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We construct the anti–de Sitter-plane wave solutions of generic gravity theory built on the arbitrary
powers of the Riemann tensor and its derivatives in analogy with the pp-wave solutions. In constructing the
wave solutions of the generic theory, we show that the most general two-tensor built from the Riemann
tensor and its derivatives can be written in terms of the traceless Ricci tensor. Quadratic gravity theory plays
a major role; therefore, we revisit the wave solutions in this theory. As examples of our general formalism,
we work out the six-dimensional conformal gravity and its nonconformal deformation as well as the
tricritical gravity, the Lanczos-Lovelock theory, and string-generated cubic curvature theory.
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I. INTRODUCTION

At short distances, Einstein’s gravity is expected to be
replaced by a better-behaved effective theory with more
powers of curvature and its derivatives which can be written
in the most general form (with no matter fields) as

I ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
fðgαβ; Rμ

νγσ;∇ρRμ
νγσ;…;

ð∇ρ1∇ρ2…∇ρMÞRμ
νγσ;…Þ: ð1Þ

Although we will give solutions to this theory, it is often
more convenient to take the following power-series
version:

I ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
1

κ
ðR − 2Λ0Þ þ αR2 þ βRμνRμν

þ γðRμνρσRμνρσ − 4RμνRμν þ R2Þ

þ
X∞
n¼3

CnðRiem;Ric;R;∇Riem;…Þn
�
; ð2Þ

where we have added a bare cosmological constant Λ0

which—although not required at short distances—plays a
major phenomenological role at long distances. We have
separated the quadratic parts as they will play a role in the
construction of solutions to the generic theory and we have
also organized the third term in the quadratic curvature
modifications into the Gauss-Bonnet form which is easier
to handle as it gives second-order equations in the metric
just like Einstein’s theory. Note that the third line represents

all other possible contractions of the Riemann tensor and its
derivatives which provide field equations that are beyond
fourth order in the metric; for example, terms such as R□R
are also included in that summation. In a microscopic
theory, such as string theory, the parameters α, β, γ, Cn, Λ0,
κ are expected to be computed and some of them obviously
vanish due to constraints such as unitarity, supersymmetry,
etc. Here, to stay as generic as possible and not focus too
much on such constraints, we shall consider Eqs. (1) and
(2) to be the theory and seek exact solutions for it. Of
course we shall give some specific examples as noted in the
Abstract. It should be mentioned that not all theories of the
form (2) give healthy, stable theories when linearized about
their vacua. For example, most theories yield higher
time-derivative free theories that have the Ostrogradsky
instability when small interactions are added. These con-
siderations do not deter us from studying the most general
action given by Eq. (1) or Eq. (2) since our theories include
all possible viable theories as well as the instability-plagued
ones. We know that the fðRÞ gravity theories are free from
the Ostrogradsky instability. In addition to this subclass of
Eq. (2), whether one can obtain a theory that is free from
the Ostrogradsky instability is still an open question.
Unlike the case of Einstein gravity (for which books

containing exact solutions exist [1,2]), there are only a few
solutions known for some variants or restricted versions of
the theory (2); see for example Refs. [3–14]. In Ref. [15],
we briefly sketched the proof that the anti–de Sitter (AdS)
waves (both plane and spherical) that solve Einstein’s
gravity and the quadratic gravity also solve the generic
theory (2), needless to say, with modified parameters. Here,
we shall give a detailed proof for the AdS-plane wave case
with a direct approach based on the proof that pp-wave
solutions of Einstein’s gravity and the quadratic gravity are
solutions to the theory withΛ0 ¼ 0. As we shall see, having

*gurses@fen.bilkent.edu.tr
†tahsin.c.sisman@gmail.com
‡btekin@metu.edu.tr

PHYSICAL REVIEW D 90, 124005 (2014)

1550-7998=2014=90(12)=124005(22) 124005-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.124005
http://dx.doi.org/10.1103/PhysRevD.90.124005
http://dx.doi.org/10.1103/PhysRevD.90.124005
http://dx.doi.org/10.1103/PhysRevD.90.124005


a nonzero Λ0 complicates the matter a great deal. (AdS-
spherical waves require a separate approach which we shall
come back to in another work.)
In this work, we will exclusively be interested in the

exact solutions (not perturbative excitations) about the
maximally symmetric vacua of the theory. Nevertheless,
the fact that these exact solutions linearize the field
equations just like the perturbative excitations, leads to
the following remarkable consequence: these metrics can
be used to test the unitarity of the underlying theory and to
find the excitation masses and the degrees of freedom of the
spin-2 sector. (There is an important caveat here: if the
theory for these test metrics turns out to be nonunitary, then
the theory is nonunitary. But, if the theory turns out to be
unitary for these test metrics, then this does not mean
that the theory is unitary; one still has to check the unitarity
of the spin-0 sector.) In the examples that we shall study
here, the procedure will be apparent.
AdS-plane waves [16,17] and AdS-spherical waves [18]

of quadratic gravity theories played a central role in
Ref. [15]. We shall study here the AdS-plane wave (some-
times called the Siklos metric [19]) given as

ds2 ¼ l2

z2
ð2dudvþ d~x · d~xþ dz2Þ þ 2Vðu; ~x; zÞdu2; ð3Þ

where u and v are null coordinates, ~x ¼ ðxiÞ with
i ¼ 1;…; D − 3, and l is the AdS radius related to the

effective cosmological constant as Λ ¼ − ðD−1ÞðD−2Þ
2l2 . For

this D-dimensional metric, the Ricci tensor can be com-
puted to be

Rμν ¼ −
ðD − 1Þ

l2
gμν þ ρλμλν; ð4Þ

where the vector is λμ ¼ δuμ and the scalar function is

ρ≡ −
�
□þ 4z

l2
∂z −

2ðD − 3Þ
l2

�
V; ð5Þ

with □≡∇μ∇μ and ∇μ is compatible with the full metric
(3). For these spacetimes, as we showed in Ref. [15], the
field equations of Eq. (2) reduce to

egμνþa0Sμνþa1□Sμνþ���þan□nSμνþ���¼0; ð6Þ

where Sμν is the traceless Ricci tensor. Taking the trace
gives e ¼ 0, which determines the effective cosmological
constant of the theory. Sμν ¼ 0, which is the Einsteinian
solution, naturally solves the full theory. In order for Eq. (3)
to be a solution to the cosmological Einstein theory, V
satisfies the ρ ¼ 0 equation, namely

�
□þ 4z

l2
∂z −

2ðD − 3Þ
l2

�
Vðu; ~x; zÞ ¼ 0; ð7Þ

whose solution is1

Vðu; ~x; zÞ ¼ z
D−5
2 ½c1ID−1

2
ðzξÞ þ c2KD−1

2
ðzξÞ� sinð~ξ · ~xþ c3Þ;

ð8Þ

with I, K being the modified Bessel functions, j~ξj ¼ ξ and
the ci’s are arbitrary functions of the null coordinate u
[16,20]. Further assuming ξ ¼ 0, the solution becomes [21]
(see also Ref. [20])

Vðu; zÞ ¼ cðuÞzD−3; ð9Þ

where we omit the other solution, that is 1
z2, since it can be

added to the “background” AdS part which is the V ¼ 0
case of the metric (3). This is all in the cosmological
Einstein theory. But, observe that neither Eq. (8) nor Eq. (9)
depend explicitly on the cosmological constant of the
theory. The dependence of the metric on the cosmological
constant is only in the “AdS background” part. This leads to
the fact that these Einsteinian solutions remain intact in the
most general theory (2) with the only adjustment being that
the cosmological constant that appears in the AdS back-
ground part depends on the parameters of the full theory. As
we shall show in Sec. VI, one can find the cosmological
constant, which will be determined by nonderivative terms
in the action (2), without going through the cumbersome
task of finding the field equations.
Now, let us consider the same metric as a solution to

quadratic gravity. AdS-plane wave solutions of quadratic
gravity again solve the field equations of the full theory (6)
which will be more apparent when the field equations are
represented in the factorized form (84). In this case, the
metric function V satisfies a more complicated fourth-order
equation�

□þ 4z
l2

∂z −
2ðD − 3Þ

l2
−M2

�

×

�
□þ 4z

l2
∂z −

2ðD − 3Þ
l2

�
Vðu; ~x; zÞ ¼ 0; ð10Þ

where the “mass” parameter reads

M2 ≡ −
1

β

�
1

κ
−

2

l2
ððD − 1ÞðDαþ βÞ

þðD − 3ÞðD − 4ÞγÞ
�
: ð11Þ

AssumingM2 ≠ 0, that is the nondegenerate case, the most
general solution of Eq. (10) can be constructed from two
second-order parts; one is the pure Einstein theory

1Since the equation is linear in V, the most general solution
will be a sum or an integral over the arbitrary parameter ξ if no
further condition is given. As the most general solution is easy to
write we do not depict it here.
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�
□þ 4z

l2
∂z −

2ðD − 3Þ
l2

�
Vaðu; ~x; zÞ ¼ 0; ð12Þ

and the other is a “massive” version of the theory

�
□þ 4z

l2
∂z −

2ðD − 3Þ
l2

−M2

�
Vbðu; ~x; zÞ ¼ 0; ð13Þ

with V ¼ Va þ Vb. Since we already know Va from
Eq. (8), let us write Vb

Vbðu; ~x; zÞ ¼ z
D−5
2 ½cb;1IνbðzξbÞ þ cb;2KνbðzξbÞ�

× sinð~ξb · ~xþ cb;3Þ; ð14Þ

where νb ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 1Þ2 þ 4l2M2

p
[16]. If, on the other

hand, M2 ¼ 0, which also includes the critical gravity
[22,23], the solution becomes highly complicated in the
most general case ξ ≠ 0 (this was given in the Appendix of
Ref. [16] which we do not reproduce here). For the special
case of ξ ¼ 0, the solution is2

Vðu; zÞ ¼ ca;1zD−3 þ z
D−5
2 ðcb;1zjνbj þ cb;2z−jνbjÞ; ð15Þ

for M2 ≠ 0, and

Vðu; zÞ ¼ c1zD−3 þ 1

D − 1

�
c2zD−3 −

c3
z2

�
ln

�
z
l

�
; ð16Þ

for M2 ¼ 0. Note that all the ca;i’s and cb;i’s appearing in
the solutions of the quadratic gravity are arbitrary functions
of u.
It was announced in Ref. [15] that these AdS-plane wave

solutions of Einstein gravity and the quadratic gravity also
solve the most general theory defined by the action (2) with
redefined parameters that are M2 and l2. This work
expounds upon the results of Ref. [15]. In doing this,
we show that the pp-wave spacetimes in the Kerr-Schild
form having the metric

ds2 ¼ 2dudvþ d~x · d~xþ 2Vðu; ~xÞdu2; ð17Þ

where ~x ¼ ðxiÞ with i ¼ 1;…; D − 2, and the AdS-plane
wave spacetimes have analogous algebraic properties, and
with these specific properties in both cases the highly
complicated field equations of the generic gravity theory
reduce to somewhat simpler equations that admit exact
solutions as exemplified above. For the pp-wave

spacetimes (17), in complete analogy with Eq. (6), the
field equations for the full theory (2) reduce to

a0Rμν þ a1□Rμν þ � � � þ an□nRμν þ � � � ¼ 0; ð18Þ

which is solved by the Einsteinian solution Rμν ¼ 0. Once
one considers plane waves, which are a subclass of
pp-wave spacetimes with the metric

ds2 ¼ 2dudvþ d~x · d~xþ hijðuÞxixjdu2; ð19Þ

where ~x ¼ ðxiÞ with i ¼ 1;…; D − 2, and hij is symmetric
and traceless, Rμν vanishes and one has a solution of
Eq. (18) for any hij. Thus, the plane-wave solutions of
Einstein’s gravity solve the generic theory [4]. The pp-
wave metric (17) solves Einstein’s gravity if the metric
function V satisfies the Laplace equation for the ðD − 2Þ-
dimensional space, and the fact that these solutions solve
the generic gravity theory (18) was first shown in Ref. [6].
In addition, if vanishing scalar invariant spacetimes, of
which Eq. (17) is a member, satisfy □Rμν ¼ 0, the field
equations of Eq. (18) again reduce to the Einsteinian ones
[9]. In addition to these Einstein gravity-based consider-
ations, as we shall show below by putting Eq. (18) in the
factorized form (37), one can observe that the pp-wave
solutions of quadratic curvature gravity which satisfy
ðb1□þ b0ÞRμν ¼ 0 also solve the generic theory. Note
that one can extend these solutions to theories with pure
radiation sources, that is Tμνdxμdxν ¼ Tuudu2. With these
kinds of sources and metrics satisfying□Rμν ¼ 0, the field
equations take the form a0Ruu ¼ Tuu, and the case of
Tuu ¼ TuuðuÞwas considered in Refs. [4,6,9]. A solution to
a0Ruu ¼ TuuðuÞ can be found, for example, by relaxing the
traceless condition on hijðuÞ of Eq. (19); then one simply
has the algebraic equation a0

P
D−2
i¼1 hiiðuÞ ¼ −TuuðuÞ [4].

The layout of the paper is as follows. In Sec. II, pp-wave
spacetimes in generic gravity theory are discussed to set the
stage for the AdS-plane waves discussed in Sec. III which
also includes the proof of the theorem that a generic two-
tensor can be reduced to a linear combination of gμν, Sμν,
and higher orders of Sμν (such as, for example, □nSμν).
Section IV is devoted to the field equations of quadratic
gravity for pp-wave and AdS-wave Ansätze which play a
major role in generic gravity theories. In Sec. V, we study
the wave solutions of fðRμν

αβÞ theories where the action
depends on the Riemann tensor but not on its derivatives.
As two examples, we study the cubic gravity generated by
string theory and the Lanczos-Lovelock theory. In Sec. VI,
we show that Einsteinian wave solutions solve the generic
gravity theory and as an example, we study the AdS-plane
wave solutions of the six-dimensional conformal gravity
and its nonconformal deformation as well as the tricritical
gravity. In the Appendices, we expound upon some of the
calculations given in the text.

2When νb ¼ 0, the Breitenlohner-Freedman (BF) bound [24]
is saturated and the solution turns into a logarithmic one given in
Ref. [16] as

Vðu; zÞ ¼ c1zD−3 þ z
D−5
2

�
c1 þ c2 ln

�
z
l

��
:
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II. pp-WAVE SPACETIMES IN GENERIC
GRAVITY THEORY

As discussed above, analogies with the pp-wave sol-
ution will play a role in our proof so we first study the
simpler pp-wave case. The pp-wave spacetime is a
spacetime with plane-fronted parallel rays (for further
properties of pp-waves see, for example, Refs. [25,26]).
A subclass of these metrics can be put into the Kerr-Schild
form as

gμν ¼ ημν þ 2Vλμλν; ð20Þ

where ημν is the Minkowski metric and the following
relations hold:

λμλμ ¼ 0; ∇μλν ¼ 0; λμ∂μV ¼ 0: ð21Þ

The pp-wave spacetimes have special algebraic properties.
The Riemann and Ricci tensors of pp waves in the Kerr-
Schild form are classified as Type N according to the “null
alignment classification” [27,28]. When the Riemann and
Ricci tensors are calculated by using Eq. (20), they,
respectively, become

Rμανβ ¼ λμλβ∂α∂νV þ λαλν∂μ∂βV − λμλν∂α∂βV

− λαλβ∂μ∂νV; ð22Þ

and

Rμν ¼ −λμλν∂2V; ð23Þ

which make the Type-N properties explicit. With these
forms of the Riemann and Ricci tensors, notice that any
contraction with the λμ vector yields zero. The scalar
curvature is zero for the metric (20). Besides the scalar
curvature, it has vanishing scalar invariants (VSIs). Since
the Riemann and Ricci tensors are of Type N, and the scalar
curvature is zero, the pp-wave spacetimes are also Type-N
Weyl. Lastly, since the λμ vector is covariantly constant, it is
nonexpanding, shear-free, and nontwisting; therefore, the
pp-wave metrics belong to the Kundt class of metrics.
The two tensors of pp-wave spacetimes also have a

special structure: any second-rank tensor constructed from
the Riemann tensor and its covariant derivatives can be
written as a linear combination of Rμν and higher orders of
Rμν (such as, for example,□nRμν with n a positive integer).
This result follows from the corresponding property of
Type-N Weyl and Type-N Ricci spacetimes given in
Ref. [10] as the pp-wave spacetimes in the Kerr-Schild
form share these properties. Although the pp-wave result
was implied in Ref. [10], here we provide the proof along
the lines of Ref. [6] since it gives some insight on the
corresponding proof for the AdS-plane wave given below.

A. Two-tensors in a pp-wave spacetime

A generic two-tensor of the pp-wave spacetimes can be,
symbolically, represented as

½Rn0ð∇n1RÞð∇n2RÞ…ð∇nmRÞ�μν; ð24Þ

where R denotes the Riemann tensor, and ∇niR represents
the ð0; ni þ 4Þ-rank tensor constructed by ni covariant
derivatives acting on the Riemann tensor, so the term in
½…�μν is a ð0; 4n0 þ 4mþP

m
i¼1 niÞ-rank tensor whose

indices are contracted until two indices, μ and ν, are left
free. Here, the important point to notice is that each
Riemann tensor has two λ’s [Eq. (22)], so in total there
are 2ðn0 þmÞ λ vectors. The remaining tensor structure
involves just ∇nV’s.
Here is what we will prove: the generic two-tensors of

the form (24) will boil down to a linear combination of Rμν

and □nRμν’s.
The first step of the proof is to show that the λ vector

cannot make a nonzero contraction. It is easy to show this
by using mathematical induction. With the identity
λμ∂μV ¼ 0, the λ contraction of the term ∇2V is simply
zero

λμ∇ν∂μV ¼ 0; ð25Þ

after using the fact that λ is covariantly constant. Then, to
show that the λ contraction of the term ∇nV reduces to a
lower-order term, we first observe that

λμj∇μ1…∇μj…∇μnV ¼ ∇μ1ðλμj∇μ2…∇μj…∇μnVÞ: ð26Þ

Second, when λ is contracted with the first covariant
derivative, by using ½∇α;∇β�Vρ ¼ Rαβ

ρ
σV

σ and
λμRμανβ ¼ 0, one has

λμ1∇μ1∇μ2…∇μnV ¼ λμ1 ½∇μ1 ;∇μ2 �…∇μnV

þ λμ1∇μ2∇μ1…∇μnV

¼ λμ1∇μ2∇μ1…∇μnV; ð27Þ

which completes the reduction of the nth-order term to the
ðn − 1Þth order. Thus, λ cannot make a nonzero contraction
either with other λ’s or with ∇nV’s.
Although we achieved our goal, let us discuss another

proof of this step which gives some insight into the
corresponding discussion in the AdS-plane wave case.
For the pp-wave metrics in the Kerr-Schild form, one
can choose the coordinates in such a way that the metric
takes the form

ds2 ¼ 2dudvþ d~x · d~xþ 2Vðu; ~xÞdu2; ð28Þ

where ~x ¼ ðxiÞ with i ¼ 1;…; D − 2, and u and v are null
coordinates, so
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λμdxμ ¼ du ⇒ λμ∂μ ¼ ∂v ⇒ λμ∂μV ¼ ∂vV ¼ 0: ð29Þ

With this choice of the metric, ∇μλ
ν ¼ 0 leads to

Γν
μσλ

σ ¼ 0. Now, let us look at the expansion of ∇nV
which has the form

∇μ1∇μ2…∇μnV ¼ ∂μ1∂μ2…∂μnV

− ð∂μ1∂μ2…∂μn−2Γ
σ1
μn−1μnÞ∂σ1V

− Γσ1
μn−1μn∂μ1∂μ2…∂μn−2∂σ1V − � � �

− ð−1Þn−1Γσ1
μ1μ2Γ

σ2
σ1μ3…Γσn−1

σn−2μn∂σn−1V:

ð30Þ

The structures appearing in this expansion are the
Christoffel connection, and partial derivatives of both V
and the Christoffel connection. When one has a λ con-
traction, some terms involve a contraction of λ with one of
the partial derivatives acting on V which yields an imme-
diate zero since λμ ¼ δμv and ∂vV ¼ 0. In addition, a λ
contraction with a Christoffel connection also yields zero.
On the other hand, if λ is contracted with one of the partial
derivatives acting on a Christoffel connection, one needs to
use the definition of the Riemann tensor, for example as

λμj∂μ1…∂μj…∂μn−2Γ
σ1
μn−1μn

¼ ∂μ1…∂μn−2ðλμj∂μjΓ
σ1
μn−1μnÞ

¼ ∂μ1…∂μn−2 ½λμjðRσ1
μnμjμn−1 þ ∂μn−1Γ

σ1
μjμn

−Γσ1
μjαΓα

μn−1μn þ Γσ1
μn−1αΓα

μjμnÞ�; ð31Þ

where the terms in the square brackets are just zero since
λμRμανβ ¼ 0 and Γν

μσλ
σ ¼ 0.

Since λ cannot make a nonzero contraction, there should
be at most two λ’s—that is, one Riemann tensor—so the
nonzero terms of the form (24) reduce to

Rμν; or ½∇2nR�μν; ð32Þ

where an even number of covariant derivatives is required
to have a two-tensor. After determining the nonzero terms
required by the first step of the proof, in the second step, let
us discuss the structure of these nonzero terms of the form
½∇nR�μν. In obtaining a two-tensor by contracting the
indices of ½∇nR�μν, one should either have

gαβ∇μ1∇μ2…∇μ2nRμανβ ¼ ∇μ1∇μ2…∇μ2nRμν; ð33Þ

or

∇μ1∇μ2…∇α…∇β…∇μ2n−2Rμανβ: ð34Þ

In Eq. (34), one can rearrange the order of the derivatives.
Each change of order introduces a Riemann tensor, and as
we have just shown, a two-tensor contraction in the

presence of this additional Riemann tensor gives zero.
The only nonzero part is the original term which in the final
form reads

∇μ1∇μ2…∇μ2n−2∇α∇βRμανβ ¼ ∇μ1∇μ2…∇μ2n−2□Rμν;

ð35Þ

where we used the Bianchi identity on the Riemann tensor.
Further contractions in Eqs. (33) and (35) should be
between the indices of the derivatives and as we have
shown we can change the order of the derivatives without
introducing an additional term; then, one has

½∇2nR�μν ¼ □nRμν:

As a result, the nonzero terms are in the form Rμν and
□nRμν, where n is a positive integer. Any two-tensor of the
pp-wave spacetimes in the Kerr-Schild form is a linear
combination of these terms. This completes the proof.
Before proceeding to the field equations, we note that

with this result about the two-tensors, the VSI property of
the ppwaves in the Kerr-Schild form is explicit since Rμν is
traceless.3

B. Field equations of the generic theory
for a pp-wave spacetime

Once the above result is used, the field equations of the
most general theory (2) with Λ0 ¼ 0 reduce to

XN
n¼0

an□nRμν ¼ 0; ð36Þ

where the an’s are constants depending on the parameters
of the theory (namely on κ, α, β, γ, Cn), and N can be as
large as possible. Note that a pp-wave metric [Eq. (20)]
solving Rμν ¼ 0 is a solution of Eq. (36). This fact was
demonstrated in Ref. [6] without finding the explicit form
of Eq. (36) by taking Rμν ¼ 0 as an assumption from the
beginning. The plane waves, which are special pp waves
with Vðu; ~xÞ ¼ hijðuÞxixj where hij is symmetric and
traceless, provide a solution to Eq. (36) for any hij by
satisfying Rμν ¼ 0 [4]. As discussed in Ref. [9], one can
also follow the method of constraining pp-wave space-
times such that Rμν is the only nonzero two-tensor, which
effectively means □Rμν ¼ 0; then, the field equations of
the generic gravity theory reduce to the Einstein gravity
ones. On the other hand, obtaining Eq. (36) makes one
realize that the pp-wave solutions of the quadratic gravity
theory also solve the generic gravity theory (2). To show
this, we first notice that one can factorize Eq. (36) as

3For the proof of the VSI property of plane waves, see
Ref. [29].
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YN
n¼1

ð□þ bnÞRμν ¼ 0; ð37Þ

where the bn’s are constants depending on the original
parameters of the theory. Here, the bn’s can be real or
complex and once they are complex, they must appear in
complex-conjugate pairs.
To further reduce Eq. (37), by first using the covariantly

constant property of λμ, one has

□Rμν ¼ □ð−λμλν∂2VÞ ¼ −λμλν□∂2V: ð38Þ

Here, we note that for any scalar function ϕ (not necessarily
V) satisfying λμ∂μϕ ¼ ∂vϕ ¼ 0, one has

□ϕ ¼ gμν∇μ∇νϕ ¼ ημν∂μ∂νϕ − ημνΓσ
μν∂σϕ; ð39Þ

after also using Γν
μσλ

σ ¼ 0 which is valid in the coordinates
we have chosen [Eq. (28)]. Here, ημν is the flat metric in
null coordinates. In addition, for Eq. (28), the Christoffel
connection has the form

Γσ
μν ¼ λσλν∂μV þ λσλμ∂νV − λμλνη

σβ∂βV; ð40Þ

which leads to ημνΓσ
μν ¼ 0; therefore, one has

□ϕ ¼ ∂2ϕ: ð41Þ

Furthermore, since ∂2 ¼ 2 ∂2
∂u∂v þ ∂̂2, where

∂̂2 ≡P
D−2
i¼1

∂2
∂xi∂xi, and ∂vϕ ¼ 0, we have

□ϕ ¼ ∂̂2ϕ: ð42Þ

With this property and ∂v∂̂…∂̂V ¼ 0, one has

□nV ¼ ∂̂2nV; ð43Þ

which reduces Eq. (37) to

λμλν∂̂2
YN
n¼1

ð∂̂2 þ bnÞV ¼ 0: ð44Þ

Note that this equation is linear in V, so one can make an
important observation for pp-wave metrics in the Kerr-
Schild form. One can consider the pp-wave metric (20) as
gμν ¼ ημν þ hμν where hμν ≡ 2Vλμλν, and with this defi-
nition the Ricci tensor becomes

Rμν ¼ −
1

2
∂2hμν; ð45Þ

after using the fact that λμ is covariantly constant. Then,
once one considers this form of the Ricci tensor and
□nRμν ¼ ∂2nRμν in either Eq. (36) or Eq. (37), it is clear

that the field equations of the generic theory (2) for pp
waves are linear in hμν as in the case of a perturbative
expansion of the field equations around a flat background
for a small metric perturbation ‖h‖≡ ‖g − η‖ ≪ 1.
This observation suggests that there are two possible

ways to find the field equations of the generic gravity
theory for pp waves, namely, (i) by deriving the field
equations and directly putting the pp-wave metric Ansatz
(20) into them, or (ii) by linearizing the derived field
equations around the flat background and putting hμν ¼
2Vλμλν in these linearized equations. Although the second
way involves an additional linearization step, the idea itself
provides a shortcut in finding the field equations of pp
waves for a gravity theory described with a Lagrangian
density which is constructed from the Riemann tensor but
not its derivatives. Namely, due to linearization in the field
equations, only up to the quadratic curvature order of these
theories contributes to the field equations. This idea is made
explicit in the examples discussed in Sec. V. Lastly, since
hμν ¼ 2Vλμλν is transverse, ∂μhμν ¼ 0, and traceless,
ημνhμν ¼ 0, to find the field equations by following the
second way, one needs only the linearized field equations
for the transverse-traceless metric perturbation.
Assuming nonvanishing and distinct bn’s, the most

general solution of Eq. (44) is

V ¼ VE þℜ

�XN
n¼1

Vn

�
; ð46Þ

where VE is the solution to Einstein’s theory, namely
∂̂2VE ¼ 0,ℜ represents the real part, and the Vn’s solve the
equation of the quadratic gravity theory, i.e. ð∂̂2 þ bnÞVn ¼
0 (in case the reader has any doubt that this equation is the
quadratic gravity theory’s equation for the pp wave, we
shall show this explicitly below). Then, the pp-wave
solution of Einstein gravity also solves a generic gravity
theory which was already known in the literature [6]. Here,
the novel result is that the pp-wave solutions of the
quadratic gravity theory also solve the generic theory.
These solutions are of the form

Vnðu; ~xÞ ¼ c1;nðuÞ sinð~ξn · ~xþ c2;nðuÞÞ; ð47Þ

with j~ξnj2 ≡ bn. Here, we consider the case with real bn
since the bn’s are related to the masses of the perturbative
excitations around a flat background as M2

n;flat ¼ −bn.
What we have learned in the pp-wave case will be applied
to the Λ0 case below.

III. ADS-PLANE WAVE SPACETIMES IN
GENERIC GRAVITY THEORY

AdS-plane waves are a member of the Kerr-Schild-
Kundt metrics given as
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gμν ¼ ḡμν þ 2Vλμλν; ð48Þ

where ḡμν is the AdS metric and the following relations
hold:

λμλμ ¼ 0; ∇μλν ¼ ξðμλνÞ;

ξμλ
μ ¼ 0; λμ∂μV ¼ 0: ð49Þ

The second identity serves as a definition of the ξ
vector where the symmetrization convention is ξðμλνÞ≡
1
2
ðξμλν þ λμξνÞ.
As in the case of the pp-wave spacetimes, the AdS-plane

wave also satisfies special algebraic properties. However,
instead of the Riemann and Ricci tensors, the Weyl tensor
and the traceless Ricci tensor, that is Sμν ≡ Rμν − R

D gμν, are
Type N. By using the results in Ref. [18], the traceless Ricci
and Weyl tensors can be calculated as

Sμν ¼ ρλμλν; ð50Þ

and

Cμανβ ¼ 4λ½μΩα�½βλν�; ð51Þ

where the square brackets denote antisymmetrization, and ρ
is defined as

ρ≡ −
�
□þ 2ξμ∂μ þ

1

2
ξμξμ −

2ðD − 2Þ
l2

�
V; ð52Þ

and the symmetric tensor Ωαβ is defined as

Ωαβ ≡ −
�
∇α∂βV þ ξðα∂βÞV þ 1

2
ξαξβV

þ 1

D − 2
gαβ

�
ρ −

2ðD − 2Þ
l2

V

��
: ð53Þ

In fact, these forms follow from Eqs. (48) and (49), and the
derivations are given in Appendix A. In the given forms
above, Type-N properties of the Weyl and traceless Ricci
tensors are explicit. It can also be seen that the λμ

contractions with the traceless Ricci tensor are zero.
This is also the case for the Weyl tensor, since Ωαβ satisfies

λαΩαβ ¼
1

2
λβΩα

α; ð54Þ

where

Ωα
α ¼ ξα∂αV −

2

D − 2
ρþ 4

l2
V: ð55Þ

The scalar curvature for the AdS-plane waves is constant
R ¼ −DðD − 1Þ=l2. In addition, these spacetimes have
constant scalar invariants (CSI), for example

RμαβγRμαβγ ¼ 2DðD− 1Þ
l4

; RμσRμσ ¼ DðD− 1Þ2
l4

: ð56Þ

Finally, due to ∇μλν ¼ ξðμλνÞ and λμξμ ¼ 0, the λμ vector is
nonexpanding, shear-free, and nontwisting; therefore, the
AdS-plane wave metrics belong to the Kundt class of
metrics.
Like pp-wave spacetimes, the two tensors of AdS-plane

wave spacetimes also have a special structure. In Ref. [15],
while sketching a proof using the boost weight decom-
position [27], we gave the following theorem:

Consider a Kundt spacetime for which the Weyl and the
traceless Ricci tensors are of type N, and all scalar
invariants are constant. Then, any second-rank sym-
metric tensor constructed from the Riemann tensor and
its covariant derivatives can be written as a linear
combination of gμν, Sμν, and higher orders of Sμν (such
as, for example, □nSμν).

The AdS-plane wave spacetimes belong to this class.
Below, we give a direct proof of this theorem that is
specific to the AdS-plane waves.

A. Two-tensors in an AdS-plane wave spacetime

A generic two-tensor obtained by contracting any
number of Riemann tensors and their covariant derivatives
can be symbolically written as

½Rr0ð∇r1RÞð∇r2RÞ…ð∇rsRÞ�μν; ð57Þ

where the same conventions as in the pp-wave case are
used. Since the Riemann tensor is

Rμανβ ¼ Cμανβ þ
2

D − 2
ðgμ½νSβ�α − gα½νSβ�μÞ

þ 2R
DðD − 1Þ gμ½νgβ�α; ð58Þ

equivalently, one can write Eq. (57) as a sum of terms in the
form

½Cm0ð∇m1CÞð∇m2CÞ…ð∇mkCÞSn0ð∇n1SÞ
× ð∇n2SÞ…ð∇nlSÞ�μν; ð59Þ

where C and S represent the Weyl tensor and the traceless-
Ricci tensor, respectively. Note that one may consider
adding the metric to Eq. (59) to make the discussion more
complete, but it would be a trivial addition which would
boil down to Eq. (59) after carrying out contractions
involving the gμν’s.
Here is what we will prove: the generic two-tensors of

the form (59) will boil down to a linear combination of Sμν
and □nSμν’s.
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The proof is somewhat lengthy and lasts until the end of
this section. The reader who is not interested in the proof,
but rather just in the applications of the result can skip this
section. Now, let us give the proof which involves
two steps:
(1) First, we prove that ½Cm0ð∇m1CÞð∇m2CÞ

…ð∇mkCÞSn0ð∇n1SÞð∇n2SÞ…ð∇nlSÞ�μν ¼ 0 unless
ðm0; k; n0; lÞ ¼ ð0; 1; 0; 0Þ, or ðm0; k; n0; lÞ ¼
ð0; 0; 1; 0Þ or ðm0; k; n0; lÞ ¼ ð0; 0; 0; 1Þ.

(2) For even4 n, we then prove that ½∇nS�μν and ½∇nC�μν
have a second-rank tensor contraction which is a
linear combination of □

n
2S, □

n
2
−1S, …, □S, and S.

1. ½Cm0ð∇m1CÞð∇m2CÞ…ð∇mkCÞSn0ð∇n1SÞð∇n2SÞ…
ð∇nlSÞ�μν ¼ 0 if m0 ≠ 0 and n0 þ kþ l > 1

Before giving the precise proof, let us present the basic
idea. If one considers the forms of the Weyl tensor and the
traceless Ricci tensor together with the property
∇μλν ¼ ξðμλνÞ, then one can see that the generic term
(59) represents the sum of terms that are made up of
2ðm0 þ kþ n0 þ lÞ λ vectors and various combinations of
the derivatives of V, the ξ vector and its derivatives.
Without loss of generality, one can assume m1 < m2 <
… < mk and n1 < n2 < … < nl; then, the building blocks
of Eq. (59) are

λ; ξ;∇pV;∇rξ;

p ¼ 1;…;max ðnl; mkÞ þ 2; r ¼ 1;…;max ðnl; mkÞ:

We proved that these building blocks (other than λ)
generate a free-index λ vector when they are contracted
with a λ vector. In addition, the remaining tensor structure
just involves the same buildings blocks that have the same
or lower derivative order than the order before contraction.
Naturally, any tensor that is made up of these building
blocks inherits this property. Due to this property, it is not
possible to lower the number of λ vectors by contractions
and these λ vectors sooner or later yield a zero contraction.
Therefore, to get a nonzero term from Eq. (59), the unique
possibility is to have at most two λ vectors, that is

2ðm0 þ kþ n0 þ lÞ ¼ 2 ⇒ m0 þ kþ n0 þ l ¼ 1;

yielding either ðm0; k; n0; lÞ ¼ ð1; 0; 0; 0Þ, ðm0; k; n0; lÞ ¼
ð0; 1; 0; 0Þ, ðm0; k; n0; lÞ ¼ ð0; 0; 1; 0Þ, or ðm0; k; n0; lÞ ¼
ð0; 0; 0; 1Þ. But, ðm0; k; n0; lÞ ¼ ð1; 0; 0; 0Þ is ½C�μν which is
just zero. Thus, the possible nonzero terms coming from
Eq. (59) are in the form Sμν, ½∇nS�μν, and ½∇mC�μν which
are studied in Sec. III A 2.
Now, let us start our rigorous proof and first show how

a free-index λ vector is generated by any λ contraction.

To this end, we consider the behavior of the ð0; nÞ-rank
tensor ∇n−1ξ under λ contractions. To analyze ∇n−1ξ, we
work in the null frame in which the metric has the form

ds2 ¼ l2

z2
ð2dudvþ d~x · d~xþ dz2Þ þ 2Vðu; ~x; zÞdu2;

ð60Þ

where u and v are null coordinates, and ~x ¼ ðxiÞ with
i ¼ 1;…; D − 3. Thus, λμ and λμ are of the form

λμdxμ ¼ du; λμ∂μ ¼
z2

l2
∂v; ð61Þ

which shows why the metric function V does not depend on
the coordinate v due to the relation λμ∂μV ¼ 0. In addition,
ξμ and ξμ become [18]

ξμ ¼
2

z
δzμ; ξμ ¼ 2z

l2
δμz : ð62Þ

The properties ξμλμ ¼ 0 and ½∇μ;∇α�λμ ¼ − ðD−1Þ
l2 λα yield

the following identities for the ξμ vector:

λμ∇αξμ ¼ −
2

l2
λα; ð63Þ

and

λμ∇μξα ¼ −
2

l2
λα; ð64Þ

where we also used ∇μξ
μ ¼ − 2ðD−1Þ

l2 .
Now, let us look at ∇n−1ξ in the explicit form:

∇μ1∇μ2…∇μn−1ξμn ¼ ∂μ1∂μ2…∂μn−1ξμn

− ð∂μ1∂μ2…∂μn−2Γ
σ1
μn−1μnÞξσ1

− Γσ1
μn−1μn∂μ1∂μ2…∂μn−2ξσ1 − � � �

− ð−1Þn−1Γσ1
μ1μ2Γ

σ2
σ1μ3…Γσn−1

σn−2μnξσn−1 :

ð65Þ

The structures appearing in this expression are the
Christoffel connection, and partial derivatives of both ξμ
and the Christoffel connection. In considering possible λμ

contractions with the terms in this expansion, we first note
that Eq. (62) yields

λμn∂μ1∂μ2…∂μn−1ξμn ¼ 0; λμj∂μ1…∂μj…∂μn−1ξμn ¼ 0:

ð66Þ

In addition, since ∂vgαβ ¼ 0, a λμ contraction with the
derivatives acting on a Christoffel connection also yields
zero:

4Note that for odd n, it is not possible to have a two-tensor
contraction.
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λμj∂μ1…∂μj…∂μn−2Γ
σ1
μn−1μn ¼ 0: ð67Þ

Moving to the λμ and λμ contractions of the Christoffel
connection, the property ∇αλβ ¼ ξðαλβÞ leads to

Γσ
αβλσ ¼ −

1

2
ðλαξβ þ ξαλβÞ; ð68Þ

Γα
βσλ

σ ¼ 1

2
ðξαλβ − λαξβÞ; ð69Þ

in the null frame. In addition, when λμ or λμ contracts with a
Christoffel connection under the action of the partial
derivatives, one has

λσ∂μ1∂μ2…∂μnΓ
σ
αβ ¼ −

1

2
λα∂μ1∂μ2…∂μnξβ

−
1

2
λβ∂μ1∂μ2…∂μnξα; ð70Þ

λσ∂μ1∂μ2…∂μnΓ
α
βσ ¼

1

2
ðξαλβ − λαξβÞz∂μ1∂μ2…∂μn

1

z
;

ð71Þ

where a new structure (that is, partial derivatives acting on
1=z) appears; however, it yields zero after a further λμ

contraction.
Having discussed all possible λ contraction patterns

[Eqs. (66)–(71)] with the structures involved in the expan-
sion of∇n−1ξ, we now show that a λ vector contraction with
the ð0; nÞ-rank tensor ∇n−1ξ provides a free-index λ one-
form (we mean λμ). To see this, we first notice that the
possible nonzero contractions of the λ vector (we mean λμ),
which are Eqs. (69) and (71), always consist of two terms
such that one of them involves a λ one-form and the other
involves a λ vector. If the reproduced λ one-form is
noncontracting, then we have achieved the goal of having
a free-index λ one-form. However, if it is contracting, then
it must make a contraction in the form of either Eq. (68) or
Eq. (70), so this contracted λ one-form generates new λ one-
forms. The same procedure holds for these newly generated
λ one-forms and when all the possible λ one-form con-
tractions are carried out, one always ends up with a free-
index λ one-form. On the other hand, returning to the λ
vector reproduced after the first contraction, it necessarily
makes a contraction and if this contraction is not zero, it
should again be in the form of either Eq. (69) or Eq. (71).
Thus, one should follow the same procedure until the newly
generated λ vector makes a zero contraction and this is in
fact the case since for a λ vector, there is a limited number
of nonzero contraction possibilities generating a new λ
vector in each term in the ∇n−1ξ expansion (65).
For any number of λμ contractions with the ð0; nÞ-rank

tensor ∇n−1ξ, the case is the same and each λμ contraction
generates a free-index λμ one-form in each term in the

∇n−1ξ expansion (65) if it makes a nonzero contraction. To
see this, we just note that after each λμ contraction the
remaining structures are the original ones (the ξμ one-form,
the Christoffel connection, and partial derivatives of both
the ξμ one-form and the Christoffel connection) in addition
to the newly generated ξμ vectors and ∂μ1∂μ2…∂μnð1=zÞ-
type forms which yield zero under a further λμ contraction.
Therefore, the discussion of the further λμ contractions is
not different from the single λμ contraction, and each λμ

contraction generates a free-index λ one-form.
Moving to the other tensor structure appearing in

Eq. (59), the ð0; nÞ-rank tensor ∇nV also shares the same
properties as ∇n−1ξ under λμ contractions. Expanding ∇nV
yields

∇μ1∇μ2…∇μn−1∂μnV ¼ ∂μ1∂μ2…∂μn−1∂μnV

− ð∂μ1∂μ2…∂μn−2Γ
σ1
μn−1μnÞ∂σ1V

− Γσ1
μn−1μn∂μ1∂μ2…∂μn−2∂σ1V − � � �

− ð−1Þn−1Γσ1
μ1μ2Γ

σ2
σ1μ3…Γσn−1

σn−2μn∂σn−1V;

ð72Þ

where ∂μV simply replaces ξμ in the above discussion.
When this expansion is contracted with the λμ vectors, the
possible contraction patterns are the same as for the ∇n−1ξ
case except that the ∂μ1∂μ2…∂μn−1ξμn term is replaced by
∂μ1∂μ2…∂μnV which also yields a zero under a λμ con-
traction as

λμj∂μ1…∂μj…∂μnV ¼ 0: ð73Þ

Therefore, after exactly the same discussion as in the case
of ∇n−1ξ, one can show that each λμ contraction with ∇nV
generates a free-index λμ one-form.
We established that each λ vector contraction with the

ð0; nÞ-rank tensors∇n−1ξ and ∇nV generates a free-index λ
one-form; however, after a certain number of λ vector
contractions, these tensors become necessarily zero,
because the possible nonzero λ vector contractions are
madewith the indices of the Christoffel connections and the
maximum number of Christoffel connections is just ðn − 1Þ
for both cases. These ðn − 1Þ Christoffel connections
involve n free down indices. Each λ vector contraction
reduces the number of contractible down indices5 by two
since it also introduces a free-index λ one-form. Thus, if n is
even, then n=2 is the maximum number of λ vector
contractions before one necessarily gets a zero. On the
other hand, for odd n, ðn − 1Þ=2 is the maximum number of
nonzero λ vector contractions.
In obtaining a two-tensor from the rank ð0; 4ðm0 þ kÞ þ

2ðn0 þ lÞ þP
k
i¼1 mi þ

P
l
i¼1 niÞ tensor

5The ones giving a nonzero result.
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½Cm0ð∇m1CÞð∇m2CÞ…ð∇mkCÞSn0ð∇n1SÞð∇n2SÞ…ð∇nlSÞ�;
ð74Þ

one may prefer to make contractions involving λ one-forms
first. To have a nonzero contraction, λ one-forms should be
contracted with either ∇n−1ξ tensors or ∇nV tensors.
However, since these contractions generate new λ one-
forms, the number of λ one-forms cannot be reduced by
contractions. In addition, there is a limit for getting a
nonzero contraction from the tensors ∇n−1ξ and ∇nV. As a
result, in the presence of more than two λ one-forms, one
cannot get rid off these λ one-forms by contraction and
they, sooner or later, make zero contractions.
To get a nonzero two-tensor from Eq. (74), there should

be at most two λ one-forms and they should provide the
two-tensor structure. Then, the possibilities are

Sμν; ½∇nC�μν; ½∇nS�μν; ð75Þ

where we have not included ½C�μν as the Weyl tensor is
traceless. Note that to have a two-tensor, the number of
covariant derivatives acting on the Weyl tensor and the
traceless Ricci tensor should be even. Next, we will reduce
the last two expressions to the desired form.

2. Reduction of ½∇nS�μν and ½∇nC�μν to
Pn

2
i¼0 diðD;RÞ□iS

First, let us analyze the ½∇nS�μν term where n is even
because we want to get a two-tensor contraction from ∇nS.

The lowest-order term is ½∇2S�μν which has two contraction
possibilities: □Sμν and ∇α∇μSαν. The first contraction
possibility is already in the desired form. For the
second possibility, changing the order of the covariant
derivatives yields

∇α∇μSαν ¼ ∇μ∇αSαν þ ½∇α;∇μ�Sαν; ð76Þ

where the first term is zero due to the Bianchi identity and
the constancy of the scalar curvature; finally, it takes the
form

∇α∇μSαν ¼
R

D − 1
Sμν; ð77Þ

after using Eq. (58). Having discussed the lowest order, to
use mathematical induction, let us analyze a generic nth-
order derivative term ½∇nS�μν. The contraction patterns for
this term are as follows: (i) the two free indices can be on
the S tensor; (ii) at least one of the free indices is on the
covariant derivatives. In the first contraction pattern, the
indices of the covariant derivatives are totally contracted
among themselves and it is possible to rearrange the order
of the covariant derivatives to put the term in the form
□

n
2Sμν by using

∇μ1∇μ2

�Yr−2
i¼3

∇μi

�
Sμr−1μr ¼ ∇μ2∇μ1

�Yr−2
i¼3

∇μi

�
Sμr−1μr þ ½∇μ1 ;∇μ2 �

�Yr−2
i¼3

∇μi

�
Sμr−1μr

¼ ∇μ2∇μ1

�Yr−2
i¼3

∇μi

�
Sμr−1μr þ

Xr−2
s¼3

Rμ1μ2μs
μrþ1

�Ys−1
i1¼3

∇μi1

�
∇μrþ1

� Yr−2
i2¼sþ1

∇μi2

�
Sμr−1μr

þ Rμ1μ2μr−1
μrþ1

�Yr−2
i¼3

∇μi

�
Sμrþ1μr þ Rμ1μ2μr

μrþ1

�Yr−2
i¼3

∇μi

�
Sμr−1μrþ1

: ð78Þ

In addition, if one uses Eq. (58), then the parts of the
Riemann tensor involving the Weyl and the traceless Ricci
tensors just yield zeros as we proved above. The remaining
nonzero part of the Riemann tensor in which the tensor
structure is just two metrics [that is the third term in
Eq. (58)] reduces the terms involving the Riemann tensor to
ðn − 2Þth-order terms as ½∇n−2S�μν. Thus, the first con-
traction pattern of ½∇nS�μν yields a sum involving □

n
2Sμν

and ½∇n−2S�μν terms. On the other hand, for the second
contraction pattern, at least one of the covariant derivatives
is contracted with S and in order to use the Bianchi identity
∇ρSμρ ¼ 0, one needs to change the order of the covariant
derivative contracting with S until it is next to S by using
Eq. (78). Again, during this process terms involving the

Riemann tensor and ðn − 2Þ covariant derivatives are
introduced, and after the use of Eq. (58), these terms
become ½∇n−2S�μν. Thus, the second contraction pattern of
½∇nS�μν yields a sum involving ½∇n−2S�μν terms. Then, just
as we showed that the lowest-order derivative term ½∇2S�μν
satisfies the desired pattern and that the nth-order term
½∇nS�μν reduces to a sum involving a desired term □

n
2Sμν

and ðn − 2Þth-order terms ½∇n−2S�μν, it is clear by math-
ematical induction that ½∇nS�μν can be represented as a sum
in the form

½∇nS�μν ¼
Xn

2

i¼0

diðD;RÞ□iSμν; ð79Þ
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where dn=2 is just one, and the dimension and scalar
curvature dependence of the other di’s are due to the
Riemann tensors that are transformed via Eq. (58).
Now, let us move to the term ½∇nC�μν where n is again

even because we want to get a two-tensor contraction from
∇nC. Since the Weyl tensor is traceless, at least two
covariant derivatives should be contracted with the Weyl
tensor when obtaining a nonzero two-tensor from ∇nC.
Then, at the lowest order ½∇2C�μν ¼ ∇α∇βCμανβ, one can
use the following identity for the Weyl tensor assuming that
the metric is Eq. (48):

∇μ∇νCμανβ ¼
D − 3

D − 2

�
□Sαβ −

R
D − 1

Sαβ

�
; ð80Þ

which is derived in Appendix B, and then we immediately
obtain the desired form. Now, we move to the nth-order
term ½∇nC�μν for which again one can change the order of
the covariant derivatives in such a way that two of the
covariant derivatives contracting with the Weyl tensor are
moved next to it in order to use the Bianchi identity (80). As
before, during the order change of the covariant derivatives
Riemann tensors are introduced. After the use of Eq. (58),
only the part of the Riemann tensor involving two metrics
yields a nonzero contribution, so the terms involving the
Riemann tensor reduce to ðn − 2Þth-order terms ½∇n−2C�μν.
Thus, the nth-order term ½∇nC�μν reduces to the sum of
½∇n−2□S�μν, ½∇n−2S�μν, and ½∇n−2C�μν terms. Then, just as
we showed that the lowest-order derivative term ½∇2C�μν
can be converted to the ½∇2S�μν case and that the nth-order
term ½∇nC�μν reduces to a sum involving the ½∇nS�μν and
½∇n−2S�μν cases and ðn − 2Þth-order terms ½∇n−2C�μν, it is
clear by mathematical induction that ½∇nC�μν can be
represented as a sum involving just ½∇mS�μν terms where
n ≥ m ≥ 0. Then, the ½∇nC�μν case reduces to the ½∇nS�μν
case which is of the desired form [Eq. (79)].
As a result, the nonzero two-tensors of the AdS-plane

wave spacetime can be written as a linear combination of
the tensor Sμν, the □nSμν’s, and the metric gμν. This
completes the proof.
Note that with this result about the two-tensors, the CSI

property of the AdS-plane wave spacetimes is explicit since
Sμν is traceless.

B. Field equations of the generic gravity theory
for an AdS-plane wave spacetime

In Ref. [15], we studied the field equations of the generic
gravity theory for the CSI Kundt spacetime of Type-NWeyl
and Type-N traceless Ricci tensors. In addition, we also
demonstrated how the field equations further reduce for
Kerr-Schild-Kundt spacetimes to which AdS-plane waves
belong. Let us recapitulate these results here. As an
immediate result of our conclusions above, the field
equations coming from Eq. (2) are

egμν þ
XN
n¼0

an□nSμν ¼ 0: ð81Þ

The trace of the field equation yields

e ¼ 0; ð82Þ
which determines the effective cosmological constant Λ or
1=l2 in terms of the parameters that appear in the
Lagrangian. On the other hand, the traceless part of the
field equation

XN
n¼0

an□nSμν ¼ 0; ð83Þ

can be factorized as

YN
n¼1

ð□þ bnÞSμν ¼ 0; ð84Þ

where the bn’s are again functions of the parameters of the
original theory, and in general they can be complex which
appear in complex-conjugate pairs. To further reduce
Eq. (84), we note that in Ref. [18], it was shown that
for any ϕ satisfying λμ∂μϕ ¼ ∂vϕ ¼ 0, one has

□ϕ ¼ □̄ϕ; ð85Þ
where □̄≡ ḡμν∇̄μ∇̄ν. Therefore, Sμν ¼ λμλνOV with

O≡ −
�
□̄þ 2ξμ∂μ þ

1

2
ξμξμ −

2ðD − 2Þ
l2

�

¼ −
�
□̄þ 4z

l2
∂z −

2ðD − 3Þ
l2

�
; ð86Þ

where the second equality is valid for AdS-plane waves in
the coordinates (60). Using the results in Ref. [18],
□ðϕλαλβÞ can be written as

□ðϕλαλβÞ ¼ □̄ðϕλαλβÞ ¼ −λαλβ
�
Oþ 2

l2

�
ϕ; ð87Þ

which is again valid for any ϕ satisfying λμ∂μϕ ¼ ∂vϕ ¼ 0;
therefore, □Sμν becomes

□Sμν ¼ −λμλν
�
Oþ 2

l2

�
ρ ¼ −λμλν

�
Oþ 2

l2

�
OV:

ð88Þ
Then, Eq. (84) becomes

λμλνO
YN
n¼1

�
Oþ 2

l2
− bn

�
V ¼ 0; ð89Þ
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where we also used the fact that for any ϕ satisfying
∂vϕ ¼ 0, Oϕ also satisfies the same property ∂vOϕ ¼ 0.
Note that Eq. (89) is linear in the metric function V

which suggests the linearization of the field equations of
the generic theory for the AdS-plane waves. To make this
more explicit, by using Eq. (87) Sμν can be put in the form

Sμν ¼ −
�
□̄þ 2

l2

�
ðλμλνVÞ ¼ −

1

2

�
□̄þ 2

l2

�
hμν; ð90Þ

after defining hμν ≡ 2Vλμλν with which the AdS-plane
wave metric becomes gμν ¼ ḡμν þ hμν. In addition, using
∂vϕ ¼ 0 ⇒ ∂vOϕ ¼ 0 and Eq. (87), □nSμν becomes

□nSμν ¼ ð−1Þnλμλν
�
Oþ 2

l2

�
n
OV ¼ □̄nSμν: ð91Þ

Once Eqs. (90) and (91) are considered in either Eq. (83) or
Eq. (84), it is obvious that the field equations of the generic
theory (2) for AdS-plane waves are linear in hμν as in the
case of a perturbative expansion of the field equations
around an (A)dS background for a small metric perturba-
tion ‖h‖≡ ‖g − ḡ‖ ≪ 1.
As in the case of pp waves, this observation suggests

that there are two possible ways to find the field equations
of the generic gravity theory for AdS-plane waves, namely,
(i) derive the field equations and directly plug the AdS-
plane wave metric Ansatz (48) into them, or (ii) linearize the
derived field equations around the (A)dS background and
put hμν ¼ 2Vλμλν into these linearized equations. Again, as
we discuss in Sec. V, the idea in the second way of finding
the field equations for AdS-plane waves provides a shortcut
to finding the field equations of a gravity theory described
with a Lagrangian density which is constructed by
the Riemann tensor but not its derivatives. Finally, hμν ¼
2Vλμλν is transverse, ∇̄μhμν ¼ 0, and traceless, ḡμνhμν ¼ 0,
so one needs only the linearized field equations for the
transverse-traceless metric perturbation.
Just like the discussion in the pp-wave case, assuming

nonvanishing and distinct bn’s, the most general solution of
Eq. (89) is

V ¼ VE þℜ

�XN
n¼1

Vn

�
; ð92Þ

where ℜ represents the real part and VE is the solution to
the cosmological Einstein theory, namely

OVE ¼ −
�
□̄þ 4z

l2
∂z −

2ðD − 3Þ
l2

�
VE

¼ −
�
z2

l2
∂̂2 þ ð6 −DÞz

l2
∂z −

2ðD − 3Þ
l2

�
VE ¼ 0;

ð93Þ

where ∂̂2 ≡ ∂2
∂z2 þ

P
D−3
i¼1

∂2
∂xi∂xi. Here, the second equality

follows from the results in Ref. [16]. In addition, the Vn’s
solve the equation of the quadratic gravity theory, i.e.
ðOþ 2

l2 − bnÞVn ¼ 0. As a result, the AdS-plane wave
solutions of Einstein gravity and quadratic gravity, which
were summarized in the Introduction (with
M2

n ¼ −bn þ 2
l2),

6 also solve a generic gravity theory [15].
When we let bn ¼ −M2

n þ 2
l2 for all n ¼ 1; 2;…; N and

assume real M2
n’s as they represent the masses of the

excitations, then we can express the exact solution
of the generic gravity theory depending on u and z as a
sum of the Einsteinian Kaigorodov solution

VEðu; zÞ ¼ cðuÞzD−3; ð94Þ

where we omitted the 1=z2 solution as it can be absorbed
into the background AdS metric by the redefinition of the
coordinate v, and the functions Vn defined in Eq. (92) are
given as

Vnðu; zÞ ¼ z
D−5
2 ðcn;1ðuÞzjνnj þ cn;2ðuÞz−jνnjÞ;

n ¼ 1; 2;…; N; ð95Þ

where νn ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 1Þ2 þ 4l2M2

n

p
and all M2

n’s are
assumed to be distinct. On the other hand, there can be
many special cases in which some of M2

n ’s are equal. In
fact, these special cases do appear in the critical gravity
theories [22,23,30–32] and the corresponding solutions
always involve logarithms; for example, for the four-
dimensional case see Refs. [16,17]. Here, let us mention
the extreme case in which all N masses vanish. In this case,
the field equation takes the form

ONþ1Vðu;zÞ¼ ½z2∂2
zþð6−DÞz∂z−2ðD−3Þ�Nþ1Vðu;zÞ

¼0; ð96Þ

which has the solution

Vðu; zÞ ¼ zD−3
XN
n¼0

cn;1ðuÞlnnzþ
1

z2
XN
n¼1

cn;2ðuÞlnnz;

ð97Þ

where again we considered the 1=z2 solution as being
absorbed into the AdS part.

6Note that M2
n represents the mass of a massive spin-2

excitation around the AdS background. To prevent any confusion
in its definition observe that O ∼ −□̄. In addition, remember that
in the pp-wave case, we also defined M2

n;flat, the mass around
the flat background, and these two masses are related by
liml→∞M2

n ¼ M2
n;flat.
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IV. pp WAVES AND AdS-PLANE WAVES IN
QUADRATIC GRAVITY

Since quadratic gravity played a central role in con-
structing the solutions of the generic gravity theory, let us
explicitly study the field equations of quadratic gravity in
the context of these wave solutions. The field equations of
quadratic gravity [33]

1

κ

�
Rμν −

1

2
gμνRþ Λ0gμν

�

þ 2αR

�
Rμν −

1

4
gμνR

�
þ ð2αþ βÞðgμν□ −∇μ∇νÞR

þ β□
�
Rμν −

1

2
gμνR

�
þ 2β

�
Rμσνρ −

1

4
gμνRσρ

�
Rσρ

þ 2γ

�
RRμν − 2RμσνρRσρ þ RμσρτRν

σρτ − 2RμσRν
σ

−
1

4
gμνðR2

τλσρ − 4R2
σρ þ R2Þ

�
¼ 0; ð98Þ

for AdS-plane waves (48) reduce to a trace part and an
apparently nonlinear wave-type equation on the traceless
Ricci tensor [34]

�
Λ0

κ
þ ðD − 1ÞðD − 2Þ

2κl2
− f

ðD − 1Þ2ðD − 2Þ2
2l4

�
gμν

þ β

�
□þ 2

l2
−M2

�
Sμν ¼ 0; ð99Þ

where Sμν and M2 are given in Eqs. (50) and (11),
respectively, and f is

f ≡ ðDαþ βÞ ðD − 4Þ
ðD − 2Þ2 þ γ

ðD − 3ÞðD − 4Þ
ðD − 1ÞðD − 2Þ : ð100Þ

The trace part of Eq. (99)

Λ0

κ
þ ðD − 1ÞðD − 2Þ

2κl2
− f

ðD − 1Þ2ðD − 2Þ2
2l4

¼ 0; ð101Þ

determines the effective cosmological constant, that is the
AdS radius l. Since □Sμν ¼ □̄Sμν, the traceless part of
Eq. (99) [after using Eq. (87)] further reduces to

�
□̄þ 2

l2
−M2

��
□̄þ 2

l2

�
ðλμλνVÞ ¼ 0: ð102Þ

This is an exact equation for the AdS-plane waves, but
it is also important to realize that (defining hμν≡
gμν − ḡμν ¼ 2Vλμλν) these are also the linearized field
equations for transverse-traceless fluctuations, which re-
present the helicity �2 excitations, about the AdS

background whose radius is determined by the trace part
of Eq. (99).
In this work, we have been interested in the exact

solutions and not perturbative excitations, but as a side
remark we can note that the fact that AdS-plane waves and
pp waves lead to the linearized equations can be used to
put constraints on the original parameters of the theory
once unitarity of the linearized excitations is imposed. For
example, since the excitations cannot be tachyonic or
ghost-like, M2 ≥ 0 and this immediately says that bn
cannot be complex.
To obtain the field equations for pp waves in this theory

with Λ0 ¼ 0, one simply takes the l → ∞ limit. Note that
in this limit Sμν becomes equal to Rμν.

V. WAVE SOLUTIONS OF f ðRiemannÞ THEORY

Let us now consider a subclass of the generic theory (1)
whose action is built only on the contractions of the
Riemann tensor and not its derivatives. Namely, the action
is given as

I ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
fðRμν

αβÞ; ð103Þ

where we specifically choose Rμν
αβ ≡ Rμν

αβ as the argument
to remove the functional dependence on the inverse metric
gμν without losing any generality, because any higher-
curvature combination can be written in terms of Rμν

αβ
without use of either metric or its inverse.
This class of theories constitutes an important subclass

for two reasons. First, as we discussed above, pp waves
and AdS-plane waves (actually, AdS waves in general)
linearize the field equations of a generic gravity theory, that
is both plugging the pp-wave (AdS-plane wave) metric
gμν ¼ ημν þ 2Vλμλν (gμν ¼ ḡμν þ 2Vλμλν) into the field
equations and plugging hμν ¼ 2Vλμλν into the linearized
field equations around a flat (AdS) background yield the
same field equations. Second, for the fðRμν

αβÞ theory, one
can construct a quadratic curvature gravity theory which
has the same vacua and the same linearized field equations
as the original fðRμν

αβÞ theory (see Refs. [35–41]). Once one
constructs the equivalent quadratic curvature action
(EQCA) corresponding to Eq. (103), by using the effective
parameters of EQCA in the results obtained for the
quadratic gravity case in Sec. IV, one can obtain the field
equations of Eq. (103) for AdS-plane waves and pp waves
without deriving the field equations of Eq. (103). The use of
the EQCA procedure in finding the field equations for AdS-
plane waves and pp waves provides a fair amount of
simplification over the standard method of finding the field
equations which can be quite complicated depending on the
function f. With a known f, one can use the procedure
given in Ref. [40] to find the corresponding EQCA:
(1) Calculate fðR̄μν

ρσÞ, that is the value of the Lagrangian
density for the maximally symmetric background
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R̄μν
ρσ ¼ −

1

l2
ðδμρδνσ − δμσδνρÞ: ð104Þ

In addition, one takes the first- and second-order derivatives of fðRμν
ρσÞ with respect to the Riemann tensor, and

calculates them again for the background (104) to find� ∂f
∂Rμν

ρσ

�
R̄μν
ρσ

Rμν
ρσ ≡ ζR; ð105Þ

1

2

� ∂2f

∂Rμν
ρσ∂Rαβ

λγ

�
R̄μν
ρσ

Rμν
ρσR

αβ
λγ ≡ ~αR2 þ ~βRμ

νRν
μ þ ~γðRμν

ρσR
ρσ
μν − 4Rμ

νRν
μ þ R2Þ; ð106Þ

where ζ, ~α, ~β, ~γ are to be determined from these equations.
(2) Construct the action

IEQCA ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
1

~κ
ðR − 2 ~Λ0Þ þ ~αR2 þ ~βRμ

νRν
μ þ ~γðRμν

ρσR
ρσ
μν − 4Rμ

νRν
μ þ R2Þ

�
; ð107Þ

where ~α, ~β, and ~γ are defined in step 1, while the remaining two parameters are given as

1

~κ
¼ ζ þ 2

l2
½ðD − 1ÞðD ~αþ ~βÞ þ ðD − 2ÞðD − 3Þ~γ�; ð108Þ

~Λ0

~κ
¼ −

1

2
fðR̄μν

ρσÞ −DðD − 1Þ
2l2

�
ζ þ 1

l2
½ðD − 1ÞðD ~αþ ~βÞ þ ðD − 2ÞðD − 3Þ~γ�

�
: ð109Þ

After constructing the EQCA corresponding to Eq. (103),
the field equations of Eq. (103) for AdS-plane waves can be
found by substituting the effective parameters of Eq. (107)
into Eq. (99). Since these field equations are solved by the
AdS-plane wave solutions of Einstein gravity and quadratic
gravity listed in the Introduction, the AdS-plane wave
solutions of Eq. (103) simply follow from these solutions
by using the effective cosmological constant of Eq. (103)
and M2 of Eq. (103), which is calculated by putting the
effective parameters of the EQCA into Eq. (11). The
effective cosmological constant of Eq. (103) can be found
from Eq. (101) after putting the effective parameters of the
EQCA into it. Note that although Eq. (101) is, apparently, a
quadratic equation in 1=l2, after putting the effective
parameters into this equation it yields a different depend-
ence on 1=l2 since these effective parameters also depend
on l2.
As in the case of the quadratic curvature gravity, the l →

∞ limit in theAdS-planewave field equations gives the field
equations for the pp waves for the theory with Λ0 ¼ 0.
Equivalently, one may find the curvature expansion of
fðRμν

αβÞ up to the quadratic order, and this part of the action
determines the field equations for the pp-wave metric.
As an application with a given fðRμν

αβÞ, we consider the
cubic curvature gravity generated by the bosonic string
theory at the second order in the inverse string tension α0
[42] and the Lanczos-Lovelock theory [43,44].

A. Cubic gravity generated by string theory

The effective action for the bosonic string at O½ðα0Þ2� is

I ¼ 1

κ

Z
dDx

ffiffiffiffiffiffi
−g

p �
Rþ α0

4
ðRμν

αβR
αβ
μν − 4Rμ

νRν
μ þ R2Þ

þ ðα0Þ2
24

ð−2Rμα
νβR

νγ
μλR

βλ
αγ þ Rμν

αβR
γλ
μνR

αβ
γλ Þ

�
; ð110Þ

where the bare cosmological constant is not introduced, so
the theory admits a flat background in addition to the (A)dS
ones. In Ref. [38], the EQCA of Eq. (110) was calculated as

IEQCA ¼ 1

κ

Z
dDx

ffiffiffiffiffiffi
−g

p ��
1þ α02ðD − 5Þ

4l4

�

×

�
Rþ 2

α02DðD − 1ÞðD − 5Þ
6ðD − 5Þα02l2 þ 24l6

�

þ α02

2l2
R2 −

7α02

4l2
Rμ
νRν

μ þ
α0

4

�
1 −

2α0

l2

�

× ðRμν
αβR

αβ
μν − 4Rμ

νRν
μ þ R2Þ

�
; ð111Þ

where the effective parameters depend on the yet-to-be-
determined effective cosmological constant represented
through the AdS radius l. The field equation for l2 can
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be found by using the effective parameters of Eq. (111) in
Eq. (101) as

1

l2

�
1 −

ðD − 3ÞðD − 4Þα0
4l2

−
ðD − 5ÞðD − 6Þα02

12ðD − 2Þl4

�
¼ 0:

ð112Þ

Note that although we started with a quadratic equation in
1=l2, that is Eq. (101), we obtained a cubic equation as
expected for a cubic curvature theory. For D ≥ 3, there is
always an AdS solution because 1=l2 ∼ α0 in addition to
the flat solution, so that the theory admits an AdS-plane
wave solution.
In addition to effective cosmological constant, we need

the mass parameter M2 to write the AdS-plane wave
solutions. Using EQCA parameters in Eq. (11), M2 can
be found as [15]

M2 ¼ 4l2

7α02
−
2ðD − 3ÞðD − 4Þ

7α0
þ 29 − 9D

7l2
: ð113Þ

The AdS-plane wave solutions given in the Introduction are
the solutions of Eq. (110) with thisM2. For example, for the
ξ ¼ 0 case one has

Vðu; zÞ ¼ c1ðuÞzD−3 þ z
D−5
2 ðc2ðuÞz12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−1Þ2þ4l2M2

p

þc3ðuÞz−1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD−1Þ2þ4l2M2

p
Þ: ð114Þ

Here, we note that when using the solutions of Eq. (112) in
Eq. (113), M2 has the form 1=α0 (which is also suggested
by dimensional analysis) and becomes negative for D > 3.
On the other hand, the BF bound, that is M2 ≥ − ðD−1Þ2

4l2 , is
satisfied for D ≤ 6.
To discuss pp-wave solutions, one should take the l →

∞ limit in the AdS-plane wave field equations. Taking this
limit in Eq. (113) yields M2 → ∞ which suggests the
absence of the massive operator part in the pp-wave field
equations. This is in fact the case which becomes more
clear by taking the l → ∞ limit at the EQCA level. In this
limit, Eq. (111) reduces to Einstein-Gauss-Bonnet theory
which is the quadratic curvature order of the original action
(110).7 Therefore, as we discussed above, the quadratic
curvature order of the original action determines the pp-
wave field equations, and here it is the Einstein-
Gauss-Bonnet theory whose equations reduce to the field
equations of Einstein gravity at the linearized level.
Therefore, the massive operator is absent and the pp-wave
solutions of Eq. (110) are only the Einsteinian solutions.

B. Lanczos-Lovelock theory

The Lanczos-Lovelock theory is a special fðRμν
αβÞ theory

which has at most second-order derivatives of the metric in
its field equations just like Einstein gravity. Therefore, one
expects a second-order differential equation for the metric
function V as the (traceless) field equations for pp waves
and AdS-plane waves. To find the explicit form of the field
equations, one needs to construct the EQCA for the
Lanczos-Lovelock theory given by the Lagrangian density

fL-L ¼
X½D2 �
n¼0

Cnδ
μ1…μ2n
ν1…ν2n

Yn
p¼1

R
ν2p−1ν2p
μ2p−1μ2p ; ð115Þ

where the Cn’s are dimensionful constants, δμ1…μ2n
ν1…ν2n is the

generalized Kronecker delta, and ½D
2
� denotes the integer

part of its argument. In Ref. [39], the EQCA of Eq. (115)
was calculated as

IEQCA ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
1

~κ
ðR − 2 ~Λ0Þ

þ~γðRμν
αβR

αβ
μν − 4Rμ

νRν
μ þ R2Þ

�
; ð116Þ

where the effective parameters are the effective Newton’s
constant,

1

~κ
≡ 2ðD − 2Þ!

X½D2 �
n¼0

ð−1ÞnCn
nðn − 2Þ
ðD − 2nÞ!

�
2

l2

�
n−1

; ð117Þ

the effective cosmological constant,

~Λ0

~κ
≡ −

D!

4

X½D2 �
n¼0

ð−1ÞnCn
ðn − 1Þðn − 2Þ
ðD − 2nÞ!

�
2

l2

�
n
; ð118Þ

and the effective Gauss-Bonnet coefficient

~γ ≡ 2ðD − 4Þ!
X½D2 �
n¼0

ð−1ÞnCn
nðn − 1Þ
ðD − 2nÞ!

�
2

l2

�
n−2

: ð119Þ

The AdS radius appearing in these effective parameters
satisfies the equation

0 ¼
X½D2 �
n¼0

ð−2ÞnCn
ðD − 2nÞ
ðD − 2nÞ!

�
1

l2

�
n
; ð120Þ

which can be found by plugging Eqs. (117)–(119) into
Eq. (101). Again, notice that the quadratic equation (101)
yields a ½D

2
�th-order equation in 1=l2 after the use of the l-

dependent parameters of the EQCA. Note that for
even dimensions, the D ¼ 2n term does not contribute
to the field equation (120). Since the EQCA is in the

7This is expected since the EQCA is just the Taylor series
expansion in curvature around the maximally symmetric back-
ground. Then, once the flat limit is taken in the EQCA, the action
reduces to the quadratic curvature order of the original action.
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Einstein-Gauss-Bonnet form, the traceless part of the field
equations reduces to

OV ¼ 0; ð121Þ

where O is defined in Eq. (93), if 1=~κ ≠ 0, that is

X½D2 �
n¼0

ð−1ÞnCn
nðD − 2nÞ
ðD − 2nÞ!

�
2

l2

�
n−1

≠ 0; ð122Þ

holds. Thus, the Einsteinian solutions, such as the
Kaigorodov solution

Vðu; zÞ ¼ cðuÞzD−3; ð123Þ

solve Eq. (121). Note that even though VE apparently does
not show a dependence on the parameters of the theory, the
metric depends on all of the parameters via the AdS radius
l. Hence, the above exercise is nontrivial.
Lastly, for the Chern-Simons Lovelock theory in odd

dimensions [45], the constraint 1=~κ ¼ 0 is satisfied, so the
field equation becomes trivial.

VI. EINSTEINIAN WAVE SOLUTIONS
OF THE GENERIC THEORY

A natural generalization of the above exercises is that the
AdS-plane waves of the cosmological Einstein theory solve
the generic gravity theory (2). The metric function V does
not depend on the parameters of the theory; therefore, it is
intact for all theories. But, the nontrivial part of the
computation is to find the AdS radii for each theory.
Fortunately, with the equivalent linear action (ELA) pro-
cedure that we used in Refs. [36,37,41], all one needs to do
is (i) calculate the Lagrangian density in the maximally
symmetric background (104) (let us call it f̄), and (ii) com-
pute the derivative of the Lagrangian density with respect to
the Riemann tensor and evaluate it again in Eq. (104). With
this result one finds� ∂f

∂Rμν
ρσ

�
R̄μν
ρσ

Rμν
ρσ ≡ ζR; ð124Þ

which is in fact the definition of ζ. Using these results, the
ELA, which has the same vacua as the original theory, can
be constructed as

IELA ¼ 1

~κ

Z
dDx

ffiffiffiffiffiffi
−g

p ðR − 2 ~Λ0Þ; ð125Þ

where the effective Newton’s constant and the effective
bare cosmological constant are

1

~κ
¼ ζ; ð126Þ

~Λ0

~κ
¼ −

1

2
f̄ −

DðD − 1Þ
2l2

ζ: ð127Þ

Then, the AdS radii can be calculated from

l2 ¼ −
ðD − 1ÞðD − 2Þ

2 ~Λ0

: ð128Þ

Note that in the Lagrangian, the terms involving the
derivatives of the Riemann tensor do not contribute to
the maximally symmetric vacua at all because the field
equations derived from these derivative terms always
involve the derivatives of the Riemann tensor which vanish
for the maximally symmetric metric.
As an example of this procedure, let us consider the

conformal gravity with derivative terms in D ¼ 6
dimensions.

A. Conformal gravity in D ¼ 6

Conformal gravity in six dimensions8 has the Lagrangian
density [46,48]

LConf ¼ β

�
RRμ

νRν
μ −

3

25
R3 − 2Rμ

νR
ρ
σRνσ

μρ

−Rμ
ν□Rν

μ þ
3

10
R□R

�
: ð129Þ

With the AdS-plane wave Ansatz, the field equations
coming from this Lagrangian, which are given in
Ref. [46], reduce to

�
□þ 8

l2

��
□þ 6

l2

�
Sμν ¼ 0: ð130Þ

Using the ELA procedure above (see Appendix C), it is
easy to show that for this purely cubic theory the AdS
radius is not fixed; therefore, any maximally symmetric
space is a solution which is to be expected since the theory
is conformal with no internal scale. But, once one imposes
the existence of an AdS vacuum, one necessarily breaks the
symmetry in the vacuum and picks up a unique cosmo-
logical constant (in Ref. [46], Λ ¼ −10 was chosen in the
l ¼ 1 units).
To further reduce Eq. (130), using Eqs. (87) and (90)

yields

8Note that to define a conformal gravity in six dimensions, one
can also use the two independent scalars constructed from three
Weyl tensors; see for example Refs. [46,47]. For this purely cubic
Weyl theory, the EQCA and the linearized field equations will be
identically zero, so the AdS-plane wave field equations become
trivial. The version of six-dimensional conformal gravity we have
chosen here is for discussing the presence of derivatives of the
Riemann tensor in the action.
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�
□þ 8

l2

��
□þ 6

l2

��
□þ 2

l2

�
ðλμλνVÞ ¼ 0; ð131Þ

which still looks like a nonlinear differential equation since
the d’Alembertian operators are with respect to the full
metric involving the V part. But, this apparent nonlinearity
is a red herring since □nðλαλβVÞ ¼ □̄nðλαλβVÞ. In addi-
tion, one can move λ vectors to the left with the help of
Eqs. (87) and (93) implying

�
□þ 2

l2

�
ðλαλβVÞ ¼

�
□̄þ 2

l2

�
ðλαλβVÞ

¼ λαλβ

�
z2

l2
∂̂2 −

6

l2

�
V; ð132Þ

and one gets a linear differential equation

λμλν

�
z2

l2
∂̂2

��
z2

l2
∂̂2 −

2

l2

��
z2

l2
∂̂2 −

6

l2

�
V ¼ 0: ð133Þ

Assuming V ¼ Vðu; zÞ, the general solution reads

Vðu; zÞ ¼ c1
z2

þ c2
z
þ c3 þ c4zþ c5z2 þ c6z3; ð134Þ

where the first term can be added to the “background” AdS
part and ci ¼ ciðuÞ. Note that this is also the general
solution to the linearized equations with hμν ¼ 2Vλμλν.
To this conformal D ¼ 6 action, one can add the

cosmological Einstein and Weyl square theories as [32]

L6D ¼ Rþ 20

l2
þ α

2
Cμν
αβC

αβ
μν − LConf ; ð135Þ

whose field equations (by using the AdS-plane wave
Ansatz) reduce to

�
β

�
□þ 8

l2

��
□þ 6

l2

�
þ 3

2
α

�
□þ 6

l2

�
þ 1

�
Sμν ¼ 0:

ð136Þ

Unlike the purely cubic theory above, this theory has a
unique vacuum with Λ ¼ −10=l2 which is fixed by the
cosmological Einstein part: neither the quadratic Weyl
piece nor the cubic part contributes to the effective
cosmological constant. Again assuming V ¼ Vðu; zÞ, the
general AdS-plane wave solution to Eq. (136) with generic
α and β consists of six power terms

Vðu; zÞ ¼
X6
i¼1

ciðuÞzni ; ð137Þ

with powers

n1¼−2; n2¼3;

n3;4;5;6¼
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

4
−
3αl2

4β
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ3αl2

4β

�
2

−
l4

β

svuut ; ð138Þ

where again the first term can be added to the “background”
AdS part with no consequence. The second term is the
Kaigorodov solution, which can be expected without doing
any calculation, and the rest are the nontrivial pieces.
Let us consider the specific case of the “tricritical

gravity,” that is α ¼ −5l2=12 and β ¼ l4=16 [32], for
which n3;4;5;6 becomes −2 and 3, so that the differential
equation (136) degenerates into the form

λμλν

�
z2

l2
∂̂2 −

6

l2

�
3

V ¼ 0; ð139Þ

with nontrivial logarithmic solutions in addition to the
expected Einsteinian parts, which are AdS and Kaigorodov
parts,

Vðu; zÞ ¼ 1

z2

�
c1 þ c2 ln

�
z
l

�
þ c3ln2

�
z
l

��

þ z3
�
c4 þ c5 ln

�
z
l

�
þ c6ln2

�
z
l

��
; ð140Þ

where again ci ¼ ciðuÞ. Note that both Eq. (137)
and Eq. (140) are also the general solutions to the
corresponding linearized equations for transverse-traceless
perturbations.

VII. CONCLUSION

We have shown that the AdS-plane wave metric solves
the most general gravity theory whose Lagrangian is an
arbitrary function of the metric, the Riemann tensor and the
covariant derivatives of the Riemann tensor. In doing so, we
have also given the explicit proof of the theorem, briefly
proved in Ref. [15], that two-tensors in these spacetimes
can be written as a sum of □nSμν with n ¼ 0; 1; 2;…. In
our proof, the pp-wave solution played a role, so we have
revisited this spacetime and also constructed novel solu-
tions for quadratic gravity that also extend to the generic
gravity theories. We have devoted several sections to
example theories such as the cubic curvature gravity
generated by string theory, Lanczos-Lovelock gravity,
and the recent D ¼ 6 conformal gravity, its nonconformal
modifications, and tricritical gravity.
Our exact solutions linearize the field equations, and

hence they also match the perturbative solutions for trans-
verse-traceless perturbations. Therefore, the particle spec-
trum of these theories can be read from these metrics, save
the spin-0 mode. Once the unitarity constraints on the
particle spectrum are considered, this result can be used to
choose the viable theories. For example, requiring
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nontachyonic physical excitations, that is M2
n ¼

−bn þ 2
l2 > 0 and liml→∞M2

n ¼ M2
n;flat > 0, puts tight

constraints on the theory parameters such that they should
yield real, upper-bounded bn’s.
In obtaining our solutions, we have reduced the field

equations of the most general gravity theory to N massive
Klein-Gordon equations satisfied by Vn, n ¼ 1; 2;…; N,
and one massless Klein Gordon equation satisfied by VE
such that the general solution to the theory is
V ¼ VE þP

N
n¼1 Vn. We have given sample solutions of

these equations when all the masses are different and when
the masses are equal, that is the critical gravity case. When
some Mn’s are equal, the solutions involve logarithmic
parts. We gave the general logarithmic solution for the case
where all the Mn’s are zero. The specific examples for this
case are the critical gravity theory studied in Refs. [16,17]
and the tricritical gravity theory that we discussed here.
We have generalized and unified the previous works

[4,6,9] on pp-wave spacetimes. Namely, for any theory the
field equations for the pp-wave metrics in the Kerr-Schild
form reduce to

YN
n¼1

ð□þ bnÞRμν ¼ 0; ð141Þ

which can be further reduced to the Einstein gravity ones
under the assumptions of Refs. [4,6,9]. Another fact is that
the results we obtained in this work remain intact for the
theories with pure radiation sources, that is Tμνdxμdxν ¼
Tuudu2. For example, for a source having the functional
dependence Tμν ¼ TμνðuÞ, the plane waves solving
a0Rμν ¼ Tμν are also particular solutions to the generic
gravity theory since □Rμν ¼ 0 for these plane waves.
A possible way to consider sources is by introducing a

nonminimally coupled scalar field. In Refs. [49] and [50], it
was shown that a nonminimally coupled scalar field with a
specific potential can supportpp-wave andAdS-planewave
solutions for three-dimensional Einstein gravity. This spe-
cific potential form was generalized to higher dimensions in
Ref. [51]. Using this result together with those discussed
here, it is possible to find pp-wave and AdS-plane wave
solutions to some higher-curvature gravity theories coupled
to nonminimally coupled scalar fields [52].
In a future work, the explicit proof presented for the

AdS-plane waves will be extended to the Kerr-Schild-
Kundt class discussed in Refs. [15,18].
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APPENDIX A: TENSORS OF KERR-SCHILD-
KUNDT SPACETIMES

In this Appendix, we will prove Eq. (51). For the Kerr-
Schild-Kundt class of metrics

gμν ¼ ḡμν þ 2Vλμλν; ðA1Þ

where ḡμν is the AdS metric the following relations hold:

λμλμ ¼ 0; ∇μλν ¼ ξðμλνÞ;

ξμλ
μ ¼ 0; λμ∂μV ¼ 0: ðA2Þ

The Riemann tensor for this class of metrics is given in
Eq. (B25) of Ref. [18] as

Rμ
ανβ ¼ R̄μ

ανβ þ 2λαλ½ν∇̄β�∂μV − 2λμλ½ν∇̄β�∂αV

þ λ½νξβ�ðλα∂μV − λμ∂αV þ λαξ
μVÞ

þ ðλαξμ − λμξαÞλ½ν∂β�V

þ 2Vλμðλα∇̄½νξβ� − λ½ν∇̄β�ξαÞ: ðA3Þ

One can free ξ from derivatives with the help of
½∇̄μ; ∇̄ν�λβ ¼ R̄μνβ

ρλρ yielding

2λ½ν∇̄μ�ξβ − 2λβ∇̄½νξμ� − ξβλ½νξμ� ¼ −
2

l2
ðgμβλν − λμgνβÞ:

ðA4Þ

Then, the Riemann tensor reduces to

Rμ
ανβ ¼ R̄μ

ανβ þ
4

l2
Vλμλ½νḡβ�α þ λαð2λ½ν∇̄β�∂μV þ λ½νξβ�∂μV þ λ½νξβ�ξμV þ ξμλ½ν∂β�VÞ

− λμð2λ½ν∇̄β�∂αV þ λ½νξβ�∂αV þ λ½νξβ�ξαV þ ξαλ½ν∂β�VÞ; ðA5Þ
whose (0,4)-rank tensor version is
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Rμανβ ¼ R̄μανβ þ λαð2λ½ν∇̄β�∂μV þ λ½νξβ�∂μV þ λ½νξβ�ξμV þ ξμλ½ν∂β�VÞ
− λμð2λ½ν∇̄β�∂αV þ λ½νξβ�∂αV þ λ½νξβ�ξαV þ ξαλ½ν∂β�VÞ: ðA6Þ

Now, let us calculate the Weyl tensor

Cμανβ ≡ Rμανβ −
2

D − 2
ðgμ½νRβ�α − gα½νRβ�μÞ þ

2

ðD − 1ÞðD − 2ÞRgμ½νgβ�α: ðA7Þ

The last term involving the scalar curvature has the form

Rgμ½νgβ�α ¼ R̄ḡμ½νḡβ�α − 2R̄Vðλαλ½νḡβ�μ − λμλ½νḡβ�αÞ: ðA8Þ

The second term involving the Ricci tensor has the following form by using Rαβ ¼ − ðD−1Þ
l2 gαβ þ ρλαλβ:

gμ½νRβ�α − gα½νRβ�μ ¼ ḡμ½νR̄β�α − ḡα½νR̄β�μ −
�
ρþ 4VR̄

D

�
ðλαλ½νḡβ�μ − λμλ½νḡβ�αÞ: ðA9Þ

With the help of the above results and C̄μανβ ¼ 0, the Weyl tensor reduces to

Cμανβ ¼ λαð2λ½ν∇̄β�∂μV þ λ½νξβ�∂μV þ λ½νξβ�ξμV þ ξμλ½ν∂β�VÞ − λμð2λ½ν∇̄β�∂αV þ λ½νξβ�∂αV þ λ½νξβ�ξαV þ ξαλ½ν∂β�VÞ

þ 2

D − 2

�
ρ −

2ðD − 2Þ
l2

V

�
ðλαλ½νḡβ�μ − λμλ½νḡβ�αÞ; ðA10Þ

where one can convert ḡμν to gμν without producing any additional term. Also, using Eqs. (B4) and (B5) of Ref. [18], one has

∇̄α∂βV ¼ ∇α∂βV − λαλβð∂λVÞ∂λV; ðA11Þ

which can be used to write Cμανβ in terms of the full metric quantities as

Cμανβ ¼ λμλν

�
−∇α∂βV − ξðα∂βÞV −

1

2
ξαξβV −

1

D − 2
gαβ

�
ρ −

2ðD − 2Þ
l2

V

��

þ λαλβ

�
−∇μ∂νV − ξðμ∂νÞV −

1

2
ξμξνV −

1

D − 2
gμν

�
ρ −

2ðD − 2Þ
l2

V

��

− λμλβ

�
−∇α∂νV − ξðα∂νÞV −

1

2
ξαξνV −

1

D − 2
gαν

�
ρ −

2ðD − 2Þ
l2

V

��

− λαλν

�
−∇μ∂βV − ξðμ∂βÞV −

1

2
ξμξβV −

1

D − 2
gμβ

�
ρ −

2ðD − 2Þ
l2

V

��
: ðA12Þ

Thus, the definition

Ωαβ ¼ −
�
∇α∂βV þ ξðα∂βÞV þ 1

2
ξαξβV þ 1

D − 2
gαβ

�
ρ −

2ðD − 2Þ
l2

V

��
; ðA13Þ

reduces Cμανβ to the desired Type-N form

Cμανβ ¼ λμλνΩαβ þ λαλβΩμν − λμλβΩαν − λαλνΩμβ

¼ 4λ½μΩα�½βλν�: ðA14Þ
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APPENDIX B: BIANCHI IDENTITIES
FOR THE WEYL TENSOR

The once-contracted Bianchi identity

∇νRμανβ ¼ ∇μRαβ −∇αRμβ; ðB1Þ

for constant R yields

∇νRμανβ ¼ ∇μSαβ −∇αSμβ; ðB2Þ

which then leads to

∇μCμανβ ¼ ∇νSβα −∇βSνα

−
2

D − 2
∇μðgμ½νSβ�α − gα½νSβ�μÞ: ðB3Þ

Using the twice-contracted Bianchi identity, that is
∇μSμν ¼ 0 for constant R, one gets

∇μCμανβ ¼
D − 3

D − 2
ð∇νSβα −∇βSναÞ; ðB4Þ

which is the once-contracted Bianchi identity of the Weyl
tensor for constant-curvature spacetimes.
Now, let us discuss ∇μ∇νCμανβ which becomes

∇μ∇νCμανβ ¼
D − 3

D − 2
ð□Sαβ −∇μ∇αSμβÞ; ðB5Þ

for constant-curvature spacetimes. Then, using
∇μ∇σSμν ¼ R

D−1 Sσν, which holds for the metrics (A1),
one gets

∇μ∇νCμανβ ¼
D − 3

D − 2

�
□Sαβ −

R
D − 1

Sαβ

�
; ðB6Þ

which proves Eq. (80).

APPENDIX C: EQUIVALENT LINEAR ACTION
OF CONFORMAL GRAVITY

Without finding the complicated field equations of the
six-dimensional conformal gravity, let us show a method
that leads to the effective cosmological constant. First, we
note that the effective cosmological constant of a generic
gravity theory is determined by only the nonderivative
Riemann terms appearing in the action because the field
equations derived from the terms involving the derivative of
the Riemann tensor always yield zero after evaluating them
for the maximally symmetric background

R̄μν
ρσ ¼ −

1

l2
ðδμρδνσ − δμσδνρÞ: ðC1Þ

Thus, we need to focus on the terms involving the Riemann
tensor but not its derivatives. The procedure described in
Sec. VI for the construction of the ELA is based on the

following Taylor series expansion of the Lagrangian
density:

fELAðRμν
αβÞ ¼ fðR̄μν

αβÞ þ
� ∂f
∂Rρσ

ηθ

�
R̄ρσ
ηθ

ðRρσ
ηθ − R̄ρσ

ηθÞ: ðC2Þ

However, when doing computations, one may prefer to
consider the functional dependence of the fðRμν

αβÞ theory as
fðR;Rμ

ν ; R
μν
αβÞ and one has

fELAðR;Rμ
ν ; R

μν
αβÞ ¼ fðR̄; R̄μ

ν ; R̄
μν
αβÞ þ

�∂f
∂R

�
R̄
ðR − R̄Þ

þ
� ∂f
∂Rρ

σ

�
R̄ρ
σ

ðRρ
σ − R̄ρ

σÞ

þ
� ∂f
∂Rρσ

ηθ

�
R̄ρσ
ηθ

ðRρσ
ηθ − R̄ρσ

ηθÞ: ðC3Þ

Using this formula, let us construct the ELA for each
nonderivative Riemann term in Eq. (129). First, we note
that the background Ricci tensor and the background scalar
curvature in six dimensions in our conventions are

R̄ ¼ −
30

l2
; R̄μ

ν ¼ −
5

l2
δμν : ðC4Þ

Then, for the term fðR;Rμ
νÞ ¼ RRμ

νRν
μ, one needs f̄ and ζ to

construct the ELAwhich are

R̄R̄μ
νR̄ν

μ ¼ −
4500

l6
; ζ ¼ 450

l4
; ðC5Þ

and the ELA for fðR;Rμ
νÞ ¼ RRμ

νRν
μ becomes

fELAðR;Rμ
νÞ ¼ 450

l4

�
Rþ 20

l2

�
: ðC6Þ

Moving the R3 term, f̄ and ζ become

R̄3 ¼ −
27000

l6
; ζ ¼ 2700

l4
; ðC7Þ

which yields the ELA,

fELAðRÞ ¼
2700

l4

�
Rþ 20

l2

�
: ðC8Þ

Finally, for the term fðRμ
ν ; R

μν
αβÞ ¼ Rμ

νR
ρ
σRνσ

μρ, f̄ and ζ can be
calculated as

f̄ ¼ −
750

l6
; ζ ¼ 75

l4
; ðC9Þ

and the ELA becomes
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fELAðRμ
ν ; R

μν
αβÞ ¼

75

l4

�
Rþ 20

l2

�
: ðC10Þ

Collecting all these results yields the ELA for Eq. (129) as

f6D-confELA ¼ −
24

l4

�
Rþ 20

l2

�
;

whose vacuum equation is

l2 ¼ −
ðD − 1ÞðD − 2Þ

2 ~Λ0

¼ l2:

Thus, AdS with any cosmological constant is a solution as
expected in this scale-free theory.
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