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We study the conditions imposed on matter to produce a regular (nonsingular) interior of a class of
spherically symmetric black holes in the fðTÞ extension of teleparallel gravity. The class of black holes
studied (T spheres) is necessarily singular in general relativity. We derive a tetrad which is compatible with
the black hole interior and utilize this tetrad in the gravitational equations of motion to study the black hole
interior. It is shown that in the case where the gravitational Lagrangian is expandable in a power series
fðTÞ ¼ T þP

n≠1bnT
n black holes can be nonsingular while respecting certain energy conditions in the

matter fields. Thus, the black hole singularity may be removed, and the gravitational equations of motion
can remain valid throughout the manifold. This is true as long as n is positive but is not true in the negative
sector of the theory. Hence, gravitational fðTÞ Lagrangians which are Taylor expandable in powers of T
may yield regular black holes of this type. Although it is found that these black holes can be rendered
nonsingular in fðTÞ theory, we conjecture that a mild singularity theorem holds in that the dominant energy
condition is violated in an arbitrarily small neighborhood of the general relativity singular point if the
corresponding fðTÞ black hole is regular. The analytic techniques here can also be applied to gravitational
Lagrangians which are not Laurent or Taylor expandable.
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I. INTRODUCTION

There has been extensive study in the literature of the
peculiar and not so peculiar properties of black holes over
the years since the advent of general relativity. The
Schwarzschild metric [1], one of the earliest nontrivial
solutions to Einstein’s field equations, possessed at least
two peculiarities. One occurs at what is now known as the
event horizon and was later discovered to be rather benign.
The other occurs at what seemed to be the “center” of the
solution and was later seen as more serious as it seemed to
predict the breakdown of all physics at the location of this
singularity. Since the early studies, there have been many
attempts at finding ways to alleviate this singularity with,
for example, the addition of matter, as any astrophysical
black hole would form from gravitational collapse. In 1965
and 1970, Penrose and Hawking introduced their now
famous singularity theorems [2,3], which in the context of
black holes essentially state that if a horizon forms, and the
matter obeys certain reasonable conditions (such as the
strong energy condition), then general relativity predicts
that a singularity will be present somewhere in the
spacetime. Other studies concerned with singularity reso-
lution involve candidate theories of quantum gravity [4,5],
the possibility of various matter fields with exotic

properties (which perhaps only manifest in the high
curvature regime) (see Refs. [6–9] and references therein),
and alternative theories of gravity which possess an
observationally compatible weak field limit but deviate
from Newtonian gravity and general relativity under more
extreme conditions (Refs. [10–12] and references therein).
It is in the vein of this last possibility that we present the
study here and find general conditions which yield a regular
black hole in teleparallel gravity in a situation where none
would be found in general relativity.
One alternative to the curvature based general relativity

and its various extensions is a theory of gravity which is
purely torsion based. These theories have experienced a bit
of a renaissance in the past decade. Specifically, the
extended teleparallel theory is one which has garnered
much attention since it produces a theory equivalent to
general relativity in an appropriate limit (fðTÞ ¼ T, [13])
and also retains second-order equations of motion [14]. In
this theory the fundamental object is the tetrad, haμ, and the
action is given by

S ¼ 1

16π

Z
ffðTÞ þ Lmg det½haμ�d4x: ð1Þ

Here Lm represents the matter Lagrangian density. The
indices employed in this paper have the following con-
vention: Unadorned Greek indices are spacetime indices,
whereas Latin indices span the local tangent spacetime of
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the gravitational degrees of freedom. In what follows we
also occasionally project quantities into a local orthonormal
frame which is not related to the tetrad of the gravitational
degrees of freedom.1 The indices representing the local
orthonormal frame are hatted Greek indices. The quantity T
is the torsion scalar which is defined via a linear combi-
nation of quadratic contractions of the torsion tensor, Tρμν:

T ¼ 1

4
TρμνTρμν þ

1

2
TρμνTνμρ − Tρμ

ρTνμ
ν: ð2Þ

The torsion tensor itself is defined via the commutator of
the curvatureless Weitzenböck connection, Γλ

μν:

Tλ
μν ¼ Γλ

νμ − Γλ
μν ¼ hλað∂μhaν − ∂νhaμÞ: ð3Þ

The torsion scalar (2) differs from the Ricci scalar by a total
divergence, and hence general relativity is recovered in the
limit that fðTÞ → T. For this reason we will always include
a term linear in T in the subsequent analysis and specifi-
cally will consider functions of the form

fðTÞ ¼ T þ
X
n≠1

bnTn; ð4Þ

with the bn constants.
Variation of the action (1) with respect to the tetrad yields

the gravitational equations of motion,

h
h−1haμ∂ρðhhaλSλνρÞ þ Tα

λμSανλ
i dfðTÞ

dT

þ Sμνλ∂λT

�
d2fðTÞ
dT2

�
þ 1

4
δνμfðTÞ ¼ 4πT μ

ν; ð5Þ

where h is the determinant of the tetrad and Sλνρ is the
modified torsion tensor,

Sλνρ ¼
1

2
ðKνρ

λ þ δνλTσρ
σ − δρλTσν

σÞ; ð6Þ

and Kνρ
λ the contorsion tensor:

Kνρ
λ ¼

1

2
ðTρν

λ þ Tλ
νρ − Tνρ

λÞ: ð7Þ

T μ
ν is the usual stress-energy tensor.
One issue present in teleparallel gravity which is not

present in curvature theories where the metric is the
fundamental gravitational object, such as fðRÞ theories,
is that the action (1) is not locally Lorentz invariant. That is,
two different tetrads, related to each other via a local
Lorentz transformation, will yield physically distinct

equations of motion. Therefore, a certain metric (which
still defines the causal structure of the theory) is compatible
with many tetrads, all of which yield inequivalent relations
between the matter content and the gravitational field via
the field equations. Out of this freedom, one must find
a tetrad which yields “good” equations of motion.
Reasonable criteria for a good tetrad are:

(i) The tetrad chosen should not restrict the form of
fðTÞ [15]. That is, the tetrad needs to retain
acceptable equations of motion regardless of the
function fðTÞ and not just work well for certain
functions. Our minimal conditions for acceptable
equations of motion are the following.

(ii) The tetrad must produce equations of motion which
are compatible with a symmetric stress-energy
tensor T μν ¼ T νμ.

(iii) The resulting equations of motion should not pro-
duce peculiar physics. For example, in spherical
symmetry there should be no energy transport in the
angular directions. In a homogeneous scenario, there
should be no energy flux from one location to the
other, etc.

It turns out it is generally nontrivial to find a tetrad that
satisfies these conditions. In the realm of cosmology, for
example, an array of frames have been analyzed in
Ref. [16]. We discuss this situation for the case of spheri-
cally symmetric black hole interiors in Sec. II. In Sec. III
we try to identify what presents a physical singularity in
teleparallel theory and derive the criteria required to
eliminate this singularity. We also show that it is possible
to eliminate the singularity with matter which obeys energy
conditions at the general relativity singular point and
conjecture that the dominant energy condition is violated
in an arbitrarily small neighborhood about the singular
point (although it does not need to be violated exactly at
this point). We conclude that regularizing the black hole is
possible for the addition of terms with any positive value of
n ≥ 2 in (4) tested, but for negative n regularization fails,
and the situation is the same as in general relativity. Finally,
in Sec. IV we summarize the results and provide some
concluding statements.

II. SUITABLE TETRAD

The line element appropriate for a spherically symmet-
ric, not necessarily vacuum, black hole exterior can be cast
in the form

ds2 ¼ A2ðt; rÞdt2 − B2ðt; rÞdr2 − r2dθ2 − r2sin2θdϕ2;

ð8Þ

with a horizon present where Aðt; rÞ ¼ 0. The
obvious tetrad to use for such a line element is the
diagonal one:

1Although one can choose the local orthonormal frame to
coincide with the tetrad of the gravitational field’s degrees of
freedom, it is generally not convenient to do so.
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½haμ�diag ¼

0
BBB@

Aðt; rÞ 0 0 0

0 Bðt; rÞ 0 0

0 0 r 0

0 0 0 r sin θ

1
CCCA: ð9Þ

However, it is well known that this tetrad does not
produce acceptable equations of motion when utilized in
(5) [17], unless fðTÞ ¼ T. For example, for fðTÞ ≠ T
this tetrad can produce off-diagonal components to the

stress-energy tensor even when the t dependence is not
present, and there should be no momentum flux.
Note, however, that one may perform Lorentz trans-

formations on the Lorentz index of the tetrad, which, as
briefly discussed in the introduction, will alter the equa-
tions of motion if the transformation is a local one. In the
literature a common tetrad that is used, which produces
acceptable equations of motion, is the following rotated
tetrad:

½haμ�rot ¼

0
BBBB@

AðrÞ 0 0 0

0 BðrÞ sin θ cosϕ r cos θ cosϕ −r sin θ sinϕ
0 BðrÞ sin θ sinϕ r cos θ sinϕ r sin θ cosϕ

0 BðrÞ cos θ −r sin θ 0

1
CCCCA: ð10Þ

This tetrad has been utilized in studies of charged black
hole exterior spacetimes [18] and spherically symmetric
stars [19,20] and a more generalized version used in
Ref. [21]. A novel tetrad was utilized in Ref. [22] to study
a class of static, spherically symmetric solutions. The
diagonal tetrad (9) was utilized in Ref. [23] to study
higher-dimensional models. Equation (10) has also been
used to discern some torsion only effects with nonminimal
coupling to scalar fields in the teleparallel equivalent of
general relativity [24]. Dirac field coupling has been
considered in Ref. [25]. A tetrad yielding a vacuum
Schwarzschild solution for an array of Lagrangians has
been introduced in Ref. [26]. Also, the Kerr solution has
been studied in the teleparallel equivalent of general
relativity utilizing a tetrad appropriate for that spacetime
in Ref. [27].
The tetrad (10) works well for systems where the line

element is given by (8), but for black hole interiors this
tetrad is not suitable for fðTÞ ≠ T due to a somewhat
subtle reason. A black hole interior’s line element can be
cast as

ds2 ¼ α2ðτ; χÞdτ2 − β2ðτ; χÞdχ2 − τ2dθ2 − τ2sin2θdϕ2;

ð11Þ

and a horizon exists where βðτ; χÞ ¼ 0. In this coordinate
chart (sometimes called the T-domain chart, T indicating
the time dependence of the interior spacetime, not the
torsion scalar), the Schwarzschild black hole interior
would read

ds2Schw ¼ dτ2
2M
τ − 1

−
�
2M
τ

− 1

�
dχ2 − τ2dθ2 − τ2sin2θdϕ2;

ð12Þ

with the coordinate ranges 0 < τ < 2M, χ1 < χ < χ2,
0 < θ < π, 0 ≤ ϕ < 2π. Although line element (11)
can be obtained from (8) rather trivially, an interesting
complication arises in fðTÞ gravity which does not occur
in the corresponding curvature theories.
Because of the switching of the nature of space and time,

a rotation in the interior of the black hole does not generally
directly correspond to a rotation in the exterior region.
Similarly a boost in the interior does not correspond to a
boost in the exterior. One cannot simply take the tetrad
which works in the exterior, tetrad (10), and utilize it in the
interior via a simple change of coordinate roles t → χ,
r → τ along with the switching of the zeroth and first
components of the tetrad matrix. Mathematically this is due
to the fact that there is no direct analytical extension of
coordinate chart (8) to coordinate chart (11). They are
distinct charts despite their similarity.
At this stage there are two choices which will allow us to

study the black hole interiors. One choice is to switch to a
chart which penetrates the horizon. The advantage will be
that one will then have a tetrad which can describe both the
exterior and the interior of a black hole. The other choice is
to attempt to construct from scratch an acceptable tetrad
which can describe the black hole interior. Regarding the
first choice, a tetrad we can construct is one compatible
with a Painlevé–Gullstrand-type coordinate chart. In the
case of r only dependence, an acceptable transformation is
given by

tpg ¼ tþ
Z

f½AðrÞBðrÞ�−2 − P0B−2ðrÞg1=2B2ðrÞdr; ð13Þ

with P0 a constant. The transformation matrix can readily
be formed and applied to (10), yielding
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½haμ�pg ¼

0
BBBBB@

AðrÞ −f½AðrÞBðrÞ�−2 − P0B−2ðrÞg1=2B2ðrÞAðrÞ 0 0

0 BðrÞ sin θ cosϕ r cos θ cosϕ −r sin θ sinϕ
0 BðrÞ sin θ sinϕ r cos θ sinϕ r sin θ cosϕ

0 BðrÞ cos θ −r sin θ 0

1
CCCCCA
: ð14Þ

This tetrad allows for the study of the interior of the black
hole as well as the exterior. It also still yields a symmetric
T μν which is a requirement for an acceptable tetrad. The
major disadvantage is that, since the coordinate system is
no longer orthogonal, the equations of motion become
rather complicated and also the energy conditions become
more complicated to analyze than in an orthogonal system.
The second choice is to find a tetrad which works in the

orthogonal coordinates of (11) in which the analysis for the
energy conditions remains relatively simple. Of course,
since they are invariant expressions, the energy condition
calculations may be done in any coordinate system. In the
following, interiors are considered which are τ only
dependent (“T spheres” [28–30]) as adding χ dependence
presents an extremely complicated scenario in the black

hole interior even for relatively simple deviations from
fðTÞ ¼ T. This class of black hole is necessarily singular in
general relativity, regardless of energy conditions (see
below in Sec. III A 1). We begin with the diagonal tetrad
for the black hole interior

½haμ�diag ¼

0
BBBB@

αðτÞ 0 0 0

0 βðτÞ 0 0

0 0 τ 0

0 0 0 τ sin θ

1
CCCCA ð15Þ

and consider rotations of this tetrad about the local Euler
angles in the tangent space via the rotation matrices,

½Rx�¼

0
BBBB@

1 0 0 0

0 1 0 0

0 0 cosψ sinψ

0 0 −sinψ cosψ

1
CCCCA; ½Ry�¼

0
BBBB@

1 0 0 0

0 cosϑ 0 sinϑ

0 0 1 0

0 −sinϑ 0 cosϑ

1
CCCCA; ½Rz�¼

0
BBBB@

1 0 0 0

0 cosφ sinφ 0

0 −sinφ cosφ 0

0 0 0 1

1
CCCCA; ð16Þ

with ψ , ϑ, and φ functions of the coordinates. To find acceptable forms for these angle functions, we must appeal to the
conditions outlined in the introduction which provide the criteria for good vs bad tetrads in fðTÞ gravity. After some work,
our calculations reveal that setting

ψ ¼ 0; ϑ ¼ θ þ π

2
; φ ¼ ϕ ð17Þ

will satisfy the criteria that yield acceptable equations of motion (i.e. produce a good tetrad). The resulting tetrad has
the form

½haμ�interior ¼

0
BBBB@

αðτÞ 0 0 0

0 −βðτÞ cosϕ sin θ τ sinϕ τ sin θ cosϕ cos θ

0 βðτÞ sinϕ sin θ τ cosϕ −τ sin θ sinϕ cos θ

0 −βðτÞ cos θ 0 −τsin2θ

1
CCCCA: ð18Þ

Having found an acceptable tetrad to describe the interior of
the black hole, we now proceed to study the possibility of
making the black hole interior regular everywhere, ideally
with nonexotic matter.

III. SINGULARITY

Even in general relativity, the issue of what is a serious
singularity is often not straightforward. For example, by

definition the best criteria for the presence of a curvature
singularity in curvature theories is that one or more
components of the Riemann tensor, when projected into
the orthonormal frame, becomes infinite. Although one
then has a true curvature singularity, it is not necessarily a
physically malignant one. One way to “measure” the
components of the Riemann tensor is via tidal forces
along geodesic paths. However, the equation of geodesic
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deviation has contractions of the Riemann tensor with
vectors tangent to the geodesics as well as a contraction
with the geodesic deviation vector. It is possible (albeit
generally unlikely) in certain situations that within this
contraction the infinities present in the Riemann tensor
cancel out, and hence the curvature singularity does not
spawn infinite tidal forces and is possibly benign. In a
similar vein, the Kretschmann scalar, being a complete
contraction of the Riemann tensor with itself, may be finite,
yet certain components of the Riemann tensor could be
infinite. One then needs to examine other physically
measurable quantities to see if there are singularities
manifest there. Common examples of such measurable
quantities are the stress-energy tensor components in the
orthonormal frame, that is, the energy density and fluxes,
the pressures, the shears, and other stresses.
Another very common criterion for the presence of a

pathological singularity in curvature theories is the inability
to extend geodesics for arbitrary values of the affine
parameter. This criterion of geodesic extension is crucial
to the famous Hawking–Penrose singularity theorems [3].
From these theorems it is known that in general relativity
one cannot possess a black hole with everywhere extend-
able geodesics unless the material sourcing the black hole is
exotic in some way.
In the sector of torsion gravity, attempts to classify

singularities have been performed in Ref. [11] for Möller’s
tetrad theory and in Ref. [31] for a class of Riemann–Cartan
theories. Another study is Ref. [32] for the case of a
Schwarzschild black hole in the teleparallel equivalent of
general relativity, and in Ref. [33] the authors study energy
conditions in an electromagnetic model for the teleparallel
equivalent of general relativity. Other analyses can be found
in Ref. [34], and Ref. [25] considers cosmological singu-
larities with Dirac fields. An interesting earlier study is in
Ref. [35] within the Poincaré gauge theory of gravity. From
these studies it seems it is even more difficult to discern
what is a serious singularity in theories with torsion than in
those that are purely curvature based. Here we attempt to
study several singularity criteria in the fðTÞ theory which
seem reasonable to us, and we then proceed to alleviate
these singular behaviors. We then examine what properties
the matter must possess in order to possibly eliminate the
singularities.
In the work here we consider several criteria for the

presence of a singularity in fðTÞ gravity. The most
straightforward quantity to calculate is arguably the
torsion tensor, which we project in a local orthonormal
frame. Utilizing the tetrad (18) in (3) and projecting the
components into a local orthonormal coordinate system
yields

Tr̂
t̂ r̂ ¼ − Tr̂

r̂ t̂ ¼
_βðτÞ

αðτÞβðτÞ ; ð19aÞ

Tr̂
θ̂ ϕ̂ ¼ − Tr̂

ϕ̂ θ̂ ¼ −T θ̂
r̂ ϕ̂ ¼ T θ̂

ϕ̂ r̂ ¼ Tϕ̂
r̂ θ̂ ¼ −Tϕ̂

θ̂ ϕ̂ ¼ 2

τ
;

ð19bÞ

T θ̂
t̂ θ̂ ¼ − T θ̂

θ̂ t̂ ¼ Tϕ̂
t̂ ϕ̂ ¼ −Tϕ̂

ϕ̂ t̂ ¼
1

ταðτÞ ; ð19cÞ

where the overdots indicate derivatives with respect to the τ
coordinate. Immediately it can be seen that the components
in (19b) cannot be made nonsingular regardless of the
metric functions.2 Therefore, we have a nonremovable
torsion tensor singularity. As stated previously, this does
not necessarily mean that the spacetime has a physical
singularity. Another quantity we can compute is a torsion
invariant3 somewhat analogous to the Kretschmann scalar,
or various permutations thereof. We calculate one as

TμνρTμνρ ¼
2

τ2α2ðτÞβ2ðτÞ ½
_βðτÞ2τ2 − 6α2ðτÞβ2ðτÞ þ 2β2ðτÞ�:

ð20Þ

A series expansion of this quantity about the potential
singular point yields

TμνρTμνρ ¼
4

τ2α2ð0Þ
ð1 − 3α2ð0ÞÞ −

8_αð0Þ
τα3ð0Þ

þOðτ0Þ; ð21Þ

where the subscript 0 indicates that the quantity is to be
evaluated at τ ¼ 0. Note from either (20) or (21) that it may
be possible to make this quantity finite for all values of τ.
Yet another quantity which can be calculated to analyze

the situation is the torsion scalar (2),

T ¼ 2

τ2βðτÞα2ðτÞ ½α
2ðτÞβðτÞ − βðτÞ − 2τ _βðτÞ�; ð22Þ

which may be expanded about τ ¼ 0 as

T ¼ 2

α2ð0Þτ
2
½α2ð0Þ − 1�− 4

α3ð0Þβð0Þτ
½αð0Þ _βð0Þ − _αð0Þβð0Þ� þOðτ0Þ:

ð23Þ

From these expressions it can be seen that this quantity, too,
can be made finite for all values of τ. However, before
continuing we note that one of the conditions required to
make (21) finite at τ ¼ 0, viz. α2ð0Þ ¼ 1=3, is incompatible
with one of the conditions which makes (23) finite at
τ ¼ 0, α2ð0Þ ¼ 1.

2Similar pathologies exist if one chooses to project the tensor
into the gravitational tetrad (18).

3Spacetime coordinate invariant but not locally Lorentz
invariant.
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Moving on to more physical criteria, we consider the
equations of motion of a free test particle. It is a well-known
interesting fact that in a Weitzenböck spacetime the force
equation on a particle subject only to the gravitational field
is given by the geodesic equation of the corresponding
spacetime in curvature theory in terms of the Riemann–
Christoffel connection [14], ~Γμ

αβ:

d2xμ

dλ2
¼ − ~Γμ

αβ
dxα

dλ
dxβ

dλ
: ð24Þ

The interpretation in teleparallel gravity is that (24) yields
the acceleration of the particle subject to the force of
gravity. For constant mass particles, if this becomes

infinite, then the gravitational force experienced by the
particle is infinite. We parametrize the normalized
4-velocity, uα ¼ dxα

dλ , as

½uα� ¼

2
6664

coshðζÞα−1ðτÞ
sinhðζÞ cosðωÞβ−1ðτÞ

sinhðζÞ sinðωÞ cosðσÞτ−1
sinhðζÞ sinðωÞ sinðσÞðτ sin θÞ−1

3
7775; ð25Þ

with ζ, ω, σ functions of xμðλÞ. Considering “radial”
motion (ω ¼ 0), we can calculate the gravitational accel-
eration (or force per unit mass) as

�
d2xμ̂

dλ2

�
¼

2
6666664

1
α2ðτÞβðτÞ ½ _βðτÞαðτÞsinh2ðζÞ þ _αðτÞβðτÞcosh2ðζÞ�

2_βðτÞ sinhðζÞ coshðζÞ
αðτÞβðτÞ
0

0

3
7777775
jpath

; ð26Þ

from which it can be seen that, as long as αðτÞ and βðτÞ do
not vanish for finite value of λ and the first derivative of α
and β remains finite, no infinite force will be experienced
by the particle (these are sufficient, though perhaps not
necessary, conditions). The analysis can be extended to
massless particles in a straightforward manner, but we do
not pursue that here.
Finally, we analyze the physical components of the

stress-energy tensor. For the material medium, we need
to choose the form of the stress-energy tensor to be
compatible with the equations of motion that result from
(18). That is, it must be representable by a matrix of type Ib
and of Segre characteristic [1, 1, (1, 1)]. We may express
this in a very familiar form as

T μ
ν ¼ ½ρþ p⊥�uμuν − p⊥δμν þ ½p∥ − p⊥�wμwν; ð27Þ

with the restrictions uμuμ ¼ 1, wμwμ ¼ −1, and uμwμ ¼ 0.
The quantity (27) has a threefold importance. First is that

these quantities correspond to the proper energy density (ρ)
and pressures (p∥, p⊥) of the material medium and are
therefore in principle physically measurable quantities.
Second, they directly correspond to the equations of
motion (5) via ρ ¼ T τ̂ τ̂ ¼ T τ

τ, p∥ ¼ T χ̂ χ̂ ¼ −T χ
χ , and

p⊥ ¼ T θ̂ θ̂ ¼ T ϕ̂ ϕ̂ ¼ −T θ
θ ¼ −T ϕ

ϕ. Therefore, by demand-

ing that the gravitational equations of motion do not
develop a pathology anywhere in the black hole interior,
we also satisfy nonpathological matter. Finally, the quan-
tities ρ, p∥, and p⊥ are also coordinate scalar quantities as
can be easily checked using (27) and the mentioned
restrictions on uμ and wμ, via T μνuμuν ¼ ρ and
T μνwμwν ¼ p∥. Now, since ρ and p∥ are coordinate scalars,
the condition T μ

μ ¼ ρ − 2p⊥ − p∥ establishes that p⊥ is
also a scalar quantity.
Explicitly, using (18) we calculate the equations of

motion (5) as

4πT τ
τ ¼ 4πρ ¼ fðTÞ

4
þ

dfðTÞ
dT

βðτÞαðτÞ2τ2 ð2
_βðτÞτ þ βðτÞÞ; ð28aÞ

4πT χ
χ ¼ −4πp∥ ¼

fðTÞ
4

−
dfðTÞ
dT

αðτÞ3βðτÞτ2 ðβðτÞ _αðτÞτ − αðτÞβðτÞ − αðτÞ _βðτÞτÞ

−
4
d2fðTÞ
dT2

αðτÞ5βðτÞ2τ4 ðαðτÞβðτÞβ̈ðτÞτ
2 − _βðτÞβðτÞαðτÞτ − _βðτÞ2αðτÞτ2

− _αðτÞβðτÞ2τ − 2_αðτÞ_βðτÞβðτÞτ2 þ αðτÞ3βðτÞ2 − αðτÞβðτÞ2Þ; ð28bÞ
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4πT θ
θ ¼ 4πT ϕ

ϕ ¼ −4πp⊥ ¼ fðTÞ
4

þ
dfðTÞ
dT

2αðτÞ3βðτÞτ2 ðβðτÞαðτÞ − βðτÞαðτÞ3 − βðτÞ _αðτÞτ

− _αðτÞ _βðτÞτ2 þ αðτÞβ̈ðτÞτ2 þ 3αðτÞ _βðτÞτÞ þ 2
d2fðTÞ
dT2

αðτÞ5βðτÞ3τ4 ðαðτÞβðτÞ
3 − αðτÞ3βðτÞ3

þ 2βðτÞ _αðτÞ_βðτÞ2τ3 − αðτÞ3βðτÞ2 _βðτÞτ þ αðτÞ_βðτÞ3τ3 − αðτÞβðτÞ_βðτÞβ̈ðτÞτ3
þ 2αðτÞβðτÞ2 _βðτÞτ þ 2αðτÞβðτÞ _βðτÞ2τ2 − αðτÞβðτÞ2β̈ðτÞτ2 þ βðτÞ3 _αðτÞτ
þ 3βðτÞ2 _αðτÞ _βðτÞτ2Þ: ð28cÞ

These gravitational equations will be used to study the
interior region of a time dependent black hole.

A. Energy conditions

Originally the energy conditions were seen as reasonable
conditions that all physical (and classical) matter were

expected to obey and were independent of theories of
gravity [36]. These conditions impose restrictions on the
matter such as positivity of the energy density as measured
by all causal observers, no superluminal energy transport,
etc. In the scenarios given by a diagonal stress-energy
tensor and of the type (27), these conditions can be
summarized as

weak energy condition ðWECÞ∶ ρ ≥ 0; ρþ p∥ ≥ 0; ρþ p⊥ ≥ 0; ð29aÞ

dominant energy condition ðDECÞ∶ ρ − jp∥j ≥ 0; ρ − jp⊥j ≥ 0; ð29bÞ

strong energy condition ðSECÞ∶ ρþ p∥ ≥ 0; ρþ p⊥ ≥ 0; ρþ p∥ þ 2p⊥ ≥ 0: ð29cÞ

These conditions will be employed in the analysis below.

1. f ðTÞ ¼ T

This case corresponds to the teleparallel equivalent of general relativity, and therefore it is not expected that this scenario
will respect energy conditions and at the same time yield a nonsingular black hole. We briefly discuss this case here to show
how it fails and as a segue to more complicated Lagrangians. Calculating the stress energy from the equations of motion (5)
yields

4πρ ¼ 1

βðτÞα2ðτÞτ2 ½2
_βðτÞτ þ βðτÞ þ α2ðτÞβðτÞ�; ð30aÞ

4πp∥ ¼ −
1

2α3ðτÞτ2 ½αðτÞ − 2_αðτÞτ þ α3ðτÞ�; ð30bÞ

4πp⊥ ¼ 1

2βðτÞα3ðτÞ ½ _αðτÞβðτÞ þ
_βðτÞ _αðτÞτ − αðτÞ_βðτÞ − αðτÞβ̈ðτÞτ�: ð30cÞ

Forming the energy conditions (29a)–(29c) and expanding about τ ¼ 0 gives

4πρ ¼ 1

2α2ð0Þτ
2
½1þ α2ð0Þ� þ

1

βð0Þα3ð0Þτ
½αð0Þ _βð0Þ − _αð0Þβð0Þ� þOðτ0Þ; ð31aÞ

4π½ρþ p∥� ¼
1

α3ð0Þβð0Þτ
½αð0Þ _βð0Þ þ _αð0Þβð0Þ� þOðτ0Þ ð31bÞ

4π½ρþ p⊥� ¼
1

2α2ð0Þτ
2
½1þ α2ð0Þ� þ

1

2α3ð0Þβð0Þτ
½αð0Þ _βð0Þ − _αð0Þβð0Þ� þOðτ0Þ; ð31cÞ
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4π½ρ − jp∥j� ¼
1

βð0Þα3ð0Þðα2ð0Þ þ 1Þτ ½ _αð0Þβð0Þα
2
ð0Þ þ _αð0Þβð0Þ

þ α3ð0Þ _βð0Þ þ αð0Þ _βð0Þ� þOðτ0Þ; ð31dÞ

4π½ρ − jp⊥j� ¼ −
1

2α2ð0Þτ
2

�
1þ 1

α2ð0Þ

�
þOðτ−1Þ; ð31eÞ

4π½ρþ p∥ þ 2p⊥� ¼
2_αð0Þ
α3ð0Þτ

þOðτ0Þ; ð31fÞ

where the subscript (0) indicates that the quantity is to be
calculated at τ ¼ 0. Note that sufficiently close to τ ¼ 0 it is
not possible to eliminate the singular terms in these energy
conditions.4 Since the energy conditions comprise linear
combinations of ρ, p∥, and p⊥, this implies it is not possible
to eliminate singularities in at least some of these physical
quantities. To do so one needs to abandon an everywhere
Lorentzian spacetime, and a Riemannian region (-4 sig-
nature) is required instead of a pseudo-Riemannian space-
time in the vicinity of τ ¼ 0. Therefore, the gravitational
equations of motion, being singular, are not valid at τ ¼ 0.
These results are consistent with general relativity as
expected for fðTÞ ¼ T. [Specifically, they are problematic
from a singularity elimination point of view as can be seen
in the lowest-order terms in (31a), (31c), and (31e).]

2. Comments for general n

Substituting the desired function for fðTÞ,
fðTÞ ¼ T þ bnTn, and series expanding the components
of T μ

ν around τ ¼ 0, we find that for negative values of n
the qualitative singularity situation does not change in
comparison with the general relativity scenario (n ¼ 1).
That is, for negative n various components of the mixed
stress-energy tensor have singular terms at τ ¼ 0 with
expressions such as 1þ α2ð0Þ in the numerator. This pro-
hibits singularity resolution again unless a Riemannian
region is allowed. The reason there is no change for
negative powers of n in comparison to general relativity
is because of the way fðTÞ enters into the equations of
motion (5); negative powers of n yield higher-order (in τ)
corrections to ρ, p∥, and p⊥. That is, the n ¼ 1 term is the
term which contributes to lowest power in τ when con-
sidering supplements with negative n.
For positive n the leading-order singular terms are of

order Oðτ−2nÞ. We further note that in our calculations we
find that the conditions αð0Þ ¼ 1 and βð0Þ ¼ _βð0Þ= _αð0Þ are
always necessary to negate the leading-order singular
terms. These are the same conditions required to regularize
the torsion scalar (22), so nonsingular stress-energy com-
ponents necessitate a nonsingular torsion scalar. This, of

course, is related to the fact that the torsion scalar appears
directly in the equations of motion.
At this point, finding additional conditions with the

components of the stress-energy tensor for general n
becomes prohibitively difficult. However, the goal is to
show that for n ≠ 1 it is possible to have regular black
holes, so we concentrate on several powers of n to resolve
the issue. Specifically we report below on n ¼ 2, although
we have also studied all the cases −15 ≤ n ≤ 7, and all
positive n can be made to eliminate singularities in the
physical stress energy and the torsion scalar (22), and hence
the gravitational equations of motion are analytic through-
out the manifold for n > 1, as well as render forces finite in
the force equation (26). The WEC and SEC can be
respected in all the positive n scenarios.

3. f ðTÞ ¼ T þ b2T2

For the n ¼ 2 case, we substitute fðTÞ ¼ T þ b2T2 in
(1) and calculate the subsequent equations of motion (5).
Series expanding the field equations around τ ¼ 0 allows
us to determine the structure of the matter in the vicinity of
the possible singular point. As noted previously, theOðτ−4Þ
and Oðτ−3Þ terms in all the expanded components of the
stress-energy tensor are negated with the conditions αð0Þ¼1

and βð0Þ ¼ _βð0Þ= _αð0Þ. To negate the Oðτ−2Þ and Oðτ−1Þ
components, we must constrain more expansion coeffi-
cients. Note that in general the expansion coefficients are
free, meaning there are infinitely many possible solutions.
In actuality, the metric functions and coupling constants
would be constrained experimentally. However, as we are
considering a black hole interior, an experimental method
is not readily apparent. For simplicity, let _αð0Þ ¼
α̈ð0Þ ¼ α

:::
ð0Þ ¼ α

::::
ð0Þ ¼ 1, βð0Þ ¼ 1, β̈ð0Þ ¼ 15=8, and

β
:::

ð0Þ ¼ 107=24, which also enforces _βð0Þ ¼ 1. We again
stress that these are not required conditions but serve as a
specific example out of infinitely many to make the
analysis perspicuous. Under these conditions the series
expansions are

4πT τ
τ ¼ 4πρ ¼ 1þ b2

τ2
þ 1175b2

72
−
4b2 β

::::

ð0Þ
3

−
1

8
þOðτÞ;

ð32aÞ

−4πT χ
χ ¼ 4πp∥

¼ −
�
1þ b2
τ2

− 2
1þ b2

τ
þ 1259b2

24
− 4b2 β

::::

ð0Þ þ 3

�

þOðτÞ; ð32bÞ

−4πT θ
θ¼4πp⊥¼−

1247b2
72

þ4b2 β
::::

ð0Þ
3

−
7

8
þOðτÞ: ð32cÞ4Inner horizons are not considered for T spheres.
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It is immediately clear that if b2 ¼ −1 all of the compo-
nents are nonsingular.
The remaining undefined coefficient present in the above

expansions is β
::::

ð0Þ. This final constraint comes from the
energy conditions, Eqs. (29a)–(29c). From the weak energy
condition, we have

β
::::

ð0Þ −
37

3
≥ 0 and

4754

384
− β

::::

ð0Þ ≥ 0: ð33Þ

Note that satisfying Eq. (33) also satisfies the null energy
condition. The strong energy condition puts a further

constraint on the range of β
::::

ð0Þ:

4745

384
− β

::::

ð0Þ ≥ 0: ð34Þ

So the range of values of β
::::

ð0Þ that will satisfy the weak,
null, and strong energy conditions is

37

3
≤ β

::::

ð0Þ ≤
4745

384
: ð35Þ

However, the dominant energy condition at τ ¼ 0 selects
one value out of this range. The dominant energy condition

is satisfied only if β
::::

ð0Þ ¼ 4745
384

, which enforces 4πρ ¼
4πp⊥ ¼ 1=32 and 4πp∥ ¼ −1=32. So the metric functions
that satisfy the energy conditions at τ ¼ 0 in this particular
case are

αðτÞ ¼ 1þ τ þ 1

2
τ2 þ 1

6
τ3 þ 1

24
τ4 þOðτ5Þ;

βðτÞ ¼ 1þ τ þ 15

16
τ2 þ 107

144
τ3 þ 4745

9216
τ4 þOðτ5Þ:

We note that the above solution has nonzero neighborhoods
about τ ¼ 0 which respect the WEC and SEC, but although
the DEC is satisfied at τ ¼ 0, it is violated in a neighbor-
hood as one moves away from τ ¼ 0. Attempts at a general
analysis proved difficult, but no values of parameters which
were studied yielded a nonzero DEC respecting neighbor-
hood about τ ¼ 0, although it was found that the region of
DEC violation could be made very small.
The above can be treated as a local specific solution (one

of many allowed which work). Away from τ ¼ 0 one can
patch the solution to energy condition respecting, non-
singular solutions. It is not difficult to do so, but there is the
issue of appropriate junction conditions in fðTÞ gravity. In
our tests we employed Synge’s junction condition [36] as it
is a condition derived on the matter field and does not
require detailed knowledge of the particular gravitational
equations. This condition, ½T μ

ν n̂μ�j�τ¼JðχÞ [n̂μ being a unit
normal covector to the junction surface τ ¼ JðχÞ], for the
spherically symmetric T domain may be summarized as

½T χ
χ∂χJðχÞ − T τ

χ �j�τ¼JðχÞ ¼ 0; ð36aÞ

½T χ
τ∂χJðχÞ − T τ

τ�j�τ¼JðχÞ ¼ 0; ð36bÞ

where the subscript � indicates that we are considering the
discontinuity in the quantity in square brackets on the
junction surface τ ¼ JðχÞ. Given that our scenario is χ
independent, yielding a diagonal stress-energy tensor, these
conditions boil down to continuity of T τ

τ at the junction
surface τ ¼ J0 ¼ const, which we find can be easily
satisfied. In fact, we find that an even stronger condition
can be met where derivatives of the tetrad functions up to
arbitrary order may be made continuous across the junc-
tion. We therefore find that it is possible to respect energy
conditions in regular black holes of this type within fðTÞ
theories, save for a small region near τ ¼ 0.
For cases with 2 ≤ n ≤ 7, it is also possible to construct

metric functions that regularize the black hole and describe
matter that satisfies the energy conditions as above. Note
that for n outside this range analysis becomes prohibitively
difficult, due to the length of the expressions in the various
expansions. We can say that it is necessary in general that
bn < 0. The expansion coefficients of αðτÞ and βðτÞ are
generally unrestricted, with the exception of αð0Þ and βð0Þ.
However, artificially restricting the derivatives of αðτÞ will
always generate a working (nonsingular) solution in the
same manner as shown for n ¼ 2. The conclusion is that for
any fðTÞ ¼ T þ bnTn, 2 ≤ n ≤ 7 singularities which are
necessarily present in general relativity for this class of
black hole can be alleviated by matter that respects the
WEC and SEC, although there is still a price to pay in that
the DEC is violated in a small region about τ ¼ 0 (though it
need not beviolated right at τ ¼ 0).We conjecture that this is
true for all positive integer values of n, and hence there may
exist a singularity theorem for the positive n sector for T-
sphere black holes in the casen > 1. As discussed above, the
same is not true for the negative sector of n. For the negative
sector, the spacetime remains necessarily singular as in
general relativity or its teleparallel equivalent fðTÞ ¼ T.

IV. CONCLUDING REMARKS

A tetrad has been derived which is suitable for describing
the interior of a class of spherically symmetric black holes,
which are necessarily singular in general relativity, in the
extended teleparallel theory of gravity. This tetrad allows
for the study of potentially singular quantities inside the
black hole. Specifically, several criteria for singularities
were considered, and it was found that, although the
orthonormal torsion tensor cannot be made finite every-
where, finite torsion gravitational forces can be ensured by
demanding finite nonzero metric functions near the poten-
tially singular points. As well, for Lagrangians which
consist of various powers of the torsion scalar, it is shown
that the matter field quantities remain nonsingular, unlike
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the case in general relativity, and hence the gravitational
equations of motion remain valid throughout the black hole
interior manifold. (Extensions to negative values of τ are in
principle allowed.) At the same time, all energy conditions
considered can be satisfied inside the black hole where the
general relativity singularity occurs, although we find that
the dominant energy condition is violated in an arbitrarily
small neighborhood about this point. This leads us to
speculate that a singularity theorem holds for these black
holes in the extended teleparallel gravity.
The above conditions on the matter also ensure that the

torsion scalar is finite. Although scalars created out of the
torsion are scalars under general coordinate transforma-
tions, in the torsion theory, statements regarding these
quantities are not locally Lorentz invariant. They are,
however, globally Lorentz invariant, and for local
Lorentz transformations, these quantities, although they
will change, will not become singular as long as the local
Lorentz transformation is not singular. Hence, regular black
holes of this type are permitted while preserving the weak
energy and strong energy conditions everywhere and the
dominant energy condition almost everywhere. It was
found these results hold for all extensions to the teleparallel
equivalent of general relativity studied as long as the
powers of n are positive. This is not true for negative

powers. It seems likely therefore that torsion gravitational
Lagrangians which are Taylor expandable allow for regular
black holes in cases where general relativity does not and
that the matter can obey the WEC and SEC with a minor
violation of the DEC. Singularities are therefore easier to
remedy within fðTÞ theory while still retaining second-
order field equations, which is not afforded by most
curvature extensions of gravity.
The analysis presented here can be easily extended to

non-Laurent or Taylor expandable Lagrangians. There are a
number of interesting studies in the fðTÞ literature regard-
ing the ability of extended teleparallel gravity to success-
fully produce the observed acceleration of the Universe
[37–39], including recent extensions to anisotropic models
[40]. It would be interesting to see if the same Lagrangians
which are capable of yielding the observed cosmological
acceleration are also capable of eliminating the big bang
and black hole singularities without the need to resort to
exotic matter.
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