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We construct the anti—de Sitter-plane wave solutions of generic gravity theory built on the arbitrary
powers of the Riemann tensor and its derivatives in analogy with the p p-wave solutions. In constructing the
wave solutions of the generic theory, we show that the most general two-tensor built from the Riemann
tensor and its derivatives can be written in terms of the traceless Ricci tensor. Quadratic gravity theory plays
a major role; therefore, we revisit the wave solutions in this theory. As examples of our general formalism,
we work out the six-dimensional conformal gravity and its nonconformal deformation as well as the
tricritical gravity, the Lanczos-Lovelock theory, and string-generated cubic curvature theory.
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I. INTRODUCTION

At short distances, Einstein’s gravity is expected to be
replaced by a better-behaved effective theory with more
powers of curvature and its derivatives which can be written
in the most general form (with no matter fields) as

I= /de./—gf(g"‘ﬁ,R”W,,VPR”Wg, ey
(V, V..V, )R s, ...). (1)

Although we will give solutions to this theory, it is often
more convenient to take the following power-series
version:

1
1= / dPx, /_—g{— (R —2A,) + aR* + R, R*
K
+ Y(R/w/m’lelm - 4R/4DR”U + Rz)

+ ) C,(Riem, Ric, R, VRiem, )} (2)

n=3

where we have added a bare cosmological constant A,
which—although not required at short distances—plays a
major phenomenological role at long distances. We have
separated the quadratic parts as they will play a role in the
construction of solutions to the generic theory and we have
also organized the third term in the quadratic curvature
modifications into the Gauss-Bonnet form which is easier
to handle as it gives second-order equations in the metric
just like Einstein’s theory. Note that the third line represents
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all other possible contractions of the Riemann tensor and its
derivatives which provide field equations that are beyond
fourth order in the metric; for example, terms such as R[(JR
are also included in that summation. In a microscopic
theory, such as string theory, the parameters a, f, v, C,,, Ao,
k are expected to be computed and some of them obviously
vanish due to constraints such as unitarity, supersymmetry,
etc. Here, to stay as generic as possible and not focus too
much on such constraints, we shall consider Egs. (1) and
(2) to be the theory and seek exact solutions for it. Of
course we shall give some specific examples as noted in the
Abstract. It should be mentioned that not all theories of the
form (2) give healthy, stable theories when linearized about
their vacua. For example, most theories yield higher
time-derivative free theories that have the Ostrogradsky
instability when small interactions are added. These con-
siderations do not deter us from studying the most general
action given by Eq. (1) or Eq. (2) since our theories include
all possible viable theories as well as the instability-plagued
ones. We know that the f(R) gravity theories are free from
the Ostrogradsky instability. In addition to this subclass of
Eq. (2), whether one can obtain a theory that is free from
the Ostrogradsky instability is still an open question.
Unlike the case of Einstein gravity (for which books
containing exact solutions exist [1,2]), there are only a few
solutions known for some variants or restricted versions of
the theory (2); see for example Refs. [3—14]. In Ref. [15],
we briefly sketched the proof that the anti—de Sitter (AdS)
waves (both plane and spherical) that solve Einstein’s
gravity and the quadratic gravity also solve the generic
theory (2), needless to say, with modified parameters. Here,
we shall give a detailed proof for the AdS-plane wave case
with a direct approach based on the proof that pp-wave
solutions of Einstein’s gravity and the quadratic gravity are
solutions to the theory with Ay = 0. As we shall see, having
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a nonzero A, complicates the matter a great deal. (AdS-
spherical waves require a separate approach which we shall
come back to in another work.)

In this work, we will exclusively be interested in the
exact solutions (not perturbative excitations) about the
maximally symmetric vacua of the theory. Nevertheless,
the fact that these exact solutions linearize the field
equations just like the perturbative excitations, leads to
the following remarkable consequence: these metrics can
be used to test the unitarity of the underlying theory and to
find the excitation masses and the degrees of freedom of the
spin-2 sector. (There is an important caveat here: if the
theory for these test metrics turns out to be nonunitary, then
the theory is nonunitary. But, if the theory turns out to be
unitary for these test metrics, then this does not mean
that the theory is unitary; one still has to check the unitarity
of the spin-0 sector.) In the examples that we shall study
here, the procedure will be apparent.

AdS-plane waves [16,17] and AdS-spherical waves [18]
of quadratic gravity theories played a central role in
Ref. [15]. We shall study here the AdS-plane wave (some-
times called the Siklos metric [19]) given as

£? S -
ds* = — (2dudv + dx - dx + dz*) + 2V (u,X,2)du?, (3)
V4

where u and v are null coordinates, X = (x') with

i=1,...,D—3, and 7 is the AdS radius related to the

effective cosmological constant as A = —%

this D-dimensional metric, the Ricci tensor can be com-
puted to be

. For

(D-1)
R;w = - Tg;w + pl;tiw (4)

where the vector is 4, = §; and the scalar function is

p=-(0r 02050

with [] = V¥V, and V,, is compatible with the full metric
(3). For these spacetimes, as we showed in Ref. [15], the
field equations of Eq. (2) reduce to

egﬂu+a0Syu+alDS;¢u+"'+anDnS;w+"':Oa (6)

where S, is the traceless Ricci tensor. Taking the trace
gives e = 0, which determines the effective cosmological
constant of the theory. §S,, = 0, which is the Einsteinian
solution, naturally solves the full theory. In order for Eq. (3)
to be a solution to the cosmological Einstein theory, V
satisfies the p = 0 equation, namely

(D +%az _%) V(u.%,2) =0,  (7)
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. .1
whose solution is

N

V(u.3.2) = % [eroa(z8) + €Kpa (0)] sin(E - 3 + ¢3),
(8)

with I, K being the modified Bessel functions, |:f| = ¢and
the ¢;’s are arbitrary functions of the null coordinate u
[16,20]. Further assuming & = 0, the solution becomes [21]
(see also Ref. [20])

V(u,z) = c(u)zP=3, 9)

where we omit the other solution, that is Ziz since it can be

added to the “background” AdS part which is the V =0
case of the metric (3). This is all in the cosmological
Einstein theory. But, observe that neither Eq. (8) nor Eq. (9)
depend explicitly on the cosmological constant of the
theory. The dependence of the metric on the cosmological
constant is only in the “AdS background” part. This leads to
the fact that these Einsteinian solutions remain intact in the
most general theory (2) with the only adjustment being that
the cosmological constant that appears in the AdS back-
ground part depends on the parameters of the full theory. As
we shall show in Sec. VI, one can find the cosmological
constant, which will be determined by nonderivative terms
in the action (2), without going through the cumbersome
task of finding the field equations.

Now, let us consider the same metric as a solution to
quadratic gravity. AdS-plane wave solutions of quadratic
gravity again solve the field equations of the full theory (6)
which will be more apparent when the field equations are
represented in the factorized form (84). In this case, the
metric function V satisfies a more complicated fourth-order

equation
4z 2(D -3)
<D+ﬁ8Z—T—M2)
4 2(D-3 -
X (I:H—?i@z—%) V(u,x,z) =0, (10)

where the “mass” parameter reads

w =4 (1= (= 1a+p

+(D—3)(D—4)y)>. (11)

Assuming M? # 0, that is the nondegenerate case, the most
general solution of Eq. (10) can be constructed from two
second-order parts; one is the pure Einstein theory

'Since the equation is linear in V, the most general solution
will be a sum or an integral over the arbitrary parameter & if no
further condition is given. As the most general solution is easy to
write we do not depict it here.
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209y,

4
<D+7§az— V) =0 (12)

and the other is a “massive” version of the theory

4z 2AD-3
<D+f§51—()

AT M2> Vy(u,%,z7) =0, (13)

with V=V, 4+ V,. Since we already know V, from
Eq. (8), let us write V,,

- D=5

Vip(u,x,2) = 27 [cp11,,(28) + ¢ 2K, (285)]
X sin(gb X+ ¢p3), (14)

where v, =1./(D —1)? +4/2M? [16]. If, on the other
hand, M? =0, which also includes the critical gravity
[22,23], the solution becomes highly complicated in the
most general case & # 0 (this was given in the Appendix of
Ref. [16] which we do not reproduce here). For the special
case of £ = 0, the solution is?

V(u,z) = ¢, 2P + Z%(Cb,lz‘””| + Cb,zz_lyb‘), (15)

for M? # 0, and

B 1 4 C3 z

for M? = 0. Note that all the c,;’s and ¢, ;’s appearing in
the solutions of the quadratic gravity are arbitrary functions
of u.

It was announced in Ref. [15] that these AdS-plane wave
solutions of Einstein gravity and the quadratic gravity also
solve the most general theory defined by the action (2) with
redefined parameters that are M? and #?. This work
expounds upon the results of Ref. [15]. In doing this,
we show that the pp-wave spacetimes in the Kerr-Schild
form having the metric

ds® = 2dudv + dx - dx + 2V (u,)du?,  (17)

where ¥ = (x') with i = 1,..., D — 2, and the AdS-plane
wave spacetimes have analogous algebraic properties, and
with these specific properties in both cases the highly
complicated field equations of the generic gravity theory
reduce to somewhat simpler equations that admit exact
solutions as exemplified above. For the pp-wave

“When v, = 0, the Breitenlohner-Freedman (BF) bound [24]
is saturated and the solution turns into a logarithmic one given in
Ref. [16] as

V(u,z) = c1z2P3 + 77 {cl +cyln (;)}
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spacetimes (17), in complete analogy with Eq. (6), the
field equations for the full theory (2) reduce to

aoR,, +a;00R,, + -+ a,[0"R,, +--- =0,  (18)

which is solved by the Einsteinian solution R, = 0. Once
one considers plane waves, which are a subclass of
pp-wave spacetimes with the metric

ds* = 2dudv + dx - dx + h;;(u)x'x’du?,  (19)

where X = (x') with i = 1, ..., D — 2, and h;; is symmetric
and traceless, R, vanishes and one has a solution of
Eq. (18) for any h;;. Thus, the plane-wave solutions of
Einstein’s gravity solve the generic theory [4]. The pp-
wave metric (17) solves Einstein’s gravity if the metric
function V satisfies the Laplace equation for the (D — 2)-
dimensional space, and the fact that these solutions solve
the generic gravity theory (18) was first shown in Ref. [6].
In addition, if vanishing scalar invariant spacetimes, of
which Eq. (17) is a member, satisfy [JR,, = 0, the field
equations of Eq. (18) again reduce to the Einsteinian ones
[9]. In addition to these Einstein gravity-based consider-
ations, as we shall show below by putting Eq. (18) in the
factorized form (37), one can observe that the pp-wave
solutions of quadratic curvature gravity which satisfy
(b4 + bg)R,, = 0 also solve the generic theory. Note
that one can extend these solutions to theories with pure
radiation sources, that is T, dx"dx" = T,,du?. With these
kinds of sources and metrics satisfying [JR,, = 0, the field
equations take the form a¢R,, =T,,, and the case of
T,. = T,.(u) was considered in Refs. [4,6,9]. A solution to
agR,, = T,,(u) can be found, for example, by relaxing the
traceless condition on /;;(u) of Eq. (19); then one simply
has the algebraic equation ag > 2% h;j(u) = =T, (u) [4].

The layout of the paper is as follows. In Sec. II, p p-wave
spacetimes in generic gravity theory are discussed to set the
stage for the AdS-plane waves discussed in Sec. III which
also includes the proof of the theorem that a generic two-
tensor can be reduced to a linear combination of g,,, S,,,
and higher orders of S,, (such as, for example, [1"S,,).
Section IV is devoted to the field equations of quadratic
gravity for pp-wave and AdS-wave Ansdtze which play a
major role in generic gravity theories. In Sec. V, we study
the wave solutions of f(R}y;) theories where the action

depends on the Riemann tensor but not on its derivatives.
As two examples, we study the cubic gravity generated by
string theory and the Lanczos-Lovelock theory. In Sec. VI,
we show that Einsteinian wave solutions solve the generic
gravity theory and as an example, we study the AdS-plane
wave solutions of the six-dimensional conformal gravity
and its nonconformal deformation as well as the tricritical
gravity. In the Appendices, we expound upon some of the
calculations given in the text.
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II. pp-WAVE SPACETIMES IN GENERIC
GRAVITY THEORY

As discussed above, analogies with the pp-wave sol-
ution will play a role in our proof so we first study the
simpler pp-wave case. The pp-wave spacetime is a
spacetime with plane-fronted parallel rays (for further
properties of pp-waves see, for example, Refs. [25,26]).
A subclass of these metrics can be put into the Kerr-Schild
form as

Guv = My + 2‘/}';4’11/’ (20)

where 7,, is the Minkowski metric and the following
relations hold:

#a, =0,  V,2,=0,

u #0,V =0. (21)
The p p-wave spacetimes have special algebraic properties.
The Riemann and Ricci tensors of pp waves in the Kerr-
Schild form are classified as Type N according to the “null
alignment classification” [27,28]. When the Riemann and
Ricci tensors are calculated by using Eq. (20), they,
respectively, become

Rﬂapﬁ - l”i/)aaayv + ﬂallbaﬂa/;v - lﬂﬂyaaa/;v
— AaA30,0,V, (22)

and
R, = —4,A,0°V, (23)

which make the Type-N properties explicit. With these
forms of the Riemann and Ricci tensors, notice that any
contraction with the A* vector yields zero. The scalar
curvature is zero for the metric (20). Besides the scalar
curvature, it has vanishing scalar invariants (VSIs). Since
the Riemann and Ricci tensors are of Type N, and the scalar
curvature is zero, the p p-wave spacetimes are also Type-N
Weyl. Lastly, since the 2# vector is covariantly constant, it is
nonexpanding, shear-free, and nontwisting; therefore, the
pp-wave metrics belong to the Kundt class of metrics.
The two tensors of pp-wave spacetimes also have a
special structure: any second-rank tensor constructed from
the Riemann tensor and its covariant derivatives can be
written as a linear combination of R, and higher orders of
R, (such as, for example, [1"R,,, with n a positive integer).
This result follows from the corresponding property of
Type-N Weyl and Type-N Ricci spacetimes given in
Ref. [10] as the pp-wave spacetimes in the Kerr-Schild
form share these properties. Although the pp-wave result
was implied in Ref. [10], here we provide the proof along
the lines of Ref. [6] since it gives some insight on the
corresponding proof for the AdS-plane wave given below.

PHYSICAL REVIEW D 90, 124005 (2014)

A. Two-tensors in a pp-wave spacetime

A generic two-tensor of the p p-wave spacetimes can be,
symbolically, represented as

[R”O(V”IR)(V"ZR)...(V”"IR)]W, (24)

where R denotes the Riemann tensor, and V"R represents
the (0,n; + 4)-rank tensor constructed by n; covariant
derivatives acting on the Riemann tensor, so the term in
[..], 18 @ (0,4ng +4m + > 1" n;)-rank tensor whose
indices are contracted until two indices, y and v, are left
free. Here, the important point to notice is that each
Riemann tensor has two A’s [Eq. (22)], so in total there
are 2(ng+ m) A vectors. The remaining tensor structure
involves just V'V’s.

Here is what we will prove: the generic two-tensors of
the form (24) will boil down to a linear combination of R,,,
and [1'R,,’s.

The first step of the proof is to show that the 4 vector
cannot make a nonzero contraction. It is easy to show this
by using mathematical induction. With the identity
#9,V =0, the 4 contraction of the term V*V is simply
7ero

#V,0,V =0, (25)

after using the fact that /1 is covariantly constant. Then, to
show that the A contraction of the term V"V reduces to a
lower-order term, we first observe that

A”.fVMI...Vﬂj...VﬂnV =V, (MM...VM...VMV). (26)
Second, when A is contracted with the first covariant
derivative, by using [V, V4]V? =R, V° and
ARyep = 0, one has

N,V N, V=N, V,]. .Y,V
+ MV, Y, Y,V
— MV, VY, ..V, V,  (27)

which completes the reduction of the nth-order term to the
(n — 1)th order. Thus, A cannot make a nonzero contraction
either with other A’s or with V"V’s.

Although we achieved our goal, let us discuss another
proof of this step which gives some insight into the
corresponding discussion in the AdS-plane wave case.
For the pp-wave metrics in the Kerr-Schild form, one
can choose the coordinates in such a way that the metric
takes the form

ds® = 2dudv + d% - d¥ + 2V (u.X)du?,  (28)

where X = (x') withi = 1,...,D — 2, and « and v are null
coordinates, SO
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Audxt = du = 9, =0, = 9,V =29,V=0. (29)

With this choice of the metric, Vﬂ/i” =0 leads to
I;47 = 0. Now, let us look at the expansion of V"V
which has the form

VoV, ..V, V=0,08,.0,V

- (8 8 a/tn 2FZ:1—1/'4”)80'1 14
lln lﬂna a

Hi 7 H2 " aﬂ,za V-
_< l)n_lFZ}MFﬂlM FgZ:;ﬂnaG”_] V.
(30)

The structures appearing in this expansion are the
Christoffel connection, and partial derivatives of both V
and the Christoffel connection. When one has a 4 con-
traction, some terms involve a contraction of A with one of
the partial derivatives acting on V which yields an imme-
diate zero since # =&, and 9,V = 0. In addition, a A
contraction with a Christoffel connection also yields zero.
On the other hand, if 4 is contracted with one of the partial
derivatives acting on a Christoffel connection, one needs to
use the definition of the Riemann tensor, for example as

M0, ... 8
= aﬂl"'aﬂu—z( jaﬂjFZi—lﬂn)
= aﬂl e Mﬂj (Rglll HiHn—-1 + 8#:1—1F;;‘”n

Hn—2
_FZ;GFZn—I/ln + F;/I: 10F;f,;4,,)} (31)

6}4,1 2Fﬂn 1Hn

where the terms in the square brackets are just zero since
MR,p =0 and 7,47 =

Since A cannot make a nonzero contraction, there should
be at most two A’s—that is, one Riemann tensor—so the
nonzero terms of the form (24) reduce to

R,,. or [V*R],. (32)

where an even number of covariant derivatives is required
to have a two-tensor. After determining the nonzero terms
required by the first step of the proof, in the second step, let
us discuss the structure of these nonzero terms of the form

[V"R],,. In obtaining a two-tensor by contracting the
indices of [V"R],,, one should either have
gaﬂvm Vg Voo Ry = Vi ViV, Ry, (33)
or
vﬂlvﬂz VeV VMZn 2 Mpavf (34)

In Eq. (34), one can rearrange the order of the derivatives.
Each change of order introduces a Riemann tensor, and as
we have just shown, a two-tensor contraction in the
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presence of this additional Riemann tensor gives zero.
The only nonzero part is the original term which in the final
form reads

vﬂl vﬂz o vﬂznfz vavﬂR

vﬂ] vﬂz : 'vﬂznfz LRy

(35)

navfp —

where we used the Bianchi identity on the Riemann tensor.
Further contractions in Egs. (33) and (35) should be
between the indices of the derivatives and as we have
shown we can change the order of the derivatives without
introducing an additional term; then, one has
[V*'R],, = O"R,,

As a result, the nonzero terms are in the form R, and
[I"R,., where n is a positive integer. Any two-tensor of the
pp-wave spacetimes in the Kerr-Schild form is a linear
combination of these terms. This completes the proof.

Before proceeding to the field equations, we note that
with this result about the two-tensors, the VSI property of
the pp waves in the Kerr-Schild form is explicit since R,
traceless.

B. Field equations of the generic theory
for a pp-wave spacetime

Once the above result is used, the field equations of the

most general theory (2) with Ag = 0 reduce to
N
Z anDnR;u/ =0, (36)
n=0

where the a,,’s are constants depending on the parameters
of the theory (namely on «, a, f3, y, C,), and N can be as
large as possible. Note that a pp-wave metric [Eq. (20)]
solving R, = 0 is a solution of Eq. (36). This fact was
demonstrated in Ref. [6] without finding the explicit form
of Eq. (36) by taking R,, = 0 as an assumption from the
beginning. The plane waves, which are special pp waves
with V(u,X) = h;;(u)x'x/ where h;; is symmetric and
traceless, provide a solution to Eq. (36) for any h;; by
satisfying R, = 0 [4]. As discussed in Ref. [9], one can
also follow the method of constraining pp-wave space-
times such that R, is the only nonzero two-tensor, which
effectively means [JR,, = 0; then, the field equations of
the generic gravity theory reduce to the Einstein gravity
ones. On the other hand, obtaining Eq. (36) makes one
realize that the p p-wave solutions of the quadratic gravity
theory also solve the generic gravity theory (2). To show
this, we first notice that one can factorize Eq. (36) as

*For the proof of the VSI property of plane waves, see
Ref. [29].
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N
[T@+ bR, =0. (37)
n=1

where the b,’s are constants depending on the original
parameters of the theory. Here, the b,’s can be real or
complex and once they are complex, they must appear in
complex-conjugate pairs.

To further reduce Eq. (37), by first using the covariantly
constant property of A#, one has

CIR,, = CI(=4,4,0°V) = =4,4,000°V.  (38)

Here, we note that for any scalar function ¢ (not necessarily
V) satistying #0,¢p = 0,¢ = 0, one has

D¢ = gﬂuvuvy¢ = ﬂyaﬂav¢ - nﬂDFZyadgb’ (39)

after also using I';,4” = 0 which is valid in the coordinates
we have chosen [Eq. (28)]. Here, 7, is the flat metric in
null coordinates. In addition, for Eq. (28), the Christoffel
connection has the form

r9, =2°4,0,V + 2°2,0,V — 4,070,V (40)

which leads to 17””1“;,, = 0; therefore, one has

O¢ = 9%¢. (41)
Furthermore, since * =2 z)%v + &, where
& =3P % and 0,¢ = 0, we have

O¢ = 9. (42)
With this property and 9,0...0V = 0, one has
o = 6*v, (43)

which reduces Eq. (37) to
A N A
44,07 T (0 + b,)V =o0. (44)
n=1

Note that this equation is linear in V, so one can make an
important observation for pp-wave metrics in the Kerr-
Schild form. One can consider the p p-wave metric (20) as
Guw = My + My, Where h,, =2VA,4,, and with this defi-
nition the Ricci tensor becomes

1
Rm/ = _Eazhﬂw (45)
after using the fact that 4, is covariantly constant. Then,
once one considers this form of the Ricci tensor and
I"R,, = 62”Rw, in either Eq. (36) or Eq. (37), it is clear

PHYSICAL REVIEW D 90, 124005 (2014)

that the field equations of the generic theory (2) for pp
waves are linear in h,, as in the case of a perturbative
expansion of the field equations around a flat background
for a small metric perturbation ||4|| = ||lg —n|| < 1.

This observation suggests that there are two possible
ways to find the field equations of the generic gravity
theory for pp waves, namely, (i) by deriving the field
equations and directly putting the pp-wave metric Ansatz
(20) into them, or (ii) by linearizing the derived field
equations around the flat background and putting A, =
2V 4,4, in these linearized equations. Although the second
way involves an additional linearization step, the idea itself
provides a shortcut in finding the field equations of pp
waves for a gravity theory described with a Lagrangian
density which is constructed from the Riemann tensor but
not its derivatives. Namely, due to linearization in the field
equations, only up to the quadratic curvature order of these
theories contributes to the field equations. This idea is made
explicit in the examples discussed in Sec. V. Lastly, since
h,, =2VA,4, is transverse, 8ﬂh”” =0, and traceless,
" h,, =0, to find the field equations by following the
second way, one needs only the linearized field equations
for the transverse-traceless metric perturbation.

Assuming nonvanishing and distinct b,’s, the most
general solution of Eq. (44) is

V=Vp+h (EN: vn), (46)

n=1

where Vi is the solution to Einstein’s theory, namely
9*Vy = 0, N represents the real part, and the V,’s solve the
equation of the quadratic gravity theory, i.e. (9* + b,)V, =
0 (in case the reader has any doubt that this equation is the
quadratic gravity theory’s equation for the pp wave, we
shall show this explicitly below). Then, the pp-wave
solution of Einstein gravity also solves a generic gravity
theory which was already known in the literature [6]. Here,
the novel result is that the pp-wave solutions of the
quadratic gravity theory also solve the generic theory.
These solutions are of the form

Vo(u, %) = cpp(u)sin(é, - X+ cp, (), (47)

with |En|2 = b,,. Here, we consider the case with real b,
since the b,’s are related to the masses of the perturbative
excitations around a flat background as M, g = —b,.
What we have learned in the p p-wave case will be applied
to the Ay case below.

III. ADS-PLANE WAVE SPACETIMES IN
GENERIC GRAVITY THEORY

AdS-plane waves are a member of the Kerr-Schild-
Kundt metrics given as

124005-6



ADS-PLANE WAVE AND pp-WAVE SOLUTIONS OF ...
Guw = f_];w + 2‘/}';4’11/’ (48)

where g,, is the AdS metric and the following relations
hold:

3, =0,
£ =0,

Vidy = Ehys
#OV =0. (49)

The second identity serves as a definition of the ¢
vector where the symmetrization convention is &,4,)=
L&y + 48

As in the case of the p p-wave spacetimes, the AdS-plane
wave also satisfies special algebraic properties. However,
instead of the Riemann and Ricci tensors, the Weyl tensor
and the traceless Ricci tensor, that is S, = R, — % Guy» are
Type N. By using the results in Ref. [18], the traceless Ricci
and Weyl tensors can be calculated as

u

S = Py, (50)
and
Coap = 4/1[”9(%;/1”], (51)

where the square brackets denote antisymmetrization, and p
is defined as

%DT;”) v, (52)

and the symmetric tensor €24 is defined as

1
P = _<D+2§ﬂaﬂ +§§M§y -

1
Qa/} =- |:vaa/iv + f(aa/})v + E 5{15[3‘/

+ﬁgaﬂ<p—%V)]. (53)

In fact, these forms follow from Egs. (48) and (49), and the
derivations are given in Appendix A. In the given forms
above, Type-N properties of the Weyl and traceless Ricci
tensors are explicit. It can also be seen that the A*
contractions with the traceless Ricci tensor are zero.
This is also the case for the Weyl tensor, since €, satisfies

1
Aagaﬁ - Eﬂﬂgg, (54)

where

2 4
Qg = §“aav—mp+ﬁV. (55)
The scalar curvature for the AdS-plane waves is constant
R=-D(D-1)/#2. In addition, these spacetimes have
constant scalar invariants (CSI), for example
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2D(D -1) D(D—1)?

Ry RV = z ’ Z

R, RN = . (56)

Finally, due to V4, = §(,4,) and ¢, = 0, the 2 vector is
nonexpanding, shear-free, and nontwisting; therefore, the
AdS-plane wave metrics belong to the Kundt class of
metrics.

Like p p-wave spacetimes, the two tensors of AdS-plane
wave spacetimes also have a special structure. In Ref. [15],
while sketching a proof using the boost weight decom-
position [27], we gave the following theorem:

Consider a Kundt spacetime for which the Weyl and the
traceless Ricci tensors are of type N, and all scalar
invariants are constant. Then, any second-rank sym-
metric tensor constructed from the Riemann tensor and
its covariant derivatives can be written as a linear
combination of g,,, S,,, and higher orders of S, (such
as, for example, [1'S,,).

The AdS-plane wave spacetimes belong to this class.
Below, we give a direct proof of this theorem that is
specific to the AdS-plane waves.

A. Two-tensors in an AdS-plane wave spacetime

A generic two-tensor obtained by contracting any
number of Riemann tensors and their covariant derivatives
can be symbolically written as

[R™(V"R)(V"R)...(V"R)] (57)

w?
where the same conventions as in the pp-wave case are
used. Since the Riemann tensor is

2
R/mz//i = C;wwﬂ + m (gﬂ[vsﬁ]a - ga[vSﬁ]y)

2R

+ mgu[ugﬁ]av

(58)

equivalently, one can write Eq. (57) as a sum of terms in the
form

[C™0 (V™1 C) (V™). (V™ C)S™ (V™ S)

x (V™8)...(V™S)] (59)

v
where C and S represent the Weyl tensor and the traceless-
Ricci tensor, respectively. Note that one may consider
adding the metric to Eq. (59) to make the discussion more
complete, but it would be a trivial addition which would
boil down to Eq. (§9) after carrying out contractions
involving the g,,’s.

Here is what we will prove: the generic two-tensors of
the form (59) will boil down to a linear combination of S,
and [1"S,,’s.

124005-7



GURSES, SISMAN, AND TEKIN

The proof is somewhat lengthy and lasts until the end of
this section. The reader who is not interested in the proof,
but rather just in the applications of the result can skip this
section. Now, let us give the proof which involves
two steps:

(1) First, we

prove that [C™(V™C)(V™C)

(VC)S" (VI S)(V™S)...(V"1S)],, = 0 unless
(mo,k, I’lo,l) = (0, 1,0, 0), or (mo,k, no,l> =
(0,0,1,0) or (mg, k,ng, 1) = (0,0,0,1).

(2) Foreven® n, we then prove that [V"S] w and [V'C]
have a second-rank tensor contraction which is a
linear combination of []2S, [J7~! ., [JS, and S.

1. [C™(V™C)(V™2C)... (V™ C)S™ (VM S)(V™S)...
(V"S)], =0 if my #0 and ny +k +1> 1

Before giving the precise proof, let us present the basic
idea. If one considers the forms of the Weyl tensor and the
traceless Ricci tensor together with the property
V, A, =&yl then one can see that the generic term
(59) represents the sum of terms that are made up of
2(mg + k + ny + 1) A vectors and various combinations of
the derivatives of V, the & vector and its derivatives.
Without loss of generality, one can assume m; < m, <
... <myand n; < n, < ... < ny; then, the building blocks
of Eq. (59) are

1, ENVPV VE

p=1,...,max (n,my) +2;, r=1,..,max (n;my).

We proved that these building blocks (other than A1)
generate a free-index A vector when they are contracted
with a 4 vector. In addition, the remaining tensor structure
just involves the same buildings blocks that have the same
or lower derivative order than the order before contraction.
Naturally, any tensor that is made up of these building
blocks inherits this property. Due to this property, it is not
possible to lower the number of A vectors by contractions
and these 4 vectors sooner or later yield a zero contraction.
Therefore, to get a nonzero term from Eq. (59), the unique

possibility is to have at most two A vectors, that is
2(m0+k+n0+l) :2=>m0+k+n0—|—l: 1,

yielding either (mg, k, ng, 1) = (1,0,0,0), (mg, k, ngy, 1) =
(0, 1,0,0), (mo,k I’l(),l) (O 0,1,0) (m(),k, T’lo,l) =
(0,0,0,1). But, (mq, k, ng, 1) = (1,0,0, 0) is [C]/w which is
just zero. Thus, the possible nonzero terms coming from
Eq. (59) are in the form S, [V"S],,, and [V"C],, which
are studied in Sec. III A 2.

Now, let us start our rigorous proof and first show how

a free-index A vector is generated by any A contraction.

pv?

“Note that for odd n, it is not possible to have a two-tensor
contraction.
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To this end, we consider the behavior of the (0, n)-rank
tensor V"~'& under A contractions. To analyze V"¢, we
work in the null frame in which the metric has the form

£? - -
ds* = — (2dudv + dx - dx + dz*) + 2V (u, X, z)du?
Z

(60)

where u and v are null coordinates, and x = (x') with

i=1,...,D—3. Thus, 4, and #* are of the form
2
A, dx* = du, /V‘aﬂ = ?c’)v, (61)

which shows why the metric function V does not depend on
the coordinate v due to the relation /1"8”V = 0. In addition,
¢, and & become [18]

2 2z

§=20. =50 (62)
The properties &4, = 0 and [V, V |} = B G ua yield
the following identities for the &* vector:
P 2
MV &, = —ﬁﬂa, (63)
and
P 2
MV &, = —ﬁia, (64)
where we also used V& = —2(?2_1)

Now, let us look at V"~!& in the explicit form:

vmvﬂz'”vﬂméﬂn =

.ul ,uZ ﬂn lgﬂn

- (9, 3”2...(9,4” 0 )és,
”n l/'trza 6 8l"n—Zgal -

Hi T Hy "
n—1701 O'n 1
- ( 1) Fﬂlﬂzrﬁlﬂz Gn 2ﬂn§ﬂn_

(65)

The structures appearing in this expression are the
Christoffel connection, and partial derivatives of both &,
and the Christoffel connection. In considering possible 4#
contractions with the terms in this expansion, we first note
that Eq. (62) yields

A9, 0,,...0

Hn—1 éﬂn

=0, MHidy, ...

/‘n lfﬂn -

(66)

In addition, since 0,g,s =0, a 2 contraction with the
derivatives acting on a Christoffel connection also yields
Zero:
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W90, 0,0, To L =0, (67)

e Guy O,y

Moving to the # and 4, contractions of the Christoffel
connection, the property V,A; = (atp) leads to

1
Fg/jﬂa = - 5 (/Iaéﬁ + ga/lﬁ)v (68)
\a (2 1 (04 a
oA = 5 (6% = 27¢), (69)

in the null frame. In addition, when #* or 4, contracts with a
Christoffel connection under the action of the partial
derivatives, one has

1
0T = = =540, 0,0, &

aﬂ:_z au Yy

250, 0

L I

1
2000 Dl (70)

1 1
10,050, Ty = 5 (£ = 1°64)20,,0,,--0,,, .
(71)

where a new structure (that is, partial derivatives acting on
1/z) appears; however, it yields zero after a further A
contraction.

Having discussed all possible A contraction patterns
[Egs. (66)—(71)] with the structures involved in the expan-
sion of V”"(S, we now show that a A vector contraction with
the (0, n)-rank tensor V"~!¢ provides a free-index A one-
form (we mean ). To see this, we first notice that the
possible nonzero contractions of the 4 vector (we mean 1),
which are Egs. (69) and (71), always consist of two terms
such that one of them involves a A one-form and the other
involves a A vector. If the reproduced A1 one-form is
noncontracting, then we have achieved the goal of having
a free-index A one-form. However, if it is contracting, then
it must make a contraction in the form of either Eq. (68) or
Eq. (70), so this contracted A one-form generates new A one-
forms. The same procedure holds for these newly generated
A one-forms and when all the possible 4 one-form con-
tractions are carried out, one always ends up with a free-
index A one-form. On the other hand, returning to the A
vector reproduced after the first contraction, it necessarily
makes a contraction and if this contraction is not zero, it
should again be in the form of either Eq. (69) or Eq. (71).
Thus, one should follow the same procedure until the newly
generated A vector makes a zero contraction and this is in
fact the case since for a A vector, there is a limited number
of nonzero contraction possibilities generating a new A
vector in each term in the V"~'¢& expansion (65).

For any number of ## contractions with the (0, n)-rank
tensor V"~!¢, the case is the same and each A* contraction
generates a free-index 4, one-form in each term in the

PHYSICAL REVIEW D 90, 124005 (2014)

V"~1¢£ expansion (65) if it makes a nonzero contraction. To
see this, we just note that after each A* contraction the
remaining structures are the original ones (the &, one-form,
the Christoffel connection, and partial derivatives of both
the £, one-form and the Christoffel connection) in addition
to the newly generated & vectors and 0, 0,,...0, (1/z)-
type forms which yield zero under a further 2# contraction.
Therefore, the discussion of the further A# contractions is
not different from the single ## contraction, and each A*
contraction generates a free-index A one-form.

Moving to the other tensor structure appearing in
Eq. (59), the (0, n)-rank tensor V"V also shares the same
properties as V"~ £ under 2* contractions. Expanding V"V
yields

V, V.V, 0,V =0,0,..0, 0,V
= (0, 040y, Tt 1u,) 05, V
- FZ,‘,fl,,namam...8/4”_265] V—...
— (="' Tot - T8 00,0,, Vs

(72)

where 9,V simply replaces &, in the above discussion.
When this expansion is contracted with the A# vectors, the
possible contraction patterns are the same as for the V~1¢&
case except that the 9, 9,,...0, &, term is replaced by
0,,0,,...0, V which also yields a zero under a 2 con-
traction as

MiQ

IREE

0

i

.0

L,V =0. (73)
Therefore, after exactly the same discussion as in the case
of V"~1£, one can show that each # contraction with V"V
generates a free-index 4, one-form.

We established that each A vector contraction with the
(0, n)-rank tensors V"~'¢& and V"V generates a free-index A
one-form; however, after a certain number of A vector
contractions, these tensors become necessarily zero,
because the possible nonzero A vector contractions are
made with the indices of the Christoffel connections and the
maximum number of Christoffel connections is just (n — 1)
for both cases. These (n—1) Christoffel connections
involve n free down indices. Each 1 vector contraction
reduces the number of contractible down indices’ by two
since it also introduces a free-index A one-form. Thus, if 72 is
even, then n/2 is the maximum number of 1 vector
contractions before one necessarily gets a zero. On the
other hand, for odd n, (n — 1)/2 is the maximum number of
nonzero A vector contractions.

In obtaining a two-tensor from the rank (0, 4(mq + k) +
2(ng + 1) + 3%, m;+>°L n;) tensor

5, ..
The ones giving a nonzero result.
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[C™ (V™ C) (V™). (V™C)§™ (V™ §) (V™S)... (V™ S)],

(74)

one may prefer to make contractions involving 4 one-forms
first. To have a nonzero contraction, A one-forms should be
contracted with either V"*~'¢ tensors or V"V tensors.
However, since these contractions generate new A one-
forms, the number of A one-forms cannot be reduced by
contractions. In addition, there is a limit for getting a
nonzero contraction from the tensors V*~!¢& and V"V. As a
result, in the presence of more than two 4 one-forms, one
cannot get rid off these 1 one-forms by contraction and
they, sooner or later, make zero contractions.

To get a nonzero two-tensor from Eq. (74), there should
be at most two A one-forms and they should provide the
two-tensor structure. Then, the possibilities are

S

wr (V' [VS] (75)

uv Hv?

where we have not included [C],, as the Weyl tensor is
traceless. Note that to have a two-tensor, the number of
covariant derivatives acting on the Weyl tensor and the
traceless Ricci tensor should be even. Next, we will reduce
the last two expressions to the desired form.

2. Reduction of [V"S],, and [V*C],, to 3} ,d;(D.R)T'S

First, let us analyze the [V"S],, term where n is even
because we want to get a two-tensor contraction from V”"S.

S

Hr— lﬂr

—
Y ZRMM ! (H Vﬂ

PHYSICAL REVIEW D 90, 124005 (2014)

The lowest-order term is [V2S],, which has two contraction
possibilities: [1S,, and V*V,S,, . The first contraction
possibility is already in the desired form. For the
second possibility, changing the order of the covariant
derivatives yields

vavysay = vﬂvasav + [Va’ vﬂ]Saw (76)

where the first term is zero due to the Bianchi identity and
the constancy of the scalar curvature; finally, it takes the
form

R s (77)

vev, S

ulav —

after using Eq. (58). Having discussed the lowest order, to
use mathematical induction, let us analyze a generic nth-
order derivative term [V"S] . The contraction patterns for
this term are as follows: (i) the two free indices can be on
the S tensor; (ii) at least one of the free indices is on the
covariant derivatives. In the first contraction pattern, the
indices of the covariant derivatives are totally contracted
among themselves and it is possible to rearrange the order
of the covariant derivatives to put the term in the form
Ijz"S,w by using

ﬂl’ ﬂz (va> Hr—1Hy
i1> Ilr+1< H v

h=s+1

> Hr—1Hr

=3

r—2 2
+ Rlllllzllrflﬂwrl ( ] vﬂi) Sﬂr+|ﬂr Hlllzll, <H vﬂ;) —1Hr+1° (78)

In addition, if one uses Eq. (58), then the parts of the
Riemann tensor involving the Weyl and the traceless Ricci
tensors just yield zeros as we proved above. The remaining
nonzero part of the Riemann tensor in which the tensor
structure is just two metrics [that is the third term in
Eq. (58)] reduces the terms involving the Riemann tensor to
(n —2)th-order terms as [V"~2§] . Thus, the first con-
traction pattern of [V"S] , yields a sum involving [2S,,
and [V"72S],, terms. On the other hand, for the second
contraction pattern, at least one of the covariant derivatives
is contracted with S and in order to use the Bianchi identity
V7§, = 0, one needs to change the order of the covariant
derivative contracting with § until it is next to S by using
Eq. (78). Again, during this process terms involving the

i=3

|
Riemann tensor and (n—2) covariant derivatives are
introduced, and after the use of Eq. (58), these terms
become [V"~2§] - Thus, the second contraction pattern of
[V"S],, yields a sum involving [V"~2S5] , terms. Then, just
as we showed that the lowest-order derlvatlve term [VZS]
satisfies the desired pattern and that the nth-order term
[V"S],, reduces to a sum involving a desired term [J25,,
and (n — 2)th-order terms [V"~2S] . it is clear by math-
ematical induction that [V"S] , can be represented as a sum
in the form

[vnS]yy = Z di(D’ R)Disﬂw (79)
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where d,), is just one, and the dimension and scalar
curvature dependence of the other d;’s are due to the
Riemann tensors that are transformed via Eq. (58).

Now, let us move to the term [V"C],, where n is again
even because we want to get a two-tensor contraction from
V"C. Since the Weyl tensor is traceless, at least two
covariant derivatives should be contracted with the Weyl
tensor when obtaining a nonzero two-tensor from V"C.
Then, at the lowest order [V*C],, = V*V/C,,,, one can
use the following identity for the Weyl tensor assuming that
the metric is Eq. (48):

, D-3 R
ViV Cyavﬁ = m <DSaﬁ - ﬁ‘i}cﬁ) s (80)

which is derived in Appendix B, and then we immediately
obtain the desired form. Now, we move to the nth-order
term [V"C],, for which again one can change the order of
the covariant derivatives in such a way that two of the
covariant derivatives contracting with the Weyl tensor are
moved next to it in order to use the Bianchi identity (80). As
before, during the order change of the covariant derivatives
Riemann tensors are introduced. After the use of Eq. (58),
only the part of the Riemann tensor involving two metrics
yields a nonzero contribution, so the terms involving the
Riemann tensor reduce to (n — 2)th-order terms [V"2C] .
Thus, the nth-order term [V"C],, reduces to the sum of
[v=*s,,, [V*~25],,. and [V*~2C] , terms. Then, just as
we showed that the lowest-order derivative term [V2C],,
can be converted to the [V25] , case and that the nth-order
term [V"C],, reduces to a sum involving the [V"S],, and
[V"=25],, cases and (n — 2)th-order terms [V"~2C] ,, it is
clear by mathematical induction that [V"C|, can be
represented as a sum involving just [V™S] , terms where
n > m > 0. Then, the [V"C],, case reduces to the [V"S]
case which is of the desired form [Eq. (79)].

As a result, the nonzero two-tensors of the AdS-plane
wave spacetime can be written as a linear combination of
the tensor S,,, the []"S,,’s, and the metric g,,. This
completes the proof.

Note that with this result about the two-tensors, the CSI
property of the AdS-plane wave spacetimes is explicit since

S, 1s traceless.

v

B. Field equations of the generic gravity theory
for an AdS-plane wave spacetime

In Ref. [15], we studied the field equations of the generic
gravity theory for the CSI Kundt spacetime of Type-N Weyl
and Type-N traceless Ricci tensors. In addition, we also
demonstrated how the field equations further reduce for
Kerr-Schild-Kundt spacetimes to which AdS-plane waves
belong. Let us recapitulate these results here. As an
immediate result of our conclusions above, the field
equations coming from Eq. (2) are

PHYSICAL REVIEW D 90, 124005 (2014)
N

eGu + Z a,1"S,, =0. (81)
n=0

The trace of the field equation yields
e=0, (82)

which determines the effective cosmological constant A or
1/£% in terms of the parameters that appear in the
Lagrangian. On the other hand, the traceless part of the
field equation

N
> a,[1'S,, =0. (83)
n=0

can be factorized as

N

[TO+b.)s,. =0. (84)

n=1

where the b,’s are again functions of the parameters of the
original theory, and in general they can be complex which
appear in complex-conjugate pairs. To further reduce
Eq. (84), we note that in Ref. [18], it was shown that
for any ¢ satisfying #0,¢ = 0,¢ = 0, one has

O = O, (85)
where [] = gV, V,. Therefore, S,, = 4,4,0V with
- 1 2(D -2
0= —<D+2§”5ﬂ + 5848, —(—2)>
2 4
- 4z 2(D-3)
——<D+23Z—T)’ (86)

where the second equality is valid for AdS-plane waves in
the coordinates (60). Using the results in Ref. [18],
C(¢p4,45) can be written as

- 2
O(pAuds) = O(PAals) = —Aads <0 + p) $.  (87)

which is again valid for any ¢ satisfying #0,¢ = 9,¢ = 0;
therefore, []S,, becomes

OS,. = =44, (O + %)p = -4, (O + %) ov.
(83)
Then, Eq. (84) becomes
. 2
Myo}[[l (0 + 2= bn> V=0, (89)
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where we also used the fact that for any ¢ satisfying
0,¢ = 0, O¢ also satisfies the same property 9,O¢ = 0.

Note that Eq. (89) is linear in the metric function V
which suggests the linearization of the field equations of
the generic theory for the AdS-plane waves. To make this
more explicit, by using Eq. (87) S, can be put in the form

-2 1/- 2
- <I:| + ﬁ) (A,4,V) = ~5 (I:l + ﬁ) hy. (90)
after defining h,, =2V4,4, with which the AdS-plane
wave metric becomes g,, = g,, + h,,. In addition, using
0,¢ = 0= 0,0¢ = 0 and Eq. (87), [1"S,, becomes

D"S”U:(—l)"/lﬂ,lb<0+ )(DV [1"S,,.  (91)

Once Egs. (90) and (91) are considered in either Eq. (83) or
Eq. (84), it is obvious that the field equations of the generic
theory (2) for AdS-plane waves are linear in h,, as in the
case of a perturbative expansion of the field equations
around an (A)dS background for a small metric perturba-
tion [[A]l = llg—gll < 1.

As in the case of pp waves, this observation suggests
that there are two possible ways to find the field equations
of the generic gravity theory for AdS-plane waves, namely,
(i) derive the field equations and directly plug the AdS-
plane wave metric Ansatz (48) into them, or (ii) linearize the
derived field equations around the (A)dS background and
put i, = 2V4,4, into these linearized equations. Again, as
we discuss in Sec. V, the idea in the second way of finding
the field equations for AdS-plane waves provides a shortcut
to finding the field equations of a gravity theory described
with a Lagrangian density which is constructed by
the Riemann tensor but not its derivatives. Finally, 4, =
2V 4,4, is transverse, Vﬂh"” = 0, and traceless, g h,, = 0,
so one needs only the linearized field equations for the
transverse-traceless metric perturbation.

Just like the discussion in the pp-wave case, assuming
nonvanishing and distinct b,,’s, the most general solution of
Eq. (89) is

N
V=Vi+R <Z vn>, (92)
n=1

where N represents the real part and V is the solution to
the cosmological Einstein theory, namely

_ 4z 2(D-3
OVE=—<D+?§E)Z—%>VE

72 4 6—D)z 2(D -3
:_(—62+< )az— (fz )>VE=O,

(93)
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2 92 .
where & = d 5+ ?;13 3)?7 Here, the second equality

follows from the results in Ref. [16]. In addition, the V,,’s
solve the equation of the quadratic gravity theory, i.e.
(O —I—%— b,)V,=0. As a result, the AdS-plane wave
solutions of Finstein gravity and quadratic gravity, which
were  summarized in the Introduction  (with
M2 = —b, + %),6 also solve a generic gravity theory [15].
When we let b, = —Mj + % forall n = 1,2,...,N and
assume real M2’s as they represent the masses of the
excitations, then we can express the exact solution
of the generic gravity theory depending on u# and z as a
sum of the FEinsteinian Kaigorodov solution
Vi(u,z) = c(u)zP3, (94)
where we omitted the 1/z? solution as it can be absorbed
into the background AdS metric by the redefinition of the

coordinate v, and the functions V, defined in Eq. (92) are
given as

Va(u,z) = Z%(Cn,l(bl)Zl”"‘ + cpa(u)z7wl),
n=1,2,....N, (95)

where v, =1\/(D—1)2+4/°M% and all M%’s are
assumed to be distinct. On the other hand, there can be
many special cases in which some of M2’s are equal. In
fact, these special cases do appear in the critical gravity
theories [22,23,30-32] and the corresponding solutions
always involve logarithms; for example, for the four-
dimensional case see Refs. [16,17]. Here, let us mention
the extreme case in which all N masses vanish. In this case,
the field equation takes the form

OV (u,z) =[220% + (6= D)z0, —2(D =3)[N 1V (u,z)

[
0, (96)

which has the solution

MZ—ZD3§ C(u

u)ln"z + 22%2 )In"z,

n=1

97)

where again we considered the 1/z2
absorbed into the AdS part.

solution as being

®Note that M2 represents the mass of a massive spin-2
excitation around the AdS background. To prevent any confusion
in its definition observe that O ~ —[]. In addition, remember that
in the pp-wave case, we also defined M2, , the mass around
the flat background and these two masses are related by
hmf_woM =M 2

n flat*
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IV. pp WAVES AND AdS-PLANE WAVES IN
QUADRATIC GRAVITY

Since quadratic gravity played a central role in con-
structing the solutions of the generic gravity theory, let us
explicitly study the field equations of quadratic gravity in
the context of these wave solutions. The field equations of
quadratic gravity [33]

1

1
; R/w - EgﬂuR + Aog/w

1
+ 2aR <RﬂIJ - Zg/u/R> + (za + ﬁ) (g,ubD - vyvv)R

1 1
+ ﬂl:l <Rmx - Eg/wR> + Zﬁ <R;mz/p - Zg;wRo’/)) RP

+ 2y [RRW —2R,5)R?” + R 5y R,7" — 2R R,
1
- Zg;w(Rziop - 4R(2r/) + Rz):| = O’ (98)

for AdS-plane waves (48) reduce to a trace part and an
apparently nonlinear wave-type equation on the traceless
Ricci tensor [34]

A ~1)(D-2 —1)2(D -2)?
R s

+ﬁ(D+%—M2>SW =0, (99)

where S, and M? are given in Egs. (50) and (11),
respectively, and f is

(D-4)
(D-2)?

+y (D=3)(D=4) (100)

f=(Da+p) D-1)D=2)

The trace part of Eq. (99)

ﬂjL(D—1)(D—2)_f(D—1)2(D—2)2:0’

K 2xt? 204

(101)

determines the effective cosmol_ogical constant, that is the
AdS radius 7. Since [1S,, = [1S,,, the traceless part of
Eq. (99) [after using Eq. (87)] further reduces to

(E + % - M2> (m +%> V) =0, (102)

This is an exact equation for the AdS-plane waves, but
it is also important to realize that (defining h, =
9w — G = 2VA,4,) these are also the linearized field
equations for transverse-traceless fluctuations, which re-
present the helicity +2 excitations, about the AdS
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background whose radius is determined by the trace part
of Eq. (99).

In this work, we have been interested in the exact
solutions and not perturbative excitations, but as a side
remark we can note that the fact that AdS-plane waves and
pp waves lead to the linearized equations can be used to
put constraints on the original parameters of the theory
once unitarity of the linearized excitations is imposed. For
example, since the excitations cannot be tachyonic or
ghost-like, M? >0 and this immediately says that b,
cannot be complex.

To obtain the field equations for pp waves in this theory
with Ay = 0, one simply takes the # — oo limit. Note that
in this limit §,, becomes equal to R,,.

V. WAVE SOLUTIONS OF f(Riemann) THEORY

Let us now consider a subclass of the generic theory (1)
whose action is built only on the contractions of the
Riemann tensor and not its derivatives. Namely, the action
is given as

1= [ @xy=ar ). (103)
where we specifically choose RZ/”} = R",; as the argument
to remove the functional dependence on the inverse metric
g without losing any generality, because any higher-
curvature combination can be written in terms of RI:/;
without use of either metric or its inverse.

This class of theories constitutes an important subclass
for two reasons. First, as we discussed above, pp waves
and AdS-plane waves (actually, AdS waves in general)
linearize the field equations of a generic gravity theory, that
is both plugging the pp-wave (AdS-plane wave) metric
G = M +2VA4 4, (G = Gu +2V4,4,) into the field
equations and plugging h,, = 2V4,4, into the linearized
field equations around a flat (AdS) background yield the
same field equations. Second, for the f (R’;Z) theory, one
can construct a quadratic curvature gravity theory which
has the same vacua and the same linearized field equations
as the original f(R};) theory (see Refs. [35-41]). Once one
constructs the equivalent quadratic curvature action
(EQCA) corresponding to Eq. (103), by using the effective
parameters of EQCA in the results obtained for the
quadratic gravity case in Sec. IV, one can obtain the field
equations of Eq. (103) for AdS-plane waves and pp waves
without deriving the field equations of Eq. (103). The use of
the EQCA procedure in finding the field equations for AdS-
plane waves and pp waves provides a fair amount of
simplification over the standard method of finding the field
equations which can be quite complicated depending on the
function f. With a known f, one can use the procedure
given in Ref. [40] to find the corresponding EQCA:

(1) Calculate f(R),), that is the value of the Lagrangian

density for the maximally symmetric background
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DAY __
Ry =

[
2 (8,85 — 856).
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(104)

In addition, one takes the first- and second-order derivatives of f(R},) with respect to the Riemann tensor, and

calculates them again for the background (104) to find

of
Ry = (R, 105
o = (105)
L OF ) g — e + BRERY + 7(RM“RLY — 4RERY, + R?) (106)
2 [oRGoRY W P SR TR
Y= R
where (, a, B, y are to be determined from these equations.
(2) Construct the action
1 ~ ~
Iggca = / dPx\/=g [: (R —2Ag) + aR* + BRURY, + 7 (RjoR). — 4RURY + Rz)} , (107)
K
where a, B, and y are defined in step 1, while the remaining two parameters are given as
1 2 I -
==t 5 [(D-1)(Da+p)+(D~-2)(D-3)7l, (108)
A 1 . -w. DMD=1) .- 3
231 ®e) =202 (¢4 L= )(0a+ ) + (D= 2)(0 -3 (109)

After constructing the EQCA corresponding to Eq. (103),
the field equations of Eq. (103) for AdS-plane waves can be
found by substituting the effective parameters of Eq. (107)
into Eq. (99). Since these field equations are solved by the
AdS-plane wave solutions of Einstein gravity and quadratic
gravity listed in the Introduction, the AdS-plane wave
solutions of Eq. (103) simply follow from these solutions
by using the effective cosmological constant of Eq. (103)
and M? of Eq. (103), which is calculated by putting the
effective parameters of the EQCA into Eq. (11). The
effective cosmological constant of Eq. (103) can be found
from Eq. (101) after putting the effective parameters of the
EQCA into it. Note that although Eq. (101) is, apparently, a
quadratic equation in 1/#2, after putting the effective
parameters into this equation it yields a different depend-
ence on 1/#7 since these effective parameters also depend
on /2.

As in the case of the quadratic curvature gravity, the £ —
oo limit in the AdS-plane wave field equations gives the field
equations for the pp waves for the theory with Ay = 0.
Equivalently, one may find the curvature expansion of
f(R.) up to the quadratic order, and this part of the action
determines the field equations for the p p-wave metric.

As an application with a given f(R}), we consider the
cubic curvature gravity generated by the bosonic string
theory at the second order in the inverse string tension o
[42] and the Lanczos-Lovelock theory [43,44].

A. Cubic gravity generated by string theory

The effective action for the bosonic string at O[(a’)?] is

1 o
I= - / dPx/=g {R +g (R’;;R;’E —4RIRY + R?)

(@)?

+24

(110)

(~2RGRIRE + KRS,

where the bare cosmological constant is not introduced, so
the theory admits a flat background in addition to the (A)dS
ones. In Ref. [38], the EQCA of Eq. (110) was calculated as

R #2(D - 5)
]EQCA_;/d X\/—g|:<1 +T

a?D(D - 1)(D - 5)
6(D — 5)a2¢ + 24£5

N a? R 7a]2R”R”+a/ . 20
202 427 4 £

X <R+2

x (RUyRi — ARURY, + Rz)} , (111)

where the effective parameters depend on the yet-to-be-
determined effective cosmological constant represented
through the AdS radius #. The field equation for #? can
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be found by using the effective parameters of Eq. (111) in
Eq. (101) as

_Lo_w-aw-QM
Z 472

(D-5)(D-6)a%\
- 12(D-2)¢* )‘O'
(112)

Note that although we started with a quadratic equation in
1/¢£2, that is Eq. (101), we obtained a cubic equation as
expected for a cubic curvature theory. For D > 3, there is
always an AdS solution because 1/£? ~ in addition to
the flat solution, so that the theory admits an AdS-plane
wave solution.

In addition to effective cosmological constant, we need
the mass parameter M? to write the AdS-plane wave
solutions. Using EQCA parameters in Eq. (11), M? can
be found as [15]

42 2(D-3)(D—-4) 29-9D
M?=_— — . 113
Ta'? 7o + 72 (113)
The AdS-plane wave solutions given in the Introduction are
the solutions of Eq. (110) with this M?. For example, for the
& = 0 case one has

V(u,z) = ¢ ()P + 27 (cy(u) 2V P +H40M

+C3(M)Z_7 (D—1)2+4f2M2).

(114)
Here, we note that when using the solutions of Eq. (112) in
Eq. (113), M? has the form 1/a’ (which is also suggested
by dimensional analysis) and becomes negative for D > 3.
On the other hand, the BF bound, that is M? > —%, is
satisfied for D < 6.

To discuss p p-wave solutions, one should take the £ —
oo limit in the AdS-plane wave field equations. Taking this
limit in Eq. (113) yields M? — oo which suggests the
absence of the massive operator part in the pp-wave field
equations. This is in fact the case which becomes more
clear by taking the £ — oo limit at the EQCA level. In this
limit, Eq. (111) reduces to Einstein-Gauss-Bonnet theory
which is the quadratic curvature order of the original action
(110).7 Therefore, as we discussed above, the quadratic
curvature order of the original action determines the pp-
wave field equations, and here it is the Einstein-
Gauss-Bonnet theory whose equations reduce to the field
equations of Einstein gravity at the linearized level.
Therefore, the massive operator is absent and the p p-wave
solutions of Eq. (110) are only the Einsteinian solutions.

"This is expected since the EQCA is just the Taylor series
expansion in curvature around the maximally symmetric back-
ground. Then, once the flat limit is taken in the EQCA, the action
reduces to the quadratic curvature order of the original action.
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B. Lanczos-Lovelock theory

The Lanczos-Lovelock theory is a special f(R/;) theory
which has at most second-order derivatives of the metric in
its field equations just like Einstein gravity. Therefore, one
expects a second-order differential equation for the metric
function V as the (traceless) field equations for pp waves
and AdS-plane waves. To find the explicit form of the field
equations, one needs to construct the EQCA for the
Lanczos-Lovelock theory given by the Lagrangian density

3

fro= ZC R HRZiz::Z?;, (115)

where the C,’s are dimensionful constants, &' 72" is the
generalized Kronecker delta, and [J] denotes the integer
part of its argument. In Ref. [39], the EQCA of Eq. (115)
was calculated as

1 ~
Iggea = /de\/ -9 [fc (R —2A,)
+7(Riy Rl — ARLRY + RZ)} . (116)

where the effective parameters are the effective Newton’s

constant,
nn—2) (2\n1
o) 0

the effective cosmological constant,

e, PR E(2) )

SIS

=2D -2 (-1)C,
n=0

R —

S

Ay D!
i 4

n=0
and the effective Gauss-Bonnet coefficient

2
e Aln=1) (22
7=2(D 4)!nzo( 1"c, D =) <f2> . (119)

The AdS radius appearing in these effective parameters
satisfies the equation

B W (D=2n) (1\"
=3 reipan(7)

o

(120)

which can be found by plugging Eqgs. (117)—(119) into
Eq. (101). Again, notice that the quadratic equation (101)
yields a [2]th-order equation in 1/#? after the use of the #-
dependent parameters of the EQCA. Note that for
even dimensions, the D = 2n term does not contribute
to the field equation (120). Since the EQCA is in the
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Einstein-Gauss-Bonnet form, the traceless part of the field
equations reduces to

oV =0, (121)
where O is defined in Eq. (93), if 1/k # 0, that is
3 (—1yre, P =20 (2N (122)
— " (D -2n)! \£? '

holds. Thus, the Einsteinian solutions, such as the

Kaigorodov solution
V(u,z) = c(u)zP=3, (123)

solve Eq. (121). Note that even though V; apparently does
not show a dependence on the parameters of the theory, the
metric depends on all of the parameters via the AdS radius
Z. Hence, the above exercise is nontrivial.

Lastly, for the Chern-Simons Lovelock theory in odd
dimensions [45], the constraint 1/k = 0 is satisfied, so the
field equation becomes trivial.

VI. EINSTEINIAN WAVE SOLUTIONS
OF THE GENERIC THEORY

A natural generalization of the above exercises is that the
AdS-plane waves of the cosmological Einstein theory solve
the generic gravity theory (2). The metric function V does
not depend on the parameters of the theory; therefore, it is
intact for all theories. But, the nontrivial part of the
computation is to find the AdS radii for each theory.
Fortunately, with the equivalent linear action (ELA) pro-
cedure that we used in Refs. [36,37,41], all one needs to do
is (i) calculate the Lagrangian density in the maximally
symmetric background (104) (let us call it f), and (ii) com-
pute the derivative of the Lagrangian density with respect to
the Riemann tensor and evaluate it again in Eq. (104). With
this result one finds

of v
|:8thbf:| RM Rz” = CR’

(124)
which is in fact the definition of {. Using these results, the
ELA, which has the same vacua as the original theory, can
be constructed as

1 -
Iga = :/ de\/ —Q(R - 2A0)7

- (125)

where the effective Newton’s constant and the effective
bare cosmological constant are

1
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1. D(D-1)

A
— = -——=C. 12
K 2f 202 ¢ (127)
Then, the AdS radii can be calculated from
D-1)(D-2
= ——( )~( ) . (128)
2A,

Note that in the Lagrangian, the terms involving the
derivatives of the Riemann tensor do not contribute to
the maximally symmetric vacua at all because the field
equations derived from these derivative terms always
involve the derivatives of the Riemann tensor which vanish
for the maximally symmetric metric.

As an example of this procedure, let us consider the
conformal gravity with derivative terms in D =6
dimensions.

A. Conformal gravity in D = 6

Conformal gravity in six dimensions® has the Lagrangian
density [46,48]

3
—_R3—2R{RVRY

‘CC(mf = ﬂ(RR/IjR; - 25 up

3
—RUCIRY, + ERDR) . (129)

With the AdS-plane wave Ansatz, the field equations
coming from this Lagrangian, which are given in
Ref. [46], reduce to

8 6
(0+5) (04 )5 o

Using the ELA procedure above (see Appendix C), it is
easy to show that for this purely cubic theory the AdS
radius is not fixed; therefore, any maximally symmetric
space is a solution which is to be expected since the theory
is conformal with no internal scale. But, once one imposes
the existence of an AdS vacuum, one necessarily breaks the
symmetry in the vacuum and picks up a unique cosmo-
logical constant (in Ref. [46], A = —10 was chosen in the
¢ = 1 units).

To further reduce Eq. (130), using Eqgs. (87) and (90)
yields

(130)

¥Note that to define a conformal gravity in six dimensions, one
can also use the two independent scalars constructed from three
Weyl tensors; see for example Refs. [46,47]. For this purely cubic
Weyl theory, the EQCA and the linearized field equations will be
identically zero, so the AdS-plane wave field equations become
trivial. The version of six-dimensional conformal gravity we have
chosen here is for discussing the presence of derivatives of the
Riemann tensor in the action.
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<|:| +%> <|:| +%> (I:l +%> (4,4,V) =0, (131)

which still looks like a nonlinear differential equation since
the d’Alembertian operators are with respect to the full
metric involving the V part. But, this apparent nonlinearity
is a red herring since [1"(2,45V) = [0"(A444V). In addi-
tion, one can move A vectors to the left with the help of
Egs. (87) and (93) implying

(D + %) (AakpV) = (E + %) (AatpV)

and one gets a linear differential equation

2 2 2
T\ (T 2 T 6

Assuming V = V(u, z), the general solution reads
S ) 2 3
V(u, z) :Z—2+?+C3+c4z+c5z +cez’,  (134)

where the first term can be added to the “background” AdS
part and ¢; = ¢;(u). Note that this is also the general
solution to the linearized equations with h,, =2V4,4,.
To this conformal D = 6 action, one can add the
cosmological Einstein and Weyl square theories as [32]

20 «a
‘C6D:R+_+_

I/pz 2 CZ;C/OZ - EConf s

(135)
whose field equations (by using the AdS-plane wave
Ansatz) reduce to

[ﬂ<D+%> <D+%> —i—%a(l]—f—%) + I}S,w =0.
(136)

Unlike the purely cubic theory above, this theory has a
unique vacuum with A = —10/#? which is fixed by the
cosmological Einstein part: neither the quadratic Weyl
piece nor the cubic part contributes to the effective
cosmological constant. Again assuming V = V(u, z), the
general AdS-plane wave solution to Eq. (136) with generic
a and f consists of six power terms

6
V(u,z) = Zc,-(u)z”", (137)
i=1

with powers
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ny = —2,

1 5 3af? 3alf*\?2 ¢4
— 2222 4 (1 i
34565 1~ ap \/( + 45 ) A

where again the first term can be added to the “background”
AdS part with no consequence. The second term is the
Kaigorodov solution, which can be expected without doing
any calculation, and the rest are the nontrivial pieces.

Let us consider the specific case of the “tricritical
gravity,” that is a = —5¢2/12 and p = ¢*/16 [32], for
which nj3 456 becomes —2 and 3, so that the differential
equation (136) degenerates into the form

n2=3,

(138)

2 6}
/1,,/%(28 —ﬁ> V:(),

with nontrivial logarithmic solutions in addition to the
expected Einsteinian parts, which are AdS and Kaigorodov
parts,

1
V(u,z) = 2 {cl +¢,In <§> + c5ln? (;)}
F B3 ey tesin(2) +egn? (2 (140)
4 )|

where again ¢; = ¢;(u). Note that both Eq. (137)
and Eq. (140) are also the general solutions to the
corresponding linearized equations for transverse-traceless
perturbations.

(139)

VII. CONCLUSION

We have shown that the AdS-plane wave metric solves
the most general gravity theory whose Lagrangian is an
arbitrary function of the metric, the Riemann tensor and the
covariant derivatives of the Riemann tensor. In doing so, we
have also given the explicit proof of the theorem, briefly
proved in Ref. [15], that two-tensors in these spacetimes
can be written as a sum of D"Sm, withn=20,1,2,.... In
our proof, the p p-wave solution played a role, so we have
revisited this spacetime and also constructed novel solu-
tions for quadratic gravity that also extend to the generic
gravity theories. We have devoted several sections to
example theories such as the cubic curvature gravity
generated by string theory, Lanczos-Lovelock gravity,
and the recent D = 6 conformal gravity, its nonconformal
modifications, and tricritical gravity.

Our exact solutions linearize the field equations, and
hence they also match the perturbative solutions for trans-
verse-traceless perturbations. Therefore, the particle spec-
trum of these theories can be read from these metrics, save
the spin-0 mode. Once the unitarity constraints on the
particle spectrum are considered, this result can be used to
choose the viable theories. For example, requiring
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nontachyonic physical excitations, that is M2 =
—b,+%>0 and lim, . M; = M2, >0, puts tight

constraints on the theory parameters such that they should
yield real, upper-bounded b,,’s.

In obtaining our solutions, we have reduced the field
equations of the most general gravity theory to N massive
Klein-Gordon equations satisfied by V,, n =1,2,..., N,
and one massless Klein Gordon equation satisfied by Vg
such that the general solution to the theory is
V=Vg+>N V, We have given sample solutions of
these equations when all the masses are different and when
the masses are equal, that is the critical gravity case. When
some M,’s are equal, the solutions involve logarithmic
parts. We gave the general logarithmic solution for the case
where all the M,,’s are zero. The specific examples for this
case are the critical gravity theory studied in Refs. [16,17]
and the tricritical gravity theory that we discussed here.

We have generalized and unified the previous works
[4,6,9] on p p-wave spacetimes. Namely, for any theory the
field equations for the p p-wave metrics in the Kerr-Schild
form reduce to

N
O+ b,)R,, =0, (141)

n=1

which can be further reduced to the Einstein gravity ones
under the assumptions of Refs. [4,6,9]. Another fact is that
the results we obtained in this work remain intact for the
theories with pure radiation sources, that is 7', dx*dx" =
T,.du?. For example, for a source having the functional
dependence T,, =T,,(u), the plane waves solving
agR,, =T,, are also particular solutions to the generic
gravity theory since [JR,, = 0 for these plane waves.

A possible way to consider sources is by introducing a
nonminimally coupled scalar field. In Refs. [49] and [50], it
was shown that a nonminimally coupled scalar field with a
specific potential can support p p-wave and AdS-plane wave
solutions for three-dimensional Einstein gravity. This spe-
cific potential form was generalized to higher dimensions in
Ref. [51]. Using this result together with those discussed
here, it is possible to find pp-wave and AdS-plane wave
solutions to some higher-curvature gravity theories coupled
to nonminimally coupled scalar fields [52].

In a future work, the explicit proof presented for the
AdS-plane waves will be extended to the Kerr-Schild-
Kundt class discussed in Refs. [15,18].
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APPENDIX A: TENSORS OF KERR-SCHILD-
KUNDT SPACETIMES

In this Appendix, we will prove Eq. (51). For the Kerr-
Schild-Kundt class of metrics

G = g/w + 2V/1ﬂﬂ'w (Al)

where g, is the AdS metric the following relations hold:

Wi, =0,
g =0,

Vdy = £y,

#9,V = 0. (A2)

The Riemann tensor for this class of metrics is given in
Eq. (B25) of Ref. [18] as
R”m/ﬁ = Rﬂal/ﬂ + 2/1aﬂ[yvﬂ]3"V - ZAﬂA[UVﬂ]aaV
+ ﬂ[yfﬁ] (/Iaaf‘V — M0,V + A, V)
+ (lagﬂ - lﬂga)ﬂ[uaﬂ]v

+ 2VI (A, V€5 — 4,V L) (A3)

One can free ¢ from derivatives with the help of
V..V, = R, 4, yielding

_ _ 2
20V = 225 V1d = Sphi) = = 25 (Gush = Auup)-
(A4)

Then, the Riemann tensor reduces to

_ 4 _ _
Rﬂay/} = Rﬂav/)’ + ﬁ V/W/l[vgﬂ]a + )“a(z/l[uv/)’] oMV + /1[115/3] oMV + l[y&/}] §”V + 5”’1[1/8/3] V)

— W24, V50,V + A, 850,V + A g€,V + E,4,05 V),

whose (0,4)-rank tensor version is

(AS)
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Ruap = Ryap + a2V 0,V + 2,600,V + 2898V + 4,0 V)
- ﬂﬂ (22[11?/)’] aav + )“[ug/}] 8(1‘/ + /1[115/}] gav =+ éaﬂ[vaﬁ] V) (A6)

Now, let us calculate the Weyl tensor

2 2
C;ww/} = Ruau/)’ - m (gu[uRﬁ]a - ga[uRﬂ]y) + mRQﬂ[ugﬁ]a' (A7)

The last term involving the scalar curvature has the form

Rg,u[ugﬁ]a = Rgﬂ[u@ﬁ]a - 2RVU’(1/1[L/§/}];4 - j'/M“[ugﬁ]o:) (AS)
The second term involving the Ricci tensor has the following form by using R,; = —% 9ap T Phalp:
o o 4VR _ _
IRl = e R = G R = Gap Ry = { P+~ | (At Fpu = 4 Gpa)- (A9)

With the help of the above results and C,uw/} = 0, the Weyl tensor reduces to

c

u"

wp = AR VR0V + 1,850,V + A Eg &,V + E4,05 V) = 4,20,V 50,V + A8 0,V + A5V + EA,05 V)

2 2(D -2) _ )
([) - V) (laﬂ[vgﬁ]y - )*ﬂ/l[ygﬂ]a)v (AIO)

+D—2 £?

where one can convert g, to g,, without producing any additional term. Also, using Egs. (B4) and (BS) of Ref. [18], one has
V05V =V, 05V = 1,5(0*V)0, V., (A11)

which can be used to write C,,,; in terms of the full metric quantities as

1 1 2(D-2)
C/wwﬂ = /1,4/% [_vaaﬁv - f(aaﬁ)v - Efafﬁv - mgaﬁ <,0 - Nz Vﬂ

1 1 2(D -2 |
+ Aap [—VMB,,V = &u,0,)V — bV =5 5% <ﬂ - % V)

1 1 2(D-2) \]
- lﬂ;{‘ﬂ |:_vaauv - é(aay)v - 5 ga‘fyv - D—gau (,0 - 0 V> ]

-2 2
= Aok [—VuaﬂV —SwpV - %@’fﬁ" - ﬁguﬂ (P - % V>- : (A12)
Thus, the definition
Qup = = {VaaﬂV +¢alpV + %éaéﬁv + ﬁgaﬂ </’ - 72@52_ 2 V)} ; (A13)
reduces C,qp to the desired Type-N form
Cravp = 4udQ0p + AadpQu — 44520 — Aad S5
= 42, Q0 (A14)
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APPENDIX B: BIANCHI IDENTITIES
FOR THE WEYL TENSOR

The once-contracted Bianchi identity

VYRuap = VuRop — VoRyp. (B1)
for constant R yields
VERyavp = V,uSap — VS5, (B2)
which then leads to
VIC iy =V Sﬁa — VsS4
- ﬁv (9uvSpia = GaSp)- (B3)

Using the twice-contracted Bianchi identity, that is

V”SM,, = 0 for constant R, one gets
D-3
ViC pavfp — D—2 (v Sﬁa vﬁSua)v (B4)

which is the once-contracted Bianchi identity of the Weyl
tensor for constant-curvature spacetimes.
Now, let us discuss V¥V*C,,,; which becomes

D-3
VIVYC oy = (|:|S ap = VFVS,5). (B5)
for  constant-curvature  spacetimes.  Then, using
V#V,S,, = 5255 S, which holds for the metrics (Al),
one gets
D -3 R
VHVY — B
C/,mwﬂ D— 2 (Dsaﬂ D—1 Saﬂ) ’ ( 6)

which proves Eq. (80).

APPENDIX C: EQUIVALENT LINEAR ACTION
OF CONFORMAL GRAVITY

Without finding the complicated field equations of the
six-dimensional conformal gravity, let us show a method
that leads to the effective cosmological constant. First, we
note that the effective cosmological constant of a generic
gravity theory is determined by only the nonderivative
Riemann terms appearing in the action because the field
equations derived from the terms involving the derivative of
the Riemann tensor always yield zero after evaluating them
for the maximally symmetric background

1
7 (8,0, —

Rhy = — 5565). (C1)
Thus, we need to focus on the terms involving the Riemann
tensor but not its derivatives. The procedure described in

Sec. VI for the construction of the ELA is based on the
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following Taylor series expansion of the Lagrangian
density:

v a [o} DPO
Fra ) = 1R + [ 0| w R ()
n0J gro

However, when doing computations, one may prefer to
consider the functional dependence of the f (R’;;) theory as
f(R, Ry, R,5) and one has

Frua(RoRERM) = F(R.RE.R™) + [ﬁ] (R-R)
R
of _
* {6&,] RP(Rﬁ ko)

8 o DL
+{ / } (RIS~ RID). (3)
R

NG
8Rf79 -
Using this formula, let us construct the ELA for each
nonderivative Riemann term in Eq. (129). First, we note
that the background Ricci tensor and the background scalar
curvature in six dimensions in our conventions are

_ 30 _
R=-%. R=-Zd. (C4)

Then, for the term f(R, R})) =
construct the ELA which are

RRYRY, one needs fand ¢ to

R 4500 450
k=~ (@
and the ELA for f(R, R))) = RRJR!, becomes
450 20
fea(R,RY) = o (R + p) (Co)
Moving the R? term, f and ¢ become
- 27000 2700
R3 —— Lﬂﬁ S é: = —f4 N (C7)
which yields the ELA,
2700 20
fea(R) = e <R + p) (C8)

Finally, for the term (R}, RZ")
calculated as

RURGRY, f and { can be

750 75

}:_—6’ C:

£ Z (C9)

and the ELA becomes
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Y 75 20
frLa(RY, R’;ﬂ) =— <R + —2> ) (C10)

o %

Collecting all these results yields the ELA for Eq. (129) as

conf 24 20
163E1§0t:_f4(R‘|‘£2>,

PHYSICAL REVIEW D 90, 124005 (2014)
whose vacuum equation is

s _(D=1)(D-2)
24,

=72

Thus, AdS with any cosmological constant is a solution as
expected in this scale-free theory.
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