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Motivated by the string corrections on the gravity and electrodynamics sides, we consider a quadratic
Maxwell invariant term as a correction of the Maxwell Lagrangian to obtain exact solutions of higher
dimensional topological black holes in Gauss-Bonnet gravity. We first investigate the asymptotically flat
solutions and obtain conserved and thermodynamic quantities which satisfy the first law of thermody-
namics. We also analyze thermodynamic stability of the solutions by calculating the heat capacity and the
Hessian matrix. Then, we focus on horizon-flat solutions with an anti–de Sitter (AdS) asymptote and
produce a rotating spacetime with a suitable transformation. In addition, we calculate the conserved and
thermodynamic quantities for asymptotically AdS black branes which satisfy the first law of thermody-
namics. Finally, we perform thermodynamic instability criterion to investigate the effects of nonlinear
electrodynamics in canonical and grand canonical ensembles.
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I. INTRODUCTION

Nonlinear theories have been studied extensively in the
context of various physical phenomena. In other words,
because of the nonlinear nature of most physical systems,
linear theories could not precisely describe the experimen-
tal consequences and we must inevitably consider the
nonlinear models.
Classical electrodynamics, whose field equations origi-

nate from the Maxwell Lagrangian, contains various
problems which motivate one to consider nonlinear electro-
dynamics (NLED). One of the main problematic items of
Maxwell theory is infinite self-energy of a pointlike charge.
The first successful Lorentz invariance theory for solving this
problem was introduced by Born and Infeld [1]. After Born-
Infeld (BI) theory, although some different NLED have been
introduced with various motivations, their weak field limits
lead to Maxwell theory [2–5]. Amongst the NLED theories,
the so-called BI types, whose first nonlinear correction is a
quadratic function of Maxwell invariant, are completely
special [4–6]. In addition to the interesting properties of BI-
type NLED theories [7], it may be shown that these theories
may arise as a low energy limit of heterotic string theory [8],
which leads to increased interest. Taking into account the first
leading correction term of BI-type theories which originated
from the string theory, one can investigate the effect ofNLED
versus Maxwell theory [9,10].

In this paper, we consider Gauss-Bonnet (GB) gravity
as a natural generalization of Einstein gravity with a
quadratic power of Maxwell invariant, in addition to the
Maxwell Lagrangian as a source. On the gravity point of
view, string theories in their low energy limit give rise to
effective models of gravity in higher dimensions which
involve higher curvature terms, while from the electro-
dynamics viewpoint, a quadratic power of Maxwell
invariant supplements the Maxwell Lagrangian with the
development of superstring theory. In the weak field limit,
GB gravity and the Lagrangian of the mentioned NLED
reduce to Einstein gravity and Maxwell Lagrangian,
respectively.
On the other hand, it has been shown that there is a close

relationship between black hole thermodynamics and the
nature of quantum gravity. For black holes to be physical
objects, it is necessary for them to be stable under external
perturbation. There are two kinds of stability: physical
(dynamical) stability and thermodynamical stability, which
is of interest in this paper. The most interesting parts of
black hole thermodynamics are thermal instability and
Hawking-Page phase transition [11]. It has been shown
that there is no Hawking-Page phase transition for the
Schwarzschild-AdS black hole whose horizons have
vanishing or negative constant curvature [12].
Thermodynamic properties of black holes in GB gravity

with NLED have been studied before [13]. In this paper, we
will obtain the black hole solutions of GB-Maxwell
corrected (GB-MC) gravity in arbitrary dimensions and
discuss thermal instability conditions.
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One may question the motivation for considering GB-
MC gravity. As we know, the Maxwell theory has accept-
able consequences, to a large extent, in various physical
areas. So, in transition from the Maxwell theory to NLED,
it is allowable to consider the effects of small nonlinearity
variations, not strong effects. In other words, in order to
obtain physical results with experimental agreements, one
should regard the nonlinearity as a correction to the
Maxwell field. Eventually, we should note that, although
various theories of NLED have been created with different
primitive motivations, only their weak nonlinearities have
physical and experimental importance. So the effects of
nonlinearity should be considered as a perturbation to
Maxwell theory. In addition, in a gravitational framework
the GB gravity is a natural generalization of Einstein
gravity (not a perturbation in general) in higher dimensions.
One may regard GB and MC as the corrections of an
Einstein-Maxwell black hole.
The layout of the paper will be in this order: In Sec. II,

we will introduce the structure of action which contains GB
gravity coupled with MC. Then, we will solve the field
equations and discuss the geometric properties of the
topological black holes. We will study thermodynamic
properties and stability of the asymptotically flat spacetime
in Sec. III. In the following section, we will generalize our
solutions to rotating black branes with anti–de Sitter (AdS)
asymptote and calculate thermodynamic and conserved
quantities of rotating solutions. The final part is devoted to
investigating the stability of the solutions in canonical and
grand canonical ensembles. Conclusions are drawn in the
last section.

II. TOPOLOGICAL BLACK HOLES

The Lagrangian of Einstein-GB gravity coupled to
NLED can be written as

Ltot ¼ LE − 2Λþ αLGB þ LðFÞ; ð1Þ

where the Lagrangian of Einstein gravity is the Ricci scalar,
LE ¼ R, and Λ is the cosmological constant. In the third
term of Eq. (1), α is the GB coefficient with dimension
ðlengthÞ2 and LGB is the Lagrangian of GB gravity,

LGB ¼ RabcdRabcd − 4RabRab þ R2: ð2Þ

The last term in Eq. (1) is the Lagrangian of NLED,
which we choose a quadratic correction in addition to the
Maxwell Lagrangian

LðF Þ ¼ −F þ βF 2 þOðβ2Þ; ð3Þ
where β is the nonlinearity parameter and the Maxwell
invariant F ¼ FabFab, where Fab ¼ ∂aAb − ∂bAa is the
electromagnetic field tensor and Ab is the gauge potential.
For the vanishing nonlinearity parameter, this Lagrangian
yields the standard Maxwell theory, as it should. Regarding
the gauge-gravity Lagrangian (1) and using the variational
method, one can obtain the following field equations:

GE
ab þ Λgab þ αGGB

ab ¼ 1

2
gabLðF Þ − 2LFFacFc

b; ð4Þ

∂að
ffiffiffiffiffiffi
−g

p
LFFabÞ ¼ 0; ð5Þ

where GE
ab is the Einstein tensor, GGB

ab ¼ 2ðRacdeRcde
b −

2RacbdRcd − 2RacRc
b þ RRabÞ − 1

2
LGBgab and LF ¼ dLðF Þ

dF .
Now we are interested in topological static black hole

solutions; therefore, we take into account the following
static metric:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
k; ð6Þ

where dΩ2
k represents the line element of an ðn − 1Þ-

dimensional hypersurface with the constant curvature
ðn − 1Þðn − 2Þk and volume Vn−1 with the following
explicit form:

dΩ2
k ¼

8>>>>>>>>><
>>>>>>>>>:

dθ21 þ
Pn−1
i¼2

Qi−1
j¼1

sin2θjdθ2i k ¼ 1

dθ21 þ sinh2θ1dθ22 þ sinh2θ1
Pn−1
i¼3

Qi−1
j¼2

sin2θjdθ2i k ¼ −1.

Pn−1
i¼1

dϕ2
i k ¼ 0

ð7Þ

Since we are looking for the black hole solution with a
radial electric field, we know that the nonzero components
of the electromagnetic field are

Ftr ¼ −Frt: ð8Þ

One can use Eq. (5) to obtain the explicit form of Ftr
with the following form:

Ftr ¼
q

rn−3
−
4q3β
r3n−3

þOðβ2Þ; ð9Þ
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which for small values of β reduces to the Maxwell
electromagnetic field tensor.
We find that the nonzero independent components of

Eq. (4) can be written by applying electromagnetic field
tensor (9):

ett ¼ r3
�
1þ 2ð1 − fÞα0

r2

�
f0 − α0ðn − 4Þð1 − fÞ2

þ 2Λr4

ðn − 1Þ þ
2q2

ðn − 1Þr2n−6 −
4q4β

ðn − 1Þr4n−8 þOðβ2Þ;

ð10Þ

eθθ ¼ r4
�
1þ 2ð1− fÞα0

r2

�
f00 − 2α0r2f02

þ 2rðn− 2Þ
�
r2 þ 2α0

ðn− 4Þ
ðn− 2Þ ð1− fÞ

�
f0

− α0ðn− 4Þðn− 5Þð1− fÞ2 − ðn− 2Þðn− 3Þr2ð1− fÞ

þ 2Λr4 −
2q2

r2n−6
þ 12q4β

r4n−8
þOðβ2Þ; ð11Þ

where α0 ¼ ðn − 2Þðn − 3Þα.
It is straightforward to show that the following metric

function satisfies all of the field equations simultaneously:

fðrÞ ¼ kþ r2

2α0
ð1 −

ffiffiffiffiffiffiffiffiffiffi
ΨðrÞ

p
Þ; ð12Þ

with

ΨðrÞ ¼ 1þ 8α0

nðn − 1Þ
�
Λþ nðn − 1Þm

2rn
−

nq2

ðn − 2Þr2n−2

þ 2nq4β
r4n−4ð3n − 4Þ

�
þOðβ2Þ; ð13Þ

where m is an integration constant that is related to mass.
One can see that for small values of β, the metric function
reduces to usual GB-Maxwell gravity. Expansion of
the metric function for small values of the GB parameter
leads to

fðrÞ ¼ fEM −
4q4

ðn − 1Þð3n − 4Þr4n−6 β þ
ðk − fEMÞ2

r2
α0

þ 8q4ðk − fEMÞ
ðn − 1Þð3n − 4Þr4n−4 α

0β þOðα02; β2Þ; ð14Þ

where the metric function of Einstein-Maxwell gravity is

fEM ¼ k −
2Λr2

nðn − 1Þ −
m
rn−2

þ 2q2

ðn − 1Þðn − 2Þr2n−4 : ð15Þ

In order to consider the asymptotic behavior of the
solution, we put m ¼ q ¼ 0, where the metric function
reduces to

fðrÞ ¼ kþ r2

2α0

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α0Λ

nðn − 1Þ

s !
: ð16Þ

This result puts a restriction on α0 which states that for

α0 ≤ −nðn−1Þ
8Λ , the metric function will be real asymptotically.

On the other hand, for Λ ¼ 0, asymptotically flat solutions
are available only for k ¼ 1.
The next step is to look for singularities. It is a matter of

calculation to show that the Kretschmann scalar of metric
(6) is

RαβγδRαβγδ ¼ f002 þ 2ðn − 1Þ f
02

r2
þ 2ðn − 1Þðn − 2Þ f

2

r4
;

ð17Þ

where its series expansion for small and large values of r
will be

lim
r→0

RαβγδRαβγδ ∝ r−4ðn−1Þ; ð18Þ

lim
r→∞

RαβγδRαβγδ ¼ 4ðnþ 2ÞΛ
nα0

−
ς

α0

�
1þ ðn − 1Þðnþ 2Þ

α0

�
;

ð19Þ

ς ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n − 2

n
þ 8α0Λ
nðn − 1Þ

s
− 1; ð20Þ

which, for small values of the GB parameter, will lead to

lim
r→∞

RαβγδRαβγδ ¼ 8ðnþ 2Þ
ðnþ 2Þn2 Λ

2 −
4

nðn − 1ÞΛþOðα0Þ:

ð21Þ

Equations (18)–(21) show that there is an essential
singularity located at r ¼ 0 and that the asymptotic
behavior of the solutions are AdS with an effective
cosmological constant. If this solution contains the horizon,
then our metric function is interpreted as a black hole. In
order to investigate the existence of the horizon, one should
find the root of grr ¼ fðrÞ ¼ 0. If we suppose that the
metric function is positive for large and small r, by
considering the possibility of the existence of only one
extreme root rþ ¼ rext, we know that fðrÞ has a minimum
at r ¼ rext. So we can investigate the roots of f0,

kðn − 1Þðn − 2Þr4n−6ext

�
α0ðn − 4Þ
ðn − 2Þr2ext

þ 1

�
þ 4q4β

− 2r2n−2ext q2 − 2r4n−4ext ΛþOðβ2Þ ¼ 0; ð22Þ
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where, for example, in the Ricci-flat case (k ¼ 0), we obtain

rext ¼
½q2Λ2n−3ð� ffiffiðp 1þ 8βΛÞ − 1Þ� 1

2n−2

Λ
þOðβ2Þ ð23Þ

It is matter of calculation to show that the extremal mass for k ¼ 0 is

mext ¼
2q2

rn−2ext ðn − 1Þðn − 2Þ −
2rnextΛ
nðn − 1Þ −

4q4β
r3n−4ext ð3n − 4Þðn − 1Þ þOðβ2Þ: ð24Þ

We should note that the obtained solutions may be interpreted as black holes with inner and outer horizons provided
m > mext, an extreme black hole for m ¼ mext, and naked singularity otherwise. One can obtain the Hawking temperature
by surface gravity definition with the following explicit form:

T ¼
kðn − 1Þðn − 2Þr4n−6þ ð1þ ðn−4Þα0

ðn−2Þr2þÞ − 2r4n−4þ Λ − 2r2n−2þ q2 þ 4q4β

4πðn − 1Þr4n−5þ ð1þ 2kα0
r2þ
Þ þOðβ2Þ: ð25Þ

It is worthwhile to mention that extremal black holes have
zero temperature.

III. THERMODYNAMICS OF
ASYMPTOTICALLY FLAT BLACK

HOLES (k ¼ 1 AND Λ ¼ 0)

In this section we are interested in the thermodynamics
of asymptotically flat solutions. Using the series expansion
of the metric function (12) with k ¼ 1 for large values of
distance, we obtain

fðrÞ ¼ 1 −
m
rn−2

þ 2q2

ðn − 1Þðn − 2Þr2n−4 þO

�
1

r2n−2

�
;

ð26Þ

which shows that the solutions are asymptotically flat.
According to area law, the entropy of black holes is one

quarter of the horizon area. This relation is acceptable for
Einstein gravity, whereas we are not allowed to use it for
higher derivative gravity. For our GB case we can use the
Wald formula for calculating the entropy of asymptotically
flat black hole solutions:

S ¼ 1

4

Z
dn−1x

ffiffiffi
γ

p ð1þ 2α ~RÞ; ð27Þ

where ~R is the Ricci scalar for the induced metric γab on the
ðn − 1Þ-dimensional boundary. Calculations show that one
can obtain

S ¼ Vn−1

4

�
1þ 2ðn − 1Þα0

ðn − 3Þr2þ

�
rn−1þ ; ð28Þ

which confirms that asymptotically flat black holes violate
the area law.

Considering the flux of the electric field at infinity, one
can find the electric charge of black holes with the
following form:

Q ¼ q
4π

: ð29Þ

Next, for the electric potential, Φ, we use the following
definition:

Φ ¼ Aμχ
μjr→∞ − Aμχ

μjr→rþ

¼ q
ðn − 2Þrn−2þ

�
1 −

4ðn − 2Þq2β
ð3n − 4Þr2n−2þ

�
þOðβ2Þ; ð30Þ

where χμ is the null generator of the horizon. It is
notable that although the electric potential depends on
the nonlinearity of electrodynamics, the electric charge
does not.
In order to calculate the finite mass of the black hole, we

use the ADM (Arnowitt-Deser-Misner) approach for large
values of r, which will result in [14]

M ¼ Vn−1

16π
mðn − 1Þ: ð31Þ

We should note that one can obtainm from fðr ¼ rþÞ ¼ 0,
so the total mass depends on GB and NLED parameters.
Next, by using Eqs. (12), (28), and (29) and considering

M as a function of the extensive parameters S and Q, we
have

MðS;QÞ ¼ rn−2þ
16π

�
ðn − 1Þ

�
1þ α0

r2þ

�
þ 32π2Q2

ðn − 2Þr2n−4þ

−
1024π4Q4β

ð3n − 4Þr4n−6þ

�
þOðβ2Þ: ð32Þ
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Now we calculate the temperature and electric poten-
tial as the intensive parameter with the following
relation:

T ¼
�∂M
∂S
�

Q
¼
�∂M
∂rþ

�
Q
=

� ∂S
∂rþ

�
Q
; Φ ¼

�∂M
∂Q
�

S
;

ð33Þ
which are the same as the ones that were calculated in
Eqs. (25) and (30). Thus, the conserved and thermody-
namic quantities satisfy the first law of thermodynamics,

dM ¼ TdSþ ΦdQ: ð34Þ

A. Stability of the solutions

Here, we investigate the thermodynamic stability of
charged black hole solutions of GB gravity with NLED.
In the grand canonical ensemble, the thermodynamic
stability may be carried out by calculating the determinant
of the Hessian matrix of MðS;QÞ with respect to its
extensive variables Xi, HM

XiXj
¼ ð ∂2M

∂Xi∂Xj
Þ. In the canonical

ensemble, the electric charge is a fixed parameter, and
therefore the positivity of the heat capacity CQ ¼ Tþ=ð∂2M∂S2 Þ
is sufficient to ensure the local stability. Since the physical
black hole solutions have positive temperature, it is suffi-
cient to check the positivity of ð∂2M∂S2 ÞQ ¼ ð ∂T∂rþÞQ=ð

∂S
∂rþÞQ,

�∂2M
∂S2

�
Q
¼ −

�
r4n−8þ ðn − 1Þðn − 2Þ

�
2ðn − 4Þα02
ðn − 2Þ þ ðn − 8Þα0r2þ

ðn − 2Þ þ r4þ

�
− 2r2n−2þ q2½2α0ð2n − 5Þ þ ð2n − 3Þr2þ�

þ 2βq4½4α0ð4n − 7Þ þ ð8n − 10Þr2þ�
�
=½πðn − 1Þ2r5n−10þ ð2α0 þ r2þÞ3� þOðβ2Þ: ð35Þ

One may study the behavior of ð∂2M∂S2 ÞQ for small values of the GB parameter with the following form:

�∂2M
∂S2

�
Q
¼ −

ðn − 1Þðn − 2Þr4n−4þ − 2ð2n − 3Þr2nþ q2

ðn − 1Þ2r5n−4þ π
−

4ð4n − 5Þq4
ðn − 1Þ2r5n−6þ π

β

þ ½ð5n − 4Þr4nþ − 16r2nþ4
þ q2�

ðn − 1Þr5nþ2
þ π

α0 þ 64q4

ðn − 1Þr5n−4þ π
βα0 þOðα02; β2Þ: ð36Þ

In addition, it is worthwhile to mention that for small and
large values of rþ, we obtain

�∂2M
∂S2

�
Q

				
Smallrþ

¼

8>>>>>>>><
>>>>>>>>:

− ð4n−7Þβq4
πðn−1Þ2α02r5n−10þ

< 0; α0 ≠ 0;β ≠ 0

− 4ð4n−5Þβq4
πðn−1Þ2r5n−6þ

< 0; α0 ¼ 0;β ≠ 0

ð2n−5Þq2
2πðn−1Þ2α02r3n−8þ

> 0; α0 ≠ 0;β ¼ 0

2ð2n−3Þq2
πðn−1Þ2r3n−4þ

> 0; α0 ¼ 0;β ¼ 0

;

ð37Þ
�∂2M
∂S2

�
Q

				
Large rþ

¼ −
n − 2

πðn − 1Þrnþ
< 0; ð38Þ

which indicate that for nonzero α0 and β, asymptotically flat
black holes with a large or small horizon radius are not
stable. In other words, there is an upper limit, rþmax, as well
as a lower limit, rþmin, for the asymptotically flat stable
black holes (rþmin < rþ < rþmax). Although this result
does not depend on the value of the GB parameter,
asymptotically flat black holes with a small horizon radius
may be stable in the presence of a pure Maxwell field (with

an absence of nonlinearity of electrodynamic correction).
In other words, taking into account thermal stability in the
canonical ensemble, the nonlinearity of electrodynamics
has a reasonable influence on a small horizon radius.
In order to investigate the effects of GB gravity and

NLED on the local stability for arbitrary rþ, we plot
Figs. 1–6. Here, we consider left panels which are
appropriate for the canonical ensemble analysis.
In Figs. 1 and 2 we investigate the effects of considering

GB gravity. One can find that when the GB parameter is
less than a critical value (α0 < α0c), Tþ has a real positive
root at r0. In this case, ð∂2M∂S2 ÞQ > 0 for r0 < rþ < rþmax. In

other words, small black holes are not physical and large
black holes are not stable. Moreover, we find that r0
(rþmax) decrease (increase) when we increase α0. In
Fig. 2, we consider α0 > α0c, in which Tþ is a positive
definite function of rþ. In this case one can obtain stable
solutions for rþmin < rþ < rþmax, which confirms that
small and large black holes are unstable. We should note
that increasing α0 leads to increasing (decreasing) the value
of rþmin (rþmax) and, therefore, decreases the range of
stability.
Besides, we plot Figs. 3 and 4 to analyze the effects of

NLED.We find that for the fixed values of q, n, and α0, there
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is a critical value for the nonlinearity parameter, βc, in which
for β < βc, the temperature is positive for rþ > r0. This case
is the same as that in Fig. 1 with α0 < α0c, and wemay obtain
asymptotically flat stable black holes for r0 < rþ < rþmax.
In Fig. 4 we set β > βc to investigate the stability condition
for positive definite temperature. One finds there are lower
and upper limits for the horizon radius of stable black holes.
It means that for β > βc, asymptotically flat black holes are
stable when rþmin < rþ < rþmax.
We study the effects of electric charge in Figs. 5 and 6.

These figures show that for fixed values of α0 and β, there is
a critical value for the electric charge, qc, in which the
temperature is positive definite for q < qc. When q > qc,

there is a real positive root (r0) for the temperature which is
an increasing function of q. We should note that the general
behaviors of Figs. 5 and 6 are, respectively, the same as
those in Figs. 1 and 2. In other words, asymptotically flat
black holes are stable for rþmin < rþ < rþmax and one
should replace rþmin with r0 for q > qc. It is worthwhile to
mention that both rþmin and rþmax are increasing functions
of q.
Finally, considering Figs. 1–6, we should note that, in

canonical ensemble, asymptotically flat black holes are
stable for rþmin < rþ < rþmax, in which one must replace
rþmin with r0 when Tþ has a real positive root (q > qc or
β < βc or α0 < α0c).

0.60

1.1

FIG. 2. Asymptotically flat solutions ð∂2M∂S2 ÞQ (left panel) and
jHM

S;Q j
10

(right panel) versus rþ for n ¼ 5, q ¼ 1, β ¼ 0.001, and α ¼ 0.6
(solid line), α ¼ 0.8 (dotted line), and α ¼ 0.1 (dashed line). Bold lines represent the temperature.

1.5

1.3

FIG. 1. Asymptotically flat solutions ð∂2M∂S2 ÞQ (left panel) and jHM
S;Qj (right panel) versus rþ for n ¼ 5, q ¼ 1, β ¼ 0.001, and α ¼ 0.1

(solid line), α ¼ 0.3 (dotted line), and α ¼ 0.5 (dashed line). Bold lines represent the temperature.
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Next, in the grand canonical ensemble, we calculate the determinant of the Hessian matrix of the asymptotically flat black
holes. After some algebraic manipulation, one obtains

jHM
S;Qj ¼ 4

�
2q2ð3n − 4Þr4n−4þ ½r2þ − 2α0� þ 4q4r2n−2þ ½2α0ð11n − 24Þ − ð7n − 8Þr2þ�β

þ 12q2ðn − 1Þðn − 2Þ2r4n−8þ

�ðn − 8Þα0r2þ
ðn − 2Þ þ 2ðn − 4Þα02

ðn − 2Þ þ r4þ

�
β

− ðn − 1Þðn − 2Þð3n − 4Þr6n−10þ

�ðn − 8Þα0r2þ
ðn − 2Þ þ 2ðn − 4Þα02

ðn − 2Þ þ r4þ

��
=½r8n−14þ

× ðr2þ þ 2α0Þ3ðn − 1Þ2ð3n − 4Þðn − 2Þ� þOðβ2Þ: ð39Þ

FIG. 3. Asymptotically flat solutions ð∂2M∂S2 ÞQ (left panel) and jHM
S;Qj (right panel) versus rþ for n ¼ 5, q ¼ 1, α ¼ 0.1, and β ¼ 0.001

(solid line), β ¼ 0.003 (dotted line), and β ¼ 0.005 (dashed line). Bold lines represent the temperature.

FIG. 4. Asymptotically flat solutions ð∂2M
∂S2 ÞQ (left panel) and jHM

S;Qj (right panel) versus rþ for n ¼ 5, q ¼ 1, α ¼ 0.1, and β ¼ 0.01
(solid line), β ¼ 0.03 (dotted line), and β ¼ 0.05 (dashed line). Bold lines represent the temperature.
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In addition, it is worthwhile to mention that for small and
large values of rþ, we obtain

jHM
S;QjSmallrþ

¼

8>>>>>>>><
>>>>>>>>:

4ð11n−24Þβq4
πðn−1Þ2ð3n−4Þα02r6n−12þ

> 0; α0 ≠ 0;β≠ 0

− 16ð7n−8Þβq4
r6n−8þ ðn−1Þ2ðn−2Þð3n−4Þ< 0; α0 ¼ 0;β≠ 0

− 2q2

ðn−1Þ2ðn−2Þα02r4n−10þ
< 0; α0 ≠ 0;β¼ 0

8q2

ðn−1Þ2ðn−2Þr4n−6þ
> 0; α0 ¼ 0;β¼ 0

;

ð40Þ

jHM
S;QjLarge rþ ¼ −

4

πðn − 1Þrnþ
< 0; ð41Þ

which indicate that, for nonvanishing α0 and β, asymptoti-
cally flat black holes with a large horizon radius are not
stable. In other words, there is an upper limit, rþmax, for the
asymptotically flat stable black holes (rþ < rþmax). In the
absence of the GB gravity case (α0 ¼ 0; β ≠ 0), there is a
lower limit for stable solutions. This means that for α0 ¼ 0,
the results of the stability conditions for the canonical
and grand canonical ensembles are identical and both

FIG. 5. Asymptotically flat solutions ð∂2M∂S2 ÞQ (left panel) and jHM
S;Qj (right panel) versus rþ for n ¼ 5, β ¼ 0.001, α ¼ 0.7, and q ¼ 1.2

(solid line), q ¼ 1.3 (dotted line), and q ¼ 1.4 (dashed line). Bold lines represent the temperature.

FIG. 6. Asymptotically flat solutions ð∂2M∂S2 ÞQ (left panel) and jHM
S;Qj (right panel) versus rþ for n ¼ 5, β ¼ 0.001, α ¼ 0.7, and q ¼ 0.5

(solid line), q ¼ 0.7 (dotted line), and q ¼ 0.9 (dashed line). Bold lines represent the temperature.
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ensembles show that small and large black holes are
unstable. We should note that, in the presence of GB
gravity, thermal stability is ensemble dependent. These
results are shown in Figs. 1–6.
Now we need to discuss ensemble dependency [15]. As

we know, in the canonical ensemble the internal energy is
allowed to fluctuate with fixed electric charge and, there-
fore, the black hole and the heat reservoir remain in thermal
equilibrium with a certain temperature. While in the grand
canonical ensemble, the black hole is in both thermal and
electrical equilibrium, with its reservoir held at a constant
temperature and a constant potential. In other words,
different boundary conditions lead to different ensembles.
In the usual discussions of the stability criterion of black

holes, one expects ensemble independence of the system.
Indeed, different ensembles which imply different boun-
dary conditions should lead to similar stability conditions
in the usual thermodynamical systems.
Ensemble dependency of a system may come from two

subjects. One of them is real ensemble dependency, which
may occasionally occur in some thermodynamical systems.
The existence of ensemble dependency was seen in the
usual thermodynamical systems [16]. Another one, which
is not real, can be removed by improving our thermody-
namic viewpoint. In other words, our lack of knowledge
may lead to ensemble dependency and we should improve
our thermodynamical understanding to obtain ensemble
independency. In our black hole model (with a spherical
horizon), we find that the nonlinearity of electrodynamics
results in the same changes for the behavior of both
canonical and grand canonical ensembles. One can see
that the ensemble dependency comes from the contribution
of Gauss-Bonnet gravity. This means that, in the absence of
the GB parameter, both ensembles have the same stability
conditions. This shows that the GB parameter makes more
of a contribution to the thermodynamical behavior of the
black hole systems. In other words, one may consider the
GB parameter not only as a fixed parameter, but also as a
thermodynamical parameter [17]. By doing so, the Hessian
matrix for this system will be modified and, therefore, we
may expect to see that this modification solves the
ensemble dependency of the black hole system.
Another way to solve ensemble dependency is through

considering the fact that thermodynamical systems
described by a thermodynamical potential must be invariant
under the Legendre transformation. To do so, one can use
the method that was introduced in [18] and can use
geometrothermodynamics to solve ensemble dependency
of the system [18,19].

IV. ASYMPTOTICALLY AdS SPINNING
BLACK BRANES (k ¼ 0 & Λ ≠ 0)

In this section, we will investigate rotating AdS space-
time. In order to investigate the asymptotic behavior of the
solutions for k ¼ 0 and Λ ≠ 0, one can use the series

expansion of the metric function for a large value of r. We
obtain

fðrÞ ¼ −
2Λeff

nðn − 1Þ r
2 −

m

ð1þ 4α0Λeff
nðn−1ÞÞrn−2

þ 2q2

ðn − 1Þðn − 2Þð1þ 4α0Λeff
nðn−1ÞÞr2n−4

þO

�
1

r2n−2

�
;

ð42Þ

where

Λeff ¼
nðn − 1Þ


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8α0Λ

nðn−1Þ
q

− 1
�

4α0
: ð43Þ

Equation (42) shows that for k ¼ 0 the solutions are
asymptotically AdS with an effective cosmological con-
stant Λeff . When constructing a rotating spacetime, one can
apply the following transformation in the static spacetime
with k ¼ 0:

t → Ξt − aiϕi;

ϕ → Ξϕi −
ai
l
t: ð44Þ

Using this transformation, the metric of ðnþ 1Þ-
dimensional asymptotically AdS rotating spacetime with
p rotation parameters is

ds2 ¼ −fðrÞ
�
Ξdt −

Xp
i¼1

aidϕi

�
2

þ dr2

fðrÞ

þ r2

l4
Xp
i¼1

ðaidt − Ξl2dϕiÞ2

−
r2

l2
Xp
i<j

ðaidϕi − ajdϕiÞ2 þ r2dX2; ð45Þ

where Ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þPp

i¼1
ai
l2

q
and dX2 is the Euclidean metric

on the ðn − 1 − pÞ-dimensional submanifold. The fourth
term in Eq. (45) comes from the fact that, for a rotating
spacetime with more than one rotating parameter, we
should consider cross terms associated with rotating coor-
dinates. The rotation group in ðnþ 1Þ dimensions is SOðnÞ
and, therefore, p ≤ ½n=2�. Considering the aforementioned
transformation, for the gauge potential, we should write

Aμ ¼ hðrÞðΞδ0μ − aiδiμÞ ðno sumon iÞ: ð46Þ

Calculations show that metric function (12), with k ¼ 0 and
hðrÞ ¼ R Ftrdr [using the Ftr calculated in Eq. (9)],
satisfies all of the field equations for the aforementioned
rotating AdS spacetime. Straightforward calculations
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confirm that there is a curvature singularity located at r ¼ 0
which is covered with the horizon(s).
Using the analytic continuation of the metric by setting

t → iτ and ai → iai and regularity at the event horizon, rþ,
helps us to obtain the Hawking temperature and the angular
velocities of the black branes:

Tþ ¼ f0ðrþÞ
4πΞ

¼ −
r4n−4þ Λþ r2n−2þ q2 − 2q4β

2πΞðn − 1Þr4n−5þ
þOðβ2Þ;

ð47Þ

Ωi ¼
ai
Ξl2

: ð48Þ

Equation (47) shows that, unlike black hole solutions with a
spherical horizon, the temperature of the aforementioned
black brane with a flat horizon does not depend on GB
gravity.
Next, we calculate the electric charge and potential of the

solutions. The electric charge per unit volume Vn−1 can be
found by calculating the flux of the electric field at infinity,
yielding

Q ¼ qΞ
4π

: ð49Þ

On the other hand, because of the applied transformation
and changes in the metric, we now have Killing vectors in
the form of χ ¼ ∂t þ

Pp
i¼1 Ωi∂ϕi

which is the null gen-
erator of the horizon. The electric potential is obtained as

Φ ¼ Aμχ
μjr→∞ − Aμχ

μjr→rþ

¼ q
Ξðn − 2Þrn−2þ

�
1 −

4ðn − 2Þq2β
ð3n − 4Þr2n−2þ

�
þOðβ2Þ: ð50Þ

Now we desire to calculate the entropy, the angular
momentum, and the finite mass to check the first law of
thermodynamics. In general, the action and the conserved
quantities of the spacetime diverge when evaluated on the
solutions. In order to overcome this problem and due to
the fact that our spacetime is asymptotically AdS, we can
use the counterterm method to calculate the finite action
and the conserved quantities. One can show that for the
obtained solutions with flat boundary RabcdðγÞ ¼ 0, the
finite action is

Ifinite ¼ IG þ Ib þ Ict; ð51Þ
where

IG ¼ −
1

16π

Z
M

dnþ1x
ffiffiffiffiffiffi
−g

p
Ltot ð52Þ

Ib ¼ −
1

8π

Z
∂M

dnx
ffiffiffiffiffiffi
−γ

p fK þ 2αðJ − 2ĜabKabÞg ð53Þ

Ict ¼ −
1

8π

Z
∂M

dnx
ffiffiffiffiffiffi
−γ

p �
n − 1

leff

�
; ð54Þ

where γ and K are, respectively, the trace of the induced
metric, γab, and the extrinsic curvature, Kab, on the
boundary ∂M, Ĝab is the Einstein tensor calculated on
the boundary, J is the trace of

Jab ¼
1

3
ðKcdKcdKabþ2KKacKc

b−2KacKcdKdb−K2KabÞ;
ð55Þ

and leff is a scale length factor that depends on l and α,
which must reduce to l as α vanishes. It is worthwhile to
mention that, for a spacetime with zero curvature boun-
dary, Ict has exactly the same value as that of the Einstein
gravity in which l is replaced by leff. Using the Brown-
York method of a quasilocal definition with Eq. (51)–(54),
one can introduce a divergence-free stress-energy tensor
as follows:

Tab ¼ 1

8π

�
ðKab − KγabÞ þ 2αð3Jab − JγabÞ þ n − 1

leff
γab
�
:

ð56Þ
Then the quasilocal conserved quantities associated with

the stress tensors of Eq. (56) can be written as

QðξÞ ¼
Z
B
dn−1φ

ffiffiffi
γ

p
Tabnaξb; ð57Þ

where na is the timelike unit normal vector to the boundary
B. Taking into account Eq. (57), with ξ ¼ ∂=∂t as a Killing
vector, one can calculate the mass per unit volume Vn−1 as

M ¼ 1

16π
mðnΞ2 − 1Þ; ð58Þ

where

m ¼ mðr ¼ rþÞ: ð59Þ
Equations (58) and (59) indicate that, unlike the asymptotic
flat solutions with a spherical boundary, the finite mass
does not depend on the GB parameter for the boundary flat
rotating solutions.
Considering another Killing vector ζ ¼ ∂=∂ϕi of rotat-

ing spacetime which is related to angular momentum, one
can calculate the angular momentum per unit volume,

Ji ¼
1

16π
nmΞai: ð60Þ

We should note that for static solutions (ai ¼ 0), the
angular momentum vanishes, which confirms that the ai’s
are the rotational parameters of the spacetime.
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As we mentioned before, the Wald formula can be
applied to asymptotically flat spacetime. Here, we encoun-
ter asymptotically AdS solutions, so we calculate the
entropy through the use of the Gibbs-Duhem relation,

S ¼ 1

T

�
M −QΦ −

Xk
i¼1

ΩiJi

�
− Ifinite: ð61Þ

First we calculate the finite action Ifinite for the rotating
metric. We find that the finite action per unit volume may
be written as

Ifinite ¼
1

8πnðn − 1ÞTþ

�
−Λrnþ þ nq2

ðn − 2Þrn−2þ

−
2nq4β

ð3n − 4Þr3n−4þ
þOðβ2Þ

�
: ð62Þ

Using the finite conserved and thermodynamic quantities
with the finite action, we obtain

S ¼ Ξ
4
rn−1þ ; ð63Þ

which confirms that the entropy obeys the area law for
asymptotically AdS black branes with zero curvature
horizon.
Now we want to check the first law of thermodynamics.

To do so, we obtain the mass as a function of the extensive
quantities S, J, and Q. Using the expression for the electric
charge, the mass, the angular momentum, and the entropy
given, respectively, in Eqs. (49), (58), (60), and (63) and the
fact that fðr ¼ rþÞ ¼ 0, one can obtain a Smarr-type
formula as

MðS; J;QÞ¼ ðnZ − 1ÞJ
nl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZðZ − 1Þp ; ð64Þ

where J ¼ jJj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼1 J

2
i

p
and Z ¼ Ξ2 is the positive real

root of the following equation

2
2

n−1nl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZðZ−1Þ

p �
π4Q4β−

ð3n−4ÞS2π2Q2

2ðn−2Þ þð3n−4ÞΛS4
2n

�

þ
�

Sffiffiffiffi
Z

p
�n−2

n−1
S2Zπðn−1Þð3n−4ÞJ¼0: ð65Þ

Taking into account S, J, and Q as the extensive
parameters of M, we can define the intensive parameters
conjugate to them as

T ¼
�∂M
∂S
�

J;Q
; Ωi ¼

�∂M
∂Ji
�

S;Q
; Φ ¼

�∂M
∂Q
�

S;J
:

ð66Þ

It is a matter of calculation to show that the intensive
quantities calculated by Eq. (66) coincide with Eqs. (47),
(48), and (50). Therefore, the first law of thermodynamics
is satisfied:

dM ¼ TdSþ
Xp
i

ΩidJi þ ΦdQ: ð67Þ

A. Stability of the solutions

Now we are in a position to calculate the heat capacity
and the Hessian matrix to check the local stability of these
solutions in context of canonical and grand canonical
ensembles. For canonical ensembles, where electric charge
and angular momenta are fixed parameters, the positivity of
ð∂2M∂S2 ÞJ;Q is sufficient to ensure the local stability. Therefore,

we obtain

�∂2M
∂S2

�
J;Q

¼ 2r−2þ A1

πΞ2ðn − 1Þψσ −
4ðn − 2Þ2q4r−4þ A2β

πΞ2ðn − 1Þð3n − 4Þσψ2

þOðβ2Þ; ð68Þ

A1 ¼
nð3σ − nÞq4

r3n−6þ
þ 2ð3σ − n2ÞΛq2

rn−4þ
þ ½ðnþ 2Þσ − n2�Λ2

r2−nþ
;

ð69Þ

A2 ¼
½ð5n2 − 42nþ 40ÞΞ2 þ ð7n2 þ 11n − 20Þ�Λ2

rn−6þ

−
2n½ð13n2 − 50nþ 40ÞΞ2 − ðn2 − 19nþ 20Þ�Λq2

ðn − 2Þr3n−8þ

þ n2½ð17n − 20Þσ − nð5n − 6Þ�q4
ðn − 2Þ2r5n−10þ

; ð70Þ

ψ ¼ ½nq2 − Λðn − 2Þr2n−2þ �; ð71Þ

σ ¼ ½ðn − 2ÞΞ2 þ 1�: ð72Þ

As we mentioned before, in the grand canonical ensem-
ble, the positivity of the determinant of the Hessian matrix
of MðS;Q; JÞ with respect to its extensive variables Xi,
HM

XiXj
¼ ð ∂2M

∂Xi∂Xj
Þ is sufficient to ensure the local stability. It

is a matter of calculation to show that the determinant of
HM

S;Q;J is

jHM
A;Q;Jj ¼ ϰðq2 − Λr2n−2þ Þ − 4ϰq2½3ðn − 2Þ2Λ2r4n−4þ þ 3nðn − 1Þq4 − 2ðn − 2Þð3n − 2ÞΛq2r2n−2þ �β

ð3n − 4Þ½nq2 − ðn − 2ÞΛr2n−2þ �r2n−2þ
þOðβ2Þ; ð73Þ
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where

ϰ ¼ 64πr4−3nþ ½nq2 − ðn − 2ÞΛr2n−2þ �−1
½ðn − 2ÞΞ2 þ 1�Ξ6l2

: ð74Þ

Regarding Eq. (47) with the mentioned ð∂2M∂S2 ÞJ;Q and also

jHM
A;Q;Jj, we find that, unlike the asymptotically flat case

with the spherical horizon, neither the heat capacity nor the
determinant of the Hessian matrix depend on the GB
parameter for asymptotically AdS rotating solutions with
zero curvature horizon. Therefore, we expect to obtain the
same results in both canonical and grand canonical ensem-
bles. Following the method of the previous section and
regardless of the values of n, q, Λ, Ξ, and α, one finds

�∂2M
∂S2

�
J;Q

				
Small rþ

¼
8<
:

− 4½ð5n2−23nþ20ÞðΞ2−1Þþð12n2−31nþ20ÞΞ2�q4β
πΞ2ðn−1Þð3n−4Þσr5n−6þ

< 0; β ≠ 0

2f3½ðn−2ÞΞ2þ1�−ngq2
πΞ2ðn−1Þ½ðn−2ÞΞ2þ1�r3n−4þ

> 0; β ¼ 0
; ð75Þ

�∂2M
∂S2

�
J;Q

				
Large rþ

¼ −
2½ðn2 − 4ÞðΞ2 − 1Þ þ n − 2�Λ

πΞ2ðn − 1Þðn − 2Þ½ðn − 2ÞΞ2 þ 1�rnþ2
þ

> 0; ð76Þ

and

HM
S;Q;JjSmall rþ

¼
8<
:

− 768πðn−1Þq2β
nð3n−4Þ½ðn−2ÞΞ2þ1�Ξ6l2r5n−6þ

< 0; β ≠ 0

64π
n½ðn−2ÞΞ2þ1�Ξ6l2r3n−4þ

> 0; β ¼ 0
; ð77Þ

HM
S;Q;JjLarge rþ ¼ 64π

ðn − 2Þl2Ξ6½ðn − 2ÞΞ2 þ 1�r3n−4þ
> 0: ð78Þ

Both ensembles confirm that, in the presence of NLED
(β ≠ 0), although the black branes with small rþ are
unstable, large black branes are stable. It is notable that
the instability of the small black branes is due to the
presence of the NLED and, in the absence of the non-
linearity effect, small black branes are stable.

V. CLOSING REMARKS

In this paper, we regarded both the gravity and the
electrodynamic string corrections of Einstein-Maxwell
gravity to obtain black hole solutions with spherical,
hyperbolic, and flat horizon topology.
At the first step, we focused on asymptotically flat

solutions. We used the Wald formula, the Gauss law,
and the ADM approach to calculate entropy, electric
charge, and finite mass, respectively. We checked that
the conserved and thermodynamic quantities satisfied the
first law of thermodynamics. Then we investigated the
thermodynamic stability of the solutions in both canonical
and grand canonical ensembles. Taking into account the
canonical ensemble, we found that for nonzero α0 and β,
asymptotically flat black holes with a large or small horizon
radius are unstable. This means that, in canonical ensemble,
asymptotically flat black holes are stable for rþmin <
rþ < rþmax, in which one must replace rþmin with r0
(the largest root of Tþ) when Tþ has a real positive root

(q > qc or β < βc or α0 < α0c). Moreover, we found that
different values of α, β, and q can change the values of
rþmin and rþmax.
Then, we investigated the stability conditions in the

grand canonical ensemble. We showed that there is an
upper limit, rþmax, for the asymptotically flat stable black
holes (rþ < rþmax). We found that, although for α0 ¼ 0 the
results of the stability conditions for canonical and grand
canonical ensembles are identical, these ensembles have
different consequences in the presence of GB gravity. In
other words, we noted that, in the presence of GB gravity,
thermal stability is ensemble dependent.
In the next section, we considered the Ricci flat solutions

with an AdS asymptote and produced a rotating spacetime
by using an improper local transformation. In addition, we
calculated the conserved and thermodynamic quantities for
asymptotically AdS black branes which satisfy the first law
of thermodynamics. Considering the thermodynamic insta-
bility criterion in canonical and grand canonical ensembles,
we found that neither the heat capacity nor the Hessian
matrix depend on the GB parameter. Therefore, both
ensembles have identical stability conditions. We found
that, although the black branes with small rþ are unstable,
large black branes are stable (unlike asymptotically flat
static large black holes, which are unstable). It is notable
that the instability of small black branes (holes) is due to the
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presence of NLED and, in the absence of the nonlinearity
effect, small black branes (holes) are stable.
To conclude, we found that for the Ricci-flat solutions,

we obtained the same conditions for stable black holes in
both canonical and grand canonical ensembles. In other
words, in this case, we took into account S, Q and J as the
thermodynamical extensive parameters, correctly, and
obtained the same results for both ensembles. It is easy
to show that, for rotating Ricci-flat solutions, one may
obtain ensemble dependency if one, imprecisely, considers
S and Q as the set of extensive parameters (regards J as a
dynamical parameter, not a thermodynamic one). As one
can confirm, unlike Ricci-flat solutions, the GB parameter
in the spherical horizon of GB black holes contributes to
finite mass, temperature, and, consequently, heat capacity.
In other words, the GB parameter contributions lead to
ensemble dependency in spherical horizon black holes.
This means that a GB generalization of Einstein gravity not

only affects gravitational properties, but also thermody-
namic aspects of the spherically symmetric black holes.
Finally, we should note that the modifications of the

thermodynamic instability criterion in the presence of GB
gravity depend on the choice of the ensemble. One may
consider the GB parameter as a thermodynamic variable to
remove the ensemble dependency. In addition, it is worth-
while to mention that we can regard asymptotically AdS
black holes with spherical topology to investigate P − V
criticality in the extended phase space of the solutions by
calculating the Gibbs free energy. These works are under
examination.
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