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Matter conditions for regular black holes in f(7) gravity
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We study the conditions imposed on matter to produce a regular (nonsingular) interior of a class of
spherically symmetric black holes in the f(7') extension of teleparallel gravity. The class of black holes
studied (T spheres) is necessarily singular in general relativity. We derive a tetrad which is compatible with
the black hole interior and utilize this tetrad in the gravitational equations of motion to study the black hole
interior. It is shown that in the case where the gravitational Lagrangian is expandable in a power series
f(T) =T+ 3_,.1b,T" black holes can be nonsingular while respecting certain energy conditions in the
matter fields. Thus, the black hole singularity may be removed, and the gravitational equations of motion
can remain valid throughout the manifold. This is true as long as n is positive but is not true in the negative
sector of the theory. Hence, gravitational f(T) Lagrangians which are Taylor expandable in powers of T
may yield regular black holes of this type. Although it is found that these black holes can be rendered
nonsingular in f(7') theory, we conjecture that a mild singularity theorem holds in that the dominant energy
condition is violated in an arbitrarily small neighborhood of the general relativity singular point if the
corresponding f(7) black hole is regular. The analytic techniques here can also be applied to gravitational

Lagrangians which are not Laurent or Taylor expandable.
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I. INTRODUCTION

There has been extensive study in the literature of the
peculiar and not so peculiar properties of black holes over
the years since the advent of general relativity. The
Schwarzschild metric [1], one of the earliest nontrivial
solutions to Einstein’s field equations, possessed at least
two peculiarities. One occurs at what is now known as the
event horizon and was later discovered to be rather benign.
The other occurs at what seemed to be the “center” of the
solution and was later seen as more serious as it seemed to
predict the breakdown of all physics at the location of this
singularity. Since the early studies, there have been many
attempts at finding ways to alleviate this singularity with,
for example, the addition of matter, as any astrophysical
black hole would form from gravitational collapse. In 1965
and 1970, Penrose and Hawking introduced their now
famous singularity theorems [2,3], which in the context of
black holes essentially state that if a horizon forms, and the
matter obeys certain reasonable conditions (such as the
strong energy condition), then general relativity predicts
that a singularity will be present somewhere in the
spacetime. Other studies concerned with singularity reso-
lution involve candidate theories of quantum gravity [4,5],
the possibility of various matter fields with exotic
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properties (which perhaps only manifest in the high
curvature regime) (see Refs. [6-9] and references therein),
and alternative theories of gravity which possess an
observationally compatible weak field limit but deviate
from Newtonian gravity and general relativity under more
extreme conditions (Refs. [10-12] and references therein).
It is in the vein of this last possibility that we present the
study here and find general conditions which yield a regular
black hole in teleparallel gravity in a situation where none
would be found in general relativity.

One alternative to the curvature based general relativity
and its various extensions is a theory of gravity which is
purely torsion based. These theories have experienced a bit
of a renaissance in the past decade. Specifically, the
extended teleparallel theory is one which has garnered
much attention since it produces a theory equivalent to
general relativity in an appropriate limit (f(7) = 7, [13])
and also retains second-order equations of motion [14]. In
this theory the fundamental object is the tetrad, 4, and the
action is given by

5= % / (F(T) + Lo} detlh® Jdx. (1)

Here L, represents the matter Lagrangian density. The
indices employed in this paper have the following con-
vention: Unadorned Greek indices are spacetime indices,
whereas Latin indices span the local tangent spacetime of
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the gravitational degrees of freedom. In what follows we
also occasionally project quantities into a local orthonormal
frame which is not related to the tetrad of the gravitational
degrees of freedom.' The indices representing the local
orthonormal frame are hatted Greek indices. The quantity T
is the torsion scalar which is defined via a linear combi-

nation of quadratic contractions of the torsion tensor, 7,

1 1
r= 4 TP Ty + 2 Ty

- T/);/)TWU' (2)
The torsion tensor itself is defined via the commutator of
the curvatureless Weitzenbock connection, F’lm,:

T, =T*

puv 77 1—%;41/ = hla (aﬂhav - auhaﬂ)' (3)
The torsion scalar (2) differs from the Ricci scalar by a total
divergence, and hence general relativity is recovered in the
limit that f(7") — T For this reason we will always include
a term linear in 7 in the subsequent analysis and specifi-
cally will consider functions of the form

F(T)=T+> b, T (4)

n#l

with the b,, constants.
Variation of the action (1) with respect to the tetrad yields
the gravitational equations of motion,

df(T
| 1,0, (B $) + 7,8, i)

T
d*f(T)
dr?

1
+ Sﬂaﬂ( ) + 16”ﬂf(T) =47T,", (5)

where £ is the determinant of the tetrad and S,*” is the
modified torsion tensor,

S0 =S (K7, + 8,17, — 8, T%,), (6)

N =

and K*”, the contorsion tensor:

K =S (TP, + T, = T7)). (7)

N[ =

7 ," is the usual stress-energy tensor.

One issue present in teleparallel gravity which is not
present in curvature theories where the metric is the
fundamental gravitational object, such as f(R) theories,
is that the action (1) is not locally Lorentz invariant. That is,
two different tetrads, related to each other via a local
Lorentz transformation, will yield physically distinct

'Although one can choose the local orthonormal frame to
coincide with the tetrad of the gravitational field’s degrees of
freedom, it is generally not convenient to do so.
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equations of motion. Therefore, a certain metric (which
still defines the causal structure of the theory) is compatible
with many tetrads, all of which yield inequivalent relations
between the matter content and the gravitational field via
the field equations. Out of this freedom, one must find
a tetrad which yields “good” equations of motion.
Reasonable criteria for a good tetrad are:

(i) The tetrad chosen should not restrict the form of
f(T) [15]. That is, the tetrad needs to retain
acceptable equations of motion regardless of the
function f(7) and not just work well for certain
functions. Our minimal conditions for acceptable
equations of motion are the following.

(i) The tetrad must produce equations of motion which
are compatible with a symmetric stress-energy
tensor 7, =T ,,.

(iii) The resulting equations of motion should not pro-
duce peculiar physics. For example, in spherical
symmetry there should be no energy transport in the
angular directions. In a homogeneous scenario, there
should be no energy flux from one location to the
other, etc.

It turns out it is generally nontrivial to find a tetrad that
satisfies these conditions. In the realm of cosmology, for
example, an array of frames have been analyzed in
Ref. [16]. We discuss this situation for the case of spheri-
cally symmetric black hole interiors in Sec. II. In Sec. III
we try to identify what presents a physical singularity in
teleparallel theory and derive the criteria required to
eliminate this singularity. We also show that it is possible
to eliminate the singularity with matter which obeys energy
conditions at the general relativity singular point and
conjecture that the dominant energy condition is violated
in an arbitrarily small neighborhood about the singular
point (although it does not need to be violated exactly at
this point). We conclude that regularizing the black hole is
possible for the addition of terms with any positive value of
n > 2 in (4) tested, but for negative n regularization fails,
and the situation is the same as in general relativity. Finally,
in Sec. IV we summarize the results and provide some
concluding statements.

II. SUITABLE TETRAD

The line element appropriate for a spherically symmet-
ric, not necessarily vacuum, black hole exterior can be cast
in the form

ds* = A%(t, r)dt* — B*(t,r)dr* — r*d®* — r*sin’0d¢?,
(8)
with a horizon present where A(t,r) =0. The

obvious tetrad to use for such a line element is the
diagonal one:
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Alt,r) 0 0 0
0 Btr) 0 0
hel. = 9
Lo 0 0 r 0 ©)
0 0 0 rsiné

However, it is well known that this tetrad does not
produce acceptable equations of motion when utilized in
(5) [17], unless f(T) =T. For example, for f(T)# T
this tetrad can produce off-diagonal components to the

|

A(r) 0
o] - 0  B(r)sinfcos¢
ot 0  B(r)sin@sing
0 B(r)cos@

This tetrad has been utilized in studies of charged black
hole exterior spacetimes [18] and spherically symmetric
stars [19,20] and a more generalized version used in
Ref. [21]. A novel tetrad was utilized in Ref. [22] to study
a class of static, spherically symmetric solutions. The
diagonal tetrad (9) was utilized in Ref. [23] to study
higher-dimensional models. Equation (10) has also been
used to discern some torsion only effects with nonminimal
coupling to scalar fields in the teleparallel equivalent of
general relativity [24]. Dirac field coupling has been
considered in Ref. [25]. A tetrad yielding a vacuum
Schwarzschild solution for an array of Lagrangians has
been introduced in Ref. [26]. Also, the Kerr solution has
been studied in the teleparallel equivalent of general
relativity utilizing a tetrad appropriate for that spacetime
in Ref. [27].

The tetrad (10) works well for systems where the line
element is given by (8), but for black hole interiors this
tetrad is not suitable for f(7)# T due to a somewhat
subtle reason. A black hole interior’s line element can be
cast as

ds* = o?(z,y)d7* — (7, y)dy? — 2d0* — *sin’0d¢?,
(11)

and a horizon exists where (7, ) = 0. In this coordinate
chart (sometimes called the T-domain chart, T indicating
the time dependence of the interior spacetime, not the
torsion scalar), the Schwarzschild black hole interior
would read

dr?

M _
M _ ]

M
=

_<T

dsgepy >d)(2 — 2d0* — *sin*0dg?,

(12)
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stress-energy tensor even when the ¢ dependence is not
present, and there should be no momentum flux.

Note, however, that one may perform Lorentz trans-
formations on the Lorentz index of the tetrad, which, as
briefly discussed in the introduction, will alter the equa-
tions of motion if the transformation is a local one. In the
literature a common tetrad that is used, which produces
acceptable equations of motion, is the following rotated
tetrad:

0 0
rcosf@cos¢ —rsindsing (10)
rcos@sing  rsin@cos ¢
—rsinf 0

with the coordinate ranges 0 <7 <2M, y; <y <y,
0<O<n, 0=ZL¢<2x Although line element (11)
can be obtained from (8) rather trivially, an interesting
complication arises in f(T) gravity which does not occur
in the corresponding curvature theories.

Because of the switching of the nature of space and time,
arotation in the interior of the black hole does not generally
directly correspond to a rotation in the exterior region.
Similarly a boost in the interior does not correspond to a
boost in the exterior. One cannot simply take the tetrad
which works in the exterior, tetrad (10), and utilize it in the
interior via a simple change of coordinate roles ¢ — y,
r — 7 along with the switching of the zeroth and first
components of the tetrad matrix. Mathematically this is due
to the fact that there is no direct analytical extension of
coordinate chart (8) to coordinate chart (11). They are
distinct charts despite their similarity.

At this stage there are two choices which will allow us to
study the black hole interiors. One choice is to switch to a
chart which penetrates the horizon. The advantage will be
that one will then have a tetrad which can describe both the
exterior and the interior of a black hole. The other choice is
to attempt to construct from scratch an acceptable tetrad
which can describe the black hole interior. Regarding the
first choice, a tetrad we can construct is one compatible
with a Painlevé—Gullstrand-type coordinate chart. In the
case of r only dependence, an acceptable transformation is
given by

the = 1+ / (A(DB()2 = PyB2(r)} 2B (rdr. (13)

with P, a constant. The transformation matrix can readily
be formed and applied to (10), yielding
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AW) —{ABO) - PB2(D) B (DAG) 0 0
he] — 0 B(r)sinfcos ¢ rcos@cos¢ —rsinfsing (14)
#pe 0 B(r)sin@sin¢ rcos@sing  rsin@cos ¢
0 B(r)cos@ —rsiné 0

This tetrad allows for the study of the interior of the black
hole as well as the exterior. It also still yields a symmetric
7 ,, which is a requirement for an acceptable tetrad. The
major disadvantage is that, since the coordinate system is
no longer orthogonal, the equations of motion become
rather complicated and also the energy conditions become
more complicated to analyze than in an orthogonal system.

The second choice is to find a tetrad which works in the
orthogonal coordinates of (11) in which the analysis for the
energy conditions remains relatively simple. Of course,
since they are invariant expressions, the energy condition
calculations may be done in any coordinate system. In the
following, interiors are considered which are 7 only
dependent (“T spheres” [28-30]) as adding y dependence
presents an extremely complicated scenario in the black
|

hole interior even for relatively simple deviations from
f(T) = T. This class of black hole is necessarily singular in
general relativity, regardless of energy conditions (see
below in Sec. IIl A 1). We begin with the diagonal tetrad
for the black hole interior

)
—~

N
~—

[ha#]diag =

=

o oG ©
N—

a o o
o o

o O O
o

7sin@

and consider rotations of this tetrad about the local Euler
angles in the tangent space via the rotation matrices,

10 0 0 1 0 0 1 0 0 O
01 0 0 0 cosd 0O sind 0 cosg sing 0O
[Ry] = ] [R]= . [R]= . : (16)
0 0 cosy siny 0 1 0 0 —sing cosg 0
0 0 —siny cosy 0 —sind 0 cosd 0 0 0 1

with y, 9, and ¢ functions of the coordinates. To find acceptable forms for these angle functions, we must appeal to the
conditions outlined in the introduction which provide the criteria for good vs bad tetrads in f(7') gravity. After some work,
our calculations reveal that setting

T

w =0, (17)

will satisfy the criteria that yield acceptable equations of motion (i.e. produce a good tetrad). The resulting tetrad has

the form

a(t) 0 0 0
el = 0 —p(r)cos¢psin€ tsing rsinfcos¢pcosd (18)
I 0 B(r)singsin€® zcos¢p —zsin@singcosb
0 —pB(t) cos @ 0 —178in’@

Having found an acceptable tetrad to describe the interior of
the black hole, we now proceed to study the possibility of
making the black hole interior regular everywhere, ideally
with nonexotic matter.

III. SINGULARITY

Even in general relativity, the issue of what is a serious
singularity is often not straightforward. For example, by

definition the best criteria for the presence of a curvature
singularity in curvature theories is that one or more
components of the Riemann tensor, when projected into
the orthonormal frame, becomes infinite. Although one
then has a true curvature singularity, it is not necessarily a
physically malignant one. One way to “measure” the
components of the Riemann tensor is via tidal forces
along geodesic paths. However, the equation of geodesic
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deviation has contractions of the Riemann tensor with
vectors tangent to the geodesics as well as a contraction
with the geodesic deviation vector. It is possible (albeit
generally unlikely) in certain situations that within this
contraction the infinities present in the Riemann tensor
cancel out, and hence the curvature singularity does not
spawn infinite tidal forces and is possibly benign. In a
similar vein, the Kretschmann scalar, being a complete
contraction of the Riemann tensor with itself, may be finite,
yet certain components of the Riemann tensor could be
infinite. One then needs to examine other physically
measurable quantities to see if there are singularities
manifest there. Common examples of such measurable
quantities are the stress-energy tensor components in the
orthonormal frame, that is, the energy density and fluxes,
the pressures, the shears, and other stresses.

Another very common criterion for the presence of a
pathological singularity in curvature theories is the inability
to extend geodesics for arbitrary values of the affine
parameter. This criterion of geodesic extension is crucial
to the famous Hawking—Penrose singularity theorems [3].
From these theorems it is known that in general relativity
one cannot possess a black hole with everywhere extend-
able geodesics unless the material sourcing the black hole is
exotic in some way.

In the sector of torsion gravity, attempts to classify
singularities have been performed in Ref. [11] for Moller’s
tetrad theory and in Ref. [31] for a class of Riemann—Cartan
theories. Another study is Ref. [32] for the case of a
Schwarzschild black hole in the teleparallel equivalent of
general relativity, and in Ref. [33] the authors study energy
conditions in an electromagnetic model for the teleparallel
equivalent of general relativity. Other analyses can be found
in Ref. [34], and Ref. [25] considers cosmological singu-
larities with Dirac fields. An interesting earlier study is in
Ref. [35] within the Poincaré gauge theory of gravity. From
these studies it seems it is even more difficult to discern
what is a serious singularity in theories with torsion than in
those that are purely curvature based. Here we attempt to
study several singularity criteria in the f(7) theory which
seem reasonable to us, and we then proceed to alleviate
these singular behaviors. We then examine what properties
the matter must possess in order to possibly eliminate the
singularities.

In the work here we consider several criteria for the
presence of a singularity in f(7) gravity. The most
straightforward quantity to calculate is arguably the
torsion tensor, which we project in a local orthonormal
frame. Utilizing the tetrad (18) in (3) and projecting the
components into a local orthonormal coordinate system
yields

(19a)
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; ; ; ; A .2
(19b)
Ty ==Tlh =T, =-T?;; = : (19¢)

za(7)

where the overdots indicate derivatives with respect to the 7
coordinate. Immediately it can be seen that the components
in (19b) cannot be made nonsingular regardless of the
metric functions.” Therefore, we have a nonremovable
torsion tensor singularity. As stated previously, this does
not necessarily mean that the spacetime has a physical
singularity. Another quantity we can compute is a torsion
invariant’® somewhat analogous to the Kretschmann scalar,
or various permutations thereof. We calculate one as

2

2Z2DR0 [B(2)27% — 602 (1) B2 (7) + 25*(7)].

(20)

uvp —
™rT,,, =

A series expansion of this quantity about the potential
singular point yields

et =
wep T2 2

()

+0(), (21)

(1- 3a%0)) -

where the subscript 0 indicates that the quantity is to be
evaluated at 7 = 0. Note from either (20) or (21) that it may
be possible to make this quantity finite for all values of 7.

Yet another quantity which can be calculated to analyze
the situation is the torsion scalar (2),

2 2 - T)— T. T
= e PO 0 - 2B (22)

which may be expanded about 7 = 0 as

————a)B0) — &P + O1°).
(23)

From these expressions it can be seen that this quantity, too,
can be made finite for all values of 7. However, before
continuing we note that one of the conditions required to
make (21) finite at 7 = 0, viz. a20 = 1/3, is incompatible
with one of the conditions which makes (23) finite at
=0, a%o) =1.

“Similar pathologies exist if one chooses to project the tensor
into the gravitational tetrad (18).

Spacetime coordinate invariant but not locally Lorentz
invariant.
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Moving on to more physical criteria, we consider the
equations of motion of a free test particle. It is a well-known
interesting fact that in a Weitzenbock spacetime the force
equation on a particle subject only to the gravitational field
is given by the geodesic equation of the corresponding
spacetime in curvature theory in terms of the Riemann—
Christoffel connection [14], I'* 4

d?xH e, dx® dx?

a7 i 24
di? b d) da (24)

The interpretation in teleparallel gravity is that (24) yields
the acceleration of the particle subject to the force of
gravity. For constant mass particles, if this becomes

|

A2 xP
-

from which it can be seen that, as long as a(z) and f(z) do
not vanish for finite value of 4 and the first derivative of «
and f remains finite, no infinite force will be experienced
by the particle (these are sufficient, though perhaps not
necessary, conditions). The analysis can be extended to
massless particles in a straightforward manner, but we do
not pursue that here.

Finally, we analyze the physical components of the
stress-energy tensor. For the material medium, we need
to choose the form of the stress-energy tensor to be
compatible with the equations of motion that result from
(18). That is, it must be representable by a matrix of type /,,
and of Segre characteristic [1, 1, (1, 1)]. We may express
this in a very familiar form as

TY =lp+ pJuwu, — p &, + [py — poiw'w,. (27)

with the restrictions u*u, = 1, w*w, = —1, and u*w, = 0.

The quantity (27) has a threefold importance. First is that

i P)a(o)sinh?(¢) + a(x)(z)cosh? ()]
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infinite, then the gravitational force experienced by the

particle is infinite. We parametrize the normalized
4-velocity, u* = % as

cosh({)a~!(7)
sinh(¢) cos(w)p!(7)
sinh(¢) sin(w) cos(o)z™!
sinh({) sin(w) sin()(z sin )~

] = . (25)

with {, @, o functions of x#(1). Considering “radial”
motion (w = 0), we can calculate the gravitational accel-
eration (or force per unit mass) as

a(7)p(7) )
0

0

(26)

< |path

|

these quantities correspond to the proper energy density (p)
and pressures (py, p,) of the material medium and are
therefore in principle physically measurable quantities.
Second, they directly correspond to the equations of
motion (5) via p=T;; =T%, py=7T;,=-T%, and
PL=Typy=Tyy=-ThH= —T:i. Therefore, by demand-
ing that the gravitational equations of motion do not
develop a pathology anywhere in the black hole interior,
we also satisfy nonpathological matter. Finally, the quan-
tities p, py, and p are also coordinate scalar quantities as
can be easily checked using (27) and the mentioned
restrictions on u#* and w*, via T"wu,=p and
T"w,w, = p;. Now, since p and p) are coordinate scalars,
the condition 7% =p—2p, — p) establishes that p is

also a scalar quantity.
Explicitly, using (18) we calculate the equations of
motion (5) as

df(1) ,
ArT? = 4np = f(4T) +ﬂ(1);(TT)212 (2p(7)r + p(7)). (28a)
) |
473 =~y =) (0)it0)s = a06) = ()
A€ o |
e WOREHE)E ~ HEPEate)e - plePate)e
~ D)) = 2P DB + a2 B)? - e, (28)
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ar(r)
anf = 4T = —ap, =14 ot (p(01a(e) = p(5)ale) = o))

— &(1)B(2)7 + a(t)p(r)7® + 3a(1)B(7)7) +

— I (a(0)p(e) - ale) Bl

+28()a(0)p(x)*7 — a(2)*f(2)p(x)7 + a(0)B(2)*7 — ale)p(2)()f(z)7
+2a(0)p(1)*B(1)7 + 2a(1)p(1)p(x)*7* — al0)f(2)(2)7 + pl(2)alz)e
+3p(x)a(x)p(x)7). (28¢)

|
These gravitational equations will be used to study the  expected to obey and were independent of theories of
interior region of a time dependent black hole. gravity [36]. These conditions impose restrictions on the
matter such as positivity of the energy density as measured
by all causal observers, no superluminal energy transport,

etc. In the scenarios given by a diagonal stress-energy

Originally the energy conditions were seen as reasonable  tepnsor and of the type (27), these conditions can be
conditions that all physical (and classical) matter were  gummarized as

A. Energy conditions

weak energy condition (WEC): p > 0, p+p =0, p+p >0, (29a)
dominant energy condition (DEC): p — |p;| > 0, p—|pL| =0, (29b)
strong energy condition (SEC): p + p; > 0, p+pL >0, p+py+2p, >0. (29¢)

These conditions will be employed in the analysis below.

LfT)=T
This case corresponds to the teleparallel equivalent of general relativity, and therefore it is not expected that this scenario
will respect energy conditions and at the same time yield a nonsingular black hole. We briefly discuss this case here to show
how it fails and as a segue to more complicated Lagrangians. Calculating the stress energy from the equations of motion (5)
yields

dmp = S B(e)e+ BL0) + (P (302
drnp) =— T (17)72 la(z) = 2a(t)7 + o’ (7)], (30b)
1 . . . .
4np, = B [a(2)p(z) + p(z)a()7 - a(0)f(z) — a(z)f()]. (30¢)

Forming the energy conditions (29a)—(29c) and expanding about 7 = 0 gives

drp = 1+a,]+ a0 b — oo + O, (31a)

205%0)72[ 0 ﬁ@)aﬁo)f[ 0P 0) = d0ho)]

1 . .
drlp + py) = = 5 [a0)B0) + ¥0)B )] + O(°) (31b)
00T
1 )

dzlp + p 14+ a2 ]+ ———|anfo — & 0B +O(:° 31c
LO J_] 2(1%0) 2[ (0)] 20{?0)/}(())1[ (0)P(0) (0) ] ( ) ( )
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1
dalp = Il = [&0)B(0) o) + @0)Bro
: By (afy + 1) )P0 %0) T X0)F(0)
+ aybo) + @) + O), (31d)
1 1 .
dalp = |pull = =55 — |1+ | +O("). (3le)
U4 ©
Azlp+ py+2p] = 5—2+0(°).,  (31f)
a<0)1

where the subscript (0) indicates that the quantity is to be
calculated at 7 = 0. Note that sufficiently close to 7 = Oitis
not possible to eliminate the singular terms in these energy
conditions.* Since the energy conditions comprise linear
combinations of p, p|, and p |, this implies it is not possible
to eliminate singularities in at least some of these physical
quantities. To do so one needs to abandon an everywhere
Lorentzian spacetime, and a Riemannian region (-4 sig-
nature) is required instead of a pseudo-Riemannian space-
time in the vicinity of z = 0. Therefore, the gravitational
equations of motion, being singular, are not valid at 7 = 0.
These results are consistent with general relativity as
expected for f(7T) = T. [Specifically, they are problematic
from a singularity elimination point of view as can be seen
in the lowest-order terms in (31a), (31c), and (31e).]

2. Comments for general n

Substituting  the desired function for  f(7),
f(T)=T+ b,T", and series expanding the components
of 7,% around 7 = 0, we find that for negative values of n
the qualitative singularity situation does not change in
comparison with the general relativity scenario (n = 1).
That is, for negative n various components of the mixed
stress-energy tensor have singular terms at z =0 with
expressions such as 1 + a20 in the numerator. This pro-
hibits singularity resolution again unless a Riemannian
region is allowed. The reason there is no change for
negative powers of n in comparison to general relativity
is because of the way f(T) enters into the equations of
motion (5); negative powers of n yield higher-order (in 7)
corrections to p, py, and p . That is, the n = 1 term is the
term which contributes to lowest power in 7 when con-
sidering supplements with negative n.

For positive n the leading-order singular terms are of
order O(z~"). We further note that in our calculations we
find that the conditions a() =1 and f(g) = Bo)/ (o) are
always necessary to negate the leading-order singular
terms. These are the same conditions required to regularize
the torsion scalar (22), so nonsingular stress-energy com-
ponents necessitate a nonsingular torsion scalar. This, of

4 . .
Inner horizons are not considered for T spheres.
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course, is related to the fact that the torsion scalar appears
directly in the equations of motion.

At this point, finding additional conditions with the
components of the stress-energy tensor for general n
becomes prohibitively difficult. However, the goal is to
show that for n # 1 it is possible to have regular black
holes, so we concentrate on several powers of n to resolve
the issue. Specifically we report below on n = 2, although
we have also studied all the cases —15 <n <7, and all
positive n can be made to eliminate singularities in the
physical stress energy and the torsion scalar (22), and hence
the gravitational equations of motion are analytic through-
out the manifold for n > 1, as well as render forces finite in
the force equation (26). The WEC and SEC can be
respected in all the positive n scenarios.

3. f(T) =T + b,T?

For the n = 2 case, we substitute f (T) =T+ sz2 n
(1) and calculate the subsequent equations of motion (5).
Series expanding the field equations around 7 = 0 allows
us to determine the structure of the matter in the vicinity of
the possible singular point. As noted previously, the O(z7#)
and O(z7%) terms in all the expanded components of the
stress-energy tensor are negated with the conditions ag) =1
and fg) = ﬁ(o) /a). To negate the O(z72) and O(z7")
components, we must constrain more expansion coeffi-
cients. Note that in general the expansion coefficients are
free, meaning there are infinitely many possible solutions.
In actuality, the metric functions and coupling constants
would be constrained experimentally. However, as we are
considering a black hole interior, an experimental method
is not readily apparent. For simplicity, let &g =
(1(0) = a(o) = (X(O) = 1, ﬂ(O) = 1, ﬂ(O) = 15/8, and
ﬁ(o) = 107/24, which also enforces ﬁ@) = 1. We again
stress that these are not required conditions but serve as a
specific example out of infinitely many to make the
analysis perspicuous. Under these conditions the series
expansions are

L+by 1175b 4b,B o) 1

4nT7, = dnp = 2 - 3 —§+O(r),
(32a)
—4JTT/( = 47Tp||
14+b, _14b, 1259,
= |2 b fg + 3
+ O(r), (32b)
1247b, 4byfi) 7

—4xT 0 =dnp, =— 2 Zﬁ(o)———i-(?(r). (32¢)

72 3 8
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It is immediately clear that if », = —1 all of the compo-
nents are nonsingular.

The remaining undefined coefficient present in the above
expansions is 'ﬁ.(o
energy conditions, Egs. (292)—(29c¢). From the weak energy
condition, we have

) This final constraint comes from the

37 4754
140 —?20 and  ——— f)

(33)
Note that satisfying Eq. (33) also satisfies the null energy
condition. The strong energy condition puts a further

constraint on the range of ,B

4745 ..
384 Po

(34)
So the range of values of “ﬂ“(O) that will satisfy the weak,
null, and strong energy conditions is

4745

37 ..
<ho = 384

3 (35)

However, the dominant energy condition at 7 = 0 selects
one value out of this range. The dominant energy condition

is satisfied only if .,B.(O) =422, which enforces 4zp =

4zp, = 1/32 and 4zp| = —1/32. So the metric functions
that satisfy the energy conditions at 7 = 0 in this particular
case are

1 1 1
a(T):1+T+§T2+ET3+ﬂT4+O(TS)’
B 15, 107 o 4745
p(zr) = 1+T—|—16T t11” Y o6’ +0O(2).

We note that the above solution has nonzero neighborhoods
about 7 = 0 which respect the WEC and SEC, but although
the DEC is satisfied at 7 = 0, it is violated in a neighbor-
hood as one moves away from 7 = 0. Attempts at a general
analysis proved difficult, but no values of parameters which
were studied yielded a nonzero DEC respecting neighbor-
hood about 7 = 0, although it was found that the region of
DEC violation could be made very small.

The above can be treated as a local specific solution (one
of many allowed which work). Away from z = 0 one can
patch the solution to energy condition respecting, non-
singular solutions. It is not difficult to do so, but there is the
issue of appropriate junction conditions in f(7) gravity. In
our tests we employed Synge’s junction condition [36] as it
is a condition derived on the matter field and does not
require detailed knowledge of the particular gravitational
equations. This condition, [7%# - J(z) [ being a unit
normal covector to the junction surface T= J (x)], for the
spherically symmetric T domain may be summarized as

PHYSICAL REVIEW D 90, 124006 (2014)

(T40,0(2) = T3 r i) = 0. (36a)

(770, (x) - Tﬂ\:tr:J(;() =0, (36b)
where the subscript & indicates that we are considering the
discontinuity in the quantity in square brackets on the
junction surface 7 = J(y). Given that our scenario is y
independent, yielding a diagonal stress-energy tensor, these
conditions boil down to continuity of 77 at the junction
surface 7 = Jy = const, which we find can be easily
satisfied. In fact, we find that an even stronger condition
can be met where derivatives of the tetrad functions up to
arbitrary order may be made continuous across the junc-
tion. We therefore find that it is possible to respect energy
conditions in regular black holes of this type within f(7)
theories, save for a small region near 7 = 0.

For cases with 2 < n < 7, it is also possible to construct
metric functions that regularize the black hole and describe
matter that satisfies the energy conditions as above. Note
that for n outside this range analysis becomes prohibitively
difficult, due to the length of the expressions in the various
expansions. We can say that it is necessary in general that
b, < 0. The expansion coefficients of a(r) and f(z) are
generally unrestricted, with the exception of () and fg
However, artificially restricting the derivatives of a(t) w111
always generate a working (nonsingular) solution in the
same manner as shown for n = 2. The conclusion is that for
any f(T) =T+ b,T", 2 < n <7 singularities which are
necessarily present in general relativity for this class of
black hole can be alleviated by matter that respects the
WEC and SEC, although there is still a price to pay in that
the DEC is violated in a small region about 7 = 0 (though it
need not be violated right at 7 = 0). We conjecture that this is
true for all positive integer values of n, and hence there may
exist a singularity theorem for the positive n sector for T-
sphere black holes in the case n > 1. As discussed above, the
same is not true for the negative sector of n. For the negative
sector, the spacetime remains necessarily singular as in
general relativity or its teleparallel equivalent f(7) = T.

IV. CONCLUDING REMARKS

A tetrad has been derived which is suitable for describing
the interior of a class of spherically symmetric black holes,
which are necessarily singular in general relativity, in the
extended teleparallel theory of gravity. This tetrad allows
for the study of potentially singular quantities inside the
black hole. Specifically, several criteria for singularities
were considered, and it was found that, although the
orthonormal torsion tensor cannot be made finite every-
where, finite torsion gravitational forces can be ensured by
demanding finite nonzero metric functions near the poten-
tially singular points. As well, for Lagrangians which
consist of various powers of the torsion scalar, it is shown
that the matter field quantities remain nonsingular, unlike
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the case in general relativity, and hence the gravitational
equations of motion remain valid throughout the black hole
interior manifold. (Extensions to negative values of 7 are in
principle allowed.) At the same time, all energy conditions
considered can be satisfied inside the black hole where the
general relativity singularity occurs, although we find that
the dominant energy condition is violated in an arbitrarily
small neighborhood about this point. This leads us to
speculate that a singularity theorem holds for these black
holes in the extended teleparallel gravity.

The above conditions on the matter also ensure that the
torsion scalar is finite. Although scalars created out of the
torsion are scalars under general coordinate transforma-
tions, in the torsion theory, statements regarding these
quantities are not locally Lorentz invariant. They are,
however, globally Lorentz invariant, and for local
Lorentz transformations, these quantities, although they
will change, will not become singular as long as the local
Lorentz transformation is not singular. Hence, regular black
holes of this type are permitted while preserving the weak
energy and strong energy conditions everywhere and the
dominant energy condition almost everywhere. It was
found these results hold for all extensions to the teleparallel
equivalent of general relativity studied as long as the
powers of n are positive. This is not true for negative

PHYSICAL REVIEW D 90, 124006 (2014)

powers. It seems likely therefore that torsion gravitational
Lagrangians which are Taylor expandable allow for regular
black holes in cases where general relativity does not and
that the matter can obey the WEC and SEC with a minor
violation of the DEC. Singularities are therefore easier to
remedy within f(7) theory while still retaining second-
order field equations, which is not afforded by most
curvature extensions of gravity.

The analysis presented here can be easily extended to
non-Laurent or Taylor expandable Lagrangians. There are a
number of interesting studies in the f(7') literature regard-
ing the ability of extended teleparallel gravity to success-
fully produce the observed acceleration of the Universe
[37-39], including recent extensions to anisotropic models
[40]. It would be interesting to see if the same Lagrangians
which are capable of yielding the observed cosmological
acceleration are also capable of eliminating the big bang
and black hole singularities without the need to resort to
exotic matter.
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