrite the stream equation to the
simplified form of

�
Γ2

1 − x2
− ð1þ gÞ2

��
g;xx −

2x
1 − x2

g;x þ
2g

1 − x2

�

þ
�

Γ
1 − x2

−
ð1þ gÞ2

Γ

�
;x
g;xΓ

þð1þ gÞ
�
ðg;xÞ2 þ

g2

1 − x2

�
þ 2ξg3Γ2

ð1 − x2Þ2 ¼ 0: ð3:18Þ

For the rest of this paper, we will frequently use α ¼ 1 as
a concrete example, but our discussions easily generalize
to α > 1.
We stress that the change of variable into x is more than a

notational convenience. The regularity of g at θ ¼ 0 or π
requires that g0jθ¼0;π ¼ 0 (otherwise g as an axisymmetric
scalar field will not have a well-defined first derivative at
the poles). Since

g0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
g;x; ð3:19Þ

the regularity condition for radial magnetic field simply
translates into g;x not diverging at x ¼ �1. There is another
physical boundary condition on the poles that must be
taken into account. Recall that the loop on the rim of P in
Eq. (2.18) shrinks to a single point at θ ¼ 0 or π, so we can
choose P with vanishing area. Therefore, the magnetic flux
across it should vanish if F does not diverge there. In other
words, we need gjθ¼0;π ¼ 0. We further note that the stream
equation is symmetric under a θ → π − θ reflection, and
so we can obtain a reflection-symmetric solution if our
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boundary conditions respect this symmetry. We thus
impose g0jθ¼π=2 ¼ 0, and concentrate only in the region
0 ≤ θ ≤ π=2, with the understanding that the other half of
the solution can be obtained by symmetry. Note that this
last condition can be changed if one desires non-reflection-
symmetric solutions.

IV. PROPERTIES OF SMALL MAGNITUDE
SOLUTIONS

Even though the stream equation is highly nonlinear and
nontrivial, we can still predict some properties of its
solutions under special circumstances. Such a situation
arises when g has a small magnitude, so that many of the
nonlinear terms in the equation become negligible. This
results in great simplification with respect to the treatment
of the light surfaces defined by the condition jηj2 ¼ 0 that
leads to the coefficient of the g00 term vanishing and the
equation locally reducing to first order. When the nonlinear
terms are negligible, one can in fact predict the locations of
the light surfaces by ignoring g in Eq. (3.14), and solving

jηj2 ¼ 0 to find that a light surface lies at x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ 2

ffiffiffi
3

pp
.

Furthermore, we can also predict that B2 − E2 should
change sign at the light surface.
To compute B2 − E2, we first note that the Faraday

tensor is given by

F ¼ α
1

C

�
Rg
C

�
α−1

ðgðθÞdRþ Rg0ðθÞdθÞ

∧
� ffiffiffi

ξ
p gðθÞ

ΛðθÞ dθ þ dϕ − RgðθÞdT
�
; ð4:1Þ

which when setting M ¼ 1 for simplicity and specializing
to α ¼ 1 for concreteness [generic α expressions can be
recovered by simply replacing 1=C in the equations below
by ðα=CÞðRg=CÞα−1] gives

Ea ¼ FabTb

¼ 1

2C

�
0; 0;−

gð1þ gÞR2
ffiffiffi
Γ

p

2
ffiffiffi
2

p
Γ2

;−
ð1þ gÞg0R ffiffiffi

Γ
p

2
ffiffiffi
2

p
Γ2

�
;

ð4:2Þ

Bd ¼ 1

2
ϵabcdFabTc

¼ 1

2C

�
0;−

g2
ffiffiffi
ξ

p
R

ffiffiffi
Γ

p

2
ffiffiffi
2

p
Γ2Λ2

;−
g0R2

ffiffiffi
Γ

p

2
ffiffiffi
2

p
Γ2Λ

;
gR

ffiffiffi
Γ

p

2
ffiffiffi
2

p
Γ2Λ

�
; ð4:3Þ

and subsequently

Pa ¼ 1

4C2

�
0;−

ð1þ gÞðg2 þ g02ÞR2

4
ffiffiffi
2

p
Γ5=2Λ2

;

ð1þ gÞg2g0R3
ffiffiffi
ξ

p

4
ffiffiffi
2

p
Γ5=2Λ

;−
ð1þ gÞg3R2

ffiffiffi
ξ

p

4
ffiffiffi
2

p
Γ5=2Λ

�
; ð4:4Þ

with

Ta ¼ ð−
ffiffiffi
2

p
R

ffiffiffiffiffiffiffiffiffi
ΓðθÞ

p
; 0; 0; 0Þ ð4:5Þ

being the one-form normal to the T ¼ const spatial slices.
All the vectors are in the coordinate basis ð∂t; ∂ϕ; ∂r; ∂θÞ
and similarly for the one-forms. Note that C is nothing
more than a scaling factor for F, and we will set it to 1=2
from here on. We also draw attention to the appearance of ξ
in the coefficient of the ∂ϕ component of B and nowhere
else. This provides a physical significance for ξ as gen-
erating the spiraling of the B field lines in the longitudinal
direction. In particular, Pa is purely in the ∂ϕ direction
when ξ ¼ 0. Furthermore, it is easy to verify that the force-
free constraint of E · B ¼ 0 [a consequence of Eq. (2.14)] is
indeed satisfied.
From Eqs. (4.2) and (4.3), it is then straightforward to

show that

B2 − E2 ¼ R2

4Γ2Λ2
½g4ξþðg2 þ g02Þð1 − ð1þ gÞ2Λ2Þ�

ð4:6Þ

(note R factors out and does not affect the sign of this
expression), which is in fact the explicit form for the more
generic expression [note the correction as compared to
Eq. (66) of Ref. [45]]

B2 − E2 ¼ I2

16π2ð−gTÞ þ
1

4
jdψ j2jηj2: ð4:7Þ

Substituting in Eq. (3.11), we see that I2 ∝ g4 when α ¼ 1
and can be ignored when jgj is small. On the other hand,
jdψ j2 is always positive as dψ is spacelike, while η changes
character at the light surface from spacelike to timelike, so
jηj2 and subsequently B2 − E2 changes sign at the light
surface. Indeed, we can explicitly substitute the expression
for g (by solving jηj2 ¼ 0) and g0 (by solving the locally
first-order stream equation) at the light surface into

Eq. (4.6) and verify that B2 − E2 ¼ 0 at x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ 2

ffiffiffi
3

pp
.

Finally, in order to find a physically realistic solution that
is globally magnetically dominated, we note that the first
term in Eq. (4.7) is always positive, so a large g magnitude
is expected to benefit our task (although the magnitude of
the second term may also increase).

V. SOLVING THE STREAM EQUATION WITH A
RESIDUAL MINIMIZATION METHOD

A large g magnitude significantly complicates the
solution finding process. Traditionally, one can solve the
stream equation separately on two sides of a fixed light
surface and attempt to match them across the light surface
as smoothly as possible by varyingΩF and I as functions of
ψ [19,27,54–57]. In our case, the one-dimensional ODEs
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such as Eq. (3.18) can also contain light surfaces, but their
locations are not known a priori when jgj is large, because
they depend on g, and as we have already fixed ΩF and I,
the condition of smooth matching should instead exert itself
through fixing the locations (and the number) of the light
surfaces. For the rest of this paper, we concentrate on
finding solutions that are as smooth across the light surface
as possible,2 but we note that if one can live with more
singular behaviors, then the family of admissible solutions
is much larger.
At first sight, the most straightforward way to solve the

equations is through a shooting method. Here one imposes
two boundary conditions (gjx¼1 ¼ 0 and a value for g0jx¼1

that must be adjusted) at x ¼ 1 and marches the solution3

towards x ¼ 0. Simultaneously, one imposes a pair of
boundary conditions (g0jx¼0 ¼ 0 and an adjustable value
for gjx¼0) at x ¼ 0 and marches the solution towards x ¼ 1.
One then adjusts g0jx¼1 and gjx¼0 so that the two solutions
intersect at a single light surface and match relatively
smoothly across it. The problem with this strategy is that
generically, g00 would diverge near the light surfaces in
order to stay relevant (because its coefficient vanishes
there) and be able to contribute to the balancing of the
stream equation. Subsequently, g0 and g usually also
diverge, unless one has educated guesses so that the choice
of g0jx¼1 and gjx¼0 matches the “correct” smooth solution
that does not need a nonvanishing g00 term to balance the
equation near the light surfaces.
Alternatively, onemay try to address this issue by adopting

a different strategy of fixing the location of the light surface
first, and solve for the gvalue that satisfies jηj2 ¼ 0, aswell as
the g0 value that satisfies the locally first-order stream
equation. Using these as boundary conditions at the light
surface, one then marches the solutions towards x ¼ 0 and
x ¼ 1 (i.e. in the reverse direction of the previous strategy)
while varying the light surface location to try and match the
boundary conditions there. The difficulty here is that one
cannot impose two boundary conditions at places where the
stream equation is first order. One can nevertheless impose
them at locations straddling the light surface but slightly off
of it, say by �δ. However, the solutions generically show a
sensitive dependence on δ, essentially because one still finds
the diverging solutions. Here, the solutions diverge at the
“right” rate such that g and g0 values at the offset locations are
as specified. So once again, this strategy is only useful for
finding nonsingular solutions when a good initial guess is
provided as to what the smooth solution should be.

From the discussion above, it is clear that the essence of
the problem one faces is that with these strategies one is
restricting to the space of exact (ignoring numerical error)
weak solutions to the stream equation, which is mostly
populated by diverging solutions that make it difficult to
single out the nondiverging (and possibly strong) ones.
This problem is further complicated at the numerical level
where numerical errors make it difficult to latch onto the
physical solution exactly. This suggests a different strategy:
to work within the space of approximate but nondivergent
solutions—the solution we look for is in the intersection of
these two spaces—and develop a method to consistently
approach the physical solution. To this end, we decompose
g into a functional basis ffig satisfying

fi0jx¼0 ¼ 0 ¼ fijx¼1; ∀i; ð5:1Þ

so that the boundary conditions for g are automatically
satisfied when we include a finite number of basis functions.
We then alter the coefficients of decomposition using some
minimization routine in order to minimize the residual Lg
(where L is a differential operator such that the stream
equation isLg ¼ 0). The advantage of this method is that we
only ever apply L in its natural “forward” direction, never
needing to compute its inverse or the inversion of any of its
components. Therefore, we do not encounter any problem
even when L becomes degenerate, and we do not need any
prior knowledge or expectation on where the light surfaces
would be, or even how many there are.
One set of functional basis that satisfies Eq. (5.1) can be

obtained by taking away a constant 1 from the Chebyshev
polynomials4 of the first kind and of even orders. We shall
refer to them as the modified Chebyshev basis, and the first
few of them are plotted in Fig. 1. We note that including
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FIG. 1 (color online). The modified Chebyshev polynomials
used for the basis decomposition of g.

2Note we do not necessarily require C∞ where there is a light
surface, but we do however prefer the solution to be at least C2

across the light surface. Otherwise g0 and/or g00 will not be well
defined there and we will only have a weak solution. Physically, it
is also reasonable to expect that smoother solutions would require
less dramatic non-FFE physics to be present at the light surfaces.

3For instance, using a readily available numerical ODE-
solving routine from popular software packages.

4Note that other basis functions such as sinusoidal functions
are also possible candidates.
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the polynomials of odd orders will preserve the fijx¼1 ¼ 0
condition, but relax the f0ijx¼0 ¼ 0 condition. Once we
decompose g into these functional basis, we can utilize
minimization algorithms such as a simple selective (reject
or accept a step depending on whether it makes an
improvement) random walk in the expansion coefficients
space to minimize the normalized L2 norm of Lg,
i.e.

R
1
0 dxðLgÞ2=

R
1
0 dxg

2.
We note here that the even-order Chebyshev polynomials

form a complete basis for even functions [fðxÞ ¼ fð−xÞ] in
the interval ½−1; 1�. Also, when fð1Þ ¼ 0 the same set of
coefficients are valid for both decompositions into
Chebyshev and modified Chebyshev polynomials, thus
the modified Chebyshev polynomials also form a complete
basis for the functions satisfying our desired boundary
conditions. Therefore, if we include enough numbers of
basis functions, we can in principal approximate the higher-
order nonsmooth behavior of g at the light surfaces, or even
possibly the diverging solutions. In practice, as we only
supply a few basis functions, our trial function is relatively
smooth and thus is better able to approximate the smoother
solutions. Therefore, we expect this residual minimization
method to preferentially home in on the smoothest solution

possible, which is in fact a desired property (see footnote 2).
We note however, this method can be numerically expen-
sive, especially if one utilizes the selective random walk
procedure without any optimization. Therefore we combine
it with the traditional techniques discussed earlier, using the
residual minimization routine to provide educated initial
guesses for the ODE integration.

VI. GLOBALLY MAGNETICALLY
DOMINATED SOLUTIONS

In this section, we present a couple of nonsingular and
globally magnetically dominated solutions for ξ ¼ 0 and
ξ ¼ 1 (with α ¼ 1). Recall that solutions with larger g
magnitudes would be more likely to be magnetically
dominated, so we start with the seven modified
Chebyshev basis with an initial coefficient array fci ¼
1; 0; 0; 0; 0; 0; 0g. We then carry out the selective random
walk for a moderate amount of trial steps, creating the
solutions shown as g in Fig. 2. We also show reference
solutions gref (and their residual Lgref ) whose expansion
coefficients are proportional to the initial guess but rescaled
to have the same

P
c2i value as the final outputs of the

randomwalk. We can see that our procedure indeed reduces

(a) (b)

FIG. 2 (color online). (a) An example solution with large magnitude for g at ξ ¼ 0 and computed with seven modified Chebyshev basis
functions. The renormalized initial guess gref , the outcome of selective random walk g and the final solution gex, as well as their residuals
(dashed lines) Lgref , Lg and Lgex are plotted. (b) The same plot for another solution with ξ ¼ 1.

(a) (b)

FIG. 3 (color online). (a) For the ξ ¼ 0 solution. Ten times the coefficient of the g00ex term in Lgex vanishes at x ¼ 1 and nearly vanishes
at x ¼ 0, but gex only nearly intersects g�l at x ¼ 0. We have also shown as a thin black line, the location of zero as a reference. (b) Same
as (a) but for the ξ ¼ 1 solution. For this solution, it is more clear that the equatorial plane is not a light surface.
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the residual. However, for the moderate number of random
steps allowed, there is still a visible error.
We then take the g value we obtained at x ¼ 0 (denoted

g0) and impose gjx¼0 ¼ g0 together with g0jx¼0 ¼ 0 as the

two boundary conditions, before marching the solution
towards x ¼ 1 using the NSOLVE routine in MATHEMATICA.
We adjust g0 slightly and arrive at solutions with gjx¼1 ¼
−3.7 × 10−6 for ξ ¼ 0 and gjx¼1 ¼ 1.5 × 10−7 for ξ ¼ 1,

(a) (b)

FIG. 4 (color online). (a) For the ξ ¼ 0 solution. The B2 − E2 and normalized 1 − E2=B2 values for gex at R ¼ 1 [the sign of these
quantities is R independent, see Eq. (4.6)]. The solution is globally magnetically dominated as the curves never fall below the horizontal
dashed red line at 0. We have also shown a horizontal line at 1 and a vertical line at a location where 1 − E2=B2 ¼ 1. We have jEj ¼ 0 at
this location. (b) Same as (a) but for the ξ ¼ 1 solution, showing that this solution is also globally magnetically dominated. We have also
plotted gex=Λ to show that this quantity does not diverge at x ¼ 1 even though Λ → 0 there.

(a) (b) (c)

(d) (e) (f)

FIG. 5 (color online). Panels (a)–(c) correspond to the ξ ¼ 0 solution. (a) Streamlines of the B field projected onto a vertical plane,
with ðρ;ϕ; zÞ being the cylindrical counterparts to the NHEK spatial coordinates. (b) The E field projected onto the same plane. Note
that there is an orientation where jEj vanishes, as indicated by the red dashed line. (c) Projection of the B field onto a horizontal
plane at z ¼ 0.1. Panels (d)–(f) correspond to the ξ ¼ 1 solution. Respectively, the panels (d), (e) and (f) display the analogous
information to (a), (b) and (c) for the ξ ¼ 1 solution. Note in particular that when ξ ≠ 0, the B field lines acquire a ϕ component (f).
In panel (f), the streamlines are broken at ϕ ¼ 0, which is a visualization effect due to the streamline integrator working within the ϕ
range of ½0; 2πÞ.
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which are shown as gex in Fig. 2. These are our final
solutions and we see that LgexðxÞ are vanishingly small,
typical of the output from NSOLVE that did not encounter
any problems. In other words, we expect there being no
light surfaces in the interval [0, 1]. This is indeed the case,
which we can see by directly plotting the coefficient of the
g00ex term in Lgex (Fig. 3), which only nearly, but not exactly,
vanishes at x ¼ 0 (the coefficient evaluates to 0.00553827
there) for ξ ¼ 0. We note that the coefficient also vanishes
at x ¼ 1 for both solutions, but this is due to our
multiplying a Λ2 onto the equation to keep other terms
regular, and x ¼ 1 is not a light surface according to the
definition of jηj2 ¼ 0. We verify this by noting that the
solutions to jηj2 ¼ 0 are

g�l ¼ � 1

2

1þ x2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p − 1; ð6:1Þ

and so the curves g�l should intersect our solutions gex at
light surfaces. From Fig. 3, we see that such an

intersection only nearly occurs at x ¼ 0 for ξ ¼ 0 and
not at x ¼ 1 for either solution. Our smooth-solution-
seeking residual minimization method has thus led us to
two solutions without light surfaces. We emphasize that
the initial guess of g0 provided by the minimization
method is of key importance. Otherwise, the use of
arbitrary values for g0 generically leads to light surfaces
at which g diverges.
In Fig. 4, we plot B2 − E2 for gex which shows that

both solutions are globally magnetically dominated
(as B2 − E2 is a gauge invariant contraction of the
Faraday tensor, this conclusion is coordinate/slicing
independent), and in Fig. 5, we show the projections
of B and E fields on a vertical and a horizontal plane,
under the cylindrical counterpart to the NHEK coordi-
nates. In addition, the charge density distribution on the
vertical plane is shown in Fig. 6. For readers interested
in utilizing these particular solutions, we provide a
polynomial fit to gex, which is

FIG. 6 (color online). (a) For the ξ ¼ 0 solution. The charge density as ∇aEa for gex is plotted on the same vertical half-plane as that
used in Fig. 5. Note the contour lines are not equally spaced in values. (b) Similar density plot for the ξ ¼ 1 solution.

FIG. 7 (color online). (a) For the ξ ¼ 1 solution. The streamlines of the Poynting vector field projected onto the vertical plane. The red
dashed line signifies the location where jEj vanishes. (b) Also for the ξ ¼ 1 solution. The radial component of the Poynting vector is
shown as a density plot on the vertical plane. Note that the contours are not based on equally spaced values. The projections of the
Poynting vector for the ξ ¼ 0 solution vanishes, so there are no corresponding plots for that solution.
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gexðxÞ ≈ −4.00867x7 þ 23.6177x6 − 49.2235x5

þ 47.8349x4 − 24.007x3 þ 6.91724x2

þ 0.326852x − 1.4573; ð6:2Þ

for ξ ¼ 0, and

gexðxÞ ≈ −1.06308 − 0.181322xþ 5.20729x2

− 16.5322x3 þ 41.3352x4 − 54.1385x5

þ 32.1822x6 − 6.80647x7; ð6:3Þ

for the ξ ¼ 1 solution. We note that when ξ ≠ 0, the g=Λ
term in Eq. (4.1) can potentially diverge as x → 0
because Λ → 0, so we plot this quantity in Fig. 4(b),
which shows that g approaches zero faster than Λ, so all
the coefficients in Eq. (4.1) remain regular at the poles.
Lastly, we note that a significant difference between the

ξ ¼ 1 and ξ ¼ 0 solutions is that the Poynting vector
[Eq. (4.4)] associated with the former acquires a non-
vanishing radial component signifying energy transfer
towards and away from the event horizon. (Notice that
for the case ξ ¼ 0 there is only flux along the ϕ direction.)
In Fig. 7(a), we plot the projection of the Poynting vector
onto a vertical plane, and in Fig. 7(b), we plot the radial
component of the Poynting vector on the same plane as a
density map. As is evident from the figures, the bulk of the
energy flux takes place at a cone centered at around θ ¼ 64°

with an opening of about 20°.

VII. CONCLUSION

The FFE equations are a highly nonlinear collection
of coupled partial differential equations, so in full gen-
erality they are very difficult to solve analytically, and are
instead usually tackled via numerical simulations.
Nevertheless, one can concentrate on situations possess-
ing a high degree of symmetry, which allows for sim-
plifying the equations and obtaining semianalytical
(only certain simpler components of the overall solution
are obtained numerically) solutions. For example, when
the background metric is stationary and axisymmetric, one
can require that the FFE solution to also respect these
symmetries, in which case the Euler potentials can bewritten
in terms of a few functions with highly restricted forms.
These functions are the magnetic flux function ψ , the polar
current I and the angular velocity of the field lines ΩF.
The prescription of convenient choices of I andΩF that leads
to simplifications of the final stream equation (that deter-
mines ψ ) is a major step towards obtaining semianalytical
solutions.

In this paper, we fix these quantities by imposing a
restricted form of a third symmetry. Namely wework inside
the NHEK spacetime that possesses a conformal symmetry,
and demand that the field tensor—as well as the Euler
potentials—of our FFE solution be self-similar under the
associated transformations. This fixes the functional forms
of I and ΩF in terms of ψ , and reduces the stream equation
to a single second-order ODE. Due to the existence of light
surfaces on which the steam equation becomes locally first
order, it is difficult to find nonsingular solutions using
traditional ODE-solving techniques. Accordingly, we have
developed a residual minimization method tailored to the
task of finding regular solutions. We have also shown that
using this method, we can find nonsingular solutions that
are globally magnetically dominated (thus physically
realistic). Our study therefore complements earlier works
that have found partially electrically dominated solutions in
NHEK, and lays the necessary groundwork for systemati-
cally generating further FFE solutions. The complexity-
reducing procedure as well as the technique for solving the
resulting equation through residual minimization, as
employed here, should also be applicable to other FFE
problems.
The aim of this paper is to introduce the fundamental

equations and methods. In order not to overly complicate
the discussion, we only describe two specific solutions as
demonstrative examples. [Notice however that further ones
related by SLð2;RÞ transformations of these can be
straightforwardly obtained as discussed in [17]]. We will
leave the production and examination of additional inter-
esting semianalytical solutions to future works. In particu-
lar, the solutions we obtain map to time-dependent
near-horizon solutions of near-extremal Kerr black holes.
It remains interesting to explore possible time-stationary
solutions, especially the ones with power extraction from
the horizon (see the discussions about the black-hole
“Meissner effect” in [58–60]). We expect future studies
building on the foundations presented in this paper to
further illuminate the properties of magnetospheres in the
near-horizon region of rapidly rotating black holes.
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